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Mesoscopic fluctuations in biharmonically driven flux qubits
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We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time
reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux
qubit can be thought of as an effective transmittance, profiting from a direct analogy between interference effects
at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full
relaxation, but large compared to the decoherence time, this characteristic rate has been accessed experimentally
by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)] and its sensitivity with both the phase lag and the
dc flux detuning explored. In this way, signatures of universal conductance fluctuationslike effects have been
analyzed and compared with predictions from a phenomenological model that only accounts for decoherence, as
a classical noise. Here we go beyond the classical noise model and solve the full dynamics of the driven flux qubit
in contact with a quantum bath employing the Floquet-Born-Markov master equation. Within this formalism, the
computed relaxation and decoherence rates turn out to be strongly dependent on both the phase lag and the dc
flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important
differences with those obtained within the mentioned phenomenological model. In particular, we demonstrate
the weak localizationlike effect in the average values of the relaxation rate. Our predictions can be tested for
accessible but longer time scales than the current experimental times.
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I. INTRODUCTION

The quantum conductance of a phase coherent conductor
can be related, in the diffusive regime, to the transmission
probability through the disordered region [1]. For milli-Kelvin
temperatures, when typically the coherence length could
become larger than the scattering mean free path, the inter-
ference term present in the transmission probability survives
disordered averaging, giving rise to quantum corrections to
the classical transport properties and novel phenomena. Meso-
scopic effects like weak localization and universal conductance
fluctuations have been predicted and extensively tested in
electronic quantum systems for years [2–4].

Universal conductance fluctuations (UCFs) are sample
to sample fluctuations—of the order of the quantum of
conductance—originated on the sensitivity of the quantum
conductance to changes in an external parameter, like a
magnetic flux or a gate voltage [2].

The weak localization (WL) effect is a quantum correction
to the classical conductance that survives disorder averaging
when time reversal symmetry is present [3]. Without spin-orbit
effects, it is characterized by a dip in the conductance (peak
in the resistance) at zero magnetic field. The standard way to
detect the WL effect is by its suppression, as its strength falls
off with an applied magnetic field. A critical field that scales
as Bc ∼ 1/(Dτφ), with D the diffusion coefficient and τφ the
coherence time, washes out the quantum interference term,
and thus the WL correction [3]. The measurement of Bc has
been established as a usual route to determine the coherence
time [3,4].

Flux qubits (FQs) are model artificial atoms whose energy
levels can be manipulated by an external magnetic flux [5–9].

For most of the applications in quantum information theory,
only the two lowest energy levels have been considered
in studies of their quantum dynamics [6]. However, FQs
exhibit as a function of the static magnetic flux a complex
structure of energy levels with multiple avoided crossings.
This rich spectrum can be explored by driving the FQs with
an ac magnetic flux, for moderate driving frequencies—in
the microwave range. In a typical protocol, FQs are initially
prepared in the ground state for a given value of the dc
flux, evolving under the ac driving quasiadiabatically until
the first avoided crossing is reached. There the state obeys
a Landau-Zener-Stückelberg (LZS) transition and transforms
into a coherent superposition of the ground and excited
states [10,11]. For weak ac amplitudes, such that a single
avoided crossing is reached by the driving protocol, the
superposition state and the initial one interfere again at the
second passage for the avoided crossing. Hence, the avoided
crossing acts as an effective beam splitter, where scattering
events take place. For driving periods larger than the coherence
time, the evolved state accumulates a total phase that depends
both on the dc flux and the driving amplitude [10,11].

The regime of weak driving (small amplitudes), when only
the lowest two energy levels of the FQs are explored and a
single avoided crossing is attained by the amplitude of the
ac flux, has been studied both experimentally and theoret-
ically [10,12,13]. In this way, FQs have been investigated
extensively in recent years as high resolution Mach-Zehnder
type of interferometers [10].

For large driving amplitudes, when many avoided crossings
can be reached, the repeated sweeps through the avoided
level crossings result in successive LZS transitions between
different energy levels. This driving protocol—named as
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amplitude spectroscopy [10]—was employed to reconstruct
the FQs energy level spectra and to study the dynamics under
different conditions [14,15]. It has been also successfully
applied in other systems like charge qubits [16], ultracold
molecular gases [17], and single electron spins [18].

The interaction of driven FQs with an external bath has
been recently studied to incorporate more realistic dissipative
scenarios beyond the pure coherent regime. Relevant and
potential useful phenomena like population inversion [19–21],
dynamical transition in the interference patterns [22], and
estimates for coherence times have been extracted from these
studies [23,24].

While a priori there is not a direct connection between
driven FQs and mesoscopic disordered electronic systems,
the identification of a transition at an avoided crossing as
a scattering event, suggests a route to study mesoscopiclike
effects in driven FQs.

However, for an harmonic protocol in the weak driving
regime, only one avoided crossing is traversed back and forth
in one period of the signal. Consequently, the qubit experiences
two scattering events (transitions) over a single period and
only one relative phase (that controls the interference between
the initial and the superposition states) is accumulated during
the evolution [10]. Notice that this is a poor scattering
regime which seems insufficient to explore the mesoscopic
analogy.

An alternative to go beyond this limitation, in order to
increase the number of scattering events but within the
weak driving regime, was proposed in Ref. [12] with the
implementation of a protocol generated by a biharmonic flux
with a phase lag. The signal was designed to drive the qubit
up to four times through the avoided crossing in one period,
which was chosen as much shorter than the energy relaxation
time. Therefore, after many periods of driving, the excited
state of the qubit was populated as a function of time with
a characteristic (equilibration) rate that was extracted in the
experiment by a fitting procedure.

The key point is that for a nonzero phase lag, the biharmonic
signal turns asymmetric in time and three different phases
can be accumulated per cycle of driving. These phases, which
rule the interference conditions, can be changed by either
tuning the external dc flux or the phase lag in the driving wave
form. Following this strategy, the equilibration rate � and
its concomitant fluctuations have been analyzed in Ref. [12].
The fluctuations in � have been interpreted as interference
between all possible paths generated by the total number of
scattering events, which is ultimately set by the coherence
time of the FQs.

For large driving frequencies and for time scales smaller
than the relaxation time but larger than the decoherence time,
it is possible to study the dynamics of the FQs within a
model of classical diagonal noise and computing � from
phenomenological rate equations [25]. Neglecting relaxation,
it can be shown that � ∼ 2W , with W the transition rate
induced by driving [25]. The mesoscopic analogy proposed
in Ref. [12] was to identify W with a transmission rate,
which in (mesoscopic) electronic transport determines the
conductance [1]. Thus the goal was to access the fluctuations
in W through the study of the fluctuations in �. This scenario,
although tempting, should be taken with caution.

As we already mentioned, the expression � ∼ 2W is valid
for large driving frequencies and for time scales far below
relaxation [12,26]. Here we go beyond these assumptions,
and solve the full dynamics of the driven FQs employing the
Floquet-Born-Markov master equation to include relaxation
and decoherence processes for a realistic model of a quantum
bath [20–22]. This formalism [27], valid for arbitrary time
scales and strength of the driving protocol, allows us to
compute the decoherence and the relaxation (equilibration)
rates. As we will show, both rates turn out to be strongly
dependent on the driving amplitude and the dc flux, attaining
values that might differ up to an order of magnitude from
those determined in the absence of driving. Consequently,
the relaxation (equilibration) rate obtained within the FM
formulation might strongly differ from the value 2W—used in
Ref. [12] to compare with the experimental results.

An important outcome of our study is the prediction of
the WL effect, which was not resolved in the experiment of
Ref. [12]. As we will analyze, it is not the driving protocol but
the accessible decoherence time which limits the detection of
the effect [12]. In fact, the WL correction could be measured
in the regime of larger coherence times.

The paper is organized as follows. In Sec. II we review the
Hamiltonian model for the FQs and the effective Hamiltonian
obtained when only the two lowest levels are considered. In
Sec. III A we derive an analytical expression for the rate �,
employing a phenomenological approach which includes clas-
sical noise as the only source of decoherence [25]. Gaussian
and low frequency types of noise are both considered [28].

Due to the limitations of the analytical approach already
mentioned, we implement in Sec. III B the full quantum
mechanical calculation in order to obtain the equilibration
(relaxation) rate �r within the Floquet-Born-Markov master
equation. The last part of this section is devoted to compare
the behavior of � ∼ 2W and �r as a function of the dc flux, and
to analyze the effect that the driving has on the determination
of the decoherence and relaxation rates. The fluctuations in
the rates � ∼ 2W and �r as a function of the dc flux and
the time reversal parameter are analyzed in Sec. IV. As we
show, besides UCF, clear signatures of WL correction could
be also detected if the coherence is increased. We discuss
the limitation imposed by the accessible decoherence time
in the experimental determination of the WL correction. We
conclude in Sec.V with a discussion and perspectives.

II. THE HAMILTONIAN MODEL FOR THE FQs

The FQs consist of a superconducting ring with three
Josephson junctions [5] enclosing a magnetic flux � = f �0,
with �0 = h/2e. Two of the junctions have the same Joseph-
son coupling energy EJ,1 = EJ,2 = EJ and capacitance C1 =
C2 = C, while the third one has smaller coupling EJ,3 = δEJ

and capacitance C3 = δC, with 0.5 < δ < 1. The junctions
have gauge invariant phase differences defined as ϕ1, ϕ2,
and ϕ3, respectively. Typically the circuit inductance can be
neglected and the phase difference of the third junction is
ϕ3 = −ϕ1 + ϕ2 − 2πf .

Therefore, the system can be described in terms of two
independent dynamical variables, chosen as ϕl = (ϕ1 − ϕ2)/2
(longitudinal phase) and ϕt = (ϕ1 + ϕ2)/2 (transverse phase).
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FIG. 1. Energy diagram for the TLS Hamiltonian Eq. (2), as a
function of flux detuning ε0. Inset: Implemented biharmonic pulse
f (t), chosen to drive the TLS four times through the avoided crossing
in one period.

In terms of these variables, the Hamiltonian (in units of EJ )
is [5]

HFQ = −η2

4

(
∂2

∂ϕ2
t

+ 1

1 + 2δ

∂2

∂ϕ2
l

)
+ V (ϕl,ϕt ), (1)

with η2 = 8EC/EJ and EC = e2/2C. The kinetic term cor-
responds to the electrostatic energy of the system and the
potential one to the Josephson energy of the junctions, given by
V (ϕl,ϕt ) = 2 + δ − 2 cos ϕt cos ϕl − δ cos(2πf + 2ϕl). Typi-
cal experiments have values of δ in the range 0.6–0.9 and η

in the range 0.1–0.6 [6,14]. FQs are operated at magnetic
fields near the half-flux quantum [5,6] f = 1/2 + f0, with
f0 � 1. For δ � 1/2, the potential V (ϕl,ϕt ) has two minima at
(ϕl,ϕt ) = (±ϕ∗,0) separated by a maximum at (ϕl,ϕt ) = (0,0).
Each minima corresponds to macroscopic persistent currents
of opposite sign, and for f � 1/2 (f � 1/2) a ground state
|+〉 (|−〉) with positive (negative) loop current is favored.

For values of |f0| � 1, such that the avoided crossings
with the third energy level are not reached, the Hamiltonian of
Eq. (1) can be reduced to the two-level system (TLS) [5,13]

H = −ε0

2
σ̂z − 

2
σ̂x, (2)

in the basis defined by the persistent current states |±〉 =
(|0〉 ± |1〉)/√2, with σ̂z, σ̂x the Pauli matrices and |0〉 and
|1〉 the ground and excited states at f0 = 0. The parameters of
H are the gap (at f0 = 0)  and the detuning energy ε0 =
4πIpf0. Here Ip = δ|〈+| sin 2ϕl|+〉| = δ|〈−| sin 2ϕl |−〉| is
the magnitude of the loop current, which for our case with δ =
0.8 and η = 0.25 is Ip = 0.721 (in units of Ic = 2πEJ /�0).

Figure 1 sketches the energy levels diagram for the
Hamiltonian restricted to the TLS, Eq. (2) with E0,1 =
±1/2

√
ε2

0 + 2 as the ground and excited states energies,
respectively [10,14,26].

FQs restricted to weak driving amplitudes were the regime
explored in Ref. [12]. Consistently, in the following we focus
on the dynamics of the TLS Hamiltonian Eq. (2) under the
effect of the biharmonic driving.

III. TWO-LEVEL SYSTEM UNDER
BIHARMONIC DRIVING

A. Equilibration rate within the classical noise model

As we mentioned, in Ref. [12] the equilibration rate �

is experimentally determined by fitting the decay of the
excited population to the equilibrium, assuming an exponential
behavior as a function of time.

In the following we describe a route to compute � from
phenomenological rate equations in the regime of large driving
frequencies, for which the change in the qubit population
(per unit time) induced by the driving is small compared to
the decoherence rate �2 ≡ 1/T2 but large compared to the
inelastic relaxation rate in the absence of driving �1 ≡ 1/T1.
As the calculation is adapted from the one derived for the single
driving protocol [26], here we present the main steps stressing
differences. The source of noise is considered classical and
diagonal, which essentially means that the noise produces
pure dephasing. However, diagonal noise is consistent with the
typical experimental situation with FQs where the dominant
source of noise is fluxlike.

From phenomenological rate equations the equilibration
rate can be written as � = 2W + �1, with W the transition
rate induced by the driving protocol [26]. For large relaxation
times T1 and for W 	 �1, one gets � � 2W . Larger values of
�1 would require the explicit inclusion of relaxation processes
in the analysis to avoid important differences between 2W and
�. These cases will be addressed in Sec. III B.

To compute W , we include in Eq. (2) the time dependent
biharmonic driving and the diagonal classical noise by replac-
ing ε0 → h(t) = ε0 + δε + ε(t). The term ε(t) = 4πIpf (t)
contains the biharmonic ac flux f (t) = A1 cos (ω0t + α) −
A2 cos (2ω0t) of fundamental frequency ω0 = 2π/τ . The
phase lag α turns the protocol asymmetric in time and the
amplitudes ratio A1/A2 was chosen to drive the qubit up to
four times through the avoided crossing in one period τ . The
classical noise is δε.

After an unitary transformation exp[iφ(t)σ̂z] with φ(t) =∫ t

0 h(t)dt , the Hamiltonian Eq. (2) can be turned to purely
off-diagonal (we use � = 1)

H̃ = −∗(t)

2
σ̂x,

where (t) = e−iφ(t) and φ(t) = ∫ t

0 h(t ′)dt ′.
The system is usually initially prepared in its ground state

|�g(t = 0)〉 for a given value of the detuning ε0 (in Fig. 1 an
initial state for ε0 < 0 is chosen). Alternatively, it is possible to
initialize the FQs in an eigenstate of the computational basis,
i.e., |−〉 (|+〉) for ε0 < 0 (ε0 > 0). In general, for values of flux
detuning ε0 > , the initial state satisfies |�g(t = 0)〉 −→
|−〉(|+〉) for ε0 < 0(ε0 > 0).

The transition rate W induced by the driving is the time
derivative of the transition probability between the initial and
the final state. Under the assumption of fast driving, ω0 =
2π/τ > , it can be computed expanding the time evolution
operator to first order in ,

U (t,0) = 1 − i

∫ t

0
H̃(τ )dτ + O(2).
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Therefore we write

W = d

dt
|〈+|U (t,0)|−〉|2 = d

dt

1

4

∫ t

0

∫ t

0
(τ1)∗(τ2)dτ1dτ2

= d

dt

2

4

∫ t

0

∫ t

0
Re{exp −i[φ(τ1) − φ(τ2)]}dτ1dτ2, (3)

with Re{· · · } the real part.
In the above integrand we define

e−iφ(t) = e−iε0t−iδφ(t)
∑
nm

Jn(x1)ein(ω0t+α)Jm(x2)e−i2mω0t , (4)

where we have used the expansion of exp(ix sin u) =∑
p Jp(x) exp(−ipu) in terms of Bessel functions of first kind.

We also defined x1 = A1/ω0 and x2 = A2/(2ω0).
For a Gaussian white noise, the correlator is 〈δε(t)δε(t ′)〉 =

2�2δ(t − t ′). As δφ(t) = ∫ t

0 δε(τ )dτ , we take the average over
noise in Eq. (3) using 〈eiδφ(t)e−iδφ(t ′)〉 = e−�2|t−t ′|, with �2 the
decoherence (pure dephasing) rate for this model of classical
diagonal noise.

The next step is to perform the time integration in Eq. (3),
getting

W = 2�2

2
Re

{ ∑
nn′mm′

λnn′mm′
ei(n−n′)αeiω0(n−n′)t e2iω0(m′−m)t

[ε0 + (2m − n)ω0]2 + �2
2

}
,

(5)

with λnn′mm′ ≡ Jn(x1)Jn′(x1)Jm(x2)Jm′(x2).
Under the fast driving regime, the nonzero exponents are

highly oscillating compared to the time scale of the driving.
Therefore, we only keep the contributions with ω0(n − n′) +
2ω0(m′ − m) = 0, and the transition rate reads

W = 2�2

2

∑
nn′mm′

λnn′mm′ cos [(n − n′)α]

[ε0 + (2m − n)ω0]2 + �2
2

δn−n′,2(m−m′).

(6)

Equation (6) exhibits an explicit dependence on the phase
lag α, and a Lorentzian line shape close to the resonance
condition ε0 = (n − 2m)ω0, which is characteristic of white
noise models in the regime of times t � T1. For x2 = 0, Eq. (6)
reduces to the expression of the transition rate obtained for
single driving protocols [26,29].

In Fig. 2 we plot 2W obtained from Eq. (6) as a function of
the static flux detuning ε0, for the symmetric driving α = 0
in Fig. 2(a) and for α = 0.2 in Fig. 2(b). The parameters
are /h = 19 MHz, ω0/(2π ) = 125 MHz, A1 = 3 m�0, and
A2 = 1.65 m�0, identical to those reported in the experiment
of Ref. [12]. The salient feature is that the peaks are not
symmetric with ε0, exhibiting a more fluctuating pattern of
resonances for ε0 < 0. This is a manifestation of the sensitivity
of the total accumulated phase in one period of the driving
with ε0 and α. We have chosen the same amplitudes ratio
A2/A1 = 0.55 as in Ref. [12], selected to drive the qubit up to
four times through the avoided crossing in one driving period
τ , in the range of negative detunings ε0 < 0 (see Fig. 1). The
strong fluctuating pattern is due to the three different phases
(one phase for two successive passages) and eight possible
superposition states that arise as ε0 is varied. For other values
of ε0, the waveform traverses the avoided crossing zero or two
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FIG. 2. Rate 2W obtained from Eq. (6) for parameters /h = 19
MHz, ω0/(2π ) = 125 MHz, A1 = 3 m�0, A2 = 1.65 m�0, for �2 =
100 MHz (black line) and �2 = 30 MHz (green line). (a) α = 0,
(b) α = 0.2. The insets show a magnification of selected resonances.

times per cycle, producing no accumulated phase or a single
one, with interference conditions that originate a smoother
behavior of � with ε0.

As expected, the resonance peaks decrease and turn wider
as the dephasing rate �2, included in Eq. (6) as a parameter,
is increased. This is fully consistent with the transition
from the nonoverlapping to the overlapping resonances limit,
also observed experimentally for the single harmonic driving
protocols [10,14].

The derivation can be adapted to consider other spectral
functions with Gaussian noise. In the case of FQs, the magnetic
flux noise in SQUIDS could have a spectral density S(ω),
which for low frequencies behaves as 1/ωp noise [28,29]. For
this case, we get for the transition rate

Wlf = 2

√
π

8�2

∑
nn′mm′

λnn′mm′ cos [(n − n′)α]

×exp

{−[ε0 + (2m − n)ω0]2

�2

}
. (7)

where �2 = ∫
S(ω)dω is assumed finite, and we define Wlf

as the transition rate induced by driven in the presence of low
frequency noise. Notice that the main effect of a noise with a
low frequency part is to modify the Lorentzian line shape of
the individual resonances by a Gaussian line shape.

In Ref. [12], the transition rate induced by driving W was
fully identified with the equilibration rate � (up to a factor
2). As we anticipated, this requires values W < �2, and time
scales t � T1 = 1/�1.

We will show in the next section that new characteristics
emerge in the behavior of the equilibration rate when the full
dynamics, including quantum noise, is considered within the
Floquet-Born-Markov approach. In particular, we will analyze
the behavior and sensitivity of the decoherence and relaxation
rates with the flux detuning. The strong variations that these
two rates experience, close to resonances with the driving field,
question the results of this section for times scales close to full
relaxation.
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B. Equilibration rate within the Floquet-Born-Markov
master equation

We start this section by reviewing the main ingredients of
the Floquet-Born- Markov formalism, and for further details
we suggest the Appendix of Ref. [22].

Since the system is driven with a biharmonic magnetic
flux f (t) = A1 cos (ω0t + α) − A2 cos (2ω0t), the Hamilto-
nian is time periodic H(t) = H(t + τ ), with τ = 2π/ω0. In
the Floquet formalism, which allows us to treat periodic
forces of arbitrary strength and frequency [15,21,22,27],
the solutions of the Schrödinger equation are of the form
|�β(t)〉 = eiμβ t/�|β(t)〉, where the Floquet states |β(t)〉 satisfy
|β(t)〉 = |β(t + τ )〉 = ∑

k |βk〉e−ikω0t , and are eigenstates of
the equation [H(t) − i�∂/∂t]|β(t)〉 = μβ |β(t)〉, with μβ the
associated quasienergy.

Experimentally, FQs are affected by the electromagnetic
environment that introduces decoherence and relaxation pro-
cesses. A standard theoretical model to cope with these effects
is to linearly couple the system to a bath of harmonic oscillators
with a spectral density J (ω) and equilibrated at temperature
T [20,30–32]. For the FQs the dominating source of noise is
fluxlike, in which case the bath degrees of freedom couple with
the system variable ϕl [22,32]. In the two-level representation
of Eq. (2), the flux noise is usually represented by a system
bath Hamiltonian of the form Hsb ∝ σ̂z [30].

For weak coupling (Born approximation) and fast bath
relaxation (Markov approximation), a Floquet-Born-Markov
master equation for the reduced density matrix ρ̂ in the Floquet
basis, ραβ(t) = 〈α(t)|ρ̂(t)|β(t)〉, can be obtained [20].

Considering that the time scale tr for full relaxation satisfied
tr 	 τ , one gets (see Appendix of Ref. [22] for details)

dραβ (t)

dt
= − i

�
(μα − μβ)ραβ(t) +

∑
α′β ′

Lα′β ′αβ ρα′β ′ (t). (8)

The first term in Eq. (8) represents the nondissipative
dynamics and the influence of the bath is described by the rate
coefficients averaged over one period of the driving τ [22],

Lαβα′β ′ = Rαβα′β ′ + R∗
βαβ ′α′

−
∑

η

(δββ ′Rηηα′α + δαα′R∗
ηηβ ′β). (9)

The rates

Rαβα′β ′ =
∑

q

g
q

αα′A
q

αα′A
−q

β ′β (10)

can be interpreted as sums of q-photon exchange terms and
contains information on the system-bath coupling operator
A

q

αβ = ∑
nm

∑
k α∗

k,nβk+q,m〈n|ϕl|m〉 written down in terms
of the eigenbasis |n〉 of the Hamiltonian for the undriven
case, Eq. (1), with αk,n = 〈n|αk〉. The nature of the bath
is encoded in the coefficients g

q

αβ = J (μq

αβ/�)nth(μq

αβ) with
μ

q

αβ = μα − μβ + q�ω0 and nth(x) = 1/[exp (x/kBT ) − 1].
Here we consider FQs in contact with an Ohmic bath with a
spectral density J (ω) = γω (with a cutoff frequency), defining
J (−x) = −J (x) for x < 0, but other spectral densities could
be included [22].

The Floquet-Born-Markov formalism has been extensively
employed to study relaxation and decoherence in double-well

potentials and two-level systems driven by single frequency
periodic evolutions [20,31,33–35]. More recently we applied
it to analyze FQs under strong harmonic driving [21,22], when
many energy levels have to be taken into account.

As in the present work, the dynamics of the FQs under a
weak biharmonic driving protocol is studied, in the following
the Hamiltonian will be reduced to its lowest two levels,
Eq. (2).

For large times scales, it is usually assumed that the
density matrix becomes approximately diagonal in the Floquet
basis [31]. This approximation is justified when μα − μβ 	
Lα′β ′αβ , which is fulfilled for very weak coupling with the
environment and away from resonances [22,34–36]. However,
to compute fluctuation effects it is necessary to sweep in the dc
flux detuning ε0, attaining near resonances quasidegeneracies,
i.e., μα − μβ ∼ 0. Therefore, as the dynamics of the diagonal
and off-diagonal density matrix cannot be separated, we have
to solve the full Floquet-Born-Markov equation [Eq. (8)] to
find relaxation and decoherence rates close to resonances.

The rates are extracted from the nonzero eigenvalues of the
matrix �̂, given from its entries in the Floquet basis Lαβα′β ′ ,
defined in Eq. (9). The long time relaxation rate �r = 1/tr is
the minimum real eigenvalue (excluding the eigenvalue 0). In
addition, the decoherence rate �ab is given by the negative real
part of the complex conjugate pairs of eigenvalues of �̂ [22].

The sensitivity of both rates �ab and �r on the dc flux
detuning and the driving amplitude has been analyzed in recent
studies of the phenomena of population inversion and dynamic
transitions in the LZS interference patterns of (single) driven
FQs. Both phenomena emerge away from resonances, in the
long time regime [21,22].

In addition, as we show below, close to resonances
decoherence and relaxation rates we will attain values much
larger than those predicted for the undriven case.

In Fig. 3, �ab and �r are plotted as a function of the
normalized flux detuning ε0/ω0—to visualize the resonances
positions at integer values. The calculations were performed
for the same parameters and driving protocol as in Fig. 2, and
for an ohmic bath at T = 20 mK, which is the temperature
reported in the experiment of Ref. [12].

Both rates exhibit a strong dependence with the detuning
and important variations at resonances. In the case of the
decoherence rate �ab (Fig. 3 upper panel), although its value
away from resonances is of the order of �ab ∼ 100 MHz—
similar to the decoherence rate 1/T2 = 100 MHz in Ref. [12];
the important variations displayed at resonances redound in
effectively doubling the reported decoherence time.

The rate �r is plotted in the lower panels of Fig. 3 together
with 2W , computed from Eq. (6) for a constant value of the
parameter �2 = 100 MHz (green line), and for �2 replaced
by �ab obtained within the FM formalism (red line), to
include the dependence with the dc flux already described.
The nominal values of 2W and �r away from resonances
are quite similar and even the positions of the resonances
are well captured in both cases (see the lower panel for a
blow up). However, at resonances �r can attain values close
to 100 MHz, satisfying �r ∼ 2�ab. This is expected for a
longitudinal system-bath coupling (as the one considered in
the present work, i.e., Hsb ∝ σ̂z) and is a fingerprint of the
suppression of a pure dephasing mechanism on resonance
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FIG. 3. Upper panel: Decoherence rate �ab obtained in the FM
formalism, as a function of the normalized flux detuning ε0/ω0.
Intermediate panel: Relaxation rate �r as a function of (normalized)
flux detuning obtained within the FM formalism (black solid line).
Rate 2W obtained from Eq. (6) with �2 = 100 MHz (green line)
and after replacing �2 → �ab (red line). The lower panel shows an
enlarged view to stress the differences between �r and 2W close to
resonances. Parameters are /h = 19 MHz, ω0/(2π ) = 125 MHz,
A1 = 3 m�0, and A2 = 1.65 m�0. For the FM calculations the bath
is ohmic, J (ω) = γω, at temperature T = 20 mK with coupling
γ = 0.001.

condition [22,31]. Notice that when �r ∼ 2�ab the time scale
separation T1 	 T2—which was assumed in the experiment
of Ref. [12] and in the phenomenological approach developed
in Sec. III A—is not fulfilled.

Although the resonance condition could seem very sharp to
be experimentally fulfilled, significant increments in the values
of �r relative to the background values can also be appreciated
in a close vicinity, as it is displayed in Fig. 4(a).

Relative changes of ∼ 10%−20% in ε0/ω0 produce con-
comitant variations in the values of �r which give rise to
different profiles for the associated excited state occupation
probabilities P+(t) [see Fig. 4(b)]. Even for time scales
t ∼ texpt ∼ 1000τ , appreciable differences still persist in the
respective P+(texpt).

IV. COMPUTING AVERAGES AND FLUCTUATIONS
IN THE RATES: THE MESOSCOPIC ANALOGY

The total accumulated phase during the driving protocol is
controlled by the asymmetry parameter α, which modifies
the biharmonic waveform. As a consequence, 2W and �r

should experience, besides the sensitivity on ε0, fluctuations
as a function of α [12].

As we already mentioned, the transition rate induced by
the driving W was identified in Ref. [12] with an effective
transition amplitude—the essential ingredient to determine
the conductance in the Landauer formalism [1]. Under the
assumption that the equilibration rate can be written as
� = 2W , the approach was to associate the fluctuations in
� as function of the dc flux, with the universal conductance
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FIG. 4. (a) Relaxation rates rate �r close to a resonance obtained
within the FM formalism as a function of the normalized flux detuning
ε0/ω0 and for the same parameters as in Fig. 3. The red curve
corresponds to � = 2W obtained from Eq. (6), after replacing �2 →
�ab. The chosen resonance corresponds to ε0/ω0 = −34. (b) Excited
state occupation probability P+(t) as a function of the normalized
time t/τ , obtained for three sampled values of �r [identified by the
dots in (a)]. In each case, the initial state is the ground state of the
TLS Hamiltonian Eq. (2) for the correspondent flux detuning ε0/ω0.

fluctuations (UCF), in analogy with mesoscopic electronic
systems [2].

In the previous section, we have seen that for time scales
close to full relaxation and around resonances with the
driving field, important and quantitative differences emerge
between 2W and the relaxation (equilibration) rate �r obtained
within the FM formalism. Associated with this, the respective
fluctuation patterns will also exhibit different behaviors, as we
show in the following.

The averages 〈2W 〉 and 〈�r〉, over ε0, are defined as 〈· · · 〉 =
1

εmax

∫ εmax

0 · · · dε0 , and play the role of ensemble averages
over different scatterers configurations. In the case of the
phenomenological approach we computed from Eq. (6):

〈W 〉 = 2

2εmax

∑
nn′mm′

λnn′mm′ cos [(n − n′)α]

×
[

arctan

(
(2m − n)ω0

�2

)

− arctan

(
(2m − n)ω0 − εmax

�2

)]
(11)

and

〈W 2〉 = 1

εmax

∫ εmax

0
W 2dε0. (12)

Although 〈W 2〉 does not have a simple analytic expression,
its numerical evaluation is straightforward. The fluctuations in
2W are defined as σ2W = 2

√
〈W 2〉 − 〈W 〉2.

In the case of the relaxation rate �r , its average 〈�r〉 and
fluctuations σr have been computed numerically.

In Fig. 5(a) we plot the averaged rates relative to its
values at α = 0.5, i.e., 〈�r〉n ≡ 〈�r〉/〈�r〉(α=0.5) and 〈2W 〉n ≡
〈2W 〉/〈2W 〉(α=0.5), in order to establish a fair comparison for
different bath temperatures, couplings γ , or dephasing rates
�2, respectively.
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FIG. 5. Normalized rates 〈�r〉n and 〈2W 〉n (a) and normalized
standard deviations σr/〈�r〉2 and σ2W/〈2W 〉2 (b) averaged from
−4m�0 to 0m�0 as a function of the time reversal broken parameter
α. The different values of the dephasing rate �2 used to compute
� = 2W and the values of the temperature T and bath coupling
constant γ employed to compute the rates �r within the FM formalism
are, respectively, specified in the inset. System parameters are /h =
19 MHz, ω0/(2π ) = 125 MHz, A1 = 3 m�0, and A2 = 1.65 m�0.

Even after performing the averages in flux detuning, strong
fluctuations are still visible as a function of α. Notice that
〈2W 〉n is almost independent of α and the dephasing rate �2,
in agreement with the results of Ref. [12]. On the other hand,
〈�r〉n exhibit a sharp dip at α = 0, that could be interpreted
as the fingerprint of the WL correction—in analogy to the
correction present in the quantum conductance of mesoscopic
disordered systems [3]. The relative fluctuations (normalized
to the squared mean values) are defined as σr/〈�r〉2 and
σ2W/〈2W 〉2, and are plotted in Fig. 5(b). The profiles resemble
the UCF found in short mesoscopic wires, with the fluctuations
at α = 0 enhanced compared to the fluctuations for α = 0, as
the theory of UCF predicts when the time reversal symmetry
is broken [2].

The WL correction and the UCF tend to wash out as
either the effective temperature and/or the coupling with the
environment are increased, as expected when decoherence and
relaxation processes become more efficient. This is clearly
observed in Figs. 5(a) and 5(b). In addition, the profiles
remain almost undisturbed when the product of the effective
temperature T times the bath coupling γ remains constant,
although each one is varied separately. This is consistent with
the well known result that the dominant contribution to the
decoherence rate depends on the product γ T [32].

We want to point out some limitations of the phenomeno-
logical approach employed in Sec. III A and followed in
Ref. [12]. On one hand, it disregards relaxation assuming that
the equilibration rate � is given by 2W . As a consequence,
the equilibration rates are largely underestimated close to
resonances, as we emphasized when describing Fig. 3. On
the other hand, the interpretation of � as a conductance is only
well justified away from resonances, when it is satisfied that
� ∼ 2W .

Last but not least, we want to comment on the detection
of the WL effect, which has not been measured in Ref. [12].
To our view the limitation which precludes the experimental
observation of the WL-like effect is not the driving protocol, as
the authors of Ref. [12] suggested, but mainly the difficulty in
capturing the extremely sharp resonant conditions as the flux
detuning is swept, and also the relatively short experimental
decoherence times T2. From the theory of disordered electronic
systems it is known that the size of the weak localization
correction scales (logarithmically) with the dephasing time
τφ ∝ T2 [3].

Consistent with this result, Fig. 5(a) shows very well
defined dips in 〈�r〉n at α = 0, for values of the coupling
γ = 0.004–0.001 and temperature of 20 mK—as reported
experimentally. These values give decoherence rates �2 ∼
25–30 MHz (T2 = 1/�2 � 30–40 ns). Thus it is expected that
for slightly larger values of T2—but not so far from the reported
T2 ∼ 10 ns, it could be possible to experimentally access the
full WL dip, once the resonance conditions can be explored.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have tested fluctuation effects associated
with broken time reversal symmetry in FQs driven by a
biharmonic (dc + ac) magnetic flux with a phase lag.

Employing the full Floquet-Born-Markov master equation
we have computed relaxation �r and decoherence �ab rates,
both strongly dependent on the phase lag and the dc flux
detuning, exhibiting appreciable fluctuations. As a function
of the dc flux and away from the resonance conditions
with the driving field �ab → �2 and �r → �1 with �2 =
1/T2 	 �1 = 1/T1, i.e., in agreement with the relaxation and
decoherence rates predicted for the undriven FQs. However,
close to resonances both rates take values which differ
significantly from the respective ones away from resonances,
even satisfying 2�ab ∼ �r .

The relaxation (equilibration) rate �r can be accessed
experimentally by measuring the decay of the flux qubit
excited state population. Recently the fluctuations in the
measured equilibration rate have been analyzed and associated
with universal conductance fluctuations (UCFs), following an
analogy to well known phenomena exhibited in disordered
mesoscopic electronic systems [12]. However, as we discuss
in the extent of this work, the mesoscopic analogy is only well
justified for the out of resonance regime, when the equilibration
rate can be described in terms of a transition probability
induced by the driving protocol.

Besides UCF, we also predict that the WL effect can be
detected for the biharmonic driving protocol. However, to
observe this effect, the experiments should be performed in
a more coherent regime, in which larger values of T2 could
be attained. Nowadays the control on the environmental bath
degrees of freedom is a promising way to enlarge coherence,
as have been recently proposed and tested [21,37,38].

By increasing the driving amplitude, the multilevel struc-
ture of the FQs could be explored and more avoided crossings
could be reached. This regime of strong driving seems to
be experimentally attainable, as the amplitude spectroscopy
experiments for the biharmonic drive [39] have proven. On
the theoretical side, it would be interesting to extend the
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calculations of the fluctuations for the multilevel structure of
the FQs in order to explore the mesoscopic analogy, beyond
the weak scattering limit studied in the present work.

Last but not least, it should be mentioned that protocols
of biharmonic drive in qubits coupled to a transmission-
line resonator, double quantum dots, NV-centers, and cold
atoms, have been recently studied experimentally [40,41] and
theoretically [42–48]. These artificial atoms are also potential
qubits to test our predictions.
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