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We study the effect of Rashba spin-orbit coupling (SOC) on the charge and spin degrees of freedom of a
quasi-one-dimensional (quasi-1D) Wigner crystal. As electrons in a quasi-1D Wigner crystal can move in the
transverse direction, SOC cannot be gauged away in contrast to the pure 1D case. We show that for weak SOC,
a partial gap in the spectrum opens at certain ratios between the density of electrons and the inverse Rashba
length. We present how the low-energy branch of charge degrees of freedom deviates due to SOC from its usual
linear dependence at small wave vectors. In the case of strong SOC, we show that the spin sector of a Wigner
crystal cannot be described by an isotropic antiferromagnetic Heisenberg Hamiltonian anymore and that instead
the ground state of neighboring electrons is mostly a triplet state. We present a new spin sector Hamiltonian and
discuss the spectrum of a Wigner crystal in this limit.

DOI: 10.1103/PhysRevB.95.045413

I. INTRODUCTION

Low-dimensional systems are of great interest in condensed
matter physics because of their broad range of techno-
logical applications [1,2]. Systems, such as quantum dots,
nanowires, and two-dimensional electron gases are usually
formed using metallic gates and band engineering [3–7].
Both of these factors induce a structural asymmetry in the
system and, as a consequence, generate spin-orbit coupling
(SOC) [8]. The effect of SOC is crucial for many pro-
posed technological applications, for instance, in the field
of spintronics. For example, SOC can be used as a means
to control the spin state of an electron in a quantum dot
[9], or it can lead to the formation of Majorana fermions
in nanowire-superconductor hybrid structures [10,11]. This
latter property has triggered a lot of experimental research
into one-dimensional (1D) systems with SOC [12–16].

It was shown theoretically that when the electron density
in a nanowire is very low, it becomes energetically favorable
for electrons to arrange in a quasi-long-range ordered state: a
Wigner crystal [17,18]. The charge and spin degrees of free-
dom in such a system decouple from one another and so display
the same spin-charge separation seen in one-dimensional
metallic systems at higher densities where the Luttinger liquid
model applies [19]. There are experimental indications of the
presence of Wigner crystals in quantum wires and carbon
nanotubes [20–23]. A strict one-dimensional arrangement is
favored by strong confinement in the transversal direction. In a
strictly one-dimensional system, Rashba SOC, which couples
the spin and charge modes, can be gauged away using a unitary
transformation. As a result, in such a 1D system SOC has no
effect on the energy spectrum in the absence of a magnetic
field, and spin-charge separation is restored.

If, on the other hand, the confining potential is made
shallower, a transition to a quasi-1D zigzag form can take
place [17,24–28]. Moreover, the spectrum of quasi-1D systems
is strongly affected by SOC because the latter leads to
avoided crossings between neighboring sub-bands [29–31].
For these reasons, Rashba SOC can have a strong effect on
the electronic properties of quasi-1D systems even without an
applied magnetic field. It is thus important to study this model
as it can provide insight into the behavior of conductance and
other characteristics of nanowires with Rashba SOC [32,33].

The spectrum of a quantum wire with Rashba SOC and an
applied magnetic field in the limit of strong electron-electron
interaction was considered in Ref. [34]. There it was shown
that a partial “helical” gap in the spectrum can open at certain
values of the electron density and this dependence differs from
the regimes of noninteracting or weakly interacting electrons.
In Ref. [33] it was shown that a helical gap can open in a
quasi-1D wire even without an external magnetic field and
due only to electron-electron interactions and Rashba SOC.
This result was discovered in the framework of Luttinger
liquid theory, which does not describe electronic systems at
low densities well [35]. To accurately describe such a system
in the low-density limit, we use the more appropriate model
of a Wigner crystal [17].

In this article we study strongly interacting electrons at low
densities, which form a quasi-1D Wigner crystal, and investi-
gate the effect of Rashba SOC on the spectrum of such a state
and on its spin and charge degrees of freedom. We consider two
cases of particular interest. First, we examine the limit of weak
SOC when it can be treated as a perturbation to the existing
description of charge and spin sectors of a Wigner crystal [17].
We then investigate the regime of strong SOC where the effect
of Rashba SOC is stronger than that of the exchange between
neighboring spins. In this case, the spin sector is affected so
much that we have to derive a new Hamiltonian for it.

In the regime of weak SOC we first average out the charge
degrees of freedom and show that due to SOC the resulting
spin Hamiltonian is of XXZ type. This brings the Wigner
crystal into the gapped Ising antiferromagnetic regime instead
of the gapless isotropic antiferromagnet found without SOC
present. We also investigate the charge degrees of freedom of
a quasi-1D Wigner crystal in the presence of spins which are
classically frozen in the ground state of the unperturbed spin
sector Hamiltonian. As a consequence of the zigzag structure,
we find four oscillator branches, and as we are interested in
the low-energy physics, we study the spectrum of the lowest
branch. We show that due to SOC the small-k spectrum of this
branch deviates markedly from the linear behavior observed
in the absence of SOC.

For the case of strong SOC we study how the spin
sector Hamiltonian changes. We follow the previously used
procedure for calculating the exchange interaction between
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FIG. 1. The arrangement of electrons which are strongly confined
in the Z direction, but more weakly confined in the Y direction by a
harmonic potential, leading to the zigzag form of the Wigner crystal.
The unit cell of the zigzag state is shown in orange and contains two
distinct lattice sites labeled 1 and 2. We model the screening of the
long-range part of the Coulomb interaction between electrons seen in
real experimental systems by means of a metallic gate at a distance d

below the confined electrons (blue circles). The presence of this gate
results in image charges (green circles) which cause the long-range
part of the Coulomb interaction to decay as 1/|X|3 as expected for a
dipole potential.

spins in a Wigner crystal [36] and consider a double-well
potential with two electrons in it. We present the new spin
interaction Hamiltonian in the presence of SOC and show
that for strong SOC compared to the tunnel coupling between
wells the lowest-energy state is approximately a triplet, in
contrast to the singlet ground state expected for an isotropic
exchange interaction. For strong SOC the usual description of
the spin sector of the Wigner crystal by means of an isotropic
Heisenberg Hamiltonian does not apply.

The paper is organized as follows. In Sec. II we present the
Hamiltonian of our model. In Sec. III we study the spectrum
of a Wigner crystal with weak SOC and consider spin and
charge degrees of freedom in more detail in two respective
subsections. We discuss the case of strong SOC in Sec. IV and
derive a new Hamiltonian for the spin sector. Our conclusions
follow in Sec. V. Details of the calculation and additional
information are provided in the Appendices.

II. MODEL

We consider electrons confined in the Y and Z directions
by an external potential and which therefore form a one-
dimensional structure along the X direction. It is known that
if the potential energy due to the Coulomb repulsion between
electrons is larger than their kinetic energy, which is typically
the case at low densities, it is energetically favorable for
electrons to form a 1D lattice with quasi-long-range order,
a Wigner crystal [18]. In addition, if the confining potential in
the transversal direction is relatively shallow or the density of
electrons is increased, the Wigner crystal can take on a quasi-
1D form, a zigzag pattern [17,24–27] as shown in Fig. 1. This

phase was reviewed in detail in Ref. [17]. Further increasing
the density can result in many-row zigzag structures before
the crystal melts due to the enhanced quantum fluctuations at
higher densities. The relation between confinement length and
dimensions of a Wigner crystal is discussed in Appendix A.

To form 1D systems metallic gates are often used. As a rule,
they induce structural asymmetry in the system, which in turn
induces Rashba spin-orbit coupling [8]. We include this in the
Hamiltonian of the system, which reads

H =
∑

n

(
pn

X

)2 + (
pn

Y

)2

2m
+ V (Xn,Yn) + α

(
pn

Xσn
Y − pn

Y σn
X

)
,

(1)

where m is the effective mass of the electron, Xn and Yn

describe the position of the nth electron, pn
X(Y ) is the X(Y ) com-

ponent of the electron momentum, and σn
X(Y ) is the X(Y ) com-

ponent of its spin. Moreover, α denotes the SOC strength, and
V (Xn,Yn) is the Coulomb interaction between the electrons.

Aside from inducing SOC, the metallic gates also screen the
long-range part of the Coulomb interaction, which decays at
long distances not as 1/|X| but rather as 1/|X|3. To incorporate
this effect into our model, we consider a metallic gate at a
distance d beneath the Wigner crystal along the Z direction,
see Fig. 1. As a result of this screening, to model the charge
excitations of the Wigner crystal we need only include nearest-
neighbor interactions between electrons. It was shown that in
this case the low-energy charge excitations of a Wigner crystal
can be described in terms of density waves [17,37].

The equilibrium position of the nth electron along a zigzag
chain with longitudinal spacing a and width w is given
by [an,(−1)nw/2]. Allowing for small fluctuations, we can
express the position of the nth electron as (Xn,Yn) = [an+ xn,

(−1)nw/2 + yn], where xn,yn are the deviations of the electron
from its equilibrium position. We expand V (Xn,Yn) to second
order in (xn,yn). The condition for equilibrium is that the
first-order term vanishes so that the lowest nontrivial term
is of second order. In the limit d � a � w the form of the
potential energy is as follows:

V̄ (xn,yn) = m�2

2
(xn − xn+1)2

−m�2
1

2
(yn − yn+1)2 + m�2

2

2
y2

n. (2)

For the details of the derivation of Eq. (2) see Appendix A.
The part of the Hamiltonian which describes the charge sector
reads

Hc =
∑

n

(
pn

x

)2 + (
pn

y

)2

2m
+ V̄ (xn,yn), (3)

where pn
x,y = pn

X,Y .
The low-energy excitations of the spin sector of a Wigner

crystal are usually described by the Heisenberg Hamiltonian
[17,37],

Hs =
∑

n

Jσ n · σ n+1, (4)

where σ n denotes the spin of the nth electron. Due to the strong
Coulomb repulsion between nearest neighbors, the energy
barrier for exchange between neighboring electrons is high,
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and J is exponentially suppressed in the separation between
electrons. For 1D Wigner crystals J > 0, i.e., the energetically
favored spin state is one with antiferromagnetic order [36–39].
For a zigzag chain with a � w, the Heisenberg Hamiltonian
Eq. (4) with J > 0 remains a good model [17]. However,
SOC explicitly breaks spin-charge separation and modifies the
spectrum of quasi-1D systems [29]. The question therefore
arises whether we can still consider Eq. (4) as describing spin
degrees of freedom even when we include SOC in the system.

The exchange interaction between spins in a Wigner crystal
is usually derived by considering the exchange of two electrons
placed in the Coulomb potential of all the other electrons
and in an external confinement potential [36]. The exchange
interaction between two localized electrons in a material with
SOC was considered in Ref. [40]. For weak SOC compared
to the exchange interaction J , for leading order the spin
Hamiltonian retains the form of a Heisenberg Hamiltonian.
Consequently, we consider SOC as a perturbation to Hs + Hc

when mα2 � J,�1,�2,� and study the effect of weak SOC
on the spectrum of the Wigner crystal. Furthermore, we
investigate the case of strong SOC, when the spin excitations
of the Wigner crystal cannot be described using Hs , and derive
a new spin sector Hamiltonian.

III. WEAK SPIN-ORBIT COUPLING

A. Averaging out the charge degrees of freedom

In this section we assume that mα2 � J,�1,�2,� and
consider SOC as a perturbation to Hs + Hc. To simplify
our analysis, we perform a unitary transformation on the
Hamiltonian H → U †

σHUσ with Uσ = ∏
n e−imασn

Y Xn . Going
over to the Wigner crystal representation, we obtain again the
Hamiltonian Hc + Hs as well as a SOC correction coupling
spin and charge modes,

HSOC = −αpn
y

[
σn

x cos 2mα(an + xn)

+σn
z sin 2mα(an + xn)

]
. (5)

To study the effect of this term on the spectrum of the
Wigner crystal, we consider the regime when 2mαa = π ,
i.e., a separation between electrons a which is commensurate
with the spin-orbit length �SO = (2mα)−1. This is the same
condition for the opening of a helical gap in the spectrum given
in Refs. [33,34]. Since the fluctuations about the equilibrium
positions are small, we approximate cos(2mαxn) � 1 and
neglect altogether the term containing sin(2mαxn). As a result,
our perturbation contains only the σx component of spin.

To develop a better understanding of the effect of SOC, we
average out the charge degrees of freedom and so derive a new
effective spin Hamiltonian. We define the partition function
Z , which is expressed in terms of the action of the system in
imaginary time as

Z =
∫

Dg exp[−(Ss + Sc + SSOC)], (6)

where the integral measure g includes both spin and charge
degrees of freedom, and Ss and Sc describe the dynamics
of the spin and charge sectors, respectively, in the un-
perturbed system. SSOC is treated as a perturbation, de-
fined as SSOC = ∫ β

0 dτ HSOC , where β = 1/T is the inverse

temperature. We expand exp(−SSOC) to second order in
α, integrate out the charge degrees of freedom, and then
reexponentiate the result again. As Sc is quadratic in yn

and SSOC is linear, the average of the linear term in SSOC

vanishes, 〈SSOC〉 = 0, where 〈· · · 〉 = ∫
Dgc · · · exp[−Sc] and

gc denotes charge degrees of freedom. The partition function
after integrating out charge modes reads

Z �
∫

Dgs exp

[
−Ss + 1

2
〈SSOCSSOC〉

]
, (7)

where gs denotes spin degrees of freedom.
To calculate 〈SSOCSSOC〉 we transfer to Fourier represen-

tation using the transformation,

xn = 1

βN

∑
k,ω

xk,ωe−ikan+iωτ (8)

for all operators. Here N = L/a is the total number of
electrons in the Wigner crystal, which has length L, and
ω = 2πl/β is a bosonic Matsubara frequency with l ∈ Z.
After averaging out the charge degrees of freedom, we get

〈SSOCSSOC〉 = −α2m

βN

∑
k,ω

ω2σ k,ω
x σ−k,−ω

x

ω2 − 4�2
1 cos2 (ka/2) + �2

2

.

(9)

We return to the temporal representation of the spin operators
as follows. We assume that J � �,�1,�2 so that the charge
degrees of freedom evolve on much faster time scales than
the spin degrees of freedom. This assumption is justified by
the fact that J decays exponentially with the distance between
electrons [36] whereas �1 and � decay as power laws as a
function of distance with exponent −3/2 (see Appendix A),
and �2 is required to be larger than �1 to ensure the stability of
the Wigner crystal. We then integrate the prefactor multiplying
σ k,τ

x σ−k,τ ′
x over (τ − τ ′) and approximate the result by an

instantaneous interaction between the spins. The nontrivial
term becomes

〈SSOCSSOC〉 = −α2m

N

∫ β

0
dτ

×
∑
k,n,n′

exp
(−β

√
�2

2 − 4�2
1 cos2 [ka/2]

)
×eika(n−n′)σn,τ

x σ n′,τ
x . (10)

From this expression we see that if the temperature is zero
(β → ∞) the average vanishes: at zero temperature the spin-
orbit coupling produces no nearest-neighbor spin exchange up
to second order in α. A second feature of this formula is that, if
�2 → ∞ so that oscillations in the Y direction are forbidden,
the average also becomes zero. This means that in a strictly 1D
Wigner crystal this SOC-induced correction is absent, which
is compatible with the fact that SOC can be gauged away in
the 1D limit.

To express 〈SSOCSSOC〉 in the spatial representation, we
consider the case of β[�2

2 − 4�2
1 cos2 (ka/2)]1/2 � 1, which

corresponds to large enough temperatures (small β) and
shallow enough external potential (small �2). We expand the
exponential in Eq. (10) and carry out the summation over k.
The resulting expression is nonzero only when n = n′ and
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n − n′ = ±1. As the n = n′ term corresponds to a constant
shift in the action, we ignore it and consider only the
n− n′ = ±1 terms. Then the average is

〈SSOCSSOC〉 = −α2mβ
�2

1

�2

∫ β

0
dτ

∑
n

σ n,τ
x σ n+1,τ

x . (11)

We put this back into Eq. (7) to arrive at an effective spin
Hamiltonian which reads

H̃s =
∑

n

Jσ n · σ n+1 + α2mβ
�2

1

2�2
σn

x σ n+1
x . (12)

This Hamiltonian describes an XXZ-type Heisenberg chain
because the prefactor of σn

x σ n+1
x is different from the coef-

ficient multiplying σn
y σ n+1

y and σn
z σ n+1

z . In addition, since
the coefficient of the σn

x σ n+1
x term is larger than that for the

other spin directions, the Hamiltonian (12) is in the Ising
antiferromagnet regime, which has a gapped spectrum [41].

One can show that this gap is present not only at electron
density 2mαa = π , but also at all commensurate densities
defined by 2mαa = (2l + 1)π . In contrast, if 2mαa = 2πl,
the spectrum is gapless because the correction has the opposite
sign, so our system is in the XY phase [41]. For the details of
the calculation for arbitrary 2mαa see Appendix B.

B. Spectrum of charge degrees of freedom

In the previous section, we integrated out the charge degrees
of freedom to second order in α. At T = 0, the spin degrees
of freedom were unaffected by SOC. Since SOC explicitly
couples spin and charge degrees of freedom, this naturally
leads us to investigate if the effect of SOC can instead be seen
in the charge degrees of freedom at T = 0. Therefore, in this
section we will assume the spins to be frozen in the classical
Néel ground state of the isotropic Heisenberg model, whereas
the charge degrees of freedom are still able to fluctuate.

We begin from the description of the Wigner crystal in
zigzag form, where we have a unit cell that contains two
electrons as shown in Fig. 1. First of all we simplify the
form of SOC by performing a Schrieffer-Wolff transforma-
tion up to second order in α. We use the Schrieffer-Wolff
transformation eiUSW He−iUSW , where the Hermitian operator
USW reads [42,43]

USW = mα
∑
n,γ

[
σ

n,γ

X Y γ
n − σ

n,γ

Y Xγ
n

]
. (13)

Here γ denotes the type of the electron in the unit cell: first
(γ = 1) or second (γ = 2) as shown in Fig. 1. For lowest order
in α our SOC Hamiltonian becomes

HSW
SOC = −mα2

∑
n,γ

σ
n,γ

Z

[
Yn,γ p

n,γ

X − Xn,γ p
n,γ

Y

]
. (14)

To this order in α, σ
n,γ

Z is conserved. Therefore, we make
the ansatz that the spins are frozen in the antiferromagnetic
ordering corresponding to the classical lowest-energy state of
Eq. (4) and so take σ

n,γ

Z = (−1)γ−1.
In the part of the Hamiltonian describing the low-energy

charge excitations, we now take the zigzag structure fully into
account. The resulting Hamiltonian Hz

c has a similar form as
Hc from Eq. (3), however it also contains a summation over γ

k

Vk

FIG. 2. The eigenvalues of the matrix Vk as a function of k for the
four charge-sector normal modes in the zigzag Wigner crystal without
SOC present. Whereas the exact parameters for this plot are given in
the text, the qualitative behavior of these eigenvalues does not depend
sensitively on their values. Focusing on the lowest mode, we see that
this eigenvalue, which corresponds to the frequency squared of the
lowest in energy oscillator is approximately quadratic for small k,
leading to a linear dispersion relation for this mode.

and V (xn,yn) from Eq. (A3) instead of V̄ (xn,yn) from Eq. (2),

Hz
c =

∑
n

[(∑
γ

(
p

n,γ
x

)2 + (
p

n,γ
y

)2

2m

)
+ V (xn,yn)

]
. (15)

To find the spectrum of Hz
c + HSW

SOC , we define a new Fourier
representation which respects the periodicity of the zigzag
structure in the following way:

xn,γ =
√

2

N

∑
k

xk,γ e−2ikan, (16)

pn,γ
x =

√
2

N

∑
k

pk,γ
x e2ikan. (17)

We express V (xn,yn) in this Fourier representation and then
diagonalize it. We denote the result of the diagonalization as
Vk and plot it in Fig. 2 for the following parameters: d = 10,

w = 0.1 in the units of a, and D� � 3.94 in the units e2/(εa3)
derived from Eq. (A2).

We denote the transformation which implements the diag-
onalization at k = 0 as Ud1. Then in the basis,⎛

⎜⎝
Qa,1

Qb,1

Qa,2

Qb,2

⎞
⎟⎠ = UT

d1

⎛
⎜⎝

xk,1

yk,1

xk,2

yk,2

⎞
⎟⎠, (18)

we find

Vk=0=

⎛
⎜⎜⎝

0 0 0 0
0 4

(
D(1)

xx − D(2)
xx

)
0 0

0 0 D� 0
0 0 0 4D(1)

yy − 4D(2)
yy + D�

⎞
⎟⎟⎠.

(19)

In the limit d � a � w the second eigenstate has an eigen-
value which is approximately 4D(1)

xx and positive. The fourth
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eigenstate has an eigenvalue approximately D� + 4D(1)
yy , and

since D(1)
yy < 0 it can be rather small. For an estimate we

took the same parameters as for Fig. 2 and get that the
second eigenvalue is 7.765 and the fourth is 0.117 in units
of e2/(εa3). Near k = 0, the lowest-energy states are therefore
those that live on the (a,1) and the (b,2) branches. In the
following we will consider only the subspace formed by these
lowest branches and study whether SOC-induced mixing can
significantly change the spectrum of the lowest branch.

In the same way as we defined the Q normal modes
for the coordinates, we define a similar basis of momentum
normal modes. We then express the momentum and coordinate
operators via ladder operators ak for (a,1) and bk for (b,2)
as is usually performed for quantum harmonic oscillators:
Qa,1 = (a†

−k + ak)/
√

2mωa for the coordinate and similarly
for the momentum. The Hamiltonian Hz

c for k ∼ 0 becomes

Hz
c (k ∼ 0) =

∑
k

ωaa
†
kak + ωbb

†
kbk, (20)

where using the results of the diagonalization, we take ωa ∝ k

and ωb ∼ const for small k. We express HSW
SOC in this basis too

to get

HSW
SOC(k ∼ 0) = i

∑
k

[A(b†−k + bk)(a†
k − a−k)

−B(a†
−k + ak)(b†k − b−k)], (21)

where we introduced the shorthand A = (mα2/2)
√

ωa/ωb and
B = (mα2/2)

√
ωb/ωa .

In order to find the spectrum of the lowest branch,
we perform several transformations. First, we perform a
Bogoliubov transformation with the coefficients u1 and v1

defined as u1 = eiφ cosh θ1, v1 = eiφ sinh θ1 with φ = π/4,

tanh 2θ1 = 2(A − B)/(ωa + ωb). We then block diagonalize
the Hamiltonian, take the lowest-energy block, and perform
the second Bogoliubov transformation with the coefficients
u2 and v2 defined as u2 = cosh θ2, v2 = sinh θ2, where
tanh 2θ2 = −λ/(ε1 − ε2) and

ε1 = 1
2 [(ωa + ωb) cosh 2θ1 − 2(A − B) sinh 2θ1], (22)

ε2 = 1
2

√
2(A + B)2 + (ωa − ωb)2 + 2(A + B)2 cosh 4θ1, (23)

λ = −(A + B) sinh 2θ1. (24)

The diagonal term
√

(ε1 − ε2)2 − λ2, i.e., energy of the lowest branch, reads√
(ε1 − ε2)2 − λ2

= 1√
2

√√√√8AB + ω2
a + ω2

b −
√

(ωa + ωb)2 − 4(A − B)2

√
4(A + B)2 + (ωa − ωb)2 + 16(A + B)2(A − B)2

(ωa + ωb)2 − 4(A − B)2
. (25)

The two Bogoliubov transformations impose conditions on
our parameters to enforce the reality of the eigenenergies
in Eq. (25). In particular, these conditions do not allow
considering k → 0, because in this case B diverges. To better
understand the behavior of

√
(ε1 − ε2)2 − λ2, we plot it for the

same parameters used previously in Fig. 2 and mα2 = 0.006
in units of e2/(εa). The allowed interval for k is determined
by the conditions imposed by validity of the Bogoliubov
transformation. In Fig. 3 we see that the spectrum noticeably
deviates from linear dependence for small k in contrast to the
linear behavior of ωa for small k found previously. We note
that the stability of the Wigner crystal is not affected because,
even though the spectrum changed, the lowest branch remains
positive.

IV. STRONG SPIN-ORBIT COUPLING

In this section we derive the Hamiltonian for the spin
sector of the Wigner crystal which should be used for large
SOC, when the Heisenberg Hamiltonian Eq. (4) no longer
applies. Following Ref. [36] we will study the exchange
process between two neighboring electrons of the Wigner
crystal. We consider a double-well potential which is formed
by the Coulomb potential of all the other electrons in a
Wigner crystal and by the external confining potential in

the Y direction. Taking into account that we consider only
low-energy excitations, we define the double-well potential as
[44]

Vdw(xn,yn) = mω2
0

2

[
1

a2

(
x2

n − a2

4

)2

+ y2
n

]
, (26)

which can be approximated for low energies as two harmonic
potentials with frequency ω0, whose centers are at the distance
a from each other. The frequency ω0 can be determined
from the physical screened Coulomb repulsion between
the electrons ω0 = (2D(1)

xx /m)1/2, where D(1)
xx is defined in

Eq. (A4). Since we took into account all the charge interactions
between the electrons, we are left with two spin-1/2 fermions
placed in the double-well potential and subjected to SOC. The
Hamiltonian that describes these two fermions reads

H2f =
∑
n=1,2

[(
pn

x

)2 + (
pn

y

)2

2m
+ Vdw(xn,yn)

+α
(
pn

xσ
n
y − pn

yσ
n
x

)]
. (27)

The low-energy subspace for these two fermions includes sin-
glet |(1,1)S〉 and triplet states |(1,1)T0〉,|(1,1)T+〉,|(1,1)T−〉,
where the numbers in parentheses denote the number of

045413-5



KORNICH, PEDDER, AND SCHMIDT PHYSICAL REVIEW B 95, 045413 (2017)

k

( 1 − 2)2 − λ2

FIG. 3. The spectrum of the lowest branch of charge degrees of
freedom with SOC. Here

√
(ε1 − ε2)2 − λ2 is in units of e2/(εa), and

k is in units of 1/a. The parameters are presented in the text. Here
again, as for Fig. 2, the qualitative behavior of

√
(ε1 − ε2)2 − λ2 is

important. We see that
√

(ε1 − ε2)2 − λ2 noticeably deviates from
linear dependence for small k.

electrons in the left and right wells. To take into account the
exchange of fermions, we also include singlets with doubly
occupied left and right wells: |(2,0)S〉 and |(0,2)S〉. We do
not include the corresponding triplet states |(2,0)T0,+,−〉 and
|(0,2)T0,+,−〉 because to form such a triplet, one fermion must
occupy a higher orbital state. Therefore, these states are higher
in energy than the singlet states |(2,0)S〉 and |(0,2)S〉, and the
tunnel coupling between triplets is weaker than for singlets.

Physically, the coexistence of two electrons on the same
site of the Wigner crystal is forbidden and would destroy the
double-well potential we consider. As a result, we include
|(2,0)S〉 and |(0,2)S〉 assuming they have very large energy
and are allowed only as part of a virtual process between (1,1)
and (2,0), (0,2) states.

Following Refs. [44–47] we define the wave functions of
the states described above as:

|(0,2)S〉 = |�R〉|S〉, (28)

|(2,0)S〉 = |�L〉|S〉, (29)

|(1,1)S〉 = |�+〉|S〉, (30)

|(1,1)T0,+,−〉 = |�−〉|T0,+,−〉, (31)

where the spin parts read

|S〉 = |↑↓〉 − |↓↑〉√
2

, (32)

|T0〉 = |↑↓〉 + |↓↑〉√
2

, (33)

|T+〉 = |↑↑〉, (34)

|T−〉 = |↓↓〉. (35)

We choose the quantization axis to be along Y . The orbital
part of the wave functions is constructed using the ground-

state wave functions for the harmonic oscillator. The detailed
definitions are presented in Appendix C.

The Hamiltonian H2f in the basis |(2,0)S〉,|(0,2)S〉,
|(1,1)S〉,|(1,1)T0〉,|(1,1)T−〉,|(1,1)T+〉 reads

H2f =

⎛
⎜⎜⎜⎜⎜⎜⎝

U 0 −√
2t i� 0 0

0 U −√
2t i� 0 0

−√
2t −√

2t 0 0 0 0
−i� −i� 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (36)

where the tunnel coupling t and the SOC matrix element �

are defined as

t = − 1

16ml4
c

a2 − 12l2
c

4 sinh
[
a2
/(

4l2
c

)] ,
� = αa

l2
c

1√
2
{

exp
[
a2
/(

2l2
c

)] − 1
} , (37)

and lc = 1/
√

mω0. As previously described, the energy U ,
which plays the role of the on-site repulsion, is very large,
and can be roughly estimated as U ∼ e2/(εlc), where ε is the
dielectric constant and e is the electron charge. States |(1,1)T−〉
and |(1,1)T+〉 are not coupled to any other states in this basis,
so we omit them, keeping in mind that their energies do not
change.

To find the eigenvalues and eigenstates of H2f , we diago-
nalize it to get

U−1
d2 H2f Ud2 =

⎛
⎜⎜⎝

U 0 0 0
0 1

2 (U + �) 0 0
0 0 1

2 (U − �) 0
0 0 0 0

⎞
⎟⎟⎠, (38)

where � = √
16t2 + U 2 + 8�2 and the transformation matrix

Ud2 reads

Ud2 =

⎛
⎜⎜⎜⎜⎝

−1 i(U+�)
4�

i(U−�)
4�

0

1 i(U+�)
4�

i(U−�)
4�

0

0 − i
√

2t
�

− i
√

2t
�

i�√
2t

0 1 1 1

⎞
⎟⎟⎟⎟⎠.

The first two states have energy close to U , so these are mainly
a combination of |(2,0)S〉 and |(0,2)S〉. The most interesting
for us is the lowest-energy state, which is a combination
of |(1,1)S〉, |(1,1)T0〉, |(2,0)S〉, and |(0,2)S〉, and has energy
(U − �)/2. The contribution from |(0,2)S〉 and |(2,0)S〉
scales as −i

√
2t2 + �2/U and so is small as U � t,�.

The contribution from |(1,1)S〉 scales as −i
√

2t/
√

2t2 + �2,
and the contribution from |(1,1)T0〉 scales as �/

√
2t2 + �2.

Whether the lowest-energy state is more triplet or singlet
therefore depends on the relative strengths of t and �. When
� � t , the lowest state is mainly a triplet state. In this case,
which corresponds to large SOC, we cannot use the Heisenberg
Hamiltonian Eq. (4) to describe the spin sector of the Wigner
crystal anymore.

Comparing our result with that of Ref. [40], we see that
for very large SOC the relative angle by which spins rotate
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while propagating between lattice sites is π/2: if we apply the
transformation eiπσy/2 to |S〉, we indeed get |T0〉.

Using the exact expressions for the wave functions from
Eqs. (28)–(35), (C5), and (C6), one can express U−1

d2 H2f Ud2

in terms of projectors onto orbital states and spin operators. For
the case of � � t we approximate the spin sector Hamiltonian
for the low-energy subspace (i.e., without the states with
energies around U ) as

Tr�
[
U−1

d2 H2f Ud2
] = 1

8 (� − U )
[−σ 1

x σ 2
x − σ 1

y σ 2
y + σ 1

z σ 2
z

]
,

where Tr�[· · · ] means the trace over the orbital states. We
see that if we make the transformations σ 1

x → −σ 1
x and σ 1

y →
−σ 1

y this Hamiltonian corresponds to the gapless isotropic
antiferromagnetic Heisenberg Hamiltonian. In particular, this
means that there is no gap in the spectrum if SOC is very
strong.

We note that the effect of SOC on the spin-spin interaction
between electrons in the double-well potential was considered
in Ref. [48]. It was shown there that in the absence of overlap
between the wave functions of the electrons in the different
wells, there is an anisotropic spin-spin coupling of the van der
Waals type at order α4. In contrast, in our case we assume
nonzero tunnel coupling t between the wells, and in this case
we found a correction to the ground-state energy of order α2

given in Eq. (38). We also find that the spin-spin interaction
between electrons is an exchange interaction.

V. CONCLUSIONS

In this paper we studied the effect of SOC on the charge
and spin degrees of freedom in a quasi-1D Wigner crystal. We
considered two cases: weak SOC which acts as a perturbation
to the known description of spin and charge sectors in a Wigner
crystal and strong SOC which changes the spin dynamics
profoundly.

As a perturbation, SOC opens a gap at the second order
at certain densities of electrons. The gap opens because the
correction due to SOC brings the Wigner crystal into the
gapped Ising antiferromagnetic regime instead of the gapless
isotropic Heisenberg antiferromagnetic regime found without
SOC present. To this order in perturbation theory, a finite
temperature is necessary because, if the electrons do not
move, SOC cannot affect the spins. The potential in the
transverse direction should be rather shallow to allow electrons
to oscillate in this direction around their equilibrium positions.
Otherwise, as in pure 1D systems, SOC can be gauged away
and consequently cannot open a gap. The opening of a gap in
the spectrum affects many physical properties of the Wigner
crystal, e.g., the conductance and the response functions.
Therefore our results could be helpful in understanding the
behavior of nanowires with spin-orbit coupling.

For the case of weak SOC, we also considered the charge
degrees of freedom in more detail. Assuming that the spins
are classically frozen into the Néel state (in agreement
with the antiferromagnetic regime of the unperturbed spin
Hamiltonian), we studied the charge degrees of freedom taking
into account the zigzag form of a quasi-1D Wigner crystal.
Out of four oscillator branches the most interesting is the
lowest branch because it describes the low-energy excitations.

Our results show that the spectrum of this branch noticeably
deviates from its linear behavior for small momenta without
SOC.

For the case when SOC is strong, we derived a new spin
sector Hamiltonian. We showed that for the case of very strong
SOC the lowest-energy state is mainly a triplet so we cannot
use the Heisenberg Hamiltonian to describe the spin dynamics
anymore. We present the evolution of the states of the lowest
energy between singlet and triplet characters as the relation
between SOC and the interwell tunnel coupling is changed.
This analysis provides a spin sector Hamiltonian even at rather
large SOC.
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APPENDIX A: DERIVATION OF THE HARMONIC
POTENTIAL APPROXIMATION

As the Wigner crystal is in equilibrium, we can expand the
potential V (Xn,Yn) around equilibrium positions of electrons.
As a necessary condition for equilibrium, the first derivative
of the potential is zero, so at lowest order we get a quadratic
harmonic-oscillator potential [17]. We consider a quasi-1D
Wigner crystal on the XY plane with a metallic gate placed
parallel to the XY plane at a distance d from the localized
electrons. The gate models the effect of metallic gates usually
present in experiments that screen the Coulomb interaction
between electrons by generating “image charges.” As a result
of this screening of the long-range part of the Coulomb interac-
tion, we consider only nearest-neighbor Coulomb interactions
between electrons. Our interaction potential then reads

V (xn,yn)

= e2

ε

[
1

2
√

(a + xn,1 − xn−1,2)2 + (yn,1 − yn−1,2 − w)2

− 1

2
√

(a + xn,1 − xn−1,2)2 + (yn,1 − yn−1,2 − w)2 + 4d2

+ 1√
(a + xn,2 − xn,1)2 + (w + yn,2 − yn,1)2

− 1√
(a + xn,2 − xn,1)2 + (w + yn,2 − yn,1)2 + 4d2

]

+m�2
con

2

[(
yn,1 − w

2

)2

+
(

yn,2 + w

2

)2
]
. (A1)

The condition for equilibrium that the first derivative must be
zero becomes

e2

ε

[
2w

(a2 + w2)3/2
− 2w

(a2 + w2 + 4d2)3/2

]
− m�2

conw

2
= 0.

(A2)
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The potential after expansion has the form

V (xn,yn) � [
D(1)

xx −D(2)
xx

]
[xn,1−xn−1,2]2 + [

D(1)
xx −D(2)

xx

]
[xn,2 − xn,1]2 + [

D(1)
yy − D(2)

yy

]
[yn,1 − yn−1,2]2

+ [
D(1)

yy − D(2)
yy

]
[yn,2 − yn,1]2 + [

D(2)
xy − D(1)

xy

]
[xn,1 − xn−1,2][yn,1 − yn−1,2]

+ [
D(1)

xy − D(2)
xy

]
[xn,2 − xn,1][yn,2 − yn,1] + D�

[
y2

n,1 + y2
n,2

]
, (A3)

where

D(1)
xx = e2

ε

2a2 − w2

(a2 + w2)5/2
, (A4)

D(2)
xx = e2

ε

2a2 − w2 − 4d2

(a2 + w2 + 4d2)5/2
, (A5)

D(1)
yy = e2

ε

−a2 + 2w2

(a2 + w2)5/2
, (A6)

D(2)
yy = e2

ε

−a2 − 4d2 + 2w2

(a2 + 4d2 + w2)5/2
, (A7)

D(1)
xy = e2

ε

3aw

(a2 + w2)5/2
, (A8)

D(2)
xy = e2

ε

3aw

(a2 + 4d2 + w2)5/2
, (A9)

D� = m�2
con. (A10)

In the following we consider the case where d � a � w

so that the most significant contributions are given by
D(1)

xx � 2e2/(εa3) and D(1)
yy � −e2/(εa3). We also retain the

confinement in the Y direction D�. The form of the potential

we use is

V̄ (xn,yn) = m�2

2
(xn − xn+1)2

−m�2
1

2
(yn − yn+1)2 + m�2

2

2
y2

n. (A11)

APPENDIX B: AVERAGING OUT CHARGE DEGREES
OF FREEDOM FOR AN ARBITRARY

DENSITY OF ELECTRONS

Here we calculate 〈SSOCSSOC〉 for arbitrary 2mαa. From
Eq. (5) we see that we must keep both the σn

x cos(2mαan) and
the σn

z sin(2mαan) terms so that going to Fourier space, the
contribution to the action from SOC becomes

SSOC � αm

2βN

∑
k,ω

ωyk,ω

(
σ 2mα−k,−ω

x + σ−2mα−k,−ω
x

−iσ 2mα−k,−ω
z + iσ−2mα−k,−ω

z

)
. (B1)

We perform the analogous calculation to that described in
Sec. III A and keep only the nearest-neighbor terms to obtain
the result for 〈SSOCSSOC〉 that

〈SSOCSSOC〉 = α2mβ
�2

1

2�2

∑
n

∫ β

0
dτ

(
σn,τ

x σ n+1,τ
x {cos[2mαa(2n + 1)] + cos[2mαa]}

+ σn,τ
x σ n+1,τ

z {sin[2mαa(2n + 1)] + sin[2mαa]} + σn,τ
z σ n+1,τ

x {sin[2mαa(2n+ 1)]

− sin[2mαa]} + σn,τ
z σ n+1,τ

z {cos[2mαa] − cos[2mαa(2n+ 1)]}). (B2)

Here we see that for 2mαa = (2l + 1)π we recover to the
previous result derived in Sec. III A. If we take 2mαa =
2lπ , the correction is positive, and consequently in the spin
Hamiltonian the coefficient of σn

x σ n+1
x is smaller than the

prefactor of σn
y σ n+1

y and σn
z σ n+1

z . In this XY phase, the XXZ
model has a gapless spectrum [41].

In the case that 2mαa = (2l + 1)π/2, the correction arising
from the SOC generates a nearest-neighbor coupling between
σx and σz. To the best of our knowledge, the Hamiltonian
of the form shown in Eq. (B2) has not been studied,
despite the fact that the investigation of complex similar
models, e.g., alternating Heisenberg chain [49], and models
with Dzyaloshinskii-Moriya interactions [50–52] has been
undertaken.

APPENDIX C: ORBITAL PARTS OF THE WAVE
FUNCTIONS FOR A DOUBLE-WELL POTENTIAL

We define the orbital parts of the wave functions as
presented in Refs. [44–47]. They are constructed from the

ground-state wave functions of the harmonic oscillator,

φL,R(xn,yn) = 1√
πlc

exp

(
−
[
(xn ± a/2)2 + y2

n

]
2l2

c

)
. (C1)

The wave functions for the electron in the left/right well are

�L,R(rn) = φL,R(xn,yn) − gφR,L(xn,yn)√
1 − 2sg + g2

φZ(Zn), (C2)

where rn = (xn,yn,Zn) and φZ(Zn) is a part of the wave
function that depends on the confinement in the Z direction,
whose precise form is not important for us. We also define the
quantities,

s = 〈φL|φR〉 = exp
[−a2

/(
4l2

c

)]
, (C3)

g = 1 − √
1 − s2

s
, (C4)
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where s gives the overlap between offset harmonic-oscillator
ground states centered on the left and right wells and g ensures
orthogonality of the one-particle wave functions.

Constructing the two-particle wave functions from the one-
particle ones we get

�±(r1,r2) = �L(r1)�R(r2) ± �R(r1)�L(r2)√
2

, (C5)

�L,R(r1,r2) = �L,R(r1)�L,R(r2), (C6)

as used in the main body of the text.
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