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Substrate-induced reduction of graphene thermal conductivity
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We develop a theory of heat conductivity in supported graphene, accounting for coherent phonon scattering
on disorder induced by an amorphous substrate. We derive spectra for in-plane and out-of-plane phonons in
the framework of Green’s function approach. The energy parameters of the theory are obtained using molecular
dynamics simulations for graphene on a SiO2 substrate. The heat conductivity is calculated by the Boltzmann
transport equation. We find that the interaction with the substrate drastically reduces the phonon lifetime and
completely suppresses the contribution of flexural (ZA) phonons to the heat conductivity. As a result, the total heat
conductivity is reduced by several times, which matches with the tendency observed in the available experimental
data. The considered effect is important for managing the thermal properties of graphene-based electronic devices.
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I. INTRODUCTION

Due to its outstanding properties, graphene, a honeycomb
monolayer of carbon atoms, attracts great attention as a
material for application in future nanoscale electronics. The
mechanical [1,2] and electronic [3–5] properties of graphene,
and the various radiation driven effects [6–8] and thermoelec-
tric [9] phenomena in graphene are among the hottest topics
of recent studies in condensed matter physics.

Along with other carbon-based materials, graphene reveals
extremely high thermal conductivity κ . The room-temperature
thermal conductivity of suspended graphene reaches
5000 W m−1 K−1 [10–13]. For application of graphene as a
component of electronic devices and for controlling the carrier
density, it is commonly gated. This requires close contact
between a graphene sheet and a dielectric substrate like SiO2.

Electron scattering on the surface charged impurities [5,14],
surface corrugations [15–17], atomic steps [18], and surface
polar phonons [19–21] reduces the electric conductivity of
graphene. The same effect is expected for the heat conductivity.
Accounting for graphene layers and conductive traces as
heat sinks requires a quantitative estimate of this effect.
Also, estimations of acoustic phonon lifetimes and the mean
free path are mandatory for calculating the phonon drag
contribution to the thermopower in graphene [22,23].

Previously, the effect of the substrate on the thermal
properties of graphene was investigated experimentally, from
a theoretical standpoint, and by molecular dynamics sim-
ulations. The experimental studies of heat conductivity in
suspended graphene are based on the Raman optothermal
method [24–29], and reveal values above 2000 W m−1 K−1.
The investigation of supported graphene thermal properties
is based on electrical heating and gives several times lower
values of the thermal conductivity [30]. Other works, where
supported graphene is studied, focus mainly on the electrical
properties of graphene with the heat conductivity being a
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secondary result [31,32]. The table in Ref. [11] summarizes
current studies on graphene thermal conductivity.

The heat conductivity is governed by the phonon dispersion
and relaxation processes [10,11]. The theoretically investi-
gated mechanisms of phonon relaxation include boundary
scattering, point defect scattering, and anharmonic processes
[33–36]. The effect of the substrate is out of consideration in
most current theoretical works. In the supplementary online
materials of Ref. [30], the spot contact model within the Fermi
golden rule formalism developing the Klemens approach [37]
for phonon scattering, was employed to account for a substrate.
However, the case of randomly distributed defects with close
to atomic concentration needs a theory based on Green’s
functions to account for coherent scattering.

Molecular dynamics (MD) is also used to investigate
the thermal conductivity of graphene [38–41] and carbon
nanotubes [42,43]. Such studies include modeling of the
phonons of graphene on amorphous substrates. Reference [44]
is devoted to molecular dynamics simulations of graphene on
a SiO2 substrate and shows that van der Waals interactions
reduce the relaxation time of intrinsic acoustic phonons in
graphene. The nonequilibrium MD simulation demonstrates a
reduction of the thermal transport in graphene on SiO2 [45].
Although MD simulations are a promising and powerful tool
for investigating vibrational properties of solids, it is necessary
to compare the obtained results with independent analytical
approaches.

Here, we address the effect of an amorphous substrate
on the phonon dispersion and lifetimes in graphene within
the Green’s function formalism [46]. The parameters of the
perturbing substrate-induced van der Waals potential required
by the developed analytical theory were obtained with MD
simulations. In-plane (LA,TA) and flexural (ZA) phonons
were considered and the corresponding contributions to heat
conductivity were obtained within the Boltzmann transport
equation (BTE) approach. The optical phonons were not
considered due to their small occupation number at actual
temperatures, which results in low contribution to thermal
conductivity (see Refs. [47,48]).
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The rest of the paper is organized as follows. In the begin-
ning of Sec. II A, we introduce the general form of the graphene
Hamiltonian accounting for interaction with the substrate. In
Secs. II B and II C, we derive spectra for the in-plane (Sec. II B)
and flexural (Sec. II C) phonons within the perturbation theory
approach. In Sec. II D, we describe the MD simulation,
performed to estimate the energy parameters, required by
the developed perturbation theory. Section III aggregates the
results for spectra, phonon lifetimes, and heat conductivity.
In Sec. III A, we justify the localization of ZA phonons. In
Sec. III B, we discuss the mechanisms of phonon damping
in graphene. The lifetime estimations for in-plane phonons
are given in Sec. III C and the results for supported graphene
heat conductivity are presented and discussed in Sec. III D.

II. THEORY

A. Perturbations to conventional graphene Hamiltonian
due to the substrate

We start with considering the static properties of graphene
on a substrate. Due to the interplay between carbon-carbon
and carbon-substrate forces, the carbon atoms in the graphene
layer are shifted from their regular positions. These static
substrate-induced displacements are described by the vector
set (rl0,zl0), where the l index spans all atoms, rl0 and zl0 are in-
plane and out-of-plane displacements correspondingly. Thus
we write the following equation for the graphene potential
energy:

E =
∑

l

⎛
⎝Usub(rl0,zl0) +

∑
j

K(δRlj )2

2

⎞
⎠, (1)

where Usub is the potential energy stemming from the interaction with the substrate, K is the first-neighbor interatomic force
constant, and δRlj is the change in distance between lth atom and its neighbors. Here and below, index j = 1,2,3 spans the
neighbors of an atom. After simple calculations, we get

E =
∑

l

⎧⎨
⎩Usub(rl0,zl0) +

∑
j

K

2

[
(elj (rl0 − rj0))2 +

(
(zl0 − zj0)2 + (

rτ
l0 − rτ

j0

)2)2

4R2

]⎫⎬
⎭, (2)

Here, elj is a unit vector along the direction from atom l to its neighbor j, rτ is a perpendicular to the bond in-plane displacement,
explicitly rτ

l0 − rτ
j0 = |(rl0 − rj0) − (elj · (rl0 − rj0))elj |. The positions of the carbon atoms on the amorphous substrate satisfy

standard equations for classical energy minima (∂E/∂Rl = 0). Introducing small deviations xl,yl,zl from equilibrium positions,
we get a perturbation of the conventional in-plane phonon Hamiltonian:

δHin-plane =
∑

l

⎡
⎣1

2

∂2Usub

∂x2
(rl0,zi0)x2

l + 1

2

∂2Usub

∂y2
(rl0,zi0)y2

l +
∑

j

K
(
rτ
l − rτ

j

)2

4R2

(
3
(
rτ
l0 − rτ

j0

)2 + (zl0 − zj0)2
)⎤⎦. (3)

Also, we get the following perturbation for ZA phonons:

δHZA =
∑

l

⎡
⎣1

2

∂2Usub

∂z2
(rl0,zl0)z2

l +
∑

j

K(zl − zj )2

4R2

(
3(zl0 − zj0)2 + (rτ

l0 − rτ
j0)2)

⎤
⎦. (4)

The MD simulation described below allows to obtain the
equilibrium structure of graphene on the substrate for tem-
perature T = 0 K and the corresponding values of atomic
displacements rl0 and zl0. The simulation shows that here the
terms with zl0 are much larger than the ones with rτ

l0. An extra
difference in prefactor 3 allows to omit the terms with rτ

l0 here,
which is reflected in the definition of parameters βlj in the
beginning of Sec. II C.

B. Theory for LA and TA phonons

The perturbation Hamiltonian for the in-plane phonons has
the following form [cf. Eq. (3)]:

V =
∑

l

⎡
⎣γlr

2
l

2
+

∑
j

ξlj

(
rτ
l − rτ

j

)2

2

⎤
⎦. (5)

The parameters γl and ξlj ,

γl = ∂2Usub

∂x2
(rl0,zl0) + ∂2Usub

∂y2
(rl0,zl0), (6)

ξlj = K
(
3
(
rτ
l0 − rτ

j0

)2 + (zl0 − zj0)2
)

4R2
, (7)

were determined using MD simulations. Let

γ = 〈γl〉, γ̃l = γl − γ, (8)

ξ = 〈ξlj 〉, ξ̃lj = ξlj − ξ, (9)

where the angle brackets denote the averaging over disorder
configurations. Obviously 〈γ̃l〉,〈ξ̃lj 〉 = 0. So we can divide
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perturbation (5) in two parts:

V = V1 + V2, (10)

V1 = γ
∑

l

⎡
⎣ r2

2
+ ξ

∑
j

(rτ − rτ )2

2

⎤
⎦, (11)

V2 =
∑

l

⎡
⎣ γ̃lr

2
l

2
+

∑
j

ξ̃lj

(
rτ
l − rτ

j

)2

2

⎤
⎦. (12)

It is easy to include V1 to the exact phonon spectrum, because
it only shifts the system vibrational eigenvalues (ω2) by γ

and slightly renormalizes the sound speed c. One can see
that the term with ξ in V1 contains an additional factor
(ek − (ek · eν)eν)2, where ν = 1,2,3 indicates the bond index
and the phonon wave-vector direction ek = k

k
. At small

momenta k, its average over the momentum angle is almost
1/4, with a negligible trigonal warping. Thus, in the Debye
model, the bare phonon spectrum reads

ωk =
√

γ

m
+

(
1 + ξ

2K

)
c2k2, (13)

where m is the carbon atom mass. From this expression,
one can see that the bare spectrum is gapped. Let c̃ be the
renormalized sound speed,

c̃ = c

√(
1 + ξ

2K

)
. (14)

We use the conventional quantized atom displacement
representation:

rl(Rl ,t) = 1√
2mN

∑
k

pk√
ωk

(
bke

ikRl + b+
k e−ikRl

)
, (15)

FIG. 1. Diagrams giving corrections to the phonon spectrum.
(a) First order in disorder strength correction, which gives zero due
to disorder parameters definitions [see, e.g., Eq. (8)], (b) the second-
order correction, which is nonzero when the scattering is taking place
on the same defect. The waved line is for the phonon Green’s function
and the dashed line is for the perturbing potential. (c) Correction to
ZA phonon spectrum due to phonon-phonon interaction.

where N is the number of unit cells in the system, bk and b+
k

are bosonic operators, and pk is the phonon polarization. For
LA phonons, pk = ek and for TA phonons pk is perpendicular
to ek and lies in the graphene plane. Using this equation, it is
easy to show that

H0 =
∑

k

ωk

(
b+

k bk + 1

2

)
, (16)

as in the case of standard gapless acoustic phonons. Using
Eq. (15), we have the first part of perturbation (12) in the
following form:

V2 = 1

4mN

∑
l

∑
k1,k2

pk1 · pk2 γ̃l√
ωk1ωk2

(
bk1bk2e

i(k1+k2)Rl + b+
k1

bk2e
i(k2−k1)Rl

) + H.c., (17)

where “H.c.” is for Hermitian conjugate. A simple estimation shows that the main impact to phonon spectrum stems from normal
terms in the perturbation and anomalous terms can be omitted. So including the second part of perturbation (12) yields

V2 = 1

2mN

∑
l

∑
k1,k2

b+
k1

bk2e
i(k2−k1)Rl

√
ωk1ωk2

⎧⎨
⎩γ̃l

(
pk1 · pk2

) +
∑

j

[
ξ̃lj

(
pk1 − (

pk1 · elj

)
elj

)

·(pk2 − (
pk2 · elj

)
elj

)
(1 − e−ik1(Rj −Rl ))(1 − eik2(Rj −Rl ))

]⎫⎬⎭. (18)

In the following calculations, we use this definition for the phonon Green’s function:

D0(ω,k) = 2ωk

ω2 − ω2
k + i0

. (19)

The first order in disorder strength correction to the phonon self-energy part is given by the following equation [see Fig. 1(b)]:

�(1)(ω,k) = 1

2mωk

⎧⎨
⎩ 1

N

∑
l

⎡
⎣γ̃l +

∑
j

2ξ̃lj (1 − cos k · elj )(pk − (pk · elj )elj )2)

⎤
⎦
⎫⎬
⎭ = 0, (20)

because the expression in the brackets contains 〈γ̃l〉 and 〈ξ̃lj 〉, which are zero. The second-order correction is given by the diagram
shown in Fig. 1(b). Let us first consider only the term with γ̃l , as the other terms are negligible at small momenta and have no
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divergences. The corresponding equation reads

�(2)(ω,k)

= 1

4m2N2ωk

∑
l,j

γ̃l γ̃j

∑
q

(pk · pq)2D0(ω,k)

ωq

ei(k−q)(Rl−Rj ).

(21)

After averaging over disorder one gets

�(2)(ω,k) =
〈
γ̃ 2

l

〉
v0

2m2ωk

∫
d2q

(2π )2

(pk · pq)2

ω2 − ω2
q + i0

, (22)

where v0 is the unit cell area. To derive the spectrum correction,
one should put ω = ωk from Eq. (13) and integrate

∫
d2q

(2π )2

(pk · pq)2

k2 − q2 + i0
= 1

4π

∫ kD

0

qdq

k2 − q2 + i0

≈ 1

8π

(
ln

k2

k2
D − k2

− iπ

)
, (23)

where kD is the Debye wave vector. In our dimensionless
notations, it is equal to π . Thus the self-energy reads

�(2)
γ (ωk,k) =

〈
γ̃ 2

l

〉
v0

16πm2c̃2ωk

(
ln

k2

k2
D − k2

− iπ

)
. (24)

Renormalized spectrum can be found from the following
equation:

1

D(ω,k)
= 1

D0(ω,k)
− �(2)(ωk,k) = 0, (25)

which has the following solution:

k = ωk

√
1 +

〈
γ̃ 2

l

〉
v0

8πm2c̃2ω2
k

(
ln

k2

k2
D − k2

− iπ

)
. (26)

The logarithmic divergencies of this spectrum show that for
large enough graphene sheets of the size L � 0.1 mm, the
phonons at the bottom and at the top of the band are localized
due to the scattering on disorder. However, for actual sizes of
graphene sheets, this is not the case.

Also, there are corrections to phonon spectrum from
perturbation (18), which are negligible at small momenta, but
can play a significant role out of the long-wavelength region.
MD analysis shows that the most important correction is the
one containing ξ̃ 2

lj . The corresponding equation reads

�
(2)
ξ (ωk,k) =

∑
j

32
〈
ξ̃ 2
lj

〉
v0 sin2 kj

2

m2c̃2ωk

∫
d2q

(2π )2

((pk − (pk · ej )ej ) · (pq − (pq · ej )ej ))2 sin2 qj

2

k2 − q2 + i0
, (27)

where kj and qj are projections of wave vectors k and q on
the bond direction ej with the j th atom. So for the in-plane
phonons, the self-energy part of the scattering on disorder has
the following form:

�
(2)
LA(k) = �(2)

γ (ωk,k) + �
(2)
ξ (ωk,k), (28)

and the equation for the phonon spectrum valid in the whole
Brillouin zone reads

k = ωk

√
1 + 2�

(2)
LA(k)

/
ωk. (29)

The phonon lifetime due to scattering by the substrate-
induced disorder can be extracted from the spectra as its
imaginary part τ−1

substr(k) = �{k}. The only difference in
derivations between LA and TA phonons is in polarizations
in Eq. (27).

C. Theory for ZA phonons

For ZA phonons, one can see from expression (4) that
we have two different perturbation parts. So let us introduce
two sets of parameters, which can be calculated from MD
simulations:

α =
〈
∂2Usub

∂z2
(rl0,zl0)

〉
, (30)

αl = ∂2Usub

∂z2
(rl0,zl0) − α, (31)

β =
〈

3K

4R2
(zl0 − zj0)2

〉
, (32)

βlj = 3K

4R2
(zl0 − zj0)2 − β. (33)

Obviously 〈αl〉 = 〈βlj 〉 = 0. The regular translationally invari-
ant part of the Hamiltonian has the following form:

H(0)
ZA =

∑
i

⎡
⎣p2

zi

2m
+ αz2

i

2
+

∑
j

β(zi − zj )2

2

⎤
⎦. (34)

Comparing this Hamiltonian with the conventional one for
suspended graphene one can see that the spectrum is given by

ωk =
√

α

m
+ c2

ZAk2, (35)

where

cZA =
(

2β

K

)1/2

c. (36)

It is instructive to compare the obtained dispersion of
flexural phonons with the one from the paper by Amorim
and Guinea [49]. First, both dispersions are gapped with a
gap width controlled by the strength of graphene-substrate
interaction α, which defines the minimal vibration energy in
the field of the substrate (cf. with g parameter from Ref. [49]).
The difference is in the power of the phonon wave vector
q. Amorim and Guinea consider the quadratic in displacement
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intrinsic bending rigidity of graphene for restoring force and as
a result the dispersion is quadratic for large q. On the contrary,
as one sees from Eq. (34), here the quadratic in displacement
force associated with β terms plays the role of restoring force.
It results in a linear bare specrtrum of flexural phonons for
graphene on substrate for large q, which significantly differs
from the spectrum of freestanding graphene and graphene on
crystalline substrate. In fact, the dispersion of ZA phonons of
graphene on an amorphous substrate has rather extrinsic than
intrinsic origin.

As the phonon-phonon interaction is significant in the case
of ZA phonons, we consider the anharmonic term in the
Hamiltonian,

V = U
∑
l,j

(zl − zj )4, (37)

where summation is conducted over all nearest neighbors, and
U = K/8R2. In quantized form,

V = 3U

2m2N

∑
k1+k2=k3+k4

b+
k1

b+
k2

bk3bk4√
ωk1ωk2ωk3ωk4

×
∑

j

(1 − e−ik1j )(1 − e−ik2j )(1 − eik3j )(1 − eik4j ). (38)

k1j ,k2j ,k3j ,k4j are the projections of wave vectors k1,k2,k3,k4

on the direction from an arbitrary atom to its j th neighbor in
the real space. A linear in U correction is given by the diagram
in Fig. 1(c) with the corresponding equation in the Matsubara
technique written as

�T (k) = 12Kv0

2mR2ωk

∑
j

sin2 kj

2

∫
d2q

(2π )2

sin2 qj

2

ωq

coth
ωq

2T
.

(39)
Thus the spectrum used henceforth is

ωT
k = ωk

√
1 + 2�T (k)

ωk

. (40)

The perturbation Hamiltonian has the following form:

V =
∑

l

⎡
⎣αlz

2
l

2
+

∑
j

βlj (zl − zj )2

2

⎤
⎦, (41)

once again we omit the anomalous terms and rewrite the
perturbation:

V = 1

2mN

∑
l

∑
k1,k2

b+
k1

bk2√
ωk1ωk2

ei(k2−k1)Rl

×
⎡
⎣αl +

∑
j

βlj (1 − e−ik1(Rj −Rl ))(1 − eik2(Rj −Rl ))

⎤
⎦.

(42)

At small momenta k � 1, the second-order spectrum cor-
rection is given only by the term with αl . As in the previ-
ous section, this correction is logarithmically divergent for
long-wavelength phonons. This indicates their localization at
k � a0/L, where a0 is the lattice parameter and L is the
graphene flake size. Expressions for all corrections of the

second order in disorder strength are presented in Appendix A.
Based on the results of MD simulations presented in Sec. II D,
we only keep the two main terms producing the highest
contributions, which give the following self-energy:

�
(2)
ZA(k) = v0

m2ωT
k

⎛
⎝〈

α2
l

〉
I1(k) + 32

〈
β2

lj

〉∑
j

sin2 kj

2
I2j (k)

⎞
⎠,

(43)

where

I1(k) = 1

2

∫
d2q

(2π )2

1(
ωT

k

)2 − (
ωT

q

)2 + i0
, (44)

I2j (k) =
∫

d2q

(2π )2

sin2 qj

2(
ωT

k

)2 − (
ωT

q

)2 + i0
. (45)

The corresponding expression for the ZA phonon spectrum
reads

k = ωT
k

√
1 + 2�

(2)
ZA(k)

/
ωT

k . (46)

D. Molecular dynamics simulation

The GROMACS [50] package was used to perform all MD
simulations. The 72 Å×72 Å×36 Å amorphous SiO2 substrate
consisting of 12 000 atoms was rigid. The round graphene sheet
of diameter D ≈ 40 Å consisted of 481 carbon atoms. The C-C
interactions within the graphene sheet were modeled with a

harmonic potential K = 27 eV/Å
2
, which corresponds to the

first-neighbor interatomic force constant from Ref. [51]. This
model is consistent with the employed analytical description of
graphene vibrational properties. The interactions between the
C atoms of graphene and the Si and O atoms of the substrate
were modeled with a Lennard-Jones potential with parameters
taken from Ref. [44].

The graphene sheet initial position was 1 Å above the
substrate. The simulation was performed with a 0.02-ps time
step, and the temperature was controlled with a weak coupling
algorithm [52]. During the first 500 ps, the graphene sheet
was attracted by the substrate and started planar diffusion
on its surface. Then, from the initial value of 300 K, the
temperature was lowered to zero for 500 ps using velocity
rescale temperature coupling [52].

The obtained freezed equilibrium configuration of graphene
on a SiO2 substrate was treated in MATHEMATICA [53] package
to derive the parameters required by the theory. Only carbon
atoms with three neighbors were considered. The results
exhibit no significant dependence on the initial conditions
of MD simulations. The required by the perturbation theory

TABLE I. The obtained with MD parameters required by pertur-

bation theory. All values are given in eV/Å
2
.

In-plane phonons ZA phonons

γ
√

〈γ̃ 2
l 〉 ξ

√〈ξ 2
lj 〉 α

√
〈α2

l 〉 β
√〈β2

lj 〉
0.006 0.015 0.2 0.28 0.09 0.11 0.59 0.82
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FIG. 2. The final structure of graphene on amorphous SiO2

obtained with MD simulations.

graphene-substrate interaction energy parameters are listed in
Table I. Figure 2 shows the obtained geometry of graphene
on the amorphous SiO2 substrate. The obtained value of

β = 0.09 eV/Å
2

corresponds to the graphene-substrate cou-
pling parameter g = 5×1019 J/m4, which is four times smaller
than the estimation from Ref. [54]. This is due to not complete
slippage between the graphene sheet and the rough amorphous
SiO2 substrate.

The atomic Z coordinate root mean square displacement for
graphene on the substrate with respect to the initial unperturbed
graphene is 0.04 nm. For the X and Y coordinates, we obtain
0.007 nm. With high accuracy β = 3ξ and

√
〈β2

ij 〉 = 3
√

〈ξ 2
j l〉.

III. RESULTS AND DISCUSSION

A. Spectra and relaxation times of ZA phonons

As it was discussed above, the bare spectrum of ZA phonons
for graphene on a disordered substrate given by Eq. (35) differs
from the one for freestanding graphene and graphene on a
crystalline substrate given by ωk = Ak2, where A ≈ 3.1 ×
10−3 cm2 s−1 [55]. The phonon-phonon interaction described
by (40) leads to the effective increasing of cZA. For T = 300 K
the value of cZA is 6 km/s or approximately 30% of the in-plane
phonon velocity. Figure 3(a) shows the real and the imaginary
parts of ZA phonon spectrum for T = 300 K calculated with
Eq. (46) using parameters from Table I and Fig. 3(b) shows
the ZA phonon spectrum imaginary to real part ratio.

In the considered system, we have strong disorder for
ZA phonons with spectrum ωT

k calculated via Eq. (40). It
is well known that even disorder with small concentration
leads to localization of long-wavelength excitations (for
bosonic systems see, e.g., Refs. [56–58]). However, here the
“impurities concentration” is equal to 1, providing spectrum
corrections of the order of the pure spectrum (40) in the
whole Brillouin zone [see Fig. 3(a)], which makes ZA phonons
overdamped [see Fig. 3(b)] and their nature becomes a question
of further considerations, hence a possible scenario is the
localization of all ZA phonon modes. Anyway, from our theory
it is quite natural to make a conclusion that ZA phonons
do not contribute to the heat conductivity of graphene on an
amorphous substrate.

FIG. 3. (a) Calculated spectrum of ZA phonons in graphene on
an amorphous substrate. Solid black curve and red dashed curves are
for the real and the imaginary parts of the ZA phonon spectrum at
T = 300 K for graphene on an amorphous substrate, respectively. The
green dash-dot curve is for the ZA phonon spectrum of freestanding
graphene. (b) The ratio of the imaginary part of the ZA phonon
spectra to the real part of the bare spectra for graphene on a disordered
substrate.

B. Phonon scattering mechanisms in graphene

To understand the impact of the substrate on the graphene
heat conductivity, it is necessary to compare the phonon
scattering on the substrate-induced disorder with other mech-
anisms of phonon relaxation in graphene. The conventional
mechanisms of phonon lifetime reduction in graphene are
scattering on the graphene flake boundaries and anharmonic
three-phonon scattering processes, while point defect scat-
tering is weak compared to other mechanisms. The single-
mode relaxation time approximation (SMRTA) is always used
to describe the boundary scattering and the corresponding
phonon lifetime can be written as τ−1

L = vk/L, where vk = ∂ωk

∂k

is the phonon group velocity, and L estimates the graphene
sample size. For the in-plane phonons, the averaged sound
velocity can be taken without loss of accuracy.

Currently, there is no established theory on the suspended
graphene heat conductivity due to the complexity of the
anharmonic processes. Various approaches including usage
of BTE within SMRTA [33], exact iterative solution of
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BTE accounting for three-phonon scattering [47,48], and
MD simulations [59] yield different values of graphene heat
conductivity κ and the distribution of the heat flux between
LA, TA, and ZA modes. The relevant data are accumulated in
Table III from the review in Ref. [13].

The contribution of anharmonic processes to phonon
damping can be described within the SMRTA with the power
law [33,60,61]

τ−1
anh = (BN + BU exp(−�/BT ))ω2T 3, (47)

where T is the temperature, ω is the phonon frequency, � ≈
1000 K is the Debye temperature, B = 3, BN = BU/2, and
BU = 7.7×10−25 s K−3, see Ref. [33].

Recently, it was shown that the approach for consider-
ing anharmonic processes in graphene, which reflects all
peculiarities of three-phonon scattering should look beyond
SMRTA. This problem requires an exact solution of BTE for
the three-phonon scattering. In this model, the strong mixing
of the in-plane and the flexural phonon modes was justified by
Linsay et al. [47]. The authors show that the selection rules
for the phonon decay include necessary involvement of even
number of flexural phonons. The direct LA,TA → ZA + ZA
and inverse processes ZA + ZA → LA,TA provide a balance
between in-plane and flexural phonon distribution functions.
To calculate the value of heat conductivity, authors relate
an effective relaxation time for each phonon mode from the
obtained distribution function correction. A contribution of
ZA phonons to the free-standing graphene heat conductivity of
about 80% in a wide temperature range was reported. Another
result of this study is that SMRTA and exact BTE solutions give
2–3 times discrepancy in κ magnitude for LA and TA modes
(up to 8 times for ZA mode [47]). Singh et al. in Ref. [48]
use a similar approach and also conclude that ZA phonons
give significant contribution to κ . The authors give an estimate
of the total phonon lifetime, which differs from the result of
the SMRTA approach up to 3 orders of magnitude. They also
show that the lifetime of the in-plane phonons with respect
to conversion to the ZA mode is twice longer than the total
lifetime.

The following two approaches were used to estimate the
value of τanh for deriving the graphene heat conductivity κ

estimation. First, τanh was calculated by formula (47), see
Ref. [33]. Second, it was adopted from Ref. [48], see Fig. 6
there.

The interaction with the substrate will affect the selection
rules for phonon scattering. The localization of flexural
phonons (see Sec. III A) can change the distribution of the heat
flux between LA, TA, and ZA modes. Without understanding
the nature of localized ZA phonons in graphene on an
amorphous substrate one can not make any judgement about
the mixing of in-plane and ZA phonons, which opens a field
for further investigations.

The total phonon relaxation time was estimated via
Matthiessen’s rule τ−1

total = τ−1
L + τ−1

anh + τ−1
substr. The estimation

of the contribution to graphene heat conductivity from a given
phonon mode can be written as

κ = �

h

∫
kdkτtotal(k)ωk

∂N0(ωk)

∂T
v2

k , (48)

where N (0) is equilibrium Bose distribution function and h =
0.335 nm is the graphene layer thickness.

Athough ZA phonons are localized, calculating the ZA
phonon contribution to thermal conductivity using Eq. (48),
where one assumes vk = ∂

∂k

{k} and τ−1

substr = �{k}, yields
less than 20 W m−1 K−1. The contribution of ZA phonons
can be thus anyway neglected due to significant reduction of
lifetime. Figure 3(a) with the characteristic magnitude of ZA
phonon spectrum imaginary part shows that τsubstr is lower than
0.1 ps in most volume of Brillouin zone.

C. Spectra and relaxation times of in-plane phonons

The substrate influence on the in-plane phonons in graphene
constitutes in the following effects. First, according to Eq. (13),
the interaction with the substrate leads to an opening of band
gap of ≈22 K, see Fig. 4. It results in a phonon occupation
number suppression for low temperatures and a corresponding
reduction of graphene thermal conductivity for temperatures
lower than 20 K.

Secondly, the scattering by the substrate-induced disorder
leads to additional reduction of phonon lifetime. The predic-
tions on the strength of this effect strongly depend on the model
for τanh employed. So for τanh calculated by Eq. (47) both in
suspended and supported graphene, the boundary scattering is
the dominant mechanism of long wavelength phonon damping
and defines the heat conductivity at low temperatures. At low
temperatures, only long wavelength phonons are excited and
give contribution to heat conductivity. On the contrary, for
τanh adopted from Ref. [48], such phonons are damped due
to anharmonic processes. For shorter wavelength phonons,
which are excited at temperatures above 100 K, the dominant
mechanism corresponds to the anharmonic processes and to
substrate-induced disorder scattering.

FIG. 4. Dispersion relations of in-plane acoustic phonons in
freestanding graphene and in graphene on a substrate. The inset shows
the LA phonon spectrum imaginary to real part ratio for graphene on
a disordered substrate. The phonon wave vector k is given in units of
π/a0 and k = 1 corresponds to the boundary of the Brillouin zone.
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FIG. 5. LA phonons relaxation times corresponding to various
mechanisms of scattering. Black solid curve is for relaxation time
related to boundary scattering τL with L = 10 μm. Green solid curve
is for substrate-induced phonon damping. Orange dashed curve is
for anharmonic processes for temperature T = 300 K obtained by
Eq. (47) and solid red curve is for total phonon lifetime in this model,
derived with Matthiessen’s rule. The light blue dashed curve is for
τanh at T = 300 K adopted from Ref. [48] and the blue solid curve is
for the corresponding total lifetime.

Figure 5 shows the dependence of the relaxation time
of LA phonons on the phonon wave vector magnitude for
various mechanisms. The phonon lifetime for anharmonic
processes is given for 300 K. For TA phonons, the effect of the
substrate is weaker due to polarization effects stemming from
integral (27) and anharmonic processes are more important
than the substrate effect.

The obtained values of the in-plane phonon lifetime yield
the phonon drag thermopower at the level of several μV K−1,
which is much smaller than the diffusion contribution to
thermopower [23].

D. Graphene heat conductivity

As it was shown above, the graphene-substrate interaction
suppresses the contribution of ZA phonons to heat conductivity
in the whole range of temperatures for graphene bonded with
an amorphous SiO2 substrate. This contribution is negligible
due to ZA phonon localization and extremely short lifetime.
Therefore, the total heat conductivity is governed by in-plane
phonons.

The behavior of heat conductivity depends on the applied
model for τanh estimation. For the τanh given by Eq. (47),
at temperatures below 100 K, the in-plane phonon heat
conductivity is governed by boundary scattering for both
supported and suspended graphene. For τanh adopted from
Ref. [48], the anharmonic processes play the main role at
temperatures below 100 K. At temperatures above 100 K,
the dominant mechanism corresponds to the anharmonic
processes and to substrate-induced disorder scattering in both
models for supported graphene. As a result, the supported
graphene heat conductivity is several times smaller than for

FIG. 6. Experimental data on the heat conductivity of freestand-
ing graphene for L = 2.9 μm (open triangles), L = 8 μm (open
circles) [25], and the heat conductivity of graphene on an amorphous
substrate (black solid squares) [30]. The red dashed curve denotes
heat conductivity of graphene on an amorphous substrate calculated
with BTE as a sum of LA and TA phonons contributions with τanh

given by Eq. (47) (see Ref. [33]). Green dash-dot curve is for the
same but with τanh adopted from Ref. [48].

freestanding graphene, which is in a qualitative agreement
with available experimental data.

For τanh adopted from Ref. [48] in the whole temperature
range, the anharmonic processes give the main contribution to
LA and TA phonon damping (see Fig. 5), at the same time,
the flexural phonons contribution in this model reaches 90%.
Thus due to localization of flexural phonons, the reduction
of supported graphene heat conductivity is drastic. Figure 6
shows the experimentally measured heat conductivity of
freestanding and supported graphene and the corresponding
theoretical predictions based on the developed perturbation
theory and BTE. Experimental data from Ref. [30] indicate
a significant suppression of the supported graphene heat
conductivity below 300 K and a shift of the maximum from
≈200 K for freestanding graphene to 300 K.

Using τanh from Eq. (47) leads to a serious overestimation
of heat conductivity, especially at low temperatures. As it
can be seen from Fig. 7(a) to bring theory in agreement
with the experiment, the assumption L = 0.2 μm is sufficient,
whereas the experiment yields a graphene sheet size of several
micrometers.

On the contrary, taking τanh adopted from Ref. [48] leads to
twofold underestimation of supported graphene heat conduc-
tivity. In this model, the heat conductivity does not significantly
depend on the graphene flake size L for L > 0.5 μm,
see Fig. 7(b).

Alternatively, to explain the observed experimental behav-
ior of heat conductivity, the authors of Ref. [30] develop a
theory based on the Fermi golden rule and apply Klemens
formalism [37] to the case of a large area spot contact between
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FIG. 7. The obtained within the developed theory dependence of
supported graphene heat conductivity on temperature T and size L.
For (a) the τanh was estimated with Eq. (47) (see Ref. [33]) and for
(b) τanh was adopted from Ref. [48].

graphene and substrate. In their model, the suppression of
long wavelength phonon lifetimes stems from an arguable
assumption of a constant phonon scattering matrix element.
The conventional form of the matrix element given in Ref. [37]
is quadratic in the phonon frequency, which yields suppression
of high frequency phonons instead, see Eq. (32) in Ref. [36].

It is also necessary to compare the obtained data on the
phonon lifetimes and graphene thermal conductivity with
results of the MD simulations. Figure 2 from Ref. [44] shows
that the lifetime of both in-plane and ZA phonons in suspended
graphene lies in the range from 10 to 25 ps. For supported
graphene, the characteristic lifetimes of all phonon modes
are from several picoseconds to 10 ps. These results are in
contradiction with the relatively weak effect of the substrate
on the in-plane phonons and dramatic suppression of the ZA
phonon lifetime predicted here.

Other studies lie in agreement with our predictions. MD
simulations performed in Ref. [45] yield 90% reduction of ZA
phonon contribution to the thermal conductivity and spectrum
deformation for the actual strength of the graphene-substrate
interaction, which coincides with the results of the present
study. The MD study in Ref. [62] indicates several times
reduction of in-plane phonon lifetime and several orders
reduction of ZA phonon lifetime in supported graphene, which

qualitatively agrees with the present study. Finally, Ref. [40]
predicts localization of excitations in amorphous graphene and
a corresponding two-fold decrease of heat conductivity.

The predictions on graphene heat conductivity are robust
with respect to variation of the energy parameters from
Table I. Although we account only for a pair harmonic
potential for C-C bonds in MD simulations, we argue that
using more sophisticated models (E.G. Tersoff [63] and
optimized Tersoff [64] potentials accounting for three-atomic
torsional rigidity and potentials accounting for next neighbors
interactions [51]) would slightly renormalize the parameters
and the obtained qualitative picture remains intact.

The employed model lies in agreement with the fact that
graphene sheets conform to the underlying silicon oxide
substrate, reported in Refs. [15,65]. However, this model does
not account for long-range (20 nm) height correlations of the
substrate and graphene. Also these studies report that graphene
sheet conforms the substrate corrugations but with smaller
amplitude, which is an evidence of graphene being partially
suspended. The elucidation of the geometry of graphene
interacting via the van der Waals force with amorphous
substrates is to be clarified in further experimental studies
and MD simulations. The developed model is rather related to
the atomically smooth substrates. The considered effect of an
amorphous substrate on graphene intrinsic heat conductivity
is important when creating graphene-based electronic devices
with the heat-sink functions placed on graphene pathways and
should be taken into account when managing circuit thermal
parameters.
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APPENDIX A: ZA PHONONS SELF-ENERGY
PART CORRECTIONS

From (41) we see that in the second order in disorder
strength we have different corrections. We treat this per-
turbation conventionally, considering only the terms with
disorder constants corresponds to the same site. Thus we have
four terms, proportional to 〈α2

l 〉, 〈β2
lj 〉, 〈αlβlj 〉, and 〈βljβlm〉

for j �= m.
The correction proportional to 〈α2

l 〉 is logarithmically
divergent at very small momenta k and contains the following

045418-9



KONIAKHIN, UTESOV, TERTEROV, AND NALITOV PHYSICAL REVIEW B 95, 045418 (2017)

integral:

I1(k) = 1

2

∫
d2q

(2π )2

1(
ωT

k

)2 − (
ωT

q

)2 + i0
. (A1)

The second correction stems from nonzero average 〈β2
lj 〉.

The corresponding equation is

∑
j

32
〈
β2

lj

〉
v0 sin2 kj

2

m2ωT
k

∫
d2q

(2π )2

sin2 qj

2(
ωT

k

)2 − (
ωT

q

)2 + i0
, (A2)

where the summation is over three possible neighbor positions
and qj and kj are the corresponding momenta projections. We
denote the corresponding integral as

I2l(k) =
∫

d2q

(2π )2

sin2 qj

2(
ωT

k

)2 − (
ωT

q

)2 + i0
. (A3)

The third correction is due to correlations between αl and βlj .
The corresponding equation is

2v0〈αlβlj 〉
m2ωT

k

∑
j

∫
d2q

(2π )2

f (k,q,j )(
ωT

k

)2 − (
ωT

q

)2 + i0
, (A4)

where

f (k,q,j ) = 1 + cos (kj − qj ) − cos kj − cos qj . (A5)

Expression (A4) can be simplified using

1 + cos (kj − qj ) − cos kj − cos qj

= sin kj sin qj + 4 sin2 kj

2
sin2 qj

2
, (A6)

the first term gives zero after integration over the angle, so the
correction obeys the following form:

8v0〈αlβlj 〉
m2ωT

k

∑
j

sin2 kj

2

∫
d2q

(2π )2

sin2 qj

2(
ωT

k

)2 − (
ωT

q

)2 + i0
, (A7)

the corresponding integral denotation is

I3j (k) =
∫

d2q

(2π )2

sin2 qj

2(
ωT

k

)2 − (
ωT

q

)2 + i0
. (A8)

The last correction arises from correlations between βij

and βil , where j and l denote different neighboring sites. The
corresponding equation is

∑
j �=m

32〈βljβlm〉v0

m2ωT
k

∫
d2q

(2π )2

g(k,q,j,m)(
ωT

k

)2 − (
ωT

q

)2 + i0
, (A9)

where

g(k,q,j,m) = cos
(k − q)(em − ej )

2

× sin
kj

2
sin

km

2
sin

qj

2
sin

qm

2
, (A10)

so

I4jm(k) =
∫

d2q

(2π )2

g(k,q,j,m)(
ωT

k

)2 − (
ωT

q

)2 + i0
. (A11)

The real parts of this expressions are the principal values of
the corresponding integrals, and the imaginary parts are

�
[ ∫

d2q

(2π )2

F (k,q)

k2 − q2 + i0

]

= − π

(2π )2

∫
dϕ

kF (ek,eq,q = k)
∂(ωT

q )2

∂q
(k)

. (A12)

The obtained with MD simulations values of energy

parameters are
√〈αlβlj 〉 = √−0.016 eV/Å

2
and

√〈βljβlm〉 =√−0.002 eV/Å
2
.

APPENDIX B: APPROXIMATION OF INTEGRAL IN THE
IN-PLANE PHONON SELF-ENERGY PART CORRECTION

The integral in Eq. (27) required for calculating �
(2)
ξ and

τsubstr for TA phonons can be approximated with sufficient
accuracy as follows:

∑
j

sin2 kj

2

∫
d2q

(2π )2

((pk − (pk · ej )ej ) · (pq − (pq · ej )ej ))2 sin2 qj

2

k2 − q2 + i0
≈ 0.2k2 − 2.2k3 + 2.33k4 − i(1.51k4 − 1.11k5). (B1)

Its dependence on the direction of k with respect to graphene bonds is weak. For LA phonons, the integral is four times larger.
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