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Spatially indirect exciton condensate phases in double bilayer graphene
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We present a theory of spatially indirect exciton condensate states in systems composed of a pair of electrically
isolated Bernal graphene bilayers. The ground-state phase diagram in a two-dimensional displacement-field/inter-
bilayer-bias space includes layer-polarized semiconductors, spin-density-wave states, exciton condensates, and
states with mixed excitonic and spin order. We find that two different condensate states, distinguished by a
chirality index, are stable under different electrical control conditions.
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I. INTRODUCTION

Bernal stacked bilayer graphene is [1] a two-dimensional
semiconductor with an electrically tunable band gap that can
be as large as ∼250 meV [2–8] when external gates are used to
apply a large displacement field perpendicular to the graphene
planes. The optical spectrum of bilayer graphene features
[9–11] strong and atypical excitonic features. The exciton
binding energy increases along with the band gap in strong
displacement fields and can be as large as tens of meVs. When
two graphene bilayers are placed in close proximity, spatially
indirect excitons typically exist as elementary excitations, but
can also be present in the ground state under relatively easily
established gating conditions. Our main interest in this paper
is in constructing a phase diagram for double bilayer graphene
systems in the absence of a magnetic field that incorporates
the possibility of equilibrium condensation of spatially indirect
excitons.

Spatially indirect exciton condensates have a surprising
and fundamentally interesting suite of anomalous transport
properties that previously have been studied [12,13] only
in semiconductor-quantum-well bilayers and only in the
quantum Hall regime. They are counterflow superfluids and
exhibit, among other properties, spontaneous phase coherence
between electrically isolated subsystems. These condensates
can be manipulated by external electrical contacts [14–17] via
an excitonic generalization of Andreev scattering. Excitonic
superflow is manifested most explicitly in a variety of transport
experiments [18,19], in which the electrically isolated two-
dimensional electron systems are contacted independently.

In the quantum Hall regime, the dissipationless flow of
quasiparticle charges in chiral edge channels plays an essential
role in determining how excitonic and charged quasiparticle
currents interact with external bias voltages. In addition
it appears [20] that for currently available quantum Hall
bilayer superfluids, disorder also has a large impact on
certain quantitative aspects of the observed phenomena. If
spatially indirect exciton condensation could be achieved in the
absence of a magnetic field, the absence of edge states would
introduce fundamentally interesting differences. In particular,
it seems likely that disorder could play a less essential role,
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facilitating more quantitative comparisons between theory and
experiment. Double bilayer graphene is an attractive system
for efforts to achieve spatially indirect exciton condensation
because the energy gaps in each bilayer are relatively small,
making it easier to electrically induce equilibrium exciton
populations, because the properties of each two-dimensional
electrical system can be tuned electrically by using gates
to vary their internal displacement fields and because great
progress has been achieved experimentally in the flexible
construction of multilayer graphene systems with very weak
disorder.

The physics of bilayer graphene is rich even when only one
bilayer is present. The ground state at the charge neutrality
point in the absence of an external displacement field is
an interesting spin-density-wave state with opposite spin
orientations on opposite layers and a very small staggered
moment per atom [21,22]. A first-order phase transition [23]
occurs near displacement field Ed ∼ 15 mV/nm from this
spin-density-wave state to a layer-polarized two-dimensional
semiconductor state without any broken symmetries. At large
displacement fields, the semiconductor state gap can be
viewed as originating from an avoided crossing between
the conduction band of the low electric potential layer and
the valence band of the high electric potential layer. The
size of the gap is then limited by the strength of interlayer
tunneling in the bilayer. The excitons of this semiconductor
are unusual [9,11,24–27] because of the Berry phase properties
of graphene’s two-dimensional Dirac model states and are in
this sense similar to the excitons of a topological insulator
[28]. The properties of optically excited populations of bilayer
graphene excitons which have thermalized and condensed
have been studied in previous [25] theoretical work. Our
interest, however, is in excitons which are present in thermal
equilibrium, and this can be achieved only for spatially indirect
excitons and only when two bilayer graphene systems are
present and separated by an insulating barrier [29–33].

Spatially indirect excitons generally have smaller bind-
ing energies than spatially direct excitons because of the
increased separation between electrons and holes. However,
their excitation energies can be tuned electrically by using a
gate-controlled displacement field to adjust the relative band
lineup of the two bilayers. For a fixed spatial separation
between bilayers a displacement field qualitatively alters the
band structure of each bilayer, adjusting the band gaps and
also the exciton energies. The sensitivity of isolated bilayers
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to displacement fields plays an essential role in the physics
we explore below. Previous theoretical work [31,32] has high-
lighted the potential of double bilayer graphene as a spatially
indirect exciton system, but assumed simplified parabolic band
dispersions for conduction and valence bands and did not
explore the consequences either of this displacement-field
sensitivity or of broken-symmetry states in isolated bilayers.

The properties of double bilayer systems can be adjusted
electrically by using gates to apply a displacement field or
by applying a bias voltage between bilayers, as illustrated in
Fig. 1. When tunneling between bilayers can be neglected, bias
voltages have the advantage that they alter spatially indirect
exciton energies without changing the properties of the isolated
bilayers. In this paper we do not account for interbilayer
tunneling but concentrate instead on establishing the phase
diagram of the negligible tunneling limit. The strength of
interbilayer tunneling declines exponentially with the number
of layers of intervening dielectric, but is sensitive [34] to
disorder and to the relative orientations of both graphene
bilayers and the hBN barrier layers. An important difference
between graphene monolayers and bilayers is that the latter
are semiconductors with a gap [35] between conduction
and valence bands, whereas the former are gapless. We are
interested here in chemical potential differences between
bilayers that are smaller than the gap by an amount close
to the exciton binding energy, an interval of bias voltage
over which direct the interband tunneling rate vanishes in
the temperature T → 0 limit when disorder is absent. We
therefore expect that in the regime of interest the tunneling-
assisted charge equilibration times between bilayers will be
substantially larger than those between monolayers (∼10−8 s
for one-layer-thick hBN barriers) [36–38] and probably
dominated by electro-luminescence processes. We also expect
that the quasiequilibrium approximation we employ, which
will be reliable provided that the charge equilibration times
exceed thermalization times, which are often smaller than a
picosecond [39–41], can be applicable down to the smallest
barrier thicknesses in highly perfect samples. The physics
of systems in which the quasiequilibrium approximation is
not valid lies beyond the scope of the present work, but is
interesting and related to phenomena that have been studied in
polariton condensate systems [42].

Exciton condensation occurs when the excitation energy
needed to create a spatially indirect exciton in a bilayer
graphene system has been electrically adjusted to a negative
value, leading to a finite density population of excitons in
equilibrium. Our results for the phase diagram of double-
bilayer graphene are summarized in Fig. 1, which illustrates
how the double-bilayer state depends on the displacement field
Ed and on the electrical bias energy Ub. The phase diagram
in Fig. 1 was calculated for bilayer separation thBN = 0.3 nm,
corresponding to a single layer of hexagonal boron-nitride
(hBN) between the bilayers. The corresponding phase diagram
for a bilayer separation of thBN = 0.9 nm, corresponding to
the case of three intervening hBN layers, has been calculated
as well. We choose to discuss the thBN = 0.3 nm case first,
because the phase diagram is richest at small layer separations.
In addition the phase diagram at larger values of t can be very
accurately extrapolated from the thBN = 0.3 nm results using
a procedure we explain later.

FIG. 1. Upper panel: Schematic illustration of the experimental
system modeled in this paper. An external electric field Ed is
applied simultaneously to two bilayers (bilayer n = 1 with layers
l = 1,2 and bilayer n = 2 with layers l = 3,4) by external gates.
Separately an electrical bias potential Ub is applied between the two
bilayers. In this paper we assume that the leakage current between
bilayers is negligible. Lower panel: Mean-field-theory phase diagram
of electrically neutral double-bilayer graphene as a function of Ub

and Ed . In this paper we have not allowed valley symmetry to be
broken. Decoupled bilayers then have a first-order transition between
a spin-density-wave (SDW) state at small displacement fields and a
layer polarized semiconductor (LPSC) state with no spontaneously
broken symmetries at large displacement fields. In double bilayers
the LPSC is unstable at large displacement fields Ed to an exciton
condensate (SXC) with coherence mainly between the adjacent single
layers l = 2 and l = 3. Excitons can also be induced electrically by
applying a bias voltage Ub between bilayers. For large Ub the SDW
state is unstable to an exciton condensate (BXC) with coherence
mainly between the conduction band of bilayer n = 2 and the valence
band of bilayer n = 1. Within each bilayer the pattern of interlayer
coherence is determined by single-particle physics. The differences
between the order parameters of the SXC and BXC states, and
those of other states with both excitonic and spin order that occur at
intermediate values of Ub and Ed , are discussed at length in the main
text. The phase boundaries marked by solid blue lines are first order,
and the remaining phase transitions are continuous. We explain the
physics of the various phase transitions below by closely examining
competing states along lines (A) and (B). This phase diagram was
constructed for the case of interbilayer separation thBN = 0.6 nm;
thBN dependence is discussed at length, and the corresponding phase
diagram at thBN = 1.2 nm is presented in the penultimate section of
this paper.

We describe the many-exciton state using mean-field theory.
We find that for small Ub the two bilayers are uncorrelated, and
that they have a first-order transition between a spin-density-
wave (SDW) state at small displacement fields Ed and a layer
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TABLE I. Acronyms used for distinct electronic states in the main
text. The SDW and SDWXC states break time-reversal symmetry.
The SXC, BXC, SDWXC, and 1CBXC states break the separate
particle-number conservation symmetry of the individual bilayers.

SDW Spin density wave
LPSC Layer-polarized semiconductor
SXC Single-layer exciton condensate
BXC Bilayer exciton condensate
SDWXC Spin-density-wave exciton condensate
1CBXC 1-component Bilayer exciton condensate

polarized semiconductor (LPSC) state at larger displacement
fields. The LPSC is unstable at still larger Ed to the SXC state
in which coherence is established mainly between the adjacent
single graphene layers labeled l = 2 and l = 3. For large Ub

and small Ed the SDW state is unstable to the bilayer exciton
condensate (BXC) state in which coherence is established
mainly between the conduction band of bilayer n = 2 and
the valence band of bilayer n = 1. Among other interesting
features that appear in this phase diagram, we find that exciton
condensation is sometimes combined with spin-density-wave
order, which breaks time-reversal symmetry, and sometimes
not, and that excitons condense into different states at large
Ed than at large Ub. The phase diagrams at larger thBNs are
discussed in the later sections. The greatest change is that
single-layer exciton condensate (SXC) states occur at smaller
values of Ed because the external potential difference between
the bilayers at a given Ed increases. The reduction in exciton
binding energies at larger thBNs also plays a role. We have
summarized the acronyms of states that appear in this paper in
Table I.

Note that the mean-field theory does not account for
quantum fluctuations in the many-body ground state which
are evidenced, for example, by finite drag resistivities in the
absence of interlayer coherence. When quantum fluctuations
are included, states with interlayer phase coherence can lose
their order and form Fermi liquid states, or excitons can pair
to form biexcitons. All of these possibilities are discussed at
greater length later.

Our paper is organized as follows. In Sec. II we provide
some technical details on the mean-field calculation we
perform for the four-layer graphene system of interest, the
double bilayer. Section III summarize the mean-field theory
description of the SDW to LPSC state phase transition in
an isolated bilayer, showing that reasonable agreement with
experiment follows from a physically sensible approximate
treatment of screening that we employ for all subsequent
calculations. In Sec. IV we describe in detail how the
quasiparticle energy bands and wave functions evolve as
Ed is increased at Ub = 0. Along this line in the phase
diagram, reduction in spatially indirect exciton energy with
increasing Ed is accompanied by increasing layer polarization
within the individual bilayers. For bilayers separated by a
single layer of hBN, we find that the SDW to LPSC phase
transition occurs before the indirect exciton energy vanishes
and interlayer phase coherence appears. By the time the phase-
coherent condensate state appears, the individual bilayers are
already strongly polarized and the condensate is dominated

by coherence between the most closely spaced layers. In
Sec. V we describe in detail how the quasiparticle energy
bands and wave functions evolve as Ub is varied at Ed = 0.
In this case the individual layers have a small gap associated
with spin-density-wave order. Condensation then occurs first
as an instability of a state with broken time-reversal symmetry.
Coherence is strongest between layers 1 and 3 for one spin
orientation and between layers 2 and 4 for the other. Upon
increasing Ub further, the condensate evolves into the BXC
state which is spin-rotationally invariant and allows for charge
transfer between the bilayers. In Sec. VI, we discuss lines A
and B in the phase diagram of Fig. 1. When Ed and Ub are
present, a series of intermediate states can occur along lines
which cross between weakly correlated bilayer and either SXC
(large Ed ) or BXC (large Ub) states. We also present a phase
diagram calculated by applying the same considerations to a
model with a larger bilayer separation, thBN = 0.9 nm, and
explain how it is related to the thBN = 0.3 nm phase diagram.
Finally, in Sec. VII we comment on the limitations of mean-
field theory and speculate on the experimental implications of
this study.

II. MEAN-FIELD THEORY OF EXCITON CONDENSATE
AND SPIN-DENSITY-WAVE STATES IN DOUBLE

BILAYER GRAPHENE

The mean-field theory calculations preformed here neglect
the possibility of broken valley symmetry but allow the
Hamiltonian’s spin-rotational invariance to be broken. We
therefore study a 16-band model with π orbitals of both
spins on both sublattices of four honeycomb lattice layers.
The full mean-field Hamiltonian is H = HB + Hint where HB

is the single-particle band Hamiltonian and Hint describes the
Coulomb interaction contribution. The band Hamiltonian can
be written down most concisely as

HB(k) = {HBL(k) ⊗ σ0

+[Ub + eEd (thBN + 2d)]/2 ⊗ σz} ⊗ s0, (1)

where HBL is the band Hamiltonian of an isolated AB-stacked
bilayer, σ is a Pauli matrix vector that acts on the pseudospin
expanded by bilayer 1 and 2 and s is Pauli matrix that acts
on the real spin degree of freedom. Here we define d as the
separation between layers within a graphene bilayer and thBN

as the increase in the separation between graphene bilayers
when they are separated by hBN layers; i.e., it is approximately
equal to d times the number of hBN layers that are present.

In the (1A,1B,2A,2B) sublattice representation, the iso-
lated bilayer Hamiltonian is [1]

HBL(k)

=

⎛
⎜⎜⎝

eEd d/2 �vk e−iψk 0 0
�vk eiψk eEd d/2 γ1 0

0 γ1 −eEd d/2 �vk e−iψk

0 0 �vk eiψk −eEd d/2

⎞
⎟⎟⎠.

(2)

Here v is the bare Dirac velocity of an isolated graphene layer,
γ1 is the interlayer hopping parameter, and ψk ≡ tan−1(ky/kx).
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We will see that the momentum-orientation dependence of
the intersublattice hopping term within each graphene layer,
which is famously responsible for Berry phase features in
the electronic structure of all single and multilayer graphene
systems, also plays an important role in determining the
double-bilayer phase diagram.

In mean-field theory, Coulomb interactions give rise to self-
consistently determined Hartree and exchange self-energies.
We separate these contributions, writing Hint = HH + HX,
where HH is the Hartree contribution and HX accounts for
exchange. We use a representation of site-dependent π -band
orbitals and label our 16 bands by the compound index
b ≡ {l,x} where l = 1 . . . 4 is the layer index and x = A,B

is the sublattice index within a layer. With this notation the
Hartree term in the mean-field Hamiltonian is

〈b′ | HH (k) |b〉 = −g δb′,b
2πe2

ε

∑
b′′

db,b′′ nb′′ . (3)

Here the factor g = 2 accounts for the two-fold valley
degeneracy, the dielectric constant ε is that of the embedding
material, dbb′ is the distance between the layers associated with
labels b and b′, and nb is the total carrier density projected onto
band b.

The exchange contribution to the mean-field Hamiltonian
is responsible for exciton condensation and therefore plays the
most essential role in the physics described below.

〈b| HX(k) |b′〉 = −
∫

d2k′

(2π )2
Vbb′ (|k − k′|) 〈b| ρ̃(k′) |b′〉,

(4)
where Vbb′ (|q|) = 2πe2 e−q dbb′ /εq is the two-dimensional
Coulomb interaction between bands b and b′. In evaluating
Eq. (4) we employ the regularized density matrix ρ̃ ≡ ρ − ρ0,
where ρ0 is the density matrix for isolated layers with full
valence bands and empty conduction bands. In doing so, we
take the view that the Dirac velocity parameter of an isolated
layer already accounts for exchange interactions with the bare
valence band states. Note that coherence between bands gives
rise to an interaction-induced interband hopping term in the
mean-field Hamiltonian.

The densities and density matrices in Eqs. (3) and (4)
must be determined self-consistently. The off-diagonal terms
in the density matrices capture the coherence between sites
presents in the wave functions of occupied quasiparticle states.
Because of the dependence of hopping within each graphene
layer on ψk ≡ tan−1(ky/kx), the exchange contribution to
the Hamiltonian is dependent on both momentum magnitude
and orientation. Fortunately, the momentum orientation of the
relative phases [43] of quasiparticle projections onto different
bands has a very simple form in multilayer graphene:

〈b| ρ̃(k) |b′〉 = fbb′ (k) exp[−i(Jb − Jb′ )ψk], (5)

where fbb′ (k) captures the density-matrix dependence on k and
Jb is a band-dependent chirality index which will be discussed
at greater length below. With this notation, the exchange
contributions to the mean-field Hamiltonian become

〈b|HX(k)|b′〉 = −e−i(Jb−Jb′ )ψk

∫
dk′ubb′ (k,k′)fbb′ (k′).

The interaction factor ub,b′ (k,k′) is determined by an angular
integral which can be evaluated once and for all and used
throughout the self-consistent iteration process:

ub,b′ (k,k′) ≡ k′

(2π )2

∫
dθ Vbb′ [q(k,k′,θ )] e−i(Jb−Jb′ ) θ ,

where q(k,k′,θ ) = [k2 + k′2 + 2kk′ cos(θ )]1/2. Note that ex-
change interactions are stronger between bands with nearby
layers and more similar chirality indices.

When interactions are neglected, the band-dependent chi-
rality indices Jb in an electrically coupled multilayer graphene
system are determined by the stacking sequence [44]. The in-
dex can be defined as Jb ≡ Arg[〈φ (k)|b,k〉]/ψk, where |φ (k)〉
is a site representation Bloch state. Only the relative chirality
indices between bands are gauge invariant. For a Bernal bilayer
the chirality indices can be read off Eq. (2) by observing that
the band eigenstates have momentum orientation dependence
of the form |φ〉 = (c1A,c1Beiψk ,c2Aeiψk ,c2Bei2ψk ), correspond-
ing to chirality indices JBL = (0,1,1,2) for the four sites
(1A,1B,2A,2B).

In a spatially indirect exciton condensate state coherence
is spontaneously established between the Coulomb-coupled
but electrically isolated bilayers of a double bilayer system.
Because the band energy cost of altering band-chirality dif-
ferences within either bilayer is prohibitive, the band chirality
indices in double bilayers are of the form Jb = JBL + δn,2JX.
(Note that we are free to choose a gauge with JX = 0 for
bilayer n = 1.) JX can be viewed as the angular momentum of
the spatially indirect excitons that form and is an integer-valued
chirality index that distinguishes different excitonic states.
Below we describe the properties of quasiparticle states in
one graphene valley only, say, valley K. Because we assume
that the two valleys are related by time-reversal symmetry, the
chirality index of valley K′ is understood to be opposite to that
of valley K.

With these conventions the JX = −2 state is one in which
the chirality difference between sites 1A and 4B is zero. The
self-consistent state with this choice for JX therefore has strong
coherence between these two sites. Similarly, the JX = 0 state
has strong coherence between equivalent sites in the two
bilayers. We therefore refer to JX = 0 exciton condensates as
bilayer exciton condensates (BXCs). For JX = 2, the chirality
indices are identical for the 2B and 3A sites. We refer to the
JX = 2 states as single-layer exciton condensates (SXC). For
each many-body state, we calculate total energy density by
using

Etot/A = 〈HB〉/A + (〈HH 〉 + 〈HX〉)/2A, (6)

where A is the area of the system. The factor of 2 in Eq. (6)
corrects for the double-counting of interactions in the mean-
field state. As we explain below the JX = 0 BXC and JX = 2
SXC states compete for the ground state, with the preferred
state determined mainly by the influence of the displacement
field Ed on layer polarization within the isolated bilayers. The
JX = −2 states are never ground states.

It is important to recognize that there are small [45] but
nonzero corrections to the minimal π -band model Hamiltonian
we have adopted in Eq. (2), for example, the corrections
responsible for trigonal warping of constant energy surfaces.
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FIG. 2. Schematic illustration of the isolated bilayers states. The
competition between spin-density-wave (SDW) and layer polarized
semiconductor (LPSC) states can be tuned experimentally by varying
the displacement field Ed . The SDW state has broken time-reversal
symmetry, whereas the layer-polarized-semiconductor (LPSC) state
has no broken symmetries. Both states have energy gaps. The yellow
and white circles represent electrons and holes respectively. The
arrows in the circles represent spin orientations. In the SDW state,
opposite spins have opposite layer polarization, whereas in the LPSC
state, the layer polarization is not spin dependent.

When these terms are included, the quasiparticle bands do not
have definite chirality indices even at the single-particle level.
Because these terms are small, however, we do not expect
that they will materially influence the double bilayer phase
diagram.

III. INFLUENCE OF A DISPLACEMENT FIELD Ed ON
BILAYER GRAPHENE

In this section we discuss the application of mean-field the-
ory to isolated bilayers subject to an applied displacement field
Ed . This digression is necessary partly because excitonic states
emerge in many cases as instabilities of single-bilayer states
that are on their own nontrivial, and partly as a reality check
in which our approach is applied to a case in which extensive
experimental data are already available. All calculations in
this paper were performed using e2/2πε = 50 meV nm,
corresponding to ε ∼ 4, and reducing interaction strengths by a
further factor of Cs = 0.8 to account for additional screening
effects. This value for Cs was chosen phenomenologically
to adjust the displacement field at which the SDW to LPSC
transition (see below) occurs to Ed ∼ 20 mV/nm, the value
found experimentally by Velasco et al. [35].

It is well established [35,46–55] that at zero magnetic
field the stable many-body states in an isolated bilayer
graphene system are the spin-density-wave (SDW) and the
layer-polarized-semiconductor (LPSC) states illustrated in
Fig. 2. In an SDW state, opposite layers have opposite
spin polarizations, although each layer is neutral only when
Ed = 0. The SDW state breaks time-reversal symmetry. The
microscopic character of this state is quite distinct from that of
a Heisenberg model system on a honeycomb lattice, as signaled
by the fact that the staggered moment per atom is very small
compared to one Bohr magneton per atom. The scale of the
spin polarization is in fact set by the strength of the interlayer
tunneling amplitude, which increases the masses of the states
at valence and conduction band edges. Because the SDW state
has an unfavorable layer polarization for one spin orientation,
it becomes unstable at large Ed . The LPSC state, which is
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FIG. 3. Typical quasiparticle band dispersions for bilayer
graphene at Ed = 0. The black and red squares illustrate the quasi-
particle energy dispersion of the SDW and LPSC states respectively.
The bands of the two states are similar and both have gaps. (See
inset.) Interactions dominate at small k because of bilayer graphene’s
quadratic crossing between valence and conduction bands. The
quasiparticle dispersion at large k is not strongly influenced by
electron-electron interactions.

the ground state at large Ed , has no broken symmetry when
Ed 	= 0. Both states exhibit gaps (even for zero Ed ) when
electron-electron interactions are included, as seen in Fig. 3.

The SDW state has no overall layer polarization at Ed = 0,
as illustrated in Fig. 4, and is the ground state [56] because
it avoids the electrostatic energy associated with spontaneous
layer polarization. In our calculations, which do not allow for
spontaneous valley polarization, there is an first-order phase
transition between SDW and LPSC states at Ed ∼ 17 mV/nm.
In Fig. 4, we plot the mean-field-theory quasiparticle energy
gaps versus Ed . The mean-field-theory gap is ∼50 meV at
Ed = 0 and increases up to 75 meV for Ed ∼ 100 mV/nm.

FIG. 4. Total energy and quasiparticle gap vs applied electric field
Ed . The black and red closed (open) squares represent the total energy
(quasiparticle gap) for SDW and LPSC states respectively. The SDW
state is the ground state for small Ed whereas the LPSC becomes the
ground state for Ed � 17.0 mV/nm, as indicated by the blue arrow.
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The size of these gaps is strongly enhanced by the nonlocality
of exchange interactions, as reflected also by the difference
between LDA and GW approximation gaps in ab initio theories
[24]. The difference is especially strong at small displacement
fields, since the gap vanishes at Ed = 0 when exchange
interactions are neglected. On the other hand, gaps are
overestimated when exchange interactions are not screened.

IV. SPATIALLY INDIRECT EXCITON CONDENSATES IN
DOUBLE BILAYER GRAPHENE: Ub = 0

We begin our exploration of the double bilayer phase
diagram by focusing first on the Ub = 0 line, first for the
case of bilayer separation thBN = 0.3 nm corresponding to one
layer of hexagonal boron-nitride between graphene bilayers.
For the double bilayer case we discuss here and later, we use
the same set of screening parameters (ε = 4 and Cs = 0.8) as
that in the single bilayer calculation. Although the presence
of one bilayer might further screen the other, this additional
effect is limited as long as the electron density in each layer is
still small, i.e., in the BEC regime. We therefore do not expect
the phase boundary calculated to be very strongly altered by
additional screening effects [57].

In our calculation, we find that for Ed � 70 mV/nm, the
mean-field bilayer state is not altered by the proximity of
a neighboring bilayer. Beyond this value of Ed , coherence
develops between bilayers, and charge is transferred from
the high-potential-energy bilayer to the low-potential-energy
bilayer. The critical value of Ed at which spatially indirect
coherence first develops can be identified with the displace-
ment field at which the potential drop between bilayers is large
enough to tune the lowest energy interbilayer spatially indirect
exciton energy to zero.

Whenever isolated excitons have negative energies, their
populations build up to finite values fixed by the repulsive
[58] exciton-exciton interaction strength, and they condense
to yield spontaneous interlayer phase coherence. As explained
in Sec. II, the exciton condensate states of double bilayer
graphene, and the corresponding isolated exciton states,
are distinguished by an interlayer chirality index, JX. The
spontaneous coherence of the JX = 2 state is characterized
by a relative phase between the 2B and 3A sites that is
momentum orientation independent. This state maximizes the
strong electron-hole interactions between π orbitals that are
located on these adjacent layers, and we therefore refer to it
as the single-layer excition condensate (SXC) state. Because
it produces electrons and holes unevenly within a bilayer, it
is naturally layer polarized and takes good advantage of the
displacement field within each bilayer to lower its energy. The
JX = 0 state, on the other hand, has momentum-orientation-
independent interlayer phases between bilayer valence band
states shared between layers 1 and 2 and bilayer states shared
between layers 3 and 4. For this reason we refer to it as the
bilayer exciton condensate (BXC) state. The phase differences
are momentum orientation independent between layers 1 and
3 and between layers 2 and 4. Because these layer pairs
are further apart than layers 2 and 3, they have weaker
electron-hole interactions. Moreover, the JX = 0 BXC state
gains most interbilayer exchange energy when it is not layer
polarized and is therefore less able to lower its energy in a

FIG. 5. Cartoon illustration of four double bilayer states: SDW,
LPSC, SXC, and BXC. The red circles represent the dominant
spontaneous coherence channel, as explained in the main text.

displacement field. On the other hand it gains more energy
from hopping within the individual bilayers. Figure 5 contains
a cartoon representation of the coherence patterns within the
JX = 0 and JX = 2 states, and Figs. 6 and 7 illustrate their
quasiparticle bands and coherence properties.

The transition from the LPSC state to an excitonic con-
densate occurs at Ed ∼ 70 mV/nm for the bilayer separation
studied and is from a state with no broken symmetries to a
SXC state, rather than to a BXC state. We now explain the
microscopic physics responsible for this choice. The main
panel in Fig. 6 compares the quasiparticle dispersions of
the SXC and BXC states at Ed = 80 mV/nm, inside but
close to the boundary of the exciton condensate portion of
the phase diagram. (The eight bands plotted are all doubly
degenerate because neither the BXC state nor the SXC state
break spin-rotational invariance.) We concentrate on the four
doubly degenerate quasiparticle bands that are close to the
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FIG. 6. Quasiparticle dispersions of the single-layer exciton
condensate state (SXC, JX = 2) and the bilayer exciton condensate
state (BXC, JX = 0) near the boundary between the LPSC and the
BXC state at Ed = 80 mV/nm and Ub = 0. The BXC state is higher
in energy because it is less able to polarize charge within each bilayer
to take advantage of the displacement field.
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FIG. 7. Band projections of low-energy k = 0 eigenstates calcu-
lated for Ed = 80 mV/nm and Ub = 0. Panels (a), (b), (c), and (d) are
for the two highest-energy valence band states and the two lowest-
energy conduction band states, ordered by increasing eigenenergy.
The red, magenta, and gray solid bars represent site projections
calculated for the LPSC, SXC, and BXC states respectively. Because
none of these states break spin symmetry, the quasiparticles energies
are doubly degenerate and the orbital wave functions are spin
independent.

Fermi energy (two above and two below). For large momenta
the bands are virtually identical in SXC and BXC states, and
approach those of two isolated bilayers with an energy offset
equal to the electric potential difference e(thBN + 2d) between
the two bilayer systems. Differences between SXC and BXC
states are found only in the small-k region highlighted in the
inset, where we see that the band dispersions are flatter and
that the gap is slightly larger in the SXC state.

More information on the low-energy eigenstates can be
obtained by projecting them onto the site-localized basis set
used for the Hartree-Fock calculations. Figure 7 plots k = 0
eigenstates of the eight bands close to the Fermi level project
onto A and B sublattice sites at Ed = 80 mV/nm and Ub = 0.
The projections onto 1B, 2A, 3B, and 4A are neglected because
these sites have strong single-particle coupling to an adjacent
layer and have high weight not in the bands close to the Fermi
level, but in the higher energy bands that are further from the
Fermi level. Figures 7(a), 7(b), 7(c), and 7(d) are in the order of
ascending energy; the projections plotted in Figs. 7(a) and 7(b)
are for occupied dressed valence bands while those in Figs. 7(c)
and 7(d) are for unoccupied conduction bands. Because spin-
rotational symmetry is not broken, the degenerate ↑ and ↓
bands in each panel have identical wave functions. The color
codes identify the distinct many-body states: The red, magenta,
and gray solid bars are k = 0 projections for the LPSC, SXC,
and BXC states respectively.

As seen in Fig. 7, the k = 0 eigenstates of the LPSC
are completely localized in energetic order on sites 4B, 2B,
3A, and 1A. (The degree of layer polarization of the band
eigenstates decreases as wave-vector magnitude k increases.)
Site 2B is occupied before site 3A, even though layer 3
has a lower external potential than layer 2 because of the
exchange-enhanced gap in an isolated bilayer discussed in

FIG. 8. Total energy vs Ed for SDW, LPSC, SXC, and BXC states.
The inset plots the exciton densities of the SXC and BXC states.
The SDW is the lowest energy state for small Ed . With increasing
Ed the ground state of the system first transforms into the LPSC
state via a first-order phase transition and then into the SXC state
via a continuous phase transition. These results were obtained for
hexagonal boron nitride barrier thickness thBN = 0.3 nm.

Sec. III. The SXC state k = 0 bands are similar to the LPSC
bands in composition, except that the bands closest to the Fermi
energy, originally localized on 2B and 3A sites, hybridize. In
the BXC state the strongest hybridization occurs between sites
whose layer indices differ by 2. Note that layer 3 has higher
weight at k = 0 than layer 2 in the occupied valence states
in the BXC and that the condensation energy associated with
excitons is reduced. For this reason the SXC state is always
the ground state beyond the critical displacement field.

The energetic comparison of LPSC, SXC, and BXC states
along the Ub = 0 line is summarized in Fig. 8. The BXC
state is metastable over a broad range of Ed values, but is
never the ground state. The SXC state emerges from the LPSC
via a continous phase transition. As illustrated in the inset of
Fig. 8 the exciton density, which is identified as the electron
density transferred from the high-electric-potential bilayer to
the low-electric-potential bilayer, grows continuously from
zero as Ed increases beyond the value at which the LPSC
becomes unstable.

We now discuss the case of larger but still moderate
bilayer separation. Total energy results for thBN = 0.9 nm,
corresponding to a three-hBN-layer barrier, are illustrated
in Fig. 9. (We have also performed a similar calculation
for thBN = 1.8 nm, corresponding to a six-hBN-layer barrier,
which yielded results that are qualitatively similar except that
phase boundaries are shifted to lower Ed .) The ground states
in the small and large displacement field limits are SDW and
SXC states, as in the small bilayer separation case.

For a larger value of thBN, a given displacement field yields
a larger electric potential difference between the bilayers. As
a result the spatially indirect band gap closes at smaller Ed

values, leading to condensate formation before the isolated
bilayer SDW to LPSC transition occurs. The ground state at
intermediate displacement fields in this case is the 1CBXC
state, in which a spatially indirect exciton condensate forms
for one spin species only. We can view the effect of increasing
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FIG. 9. Total energy vs Ed for SDW, BXC, SXC, and 1CBXC
states. The inset plots the exciton densities of the SXC and BXC states.
The SDW is the lowest energy state for small Ed . With increasing Ed

the ground state of the system first transforms into a LPSC via a first-
order phase transition and then into the SXC state via a continuous
phase transition. These results were obtained for thBN = 0.9 nm.

thBN as equivalent to an increase in Ub that is proportional to
Ed , combined with a decrease in the interbilayer Coulomb
interaction scale. The effective bias potential increase is
±eEdδthBN when the layer separation is increased by δthBN.
That effective bias potential addition favors charge transfer
between bilayers and the formation of exciton condensate
states at smaller values of Ed . At the same time, weakening of
inter-bilayer Coulomb interactions favors electron-hole pairs
that form between the nearest layers in which the Coulomb
interaction is maximized.

V. SPATIALLY INDIRECT EXCITON CONDENSATES IN
DOUBLE BILAYER GRAPHENE: Ed = 0

Next we study ground state as a function of bias voltage
Ub along the zero-displacement-field Ed line. Ub effectively
shifts the relative energy of states in different bilayers without
introducing a displacement field within the bilayers. We have
compared the total energies of possible ground states with
different symmetries at each Ub, as illustrated in Fig. 10. States
can take advantage of Ub only by shifting charge from bilayer
to bilayer. For this reason, the energies for both SDW and
LPSC states are precisely constant as a function of Ub. The
SDW state therefore remains the ground state until it becomes
unstable when its spatially indirect exciton energy vanishes.

We define the Néel order parameter vector of a bilayer SDW
state as �N = �sl=1 − �sl=2, i.e., as the spin density difference
between its top and bottom layers. As long as their is no
single-particle tunneling between bilayers, the energy of the
system is independent of the direction of either Néel vector.
To simplify the following discussion we assume that the two
Néel vectors are antiparallel, in the ẑ direction in the top n = 1
biayer and in the −ẑ direction in the bottom n = 2 bilayer.
Then the ↑ valence band holes of the bilayer n = 1 SDW state
are concentrated in layer l = 1 whereas the ↓ valence band
holes are concentrated in layer l = 2. Similarly for the lower
n = 2 bilayer the ↑ conduction band electrons are concentrated

FIG. 10. Total energy vs Ub for SDW, LPSC, BXC, SXC, and
SDWXC states. The inset shows exciton densities in the three
states with spatially indirect condensation. The SDW is the ground
state for small Ub and becomes unstable when its spatially indirect
exciton energy vanishes. The exciton condensate initially breaks
spin symmetry by condensing while retaining spin-density-wave
order (SDWXC), but spin symmetry is restored at higher exciton
density. Both SDW to SDWXC and SDWXC to BXC transitions are
continuous.

in layer l = 3 whereas the ↓ conduction band electrons are
concentrated in layer l = 4. Because of the Néel order, the
spatially indirect exciton energies are spin dependent, with
the lowest energy excitons having the same sense of layer
polarization in each bilayer.

The character of the SDWXC state which forms along
the Ed = 0 line when the lowest exciton energy vanishes is
illuminated by the coherence profile in Fig. 11. Because spin
invariance is still broken, the coherence properties are spin
dependent. For the Néel vector directions we have chosen, it
follows from the discussion in the previous paragraph that the
lowest energy excitons are formed between electrons whose
spins are parallel in the two bilayers; (↑e , ↑h) excitons have
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FIG. 11. Typical intersublattice coherence vs wave vector k for
the SDWXC state when the Néel order parameter vectors in the two
layers are along ẑ and −ẑ directions. The black and the red lines
illustrate the coherence properties of (↑e , ↑h) and (↓e , ↓h) exciton
condensates.
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FIG. 12. Sublattice projections of SDW, SDWXC, and BXC k =
0 quasiparticle wave functions at Ub = 17 meV and Ed = 0 for the
case in which the Néel order parameter vectors in the two layers
are along ẑ and −ẑ directions. The top four panels are for ↑ and ↓
valence band quasiparticles, and the bottom four panels for ↑ and
↓ quasiparticles of conduction band quasiparticles. The second and
third rows report projections for the bands closest to the Fermi level
as in Fig. 7. The black solid, gray with slash pattern, and gray solid
bars represent sublattice projections for SDW, SDWXC, and BXC
states respectively.

dominant coherence between layers 1 and 3 while (↓e , ↓h)
excitons have dominant coherence between layers 2 and 4.
[Note that positive Ub favors holes in layers l = 1,2 (bilayer
n = 1) and electrons in layers l = 3,4 (bilayer n = 2).] The
weaker coherence between layers 2 and 4 for (↑e , ↑h) excitons
and between layers 1 and 3 for (↓e , ↓h) excitons has a sign
change relative to the dominant coherence because of the
spin- and layer-dependent mean-field potential responsible
for gaps in the SDW state has opposite sign in the two
layers. This picture of the SDWXC state is reinforced in
Fig. 12, where sublattice projections are compared with those
of the competing BXC state that has the same value of
JX but does not break spin-rotational invariance. The phase
transitions between the SDCXC state and the SDW state at
small Ub, and between the SDWXC state and the BXC state
at large Ub, are both continuous. The first phase transition
adds spontaneous interlayer coherence to the previously
established broken time-reversal symmetry, and the second
phase transition drops broken time-reversal symmetry while
maintaining spontaneous interlayer coherence.

Because spatially indirect excitons first condense when
their total excitation energy vanishes, exciton binding energies
(i.e., exciton energies relative to band gaps) can be extracted
from our calculations whenever the transition to a condensed
state is continuous. For example, at Ed = 0, the quasiparticle
gap of the SDW state can be read off Fig. 3 and is ∼50 meV.
From Fig. 10, exciton condensation occurs at Ub = 15 meV.
It follows that the exciton binding energy is 50 − 15 =
35 (meV). In addition to the exciton binding energy, our
calculations also provide an estimate of the exciton-exciton
interaction strength at low exciton densities, which can be
obtained from calculations of exciton density as a function of
Ub. From the inset in Fig. 10, for example, we find that the

interaction between the spatially indirect excitons of the SDW
state is repulsive with strength ∼17 eV nm2.

VI. SPATIALLY INDIRECT EXCITON CONDENSATES IN
DOUBLE BILAYER GRAPHENE: GENERAL CASE

In this section we briefly discuss some aspects of the phase
diagram in Fig. 1 which do not emerge clearly from studies
of the Ub = 0 and Ed = 0 lines. The SDW and LPSC states,
which do not have spontaneous interlayer phase coherence of
the XC states, are stable in the small-Eb, small-Ub corner of
the phase diagram. These states are stable when the electrically
controlled shift in the spatially indirect band gap is not large
enough to reduce the smallest spatially indirect exciton energy
to zero. There is no mechanism to allow charge transfer
between bilayers in the SDW and LPSC states. XC states
appear at larger Ub and Eb, because these electrical knobs
both favor states that provide a mechanism for charge transfer.
The broken-symmetry SDW state is favored at small Ed and
the LPSC at larger Ed , as explained in Sec. III. The spatially
indirect XC states appear at larger Ed and/or Ub, with large Ed

favoring SXC states and large Ub favoring BXC states. The
phase boundary between SXC and BXC states is first order,
because the two states are distinguished by an integer-valued
topological index JX. In addition to the SDWXC intermediate
state, whose stability region includes a portion of the Ed = 0
line, we have identified another distinct intermediate state with
a stability region that does not include either the Ed = 0 line
or the Ub = 0 line. For sufficiently large Ed , the transition
from SDW to BXC states with increasing Ub occurs not via
an intermediate SDWXC state but via a state we refer to as
a 1CBXC state, in which coherence is established only for
one spin component. The 1CBXC state is characterized more
fully below. All phase boundaries of the 1CBXC state mark
first-order phase transitions.

To shed further light on the competitions between these
states we study the Ed = 40 mV/nm line (line A in Fig. 1)
in detail. The dependence of the ground-state energy on Ub

is plotted for competing states in Fig. 13. As Ub increases
the ground state evolves from a LPSU at the smallest values
of Ub, to a 1CBXC mixed state at Ub ∼ 7 meV, to a SXC
state at Ub ∼ 12.5 meV, and finally into a BXC state at Ub ∼
14 meV. Transitions are rarely intuitive if they occur when
both Ed and Ub are finite. To compare the states before and
after the transition, we define an index S(MS1,MS2) which
characterizes the similarity of two many-body states, MS1 and
MS2. This index is computing by adding contributions from
the eight k = 0 eigenstates ES that are closest to the Fermi
surface: S(MS1,MS2) = (1/8)

∑8
ES=1 SES with

SES =
∑

b

〈ES; MS1| b〉〈b |ES; MS2〉. (7)

Here b is the sublattice index. SES is the inner product between
|ES; MS2〉 and MS2 at k = 0. The index summarizes the
information contained in the wave-function projection dia-
grams in a convenient way. For continuous phase transitions,
S(MS1,MS2) approaches one when the states are examined
close to the transition. For first-order transitions, the index can
differ substantially from one.
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FIG. 13. Total energy vs Ub for various many body states at
Ed = 40 mV/nm. The LPSC is lowest in energy state for small Ub.
With increasing Ed the ground state of the system first turns into an
intermediate 1CBXC state with broken spin symmetry and coherence,
and then into a BXC state. The inset shows jumps in exciton density
at the LPSC to 1CBXC transition and at the 1CBXC to BXC state
transtion, demonstrating that both transitions are first order.

We now characterize the LPSC to 1CBXC transition by
examining the S index and the projection diagrams of Figs. 14
and 15. These figures follow the same scheme as all previous
bar diagrams; the red, brown, and gray solid bars represent the
LPSC, the mixed 1CBXC state, and the BXC, respectively.
These figure show first of all that one spin component of
the the 1CBXC state (brown) is nonexcitonic and strongly
layer polarized. At Ub = 5 meV the spin 1 k = 0 eigenstate
components (Fig. 14) are identical for LPSC and the 1CBXC
states. For spin 2, the highest two [Fig. 14(d)] and the
lowest two [Fig. 14(a)] of the eight eigenstates are quite

FIG. 14. Site projections of the low-energy k = 0 quasiparticle
wave functions for Ub = 5 meV and Ed = 40 mV/nm, close to the
LPSC to 1CBXC phase boundary. The red, brown, and gray solid bars
represent the site quasiparticle wave-function site projections from
the LPSC, 1CBXC, and BXC states respectively.

FIG. 15. Site projections of the low-energy k = 0 quasiparticle
wave functions for Ub = 15 meV and Ed = 40 mV/nm, close to the
LPSC to 1CBXC phase boundary. The brown, gray, and magenta
bars represent the quasiparticle wave-function site projections from
the 1CBXC, BXC, and SXC states respectively.

similar (SES ∼ 1), whereas the two eigenstates closest to the
Fermi surface [panels (b) and (c) in Fig. 14] show drastic
differences (SES ∼ 0). More specifically, we see that the 2B
component of the LPSC transforms to 3A (and partly 1A)
components at the transition to the 1CBXC. This difference
implies charge transfer between bilayers. The small SES from
these two eigenstates corresponds to an abrupt increase in
exciton population at the transition, as confirmed by the inset
of Fig. 13. The transition between the LPSC and the 1CBXC
is first order. Increasing Ub further, we hit a second transition
point. The corresponding bar diagram (Fig. 15) shows the
k = 0 eigenstate projections for 1CBXC (brown) and BXC
(gray) states. The transition from the 1CBXC state to the BXC
occurs mainly on spin 1, which undergoes a transformation
that is similar to that experienced by spin 2 during the LPSC to
1CBXC transition. A similar discontinuity in exciton density
profile shows that hte 1CBXC to BXC transition is also a
first-order phase transition. Transitions along this line have
S ∼ 6/8 = 0.75, implying that six out of eight eigenstates are
very similar between before and after the transition.

Next we fix the bias potential at Ub = 10 mV and sweep Ed

(line B in Fig. 1). The energy comparison in Fig. 16 shows that
at low Ed , the ground state is the SDW. Increasing Ed drives
a first-order transition into the 1CBXC intermediate state at
Ed ∼ 12 mV/nm. This is followed by another transition into
the SXC state at Ed ∼ 50 eV/nm. We see from Fig. 17 that the
transition from SDW to 1CBXC is first order and accompanied
by a considerable charge redistribution; only the eigenstates
in Figs. 17(b) and 17(d) of spin 1 and Fig. 17(d) of spin 2
have SES ∼ 1. The charge redistribution happens both within
bilayers [Figs. 17(a) and 17(c) of spin 1, Fig. 17(a) of spin 2]
as well as between bilayers [Figs. 17(b) and 17(c) of spin 2],
which shows that electrons move from layer 1 to 4 (holes from
layers 3 to 1). The significant change results in a low S index
of less than 3.5/8 = 0.4375. A transition between 1CBXC
and SXC occurs then occurs at larger Ed . By the time this
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FIG. 16. Total energy vs Ed for various many-body states at Ub =
10 meV; the inset shows the corresponding exciton densities. The
SDW state has lowest energy for small Ed . With increasing Ed the
ground-state transitions first into the mixed 1CBXC state and then
into the SXC state.

phase boundary is reached the 1CBXC state has evolved into
a state that is similar to the SXC state so that the transition,
although first order is characterized by a value of the similarity
index S that can be as large as (4 + 4/

√
2)/8 ∼ 0.85, as shown

in Fig. 18. Because of the greater similarity, the transition
between 1CBXC and SXC, although first order, appears to be
smooth in the exciton density profile illustrated in the inset of
Fig. 16.

So far we have discussed mainly results for the case of a
single-layer hBN barrier which has the richest phase diagram.
We now explain how the topology of the phase diagram
is altered by increasing the bilayer separation. Figure 19
shows the calculated phase diagram for bilayer separation

FIG. 17. Site projections of low energy k = 0 quasiparticle wave
functions for Ub = 10 meV and Ed = 15 mV/nm. The relationship
between panel position and eigenenergy order is the same as in Fig. 7.
The black, brown, and magenta solid bars characterize the SDW state,
the 1CBXC state, and the SXC state respectively. The Néel state order
parameter vectors of the two bilayers are oppositely oriented.

FIG. 18. Site projections of low-energy k = 0 eigenstates for
Ub = 10 meV and Ed = 50 mV/nm, near the phase transition
between 1CBXC and SXC states. The brown and magenta bars
represent the 1CBXC and the SXC states, respectively.

thBN = 0.9 nm, corresponding to three-layer hBN barriers. We
first note that for Ed < 15 mV/nm differences compared to the
single-layer barrier are small. For larger Ed , the main change
is that the LPSC state is absent in the three-layer barrier case.
Additionally, other phases including the 1CBXC and BXC
states are shifted downward toward smaller Ub compared to
the single-layer phase diagram in Fig. 19. We can understand
these differences by taking into consideration the two main
effects of increasing layer separation. First of all, increasing
thBN by δthBN increases the effective bias potential by eEdδthBN

because of the additional electric potential difference between
bilayers at a given value of Ed . This simple shift accounts
for the most of the barrier thickness dependence of the phase
diagram. The small Ed SDW region of the phase diagram
is therefore relatively independent of thBN. The intermediate

FIG. 19. Phase diagram for bilayer separation thBN = 0.9 nm. The
LPSC states do not appear because the spatially indirect exciton
energy vanishes before the isolated bilayer SDW to LPSC transition
occurs. The solid blue lines mark first-order phase boundaries.
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state 1CBXC, on the other hand, shifts noticeably toward
smaller Ub and squeezes out the LPSC. According to our
calculations, the LPSC state is already entirely eliminated for
the three-layer hBN barrier. In addition increasing the potential
difference between bilayers, increasing thBN decreases the
strength of inter-bilayer electron-electron interactions. This
second effect favors SXC states over BXC states because
the relative reduction in interaction strength is larger for
the adjacent layers of the two-bilayer systems than for the
more remote layers. The phase boundary between BXC and
SXC states therefore shifts toward smaller Ed , expanding the
stability range of the SCX state. We also note that at still
larger thBN separations, substantial charge transfer between
bilayers will occur even at small Ed , very quickly driving the
double-bilayer system into a metallic Fermi liquid state.

VII. SUMMARY AND DISCUSSION

In this paper we have systematically constructed a
mean-field-theory phase diagram for neutral double-bilayer
graphene, demonstrating that the many-body ground state
can be altered by an external displacement field Ed and an
interlayer bias Ub. Mean-field theory predicts that the ground
state of neutral isolated bilayers is a spin-density-wave state
at Ed = 0 and a layer-polarized semiconductor at large Ed .
These properties have already been verified experimentally.
Both Ed and Ub favor charge transfer between bilayers, and
this is accomplished in mean-field theory by forming excitonic
condensate states that have a gap for charged excitations
and spontaneous coherence between bilayers. The onset of
exciton condensation occurs when the electrically tunable
indirect exciton excitation energy becomes negative. The layer,
sublattice, and spin degrees of freedom of graphene bilayers
allow for a variety of different single-exciton states, and
correspondingly for a variety of different condensate states.
Distinct excitonic states can be classified by a topological
quantum number Jx , related to relative angular momentum.
We find that the combination of the possibility of broken
time-reversal symmetry in spin-density-wave states and the
possibility of condensation in different excitonic states leads
to the complex phase diagram presented in Fig. 1. The phase
diagram contains two types of intermediate states that combine
broken spin-rotational invariance and exciton condensation in
different ways.

The mean-field theory we use in this paper, which is closely
related to the BCS mean-field theory of superconducting states,
can capture the physics of excitons in the BEC regime and the
crossover to the high exciton-density BCS regime. It does not,
however, account for the metallic Fermi liquid (FL) phase
generally expected [31,59] at high exciton densities. The FL
phase, like the exciton condensate, has charge transfer between
bilayers, but does not support broken symmetries of charge-
excitation gaps. Because these simple Fermi liquid states are
not predicted by mean-field theory, in which condensation
always occurs when excitons are present, we have chosen not
to represent them explicitly in Fig. 1. Metallic Fermi liquid
double bilayer excitonic states are expected when the density
of excitons times the area occupied by a spatially indirect
exciton bound state is large, in other words when excitons
overlap strongly, and therefore should appear along the upper

FIG. 20. Schematic phase diagram including Fermi liquid (FL)
states. The mean-field theory instability of Fermi liquid states toward
states with spontaneous coherence between bilayers is expected to be
suppressed by correlations at high exciton densities.

right of the phase diagram in Fig. 1 as indicated schematically
in Fig. 20. Another possible phase that is not described by
the mean-field theory is the biexciton phase [59], in which
excitons pair to form bound biexcitons, which are analogs
of hydrogen molecules. In mean-field theory, the interactions
between excitons is always repulsive. The attractive interaction
that can result from fluctuating dipoles can in principle produce
attraction. This effect is unlikely to be important at finite
Ed , however, because the dipole orientations are fixed by
displacement fields.

The excitonic condensates proposed in this paper are
normally most conveniently identified in experiment by per-
forming drag measurements, since spontaneous coherence in
an exciton state shorts electrical isolation and eliminates layer
dependence of measured voltages, even when separate contact-
ing is well established experimentally. In a double bilayer drag
experiment current flows through one bilayer and voltage drops
are measured both in the bilayer carrying the transport current
(the drive layer) and in the adjacent electrically isolated bilayer
(the drag layer). Consider, for example, the Ed = 0 case. At
Ub = 0 both drag and drive layers are expected to be in SDW
states if disorder is sufficiently weak. The resistance measured
in an isolated neutral bilayer in an SDW state should therefore
be large and increase indefinitely as temperature is lowered.
(Importantly, this property contrasts with the extensively
studied spatially-indirect-condensate case of semiconductor
double quantum well systems in a magnetic field, where
coherence is established between layers in ν = 1/2 quantum
Hall states. Although the quantum Hall spatially indirect
condensate state has a bulk gap, it also has topologically
protected edge states and therefore has a finite longitudinal
resistance as temperature goes to zero.) By increasing Ub

the spatially indirect exciton energies can be tuned to zero,
allowing excitons to be present in the system in equilibrium.
We predict that when the exciton density is low, spontaneous
interlayer coherence will be established between the bilayers
and the resistive voltage drop measured in the direction of
current flow will be detected by voltage probes connected to
either bilayer.
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We emphasize that there is a qualitative difference between
double bilayer graphene and double monolayer graphene
[60–67] that is relevant to their ability to host robust spa-
tially indirect exciton condensates. Because the bilayer is a
semiconductor, it has a band of elementary neutral excitations,
the exciton states, that lie below the particle-hole excitation
spectrum continuum. As long as the density of excitons is
low, the argument that they can be considered to be weakly
interacting bosons is straightforward and reliable. The weakly
interacting low-exciton-density limit is accurately captured
by the mean-field approximation that we employ, whereas
quantum fluctuations become more important at higher exciton
densities. It is generally expected that the true ground state at
high exciton densities is a Fermi liquid, as discussed in the
previous paragraph, although quantitative calculations remain
a challenge. At a minimum the critical temperature in this limit
is expected to be reduced because electron-hole interactions
are screened [63,64,67,68], Because monolayer graphene is a
gapless semiconductor, its particle-hole excitation continuum
does not have a lower bound and there are therefore no isolated
bosonic excitations. Similarly, in double monolayer graphene
there are no isolated spatially indirect exciton excited states
[66]. The low-density regime in which more quantitative
theoretical predictions are possible is absent in the double
monolayer case. Because of its electrically tunable gaps, the
double bilayer provides an interesting opportunity to explore
the crossover between the rather simple case of spatially

indirect condensates formed between two-dimensional semi-
conductors and the more complex case of spatially indirect
exciton condensates in gapless systems, which is approached
for small displacement fields.

Although this work has restricted its attention to the physics
of neutral double bilayers, it seems clear that interbilayer
electron-electron interactions can also have a strong influence
on double-bilayer properties away from charge neutrality, par-
ticularly when the carrier density in one bilayer or the other is
low and the Fermi level lies close to the Mexican hat features in
the quasiparticle dispersion that are evident in the quasiparticle
band dispersions plotted in this article. A number of recent
experimental papers [29–33] with intriguing findings demon-
strate the potential for interesting many-electron physics in the
double bilayer system, a part of which is addressed here, leav-
ing many avenues for future theoretical and experimental work.
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