
PHYSICAL REVIEW B 95, 045411 (2017)
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We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting
structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other
forming a ring. We nickname the resulting device 4T-ring. Such a tunable device can be realized in a 2D electron
gas-superconductor or a graphene-based hybrid structure. We concentrate on the limit of a short structure and
large conductance of the point contacts where there are many ABS in the device forming a quasicontinuous
spectrum. The energies of the ABS can be tuned by changing the superconducting phases of the terminals. We
observe the opening and closing of gaps in the spectrum upon changing the phases. This concerns the usual
proximity gap that separates the levels from zero energy as well as less usual “smile” gaps that split the levels
of the quasicontinuous spectrum. We demonstrate a remarkable crossover in the overall spectrum that occurs
upon changing the ratio of conductances of the inner and outer point contacts. At big values of the ratio (closed
limit), the levels exhibit a generic behavior expected for the spectrum of a disordered system manifesting level
repulsion and Brownian “motion” upon changing the phases. At small values of the ratio (open limit), the levels
are squeezed into narrow bunches separated by wide smile gaps. Each bunch consists of almost degenerate ABS
formed by Andreev reflection between two adjacent terminals. We study in detail the properties of the spectrum
in the limit of a small ratio, paying special attention to the crossings of bunches. We distinguish two types of
crossings: (i) with a regular phase dependence of the levels and (ii) crossings where the Brownian motion of
the levels leads to an apparently irregular phase dependence. We work out a perturbation theory that explains
the observations both at a detailed level of random scattering in the device and at a phenomenological level
of positively defined random matrices. The unusual properties of the spectrum originate from rather unobvious
topological effects. The topology of the first kind is restricted to the semiclassical limit and related to the winding
of the semiclassical Green function. It is responsible for the closing of the proximity gaps. The topology of the
second kind comes about the discreteness of the number of modes in the point contacts and is responsible for
the smile gaps. The topology of the third kind leads to the emergence of Weyl points in the spectrum and is not
discussed in the context of this article.
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I. INTRODUCTION

Disordered and random systems play a fundamental role
in a broad range of research fields. Early works concen-
trated on the spectra of complex atomic nuclei, which
could be described by random Hamiltonians, and led to the
development of random matrix theory (RMT) [1]. Due to
the quantum-mechanical effect of level repulsion combined
with universality, RMT leads to the famous Wigner-Dyson
distribution of level spacings [2]. Remarkably, such level
distributions depend only on the symmetries of the system.
The connection to solid state physics has been made in the
context of localization [3], small particles [4], and mesoscopic
effects like weak localization or conductance fluctuations [5].
Interestingly, much less works have addressed the spectral
properties near a gap in the spectrum, which is especially
relevant in superconducting systems [6,7]. Here, the universal
fluctuations have been predicted as well [8]. These predictions
have been confirmed numerically for proximity systems [9].
The so-called Andreev billiards have henceforth provided an
important playground to test general chaotic dynamics [10].

*Corresponding author: tomohiro.yokoyama@issp.u-tokyo.ac.jp

The superconducting proximity effect in general describes
the physical properties of normal, nonsuperconducting con-
ductors in close electronic contact to a superconductor. In
this way, an otherwise normal structure can show the key
features of superconductivity, such as perfect diamagnetism, a
supercurrent, or a spectral gap [11,12]. Particularly the induced
gap and its phase dependence has attracted attention from the
theoretical [13,14] and experimental [15,16] sides. In the long-
junction limit, L � ξS, with a superconducting coherence
length ξS, the gap scale in a metal of size L is universally the
Thouless energy ETh ∼ D/L2 ∼ �/τd, D being the diffusion
constant and τd being the dwell time inside the normal
metal. The induced gap is called the “minigap,” since in
the long-junction regime, it is usually much smaller than the
superconducting gap �, though in practical realizations this is
not always the case. In particular, Le Sueur and coworkers
[16] have measured the phase-dependent local density of
states in a diffusive wire between superconducting contacts
and found an excellent agreement with the theory based
on quasiclassical Green functions. The size of the minigap
depends in a characteristic way on the phase difference and
closes for a phase difference of π .

On the microscopic level, the electronic connection be-
tween a superconductor and a normal metal stipulates the
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process of Andreev reflection [17], in which an electronlike
quasiparticle is converted into a Cooper pair leaving behind a
holelike quasiparticle. This coherent process can occur for
energies below the superconducting gap � and results in
the presence of superconducting correlations in the normal
metal. For a finite-size normal metal or a junction between
two superconductors, subsequent Andreev processes form
Andreev bound states (ABSs). These bound states depend
on the phase difference ϕ between the superconducting order
parameters and, hence, carry a superconducting current. This
is the microscopic origin of the Josephson effects. The discrete
ABS have been detected by tunneling spectroscopy in carbon
nanotube quantum dots [18] and microwave spectroscopy
in atomic point contacts [19]. These observations are in
good agreement with theoretical predictions and confirm the
microscopic relation between phase-dependent Andreev states
and the Josephson effect.

In view of the history of the superconducting proximity
effect both in theory and experiment, one would expect that
everything is known already at least on the qualitative level.
Hence it came as a complete surprise that Reutlinger et al.
have reported a secondary gap in the spectrum just below the
edge to the continuum in a short Josephson junction made
from a chaotic cavity connected to two superconductors [20].
Due to the peculiar phase dependence of the secondary gap,
which closes for some critical phase difference, it was termed
smile gap and found to be parametrically related to the (small)
factor �/ETh. Furthermore, the presence or absence of the
smile gap was related to the distribution of the transmission
probabilities of the two contacts connecting the cavity to
the two superconductors [21]. The smile gap is present if
the transmission distribution of each contact is gapped at
small transmissions, that is, there is a lower boundary for
transmission eigenvalues. The fact that the smile gap is robust
against distortions of the transmission distributions and/or the
formation of multiple cavities suggests a universal mechanism
for the formation of the smile gap in systems of cavities
connected to superconductors.

More recently, the focus of research has moved towards
multiterminal superconducting devices. For N superconduct-
ing terminals, the Andreev levels depend on N − 1 the phase
differences and are 2π periodic, where the phase differences
play the role of quasimomentum in the band structure of the
crystal. A particular path-breaking prediction by Riwar and
coworkers [22] was the realization of Weyl-type topological
matter. The Weyl singularities can be engineered artificially in
systems consisting of a quantum coherent conductor connected
to at least four superconducting terminals [22,23]. It is
interesting to note that three-terminals are insufficient to create
topological points, but still provide interesting physics [24,25].
A three-terminal setup is examined in an experiment [26]
and a different kind of topology from the Weyl physics is
discussed. The potential of engineering Weyl singularities
in multiterminal Josephson junctions is still at its infancy
and many interesting possibilities need to be explored. Thus
the fundamental properties of these systems need to be
investigated, which we will address in this paper.

Many properties of Josephson junctions rely on the pres-
ence and properties of ABSs, which are phase-dependent
and current-carrying states connected to at least two su-

perconducting terminals. Such states are described by a
surprisingly simple formula, derived by Beenakker [27]. The
ABSs are represented by scattering matrices of electrons and
holes propagating through the nonsuperconducting part of the
junction. The transport characteristics of this normal region
determines the properties of the ABSs and the Josephson
current. The Andreev reflection at the superconductors, which
converts electrons into holes and vice versa, can also be
expressed in terms of scattering matrices. The combination of
all scattering matrices results in an eigenvalue problem for the
energies of ABSs, which is known as Beenakker formula [27].
It is straightforwardly extended to multiterminal junctions for
our purposes.

In this paper, we study a particular multiterminal Josephson
junction based on a ring structure formed by connecting
four chaotic cavities with a big number of channels to
each other and to four superconducting terminals, which
we nickname a 4T-ring. The 4T-ring can be experimentally
realized in either 2D gas semiconducting heterostructures
or in graphene. Despite the fact that the setup looks rather
specific, we argue that the device illustrates interesting and
general properties of ABS in multiterminal junctions. The
4T-ring geometry makes the system tunable, leading to a
localization of ABSs along internal connectors of the ring.
This localization results in a specific spectrum consisting of
four bunches of degenerate levels, their crossings, and smile
gaps between them. In the nonlocalized regime, where ABS
spread over the whole 4T-ring, the spectrum shows general
properties of a four-terminal junction. The 4T-ring geometry
enables us to study the crossover between these two regimes
and reveals topological protection of the smile gaps in addition
to the Weyl physics in four-terminal junctions. The 4T-ring is
a simple structure to investigate this crossover, compared to
other possible realizations, which should show similar effects.
Even though only conventional s-wave superconductors are
involved, nontrivial topologies exist in this system. This fact
suggests a strong advantage of this system, namely that an
extension to multiterminal Josephson junctions can realize
topological features without using any exotic material.

We approach the ABS spectrum in two complementary
ways. One way is to use semiclassical Green functions and
quantum circuit theory [28], which leads to a continuous
density of ABS energies below the superconducting gap
|ε| � � rather than a discrete spectrum. We focus on the
density of states at ε = 0 and reveal the presence of proximity
gaps and gapless regions in the spectrum, as well as smile
gaps. The Green function approach allows for the definition
of topological numbers, which distinguish the gapped and
gapless regions in the 3D space of superconducting phases.
A complementary formulation is Beenakker’s determinat
equation [27] for a random scattering matrix with a large
number of channels, allowing for the evaluation of individual
ABS energies. It explicitly demonstrates the gapped structure
of the Andreev spectrum. Both the proximity and smile gaps
are consistent with quantum circuit theory calculations. We
reveal the topology based on the gaps in the transmission
distributions of individual cavities and explain the smile gaps
with it. In addition, the scattering matrix approach enables us
to artificially break the gap in the transmission distribution by
injecting a single transmission eigenvalue into this gap. We
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demonstrate that this results in stray levels within the smile
gaps.

We observe that the Andreev spectrum in our system is
crucially tuned by the ratio of conductances, or conduction
channels, in the ring structure and in the contacts attaching to
the superconductors. If the conductances to the terminals are
much larger than those in the ring (open limit), the spectrum
forms bunches with a finite number of Andreev levels, equal to
the number of channels in the internal connector. The bunches
are localized between adjacent terminals and follow the phase
differences of the involved superconductors. The crossings
between bunches are classified into two types, their properties
can be understood from a perturbative treatment for the
degenerate levels. We investigate the visibility of wigglelike
fluctuations in the ABS phase dependence that stems from the
general predictions of RMT for our disordered system.

The structure of the article is as follows. In Sec. II, we
describe the setup of the 4T-ring using quantum circuit theory
as well as the scattering matrix approach. In Sec. III, we give an
overview of the Andreev spectrum based on both descriptions,
explain the limiting cases, formulate the topologies and explain
their applications in understanding the spectrum. Section IV
is devoted to a specific discussion of the spectral details in
the open limit, where we develop and apply a perturbation
theory for the crossings of level bunches and investigate the
fine structure of the bunches. We conclude in Sec. V.

II. THE 4T-RING

In this section, we describe the design of the 4T-ring, and
its description in the languages of quantum circuit theory and
scattering matrices.

A. Design

The nanodevice we propose and discuss throughout the arti-
cle is a hybrid superconducting-normal metal heterostructure.
There are four independent superconducting leads coming
to the structure, which serve as superconducting terminals,
numbered with k = 0, 1, 2, and 3. The normal metal part
consists of four chaotic cavities. Each cavity is connected with
a corresponding terminal by a ballistic contact encompassing
Ni transport channels. In addition, the cavities are connected
to each other by ballistic contacts to form a ring-structure.
The number of transport channels in the contact between the
cavities i and i + 1 is Mi . i + 1 = 4 denotes cavity 0. In the
following, we call this device a 4T-ring. A sketch of the setup
is shown in Fig. 1.

The design of the device is robust against inevitable imper-
fections of fabrication. There is an additional contact resistance
between the normal part and the superconductors: yet it can
be disregarded provided it is much smaller than the resistance
of the ballistic contact. The cavities are assumed to be fully
chaotic and thus described by scattering matrices taken from
the circular ensemble of RMT [29]. The origin of chaoticity
can be either due to impurity scattering inside the cavity or due
to scattering at the boundaries in an otherwise ballistic system
with a rather arbitrary shape. In both cases the resistance of
the cavity interior must be much smaller than the resistance of
the point contacts.

FIG. 1. Sketch of a possible experimental realization of a 4T-ring
geometry using a 2D electron gas. Multiple gates (gray regions) are
used to deplete the 2D gas and to form four chaotic cavities, which are
connected to each other and build a ring structure (red blurry region).
A gate inside the ring can be fabricated by air-bridge technique [35].
Each cavity is connected to the superconducting terminals (yellow
regions) through ballistic contacts. ϕi (i = 0, 1, 2, and 3) indicates
the superconducting phase in the terminal i. A challenge might be
the realization of the central gate, that has to be contacted without
disturbing the other connections.

We assume the short structure limit, that is, the electron
dwell time inside the structure is shorter than �/�, � being
the superconducting energy gap in the leads. This is known
to be equivalent to the assumption of no energy-dependence
of the scattering matrix of the structure at a scale of �,
which permits efficient numerical calculations of the energy
spectrum of excitations in the structure. We assume the
superconducting leads are made of the same metal. In this
case, the superconducting order parameters in the terminals
�i have the same absolute value |�|, but in general different
phases ϕi . Since the physical effects depend only on the phase
differences, one phase can be chosen to 0, which gives three
parameters governing the spectrum in the device.

Experimentally, the device can be realized on the basis of a
semiconductor heterostructure supporting a two-dimensional
electron gas (2DEG) at its interface, for instance, on the basis
of GaAs/AlGaAs heterostructures. In ballistic 2DEGs, point
contacts of ideal transmission have been realized [30,31] and
furthermore these systems can be coupled to superconducting
leads, allowing for an investigation of the proximity effect
[32–34], where the importance of sufficiently transparent
interfaces between the superconductor and the 2DEG has been
outlined.

A sketch of an idea for an experimental realization using
a 2DEG is shown in Fig. 1. The big yellow regions are
the superconducting leads, the red, blurry region sketches
the 2DEG within the normal part of the structure. Metallic
gates shown as grey regions are used to form the cavities
with quantum point contacts (QPCs) between each other
and towards the superconductors with a variable number of
channels. An experimental challenge might be the central
gate, which must be contacted from the back of the sample
or an isolated electrode contacted by an air-bridge technique
[35]. By varying the gate voltages, the number of modes
in each contact can be controlled separately. The super-
conducting phase-differences of the leads can be controlled
by superconducting loop structures (not shown in the plot),
where a magnetic flux can be used to adjust the phase
differences.

An alternative idea is to make a device on the basis of a
graphene flake [36]. The geometry in this realization would be
very similar to that shown in Fig. 1.
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FIG. 2. Circuit-theory scheme of the 4T-ring. G
i(o)
k denotes the

conductance of the inner (outer) connector k. The nodes at the ends
of the connectors and the superconducting terminals are characterized
by matrix voltages Ĝk and ĜS

k , respectively.

B. Circuit-theory representation

An elaborated unified description of quantum transport in
nanostructures is provided by quantum circuit theory [28],
which is valid in the semiclassical limit where the typical con-
ductance of the nanostructure by far exceeds the conductance
quantum GQ. In the circuit theory approach, the nanostructure
is separated into nodes, terminals, and connectors. A matrix
voltage (a matrix Ĝ satisfying Ĝ2 = 1̂, TrĜ = 0) is defined in
each node and terminal of the structure. The connectors are
characterized by the distribution of transmission eigenvalues,
and the matrix currents in the connectors are expressed in terms
of matrix voltages at the ends of the connector. The matrix
voltages in the terminals are fixed. The matrix voltages in the
nodes are found from matrix current conservation—Kirchoff
rules—in the nodes. These Kirchoff rules can be obtained from
the extremization of an action S that is contributed by each
connector of the nanostructure and is a function of matrix
voltages [28].

For the 4T-ring, four superconducting leads are regarded
as four terminals, and the four cavities are treated as four
nodes (Fig. 2). Eight connectors involved are purely ballistic
ones, with Tp = 1. The parameters of the device are the
conductances of the connectors. We denote the matrix voltage
in the leads by ĜS

k , k = 0, . . . ,3, and in the corresponding
nodes just by Ĝk . With this, the full action reads

GQS =
∑

k

Go
ksB

(
Ĝk,Ĝ

S
k

) +
∑

k

Gi
ksB(Ĝk,Ĝk+1), (1)

where the ballistic connector action reads

sB(ĜA,ĜB) ≡ 1
2 Tr{ln[1 + (ĜAĜB + ĜBĜA − 2)/4]} (2)

and k + 1 = 0 for k = 3. The conductance is related to
the number of channels in the corresponding contact, Go

k =
GQNk , Gi

k = GQMk . It is enough for our purposes to keep
the conductances of all outer and inner connectors approxi-
mately the same, Gi

k ≈ Gi, Go
k ≈ Go. The ratio of these two

conductances, Gi/Go is an important parameter of our device,
its change influences the properties of the spectrum drastically.

To access the spectral properties of the ABS in the device,
it is enough to consider 2×2 matrix voltages that are related to
the energy-dependent semiclassical advanced Green function
with Nambu indices. In the superconducting terminals

ĜS
k (ε) = 1√

�2 − (ε + i0)2

[ −iε �eiϕk

�e−iϕk iε

]
, (3)

provided that the superconducting energy gap � is the same in
all terminals. In this case, the ABS energies are conveniently
localized in the energy interval 0 < ε < �. There are three
independent superconducting phases in the terminal, to fix the
choice, we set ϕ0 = 0. In the nodes, the matrix voltage can be
conveniently parametrized as

Ĝk(ε) =
[

sin θk cos θke
iηk

cos θke
−iηk − sin θk

]
, (4)

where θ,η are real at ε = 0. The local density of states in the
node is given by ν0Re(sin θk), ν0 being the density of states
in the normal metal. To account for the presence of electronic
states in the nodes, that leads to energy-dependent decoherence
between Andreev reflections, one adds to the nodes the so-
called “leakage” terminals [28] that give extra terms in the
action

Sleak = iπεν0

∑
k

VkTr[σzĜk], (5)

Vk being the volume of node k. We assume a “short” nanos-
tructure where decoherence can be neglected, and therefore
neglect Sleak. Comparing S and Sleak at ε � �, we see that
this approximation is justified provided Gi,Go � GQ�ν0Vk ,
or, equivalently, the Thouless energy of the structure ETh �
(G/GQ)/(ν0Vk) exceeds by far the energy scale �. In terms of
the scattering approach outlined below, it implies that one can
neglect the energy dependence of the scattering matrix of the
nanostructure at the energy scale � �.

To summarize, the energy spectrum of ABS under our
assumption spreads from 0 to �, and immediately depends
on three superconducting phases and on the ratio of inner and
outer conductances Gi/Go. Below we investigate the details of
this dependence. Naturally, the semiclassical approach cannot
give the exact positions of ABS levels: rather, it gives a smooth
energy-dependent density of ABS in their quasicontinuous
spectrum. We derive a convenient and general relation between
the number of ABS N (ε) in the energy interval [0,ε] and the
extremal value of the action S,

N (ε) = 1

2π
ImS(ε). (6)

C. Scattering matrix description

We can evaluate the ABS energies in our 4T-ring from the
normal-state scattering matrix of the device. Here, we rely on
Beenakker’s determinant equation [37]

det(ei2χ − Ŝ( �ϕ,ε)) = 0, (7)

where the unitary matrix

Ŝ( �ϕ,ε) = eiϕ̂ ŝh(ε)e−iϕ̂ ŝe(ε) (8)

incorporates the processes of Andreev reflection in the leads
and normal reflection from the device. ŝe,h(ε) are electron
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FIG. 3. The scattering matrix of the 4T-ring (dimension
∑

k Nk ×∑
k Nk) is composed of the random unitary matrices ŝ(i) of the chaotic

cavities. The dimension of such a matrix is (Ni + Mi + Mi−1) ×
(Ni + Mi + Mi−1).

and hole scattering matrices in the normal region. Those are
related by sh(ε) = −ĝŝ∗

e (−ε)ĝ with ĝ = −iσ̂y . σ̂y is a Pauli
matrix. In this paper, we disregard the effects of magnetic
field and spin-orbit interaction, thus disregarding the spin
degree of freedom in ŝe,h(ε). e±iϕ̂ is a diagonal matrix with
ϕ̂ = diag(ϕ0,ϕ1,ϕ2,ϕ3) that accounts for Andreev reflection
from the corresponding leads. This form of Beenakker’s
equation relies on the assumption of the same material for all
of the superconducting leads, �i = �. The Andreev reflection
phase χ is immediately related to energy via χ = arccos(ε/�).
Since we consider the limit of a short structure, the scattering
matrix ŝe is independent of energy ε. The same applies to Ŝ,
and the energies of the ABS are readily expressed through the
eigenvalues Si of Ŝ, exp(2iχ (εi)) = Si .

Thus the normal scattering matrix ŝe determines the
Andreev spectrum. Let us establish this scattering matrix for
the 4T-ring. It is composed from the scattering matrices of
the individual cavities as shown in Fig. 3. A cavity scattering
matrix s(i) (i = 0, 1, 2, and 3) describes the scattering be-
tween Ni channels coming from/going to the superconducting
terminal i, Mi channels coming from/going to the inner QPC
i, and Mi−1 channels coming from/going to the inner QPC
i − 1. For example, ŝ(0) permits the following block separation
corresponding to these channel groups,

⎛
⎝b0

c10

c30

⎞
⎠ = ŝ(0)

⎛
⎝a0

c01

c03

⎞
⎠ =

⎛
⎜⎝

r
(0)
00 t

(0)
01 t

(0)
03

t
(0)
10 r

(0)
11 t

(0)
13

t
(0)
30 t

(0)
31 r

(0)
33

⎞
⎟⎠

⎛
⎝a0

c01

c03

⎞
⎠, (9)

where a0 and b0 are the vectors of incoming and outgoing
electron amplitudes in the lead 0, respectively, while cij are
the vectors of the wave amplitudes going from the cavity j to
the cavity i inside the ring. Thus ŝ(0) is a (N0 + M0 + M3) ×
(N0 + M0 + M3) matrix. We obtain ŝe by combining ŝ(i). To
make the combination explicit, we introduce vectors �a, �b, and

�c as follows:

�a =

⎛
⎜⎝

a0

a1

a2

a3

⎞
⎟⎠, �b =

⎛
⎜⎝

b0

b1

b2

b3

⎞
⎟⎠, �c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c10

c21

c32

c03

c01

c12

c23

c30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

In �c, four upper (lower) components correspond to clockwise
(counterclockwise) propagation, as shown in Fig. 3. A a
complete unitarity matrix of the size K×K , K ≡ ∑

k(Nk +
Mk + Mk−1), that relates these amplitudes is separated into the
following blocks:

(�b
�c
)

=
(

X̂ Ẑ

Ŷ Ŵ

)(�a
�c
)

, (11)

where X̂, Ŷ , Ẑ, and Ŵ are given by the elements of ŝ(i).
X̂ consists of the reflection matrix from and to the channels
in the leads while Ŷ (Ẑ) corresponds to the transmission
matrix from the leads (the ring) to the ring (the leads). The
matrix Ŵ describes reflection and transmission in the ring.
By eliminating �c from Eq. (11), the scattering matrix of the
4T-ring defined as �b = ŝe�a is reduced to

ŝe = X̂ + Ẑ
1

1 − Ŵ
Ŷ . (12)

The size of ŝe is
∑

k Nk × ∑
k Nk .

The numerical procedure to determine the spectrum of ABS
for a given realization of disorder in the 4T-ring could be as
follows: we pick up the ŝ(i) for each cavity from the circular
ensemble of time-reversible scattering matrices and form ŝe by
making use of Eq. (12). For a certain choice of ϕk , we form Ŝ

by employing Eq. (8) and then diagonalize Ŝ and deduce the
corresponding ABS energies.

We actually follow all these steps except picking up ŝ(i) from
the circular ensemble. We form these matrices in an equivalent
but different way that provides numerical efficiency and has
essential physical significance for understanding the properties
of the 4T-ring.

We outline this way by concentrating on one of the ŝ(i) ma-
trices. For briefness, we identify N ≡ Ni , 2M ≡ Mi + Mi−1

and assume N > 2M . The matrix ŝ(i) is a random (N + 2M) ×
(N + 2M) unitary matrix. However, N − 2M channels on the
terminal side of the cavity are completely redundant. Owing
to the mismatch of the number of channels on the terminal
and ring sides, these channels are completely reflected from
the cavity not playing any role in the formation of the ABS.
Therefore we can reduce the matrix dimension by considering
only 2M channels in the lead. The resulting 4M×4M matrices
are best presented in terms of the transmission eigenvalues
from the terminal to the ring side (or back) [38].

Introducing a diagonal matrix with 2M transmission eigen-
values for the cavity i, T̂ (i) = diag(T (i)

1 ,T
(i)

2 , . . . ,T
(i)

2M ), we
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represent ŝ(i) as

ŝ(i) =
(

V̂ (i)′

V̂ (i)

)(−
√

1 − T̂ (i)
√

T̂ (i)

√
T̂ (i)

√
1 − T̂ (i)

)

×
(

Û (i)′

Û (i)

)
, (13)

where Û (i), Û (i)′, V̂ (i) and V̂ (i)′ are 2M×2M unitary matrices.
A square-root of the diagonal matrix Â = diag(a1,a2, . . .)
means

√
Â = diag(

√
a1,

√
a2, . . .). The size of vectors ai

and bi is reduced to 2M . The four submatrices found in
Eq. (13), −V̂ (i)′

√
1 − T̂ (i)Û (i)′, V̂ (i)

√
T̂ (i)Û (i)′, V̂ (i)′√T̂ (i)Û (i)

and V̂ (i)
√

1 − T̂ (i)Û (i), provide the elements of X̂, Ŷ , Ẑ,
and Ŵ , respectively. In the presence of time-reversal- and
spin-rotation symmetries, V̂i = ÛT

i and V̂ ′
i = Û ′T

i . For a given
choice of transmission eigenvalues, these matrices can be taken
from the circular ensemble.

In the limit N,M � 1 the distribution of the transmission
eigenvalues T are very specific. It can be derived by elementary
methods [28] modeling the cavity with two ballistic contacts of
the conductances GQN , GQ2M . The transmission probability
reads

ρ(T ) = N + 2M

2π

1

T

√
T − Tc

1 − T
(14)

for 1 > T > Tc, Tc ≡ (N − 2M)2/(N + 2M)2 and is 0 oth-
erwise: there is no chance for a transmission eigenvalue to
be smaller than Tc. In practice, this means that this chance
is exponentially small, ∝ e−2M and can be safely disregarded
for our choices of M and N . So we choose a realization of
the transmission distribution by generating random numbers
that obey Wigner-Dyson statistics for their spacings and the
distribution (14).

Such a choice ensures numerical efficiency: we work with
matrices of the dimension 2

∑
k Mk × 2

∑
k Mk rather than

with the original dimension. To proceed further, we introduce

Û =

⎛
⎜⎜⎜⎝

Û (0)

Û (1)

Û (2)

Û (3)

⎞
⎟⎟⎟⎠, (15)

and the corresponding structures for V̂ , Û ′, V̂ ′, and R̂=1 − T̂ .
By using these matrices, we express X̂, Ŷ , Ẑ, and Ŵ as

X̂ = −V̂ ′
√

R̂Û ′, (16)

Ẑ = V̂ ′
√

1 − R̂ÛÔ2, (17)

Ŵ = Ô1V̂
√

R̂ÛÔ2, (18)

Ŷ = Ô1V̂
√

1 − R̂Û ′, (19)

where we have introduced the matrices Ô1,2. �c in Eq. (10)
denotes propagating waves in clockwise and counterclockwise
directions along the ring. On the other hand, the scatter-
ing matrix ŝ(i) in Eq. (13) requires a different ordering
of the components cij relating to an incident wave �cin ≡
(c01,c03,c12,c10,c23,c21,c30,c32) and a reflected one �cref ≡

(c10,c30,c21,c01,c32,c12,c03,c23). Ô1 and Ô2 satisfy �c = Ô1�cref

and �cin = Ô2�c, respectively. Then,

Ô ≡ Ô2Ô1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1

0 1

1 0

0 1

1 0

1 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ô2 = 1.

(20)

As Eqs. (16)–(19) are applied to ŝe in Eq. (12), we see
explicitly that Û ′

i and V̂ ′
i are irrelevant for the ABS energies

evaluated from Eq. (7). This is expected due to equivalence of
all channels in a superconducting lead with respect to Andreev
reflection. So we set Û ′

i = V̂ ′
i = 1̂ without loss of generality.

Finally, we obtain

ŝe = −
√

R̂ +
√

1 − R̂ÛÔ2
1

1−Ô1ÛT
√

R̂ÛÔ2

Ô1Û
T
√

1 − R̂

= −
√

R̂ +
√

1 − R̂(K̂ + K̂
√

R̂K̂ + · · · )
√

1 − R̂

= −
√

R̂ +
√

1 − R̂K̂
1

1 −
√

R̂K̂

√
1 − R̂ (21)

with K̂ ≡ ÛÔÛT. The second line in Eq. (21) becomes useful
when we apply a perturbation calculation in small R̂ to the
determinant equation (7).

A similar reduction of the matrix size is also possible for
the opposite case N < 2M . Yet it is slightly more difficult to
implement it in numerics so we have not done this.

III. OVERVIEW OF THE SPECTRUM

In this section, we give a general overview of the ABS
spectrum in the 4T-ring. We start with defining the semiclassi-
cal topology that provides understanding of the transitions
between gapped and gapless spectra in the device. The
overall properties of the spectrum depend on a dimensionless
parameter that is the ratio of inner and outer conductances,
Gi/Go = M/N . We describe the properties of the spectrum
in the extreme limits of small (“open limit”) and big (“closed
limit”) values of this parameter. Next, we present numerical
illustrations: those obtained by the semiclassical approach
as well as the results of exact diagonalization of the matrix
Ŝ in Eq. (7).

The analysis of the results brings us to an important
conclusion regarding the topological origin of the “smile” gaps
in these superconducting nanostructures, that we formulate
in subsection E. The topological protection in this case is
provided by the gap in the transmission distribution given by
Eq. (14). We demonstrate in subsection F that an isolated
transmission eigenvalue in this gap results in isolated ABS
inside the smile gaps.

Before going to all these details, let us estimate the total
number of ABS in the device, NABS. For a general scattering
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matrix, the number of Andreev states (with positive energy)
derived from Eq. (7) is one half of the matrix dimension.
In our case, this gives NABS = ∑

i Ni/2, NABS = 2N if all
Ni are the same. However, this estimation does not work if
N > 2M , in this case, as explained in Sec. II C, N − 2M

incoming transport channels are reflected back to the same
terminal not participating in the formation of ABS. Therefore
NABS = min(2N,4M).

A. Semiclassical topology

Before describing the peculiarities of the 4T-ring spectrum,
let us explain the topological properties of the setup that arise
at the semiclassical level. As mentioned, the matrix voltage
at ε = 0 can be parametrized with real θ,η. It is instructive
to associate this matrix with a unit vector on the surface of
a sphere, namely, in its northern hemisphere, θ being the
latitude counted from the equator, η being the longitude.
The density of states at zero energy is given by ν0 sin θ .
Therefore, if the superconducting proximity gap is present
in the device, the matrix voltages should all be precisely at the
equator, and parametrized by η only. This is plausible since
the matrix voltages ĜS in the superconducting terminals are
also at the equator, their longitudes corresponding to their
superconducting phases ϕk .

Let us show that the possible gapped states of the 4T-ring
are distinct in topology and characterized by four independent
topological numbers. In this sense, the gapped states are
similar to topologically nonequivalent insulators in the solid-
state physics context [39]. For three-terminal structures, the
topological analysis of this kind has been suggested and
performed in Ref. [26].

To introduce the topological numbers, let us first concen-
trate on the central ring of the device. Similar to the procedure
of defining a vortex in Josephson junction arrays [40], we sum
up the differences of ηi over the ring contour projecting each
phase difference on (−π,π ) interval. This defines an integer
number n4:

2πn4 = P (η0 − η3) + P (η3 − η2) + P (η2 − η1) + P (η1 − η0);

P (α) ≡ −π + 2π{α/2π + 1/2}, (22)

{· · · } here denotes the fractional part of a number. Then,
−π < P (α) < π . The possible values of n4 are 0,±1. The
configurations of ηk with different n4 are topologically distinct
since they cannot be transformed to one another unless one
of the phase differences passes ±π . Such a passing, however,
would result in a divergent action of the corresponding ballistic
connector and therefore is not realized.

For Josephson arrays, this number indicates the presence
of an (anti)vortex in the ring [40]. We stress, however, that
in our system, ηk are NOT the phases of superconducting
pairing potentials: there is none in the normal structure under
consideration. Still, the number defined resembles vorticity.

In addition to this, one can define four other topological
numbers (Fig. 4) where a loop is closed through the terminals.
In distinction from the previous definition, the phase difference
between the terminals is not projected on (−π,π ) interval. For

FIG. 4. Topological numbers in the 4T-ring.

instance,

2πn0 = P (ϕ1 − η1) + P (η1 − η0) + P (η0 − ϕ0) + ϕ0 − ϕ1

(23)

and n1,2,3 are obtained by cyclic permutation of indices. The
justification for such a definition is the fact that nothing
special happens to the system when the difference of the
terminal phases passes ±π , so the topological number should
experience no change. A minor disadvantage of the definition
is that topological numbers are not periodic corresponding to
2π periodicity in the 3D space of superconducting phases.
We note that the five topological numbers defined are not
independent, namely,

n4 =
∑

k

nk. (24)

It is a well-known property of topological insulators that
the interface between two insulators of distinct topology must
conduct: the topology requires such insulators to be separated
by a gapless region. The gapped phases in our device do not
have interfaces: albeit they must be separated by gapless states
in parameter space. We will see this in concrete calculations.

B. Extreme limits: open and closed

As mentioned, the global properties of the spectrum are
determined by the ratio of the conductances Gi/Go = M/N .
First, we consider the extreme open limit where the ratio
is small, M/N → 0. In this limit, a particle coming to a
cavity in one of the inner QPC is never reflected back, but
transmits directly to the corresponding superconducting lead.
Upon Andreev reflection in the lead, the particle returns to
the same QPC, transfers it and is Andreev-reflected from
another superconducting terminal to return to the same QPC
and complete the cycle. We reckon that all inner QPC in this
limit are independent. The kth QPC hosts a separate bunch
of Mk ABS and is biased by the phase difference ϕk − ϕk+1.
Therefore all levels of the bunch have the same energy as in a
two-terminal ballistic junction,

ε = � cos ((ϕk − ϕk+1)/2). (25)
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We thus have the case of extreme degeneracy. In Sec. IV, we
study in detail how this degeneracy is lifted at small but finite
values of Gi/Go.

The result can be derived using the more formal approach
of Sec. II C. We observe that in the extreme open limit
all transmission eigenvalues in Eq. (13) are concentrated at
T = 1 (R̂ = 0) since Tc → 1. Thus, ŝe = K̂ and Beenakker’s
determinant equation (7) becomes

det
(
ei2χ − Ŝ0

) = 0,

with

Ŝ0 = Û ∗ei�̂ÛT, (26)

�̂ = diag(ϕ01,ϕ03,ϕ12,ϕ10,ϕ23,ϕ21,ϕ30,ϕ32). (27)

Here, we use [Û ,eiϕ̂] = 0. Each element of �̂ is a phase differ-
ence, ϕij ≡ ϕi − ϕj , between adjacent terminals, j = i ± 1.
The eigenvalues of Ŝ0 are therefore just exp(i(ϕk − ϕk±1)).
Comparing this with e2iχ reproduces the above result for the
energy.

In the opposite, extreme closed limit, four cavities are so
strongly coupled as to become a single cavity characterized
by a unitary 4N×4N matrix. In circuit-theory description, the
system is represented by a single node connected by ballistic
contacts Gi

k to the corresponding superconducting reservoirs.
Despite a great simplification, no analytical results for the
spectrum can be derived in this limit, which, as we will see,
remains rather complex. We note, however, that the topological
number n4 should be zero in this case, since ηk are the same
in all cavities and thus no vorticity can be associated with the
ring of the device.

C. Numerics: semiclassics

We present numerical results obtained from the solution of
Kirchoff equations corresponding to the action (1). To solve
these equations, we employ an iterative algorithm described
in Ref. [41].

Let us first address the spectral properties at small energy.
Generally, we expect a proximity gap to be induced in the
structure. This would result in a gapped spectrum with no
density of states at zero energy. On the other hand, the
analytical results for the open limit show that the ABS come
close to zero any time the phase difference between adjacent
terminals approaches π .

In all illustrations of this article, we explore the spec-
trum along a line in the three-dimensional space, ϕ0 = 0,
(ϕ1,ϕ2,ϕ3) = (A1,A2,A3)ϕ. For most illustrations, we stick
to a convenient choice (A1,A2,A3) = (1,3,6). In this case,
the spectrum is periodic in ϕ with a period 2π and
symmetric with respect to a transformation ϕ → π − ϕ. It
suffices to plot the spectrum in the interval 0 < ϕ < π .
The phase difference between adjacent terminals approaches
π for ϕ = (π/6,π/3,π/2,5π/6).

In Figs. 5 and 6, we plot the density of states at zero energy
versus ϕ for a representative set of values of Gi/Go. The
density of states plotted is averaged over the four cavities.

In Fig. 5, we concentrate on the open regime, Gi/Go ≡
M/N � 0.5. At small values of the parameter, ν(0) = 0

0 0.2 0.4 0.6 0.8 1
0

0.3
0

0.5
0

0.5
0

1
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001-1

000-1

011-2

011-3

111-3
0.5

0.2

0.1

0.05

FIG. 5. Density of states at ε = 0 along the line (ϕ1,ϕ2,ϕ3) =
(1,3,6)ϕ in the open regime. The parameter M/N takes values 0.05,
0.1, 0.2, and 0.5 as indicated by labels in the rectangular frames. The
topological numbers of the gapped states are computed and given in
the figure as n0n1n2n3.

almost everywhere except at narrow peaks around ϕ =
(π/6,π/3,π/2,5π/6) where one of the phase differences
between adjacent terminals approaches π pushing the corre-
sponding ABS to zero energy. We see that these peaks separate
gapped states with different topological numbers nk shown
in the figure. Upon increasing the parameter, the peaks get
wider, shift, and sometimes merge so that some gapped states
eventually disappear. We notice that the disappearing states
all have nonzero n4 = ∑

k nk . This confirms the expectation
that only the states n4 = 0 survive in the closed regime. The
density of states slightly increases upon increasing M/N .
More interesting details are revealed on the background of

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0000

001-1

011-2

FIG. 6. Density of states (DOS) at ε=0 along the line (ϕ1,ϕ2,ϕ3)=
(1,3,6)ϕ in the closed regime. The parameter M/N takes values 1,
2, 5, and 50 for alternating curves of small and big thickness. The
smaller values of the parameter corresponding to smaller peak DOS,
so that the lowest thick curve corresponds to M = N . The topological
numbers of the gapped states nk are given. As expected, no state with
n4 ≡ ∑

k nk = 0 occurs in this regime. The arrow indicates (111 − 3)
state.
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FIG. 7. Number of ABS N (ε) vs energy at ϕ = 0.3π (top) and
0.6π (bottom) on the line (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ in the open regime.
The parameter M/N takes values 10−3, 10−2, 0.1, 0.2, and 0.5 for
alternating curves of small and big thickness exhibiting a progressive
transition from steplike to smooth shape. The most steplike thin curve
corresponds to M/N = 10−3. NABS = 4M .

these general trends. For instance, at ϕ > 0.95, we see the
emergence and stabilization of the gapped state (111 − 3) that
was absent in the limit of vanishing M/N . At M/N > 0.5, we
enter the closed regime. The peaks get progressively higher
and wider yet saturate in both height and width in the extreme
closed limit M/N → ∞ (the curve at M/N = 50 represents
this limit with the accuracy of the plot). We observe that the
state (111 − 3) disappears at sufficiently big M/N while most
of the gapped states remain in the extreme closed limit.

These figures represent the spectral characteristics at small
energy. Next, we consider all the energies of the ABS
spanning the interval 0 < ε/� < 1. We compute the total
number of ABS N (ε) with energy smaller than ε making
use of Eq. (6) at the same line in phase space taking two
values of ϕ, 0.3π , and 0.6π . Figure 7 gives the results in
the open regime where NABS = 4M . The curves at small
values of M/N are very much steplike, corresponding to the
picture of separate, almost degenerate bunches of levels in
each inner QPC. N (ε) changes within the bunches and has
plateaus at N (ε) = M, 2M, and 3M representing the spectral
gaps—“smile” gaps—between the bunches. We see that upon
increasing M/N the curve becomes smoother and the smile
gaps eventually disappear, at least at these particular values
of the phases. For ϕ = 0.3π , this is also associated with
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FIG. 8. Number of ABS N (ε) vs energy at ϕ = 0.3π (left) and
0.6π (right) on the line (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ in the closed regime.
The parameter M/N takes values 1, 2, 5, and 50 from the lower to
the upper curve. The arrows indicate the formation of the smile gap
at N (ε) = 0.5NABS. Note that the lines do not cross with each other.
NABS = 2N .

the closing of the proximity gap, while the latter survives at
ϕ = 0.6π up to energies of at least 0.2�.

Upon further increase of M/N we enter the closed regime
illustrated in Fig. 8. It is interesting to note that the smile
gaps that have disappeared at moderate M/N reappear at big
values of the parameter, at least at N (ε) = N = NABS/2, and
the N (ε) curves get sharper.

We explain this with the following consideration. We note
that the four-terminal system under consideration becomes
equivalent to a two-terminal one at special symmetry lines in
phase space [23] where the four phases have only two distinct
values [upon restricting to an (−π,π ) interval]. Our favorite
line (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ is chosen to cross the symmetry
lines. For instance, at ϕ = 2π/3, where ϕ0,ϕ2,ϕ3 = 0 while
ϕ1 = 2π/3. Thus we deal with 3N incoming channels from
superconducting terminals at zero phase and N channels
coming from the terminal at nonzero phase. This restricts the
number of ABS to N , to be contrasted with the total number of
ABS NABS = 2N permitted in the four-terminal device. The N

nonpermitted channels, as we will see in the next subsection,
stick to the gap edge. A smile gap can thus be formed at this
special line, and will persist in the vicinity of it. This is the
smile gap seen at ϕ = 0.6π that is close to 2π/3. A similar
effect takes place near ϕ = π/3 that is not at the symmetry line
but is subject to the same restriction sticking N ABS energies
to the gap edge.

D. Numerical results: diagonalization

To find the ABS energies, we numerically diagonalize the
matrix Ŝ [Eq. (8)] for a certain choice of the random scattering
matrices in the nodes. We plot the resulting energies along
lines in the 3D space of phases. For all plots presented, the
parameters are chosen to provide NABS = 400 bound states in
the energy interval [0,�], except the panels (e), (f), and (g) in
the figures where NABS = 200.

The number of ABS seems to be sufficiently large for the
semiclassical approximation to be valid. Indeed, we see that the
levels mainly follow the behavior of the semiclassical density
of states: there are visible proximity gaps, “smile” gaps, and a
level-bunching in the extreme open limit. On this background,
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we also see the signatures of a stochastic parametric depen-
dence typical for random matrix ensembles: the levels wiggle
on the scale of the level spacing δS � �/NABS [42], coming
close and further from each other. In the three- dimensional
space of the phases, the slope of energy, v = dε/dϕ, can be
regarded as a “group velocity. The estimations characterizing
the stochastic dependence are as follows. A typical value of
the smooth part of v of a given ABS can be estimated as
�. Since the energy slope arises from the NABS-component
random eigenvector, the fluctuating part of the velocity can
be estimated as vf � v/

√
NABS � �/

√
NABS. From this, a

typical scale of the wiggling in the parameter space is estimated
as ϕw � δS/vf � (NABS)−1/2. This is in qualitative agreement
with the plots. Since vf � v, the wiggles are most clearly seen
around the minima of v where the density of states does not
depend much on phase, v � �.

Next, we consider the spectra in more detail. Figure 9
presents the Andreev spectra along the line (ϕ1,ϕ2,ϕ3) =
(1,3,6)ϕ in the 3D space of phases. Only positive ABS energies
are shown. On the left panel, the spectra are given for small

FIG. 9. Energy spectrum of ABS in the 4T-ring for various ratios
r = M/N of inner and outer numbers of channels. The supercon-
ducting phase is swept on the line (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ. Only 400
positive ABS energies are shown in the left panels (a) to (d) and
200 levels in the right panels (e) to (g). The left panels show the
ABS energies in the open regime, r = 10−3 (a), 10−2 (b), 10−1

(c), and 0.2 (d). Here, the number of inner channels in each QPC
differ slightly, M0 = 100, M1 = 120, M2 = 70, and M3 = 110. The
average is M = 100. Right panels show the ABS energies when
the ratio is r = 1 (e), 2 (f), and 5 (g). For these cases, Mi are all
the same and the number of outer channels is fixed to N = 100 in each
terminal. Capital latin letters denote the gapped states with distinct
topological numbers, A: 0000, B: 000 − 1, C: 001 − 1, D: 011 − 2,
E: 011 − 3.

ratios of conductances between inner and outer point contacts,
M/N < 0.5, where the reduction of the scattering matrix
described by Eq. (21) can be applied. In Fig. 9(a), the ratio
is M/N = 10−3. As we expect from our considerations of the
open limit, the levels are grouped into bunches. In the case
of (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ, all four phase differences between
adjacent terminals are different from one oanther, so we see
four bunches in the figure, each encompassing Mi levels. The
bunches divide the ε-ϕ plane into 27 areas. No isolated level
is found inside these areas, implying a (ϕ-resolved) gap in the
spectrum. We call the gaps adjacent to zero energy proximity
gaps (5 in the Figure) while others are smile gaps. The width
of the bunches increases with increasing ratio, leading to a
narrowing and eventually closing of gaps. At M/N = 10−2

[Fig. 9(b)], all 27 gaps in the spectrum are visible, although
the bunch widths are already comparable with the gap size.
In Fig. 9(c) as M/N = 10−1, some gaps are evidently closed
while some others are comparable in width with the level
spacing. Most gaps disappear in Fig. 9(d), and, upon crossing
to the closed regime, M/N = 1 [Fig. 9(e)], the ABS energies
are distributed from ε = 0 to � quasicontinuously at some
intervals of ϕ. The density of states at ε = 0 is finite, and the
levels touch the edge of the continuous spectrum at |ε| > �.
It looks like superconductivity has vanished in these intervals.
In other intervals, we find the proximity gaps stabilizing
for M/N � 1 [Figs. 9(e)–9(g)]. The levels are continuously
distributed above the proximity gap. We also see that upon
increasing M/N distinct smile gaps are formed near the
symmetry lines, as explained in Sec. III C.

The distinct proximity gaps are associated with the topo-
logical numbers given in the figure. The largest proximity gap
corresponds to the (0000) state and occurs at ϕ = 0 where all
the levels stick to the edge of the continuous spectrum. The
second largest gap is about 0.5� in either the closed or the
open limit corresponding to the state (011 − 2).

In general, the distribution of levels over energy coincides
with the semiclassical predictions of Sec. III C. However,
since NABS is still a finite number, there are deviations in
the details. For instance, the semiclassical calculation predicts
the proximity gap corresponding to the state (111 − 3) in a
wide interval of M/N . This is not seen in the plots, although
the lowest level in the corresponding interval of ϕ deviates
from zero more than in other gapped intervals. The full
correspondence is expected to hold at yet larger NABS.

To estimate the generality of the conclusions, we plot in
Fig. 10 the spectra along another line (ϕ1,ϕ2,ϕ3) = (1,5,10)ϕ.
The overall picture is significantly more complicated. In the
open limit, four bunches of levels cut the ε-ϕ plane into 50 areas
of distinct gaps, 10 of which are proximity gaps characterized
by topological numbers. From these proximity gaps, 5 survive
in the closed limit. The line crosses the symmetry lines at
ϕ = 2π/5 and 4π/5 However, the qualitative picture of the
spectrum and its evolution with changing M/N is the same.

A much simpler situation is presented in Fig. 11 for the line
(ϕ1,ϕ2,ϕ3) = (1,1,2)ϕ. In this case one of the four bunches is
independent of phase ϕ and two are degenerate. The plane is
separated into five areas. In the open limit, there are two prox-
imity gaps with topological numbers (0000) and (000 − 1).
Since for the second state n4 = 0, it does not survive the closed
limit disappearing at M/N ≈ 0.17.
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FIG. 10. Energy spectrum of ABS in the 4T-ring for various ratios
r = M/N of inner and outer numbers of channels. The supercon-
ducting phases satisfy (ϕ1,ϕ2,ϕ3) = (1,5,10)ϕ. The other parameters
are the same as in Fig. 9. Capital latin letters denote the states
with distinct topological numbers, A: 0000, B: 000 − 1, C: 001 −
1, D: 011 − 1, E: 011 − 2, F: 011 − 3, G: 012 − 3, H: 012 − 4,
I: 022 − 4, J: 022 − 5.

E. Topological protection and origin of the smile gaps

The smile gaps in disordered systems have been discovered
in Ref. [20] in the context of two-terminal superconducting
structures. Generally, a smile gap opens in a quasicontinuous
spectrum upon changing a parameter: let us call it ϕ, at a
splitting point ϕc. If ϕ < ϕc, all the levels are separated by
energies of the order of the level spacing δS. At ϕ > ϕc,
two levels separate from each other developing an energy
gap �ε ∝ (ϕ − ϕc)3/2, �ε � δS. From the point of view of
standard theory of spectra in disordered systems, where close
levels are considered to be all alike, the emergence of a smile
gap is very confusing. What actually distinguishes the two
levels that separate? It has been noted in Ref. [21] that there
is a link between the existence of a gap in the transmission
distribution of chaotic cavities and the appearance of the smile
gaps. However, the link only becomes clear in the context of
the present device and is explicated here.

We note that the scattering in each of the nodes is described
by a scattering matrix of an asymmetric cavity. A consequence
of this asymmetry is that transmission eigenvalues are not
distributed in the whole interval [0,1], but there is a minimal
transmission eigenvalue Tc. Tc is a hard boundary for the
transmission distribution only in the limit of an infinite
number of transport channels. For a finite number of channels,
the random realizations of the scattering matrices permit
single transmission eigenvalues below Tc. However, these

FIG. 11. Energy spectra of ABS in the 4T-ring for various ratios
r = M/N of inner and outer numbers of channels. The supercon-
ducting phases satify (ϕ1,ϕ2,ϕ3) = (1,1,2)ϕ. The other parameters
are the same as in Fig. 9. The topological numbers of the two gapped
states are given in the figure.

realizations are highly improbable and such transmission
eigenvalues appear with exponentially small probability.

The gap in the transmission distribution makes the number
of transport channels a relevant number. Usually, in the context
of quantum transport for generic transmission distributions,
this number is irrelevant [28] since one can always add a
channel of vanishing transmission to a connector without
changing the physical properties of the system. However, this is
clearly impossible if the gap is present in the transmission dis-
tribution. This brings us to the conclusion that a 4T-ring setup
is characterized by four topological numbers that are numbers
of the transport channels in the nodes, or, alternatively, in the
inner QPC’s. These numbers are topological since they cannot
be changed by variations of disorder in the device.

The considerations in the open regime make the link
between these topological numbers and the smile gaps obvious.
In the open regime, Tc is close to 1 and we find bunches
of almost degenerate Andreev levels, which are separated by
large smile gaps. Since the number of levels in a bunch is Mi ,
the number of levels below a smile gap can be (i) Mi ; (ii)
Mi + Mj , j = i; and (iii) Mi + Mj + Mk , j = i = k,j = k.
This gives 14 distinct possibilities and provides a robust
classification of smile gaps. By virtue of continuity, this
classification established in the open limit is valid in the whole
space of parameters where the smile gaps become smaller
and eventually close. In this way, the topological numbers
just defined distinguish the levels that look coequal in a
quasicontinuous spectrum.
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FIG. 12. Sketch of three bunches that cross at three points
surrounding a smile gap. The bunches have finite width, which is
related to the finite width of the transmission distribution in the
nodes. This finite width is given by the thick (red) curves bounding
the bunches of Andreev levels. At each crossing point the number of
Andreev levels in each crossing bunch must be conserved. Bundles
indicated by the same colored circles consist of the same number of
Andreev levels.

Let us consider in more detail the crossings of bunches
to see how the smile gaps are separated from each other.
The bunches have finite width, which is related to a small
but finite value of 1 − Tc. We find a hard edge on one side
with a high level density, where the bunch is confined by
the curve of a level with ideal transmission T = 1. Since
transmission eigenvalues above T = 1 are not possible, no
random realization of the scattering matrices could break these
edges. On the other side, the levels lie less densely and the
boundary of the bunch is defined by the curve of a level
corresponding to Tc. Thus this edge is not hard but is rather
soft. The different level densities at the two edges are related
to different densities of transmission eigenvalues. At T = 1,
the transmission distribution diverges, leading to a very dense
distribution of Andreev levels, whereas at Tc the distribution
remains finite. The exponential suppression of transmission
eigenvalues below Tc directly translates into an exponential
suppression of Andreev levels out of the bunches leading to
an exponential protection of the smile gaps. The number of
levels in each bunch is constant and equal to the number
of transport modes in the corresponding inner QPC. These
properties are summarized in Fig. 12, where the crossings of
three bunches, that surround a smile gap, are sketched. The red
lines indicate the finite widths of the bunches. The number of
levels in each bunch must be conserved at each crossing. If the
two bunches have different numbers of levels, some levels have
to go straight through the crossing point in order to assure this.

The gap in the transmission distribution and associated
topological protection can be violated by adding “by hand”
an additional isolated transmission eigenvalue into the gap of
the transmission spectrum. This leads to the violation of the
smile gaps: a single Andreev level emerges inside the gap. We
consider this in detail in the next section.

F. Stray levels in the smile gaps

Let us start with the numerical calculation of stray levels.
We consider the open limit of small ratio M/N when M,N�1.
Andreev levels come in almost degenerate bunches, which are
separated by wide smile gaps. The minimum transmission Tc,
which is determined by the ratio M/N , is close to 1 in this

0 11/4 1/2 3/40 11/4 1/2 3/4
0

1
0

1

superconducting phase:

(a) (b)
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FIG. 13. Stray levels induced inside the smile gaps by replacing
a transmission eigenvalue at a single node with the value Text in
the transmission distribution gap. We take equal numbers of internal
modes Mi = M = 100 and a ratio M/N = 0.001. For (a), (c), and
(d), Text = 0 and the eigenvalue is replaced in the nodes 0, 2, and 3,
respectively. In (b), stray levels are plotted for a set of Text changing
from 0 (red curves) to Tc (blue curve) in steps of Tc/8. The eigenvalue
is replaced in node 1.

regime. Andreev levels are mostly localized in one of the inner
QPC connecting the neighboring nodes. We break the gap in
the transmission distribution by adding artificially only a single
transmission eigenvalue. Because of the correspondence of the
transmission gap and the smile gaps this leads to the violation
of the smile gaps by a single Andreev level. While a single
Andreev level penetrates into the smile gaps, all other levels
remain in bunches corresponding to a particular ratio M/N .
Since this isolated level does not follow the bundles and crosses
the middles of the smile gaps, we call it a stray level. This
allows us in principle to study the closing of smile gap by
adding levels successively.

In this calculation, we choose equal numbers of internal
modes Mi = M = 100 and the ratio M/N = 1/1000. In
Fig. 13, a single transmission eigenvalue at a single node
[(a) node 0, (b) node 1, (c) node 2, (d) node 3] is replaced by
Text, while the transmission distributions at the other nodes are
not changed. The superconducting phases are swept along the
line (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ. The panels (a), (c), and (d) show
a single stray level where Text = 0 was chosen. The stray level
approximately follows an isolated curve penetrating various
gaps and crossing the level bunches. The curves look like
superpositions of simple harmonic functions. Of course, the
single level does not actually cross the bunch: rather, the level
joins the bunch on one side while another level splits from the
bunch at the opposite side. This is clearly seen at all crossings.

In (b), we change Text from 0 (the red curve) to Tc (the blue
curve) in equal steps producing a set of curves. We see that
in fact a single additional transmission eigenvalue produces
two isolated ABS. The reason we see only one level in the
panels (a), (c), and (d) is that at Text = 0 one channel is fully
reflected, giving rise to a level at ε = �, which is not visible
in the plots. We see that the positions of the isolated ABS
approach the bunches upon Text → Tc. For Text = Tc the stray
level is absorbed by the bunches, and is not visible.
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FIG. 14. Stray levels for extra transmission eigenvalues at all
four nodes. At each node, one eigenvalue is replaced to Text = 0. The
number of Andreev levels is the same as that in Fig. 13 (4M = 400).
No stray levels penetrate the proximity gaps marked in green, those
survive in the closed limit.

Figure 14 shows stray levels for the situation where an
extra eigenvalue Text = 0 is replaced at all the nodes. Note that
the total number of ABS is 4M = 400. We find that none of
the stray levels penetrates the three proximity gaps, which are
marked in green in the figure and survive in the closed limit.
This explains their stability upon changing M/N (see Fig. 9).

These numerical results are supported by an analytic
calculation of the stray level energies in the extreme open
limit M/N → 0. In this limit all transmission eigenvalues at
all nodes are exactly T = 1 and Andreev levels are grouped
into degenerate bunches. We replace a single transmission
eigenvalue at node 0 by Text = 0 and compute the stray level
energy. In the open limit, the scattering matrix for each node
is a 4M×4M matrix. Scattering matrices at nodes i = 0 are
given by

ŝ(1,2,3) =
(

1̂2M

1̂2M

)
. (28)

Here we put a subscript 2M to emphasize the dimension
of the identity matrix. We have chosen the unitary matrices
Û (1,2,3) = 12M , which can be done without any loss of
generality because there is ideal transmission in all channels
and phases of holes cancel those of electrons. For node 0, the
scattering matrix is given by

ŝ(0) =
(

1̂2M

Û (0)

)(−Â(0) B̂(0)

B̂(0) Â(0)

)(
1̂2M

Û (0)T

)
(29)

with matrices

Â(0) =

⎛
⎜⎝

0̂M √
1 − Text

0̂M−1

⎞
⎟⎠,

B̂(0) =

⎛
⎜⎝

1̂M √
Text

1̂M−1

⎞
⎟⎠. (30)

Without loss of generality we can mix the Text channel
with only a single perfectly transmitting channel, described by
the unitary matrix Û (0). This unitary matrix Û (0) can thus be
chosen as a general unitary matrix of the following kind:

Û (0) =

⎛
⎜⎜⎜⎝

1̂M−1

e−iβ cos α e−iγ sin α

−eiγ sin α eiβ cos α

1̂M−1

⎞
⎟⎟⎟⎠, (31)

where, for a random ensemble of such matrices, α, β and γ are
uniformly distributed in the interval [0,2π ]. These parameters
enter the central block of the matrix Û (0) that characterizes the
channel mixing. The angle α describes the coupling intensity
between outer and inner channels. To check this, we consider a
(2,1) block component in ŝ(0): (c10,c30)T = Û (0)B̂(0)a0. When
α = 0, the matrix Û (0) is just identical except the phase
β. If Text = 0, one of the channels between node 0 and 1
is disconnected from the terminal 0. On the other hand, at
α = π/2, one channel between node 0 and 3 is disconnected.

For the present choice of stray levels induced by Text at
node 0, the node 2 is irrelevant. We can consider a simple
scattering problem with a scattering matrix given by Eq. (29)
that is connected to three superconducting reservoirs 0, 1,
and 3. Beenakker’s determinant equation (7) can be reduced
in dimension and becomes det(ei2χ − �̂′ŝ(0)∗�̂′∗ŝ(0)), where
�̂′ = diag(eiϕ0 1̂2M,eiϕ1 1̂M,eiϕ3 1̂M ) is a diagonal matrix. This
determinant equation can be solved analytically for a general
Text, however the result is a quite lengthy expression. We
restrict ourselves to the simple case Text = 0. Two positive-
energy solutions are ε = � and

ε

�
=

√
1 + ζ (α,ϕ10,ϕ30)

2
(32)

with

ζ (α,ϕ10,ϕ30) = cos2 α cos ϕ30 + sin2 α cos ϕ10

+ cos2 α sin2 α[cos(ϕ30 − ϕ10) − 1]. (33)

Note that β and γ drop out of the result, and the stray level
energy depends on α only.

We plot the analytical solution in Fig. 15 along the line
(ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ. The figure shows the energy of the
stray level for α varying from 0 (purple) to π/2 (red) in
steps of π/16. At α = 0, one of the channels in the connector
between node 0 and 1 is decoupled from the superconductor
0. With this, the stray level energy becomes |cos(ϕ03/2)| as
shown in the figure. Upon increase of α, the stray level energy
dependence deviates from this simple function. For α = π/2,
only ϕ10 is relevant to the level in Eq. (33) so we reproduce
the |cos(ϕ10/2)| dependence. For intermediate values of α, the
level energy exhibits more complex oscillations. The behavior
of the stray level in Fig. 13(a) is reproduced for α ≈ 0.229π

[Fig. 15(b)].

IV. OPEN LIMIT: CROSSINGS AND PERTURBATIONS

In this section, we investigate in detail the ABS spectrum
in the open limit at M/N � 1, where the ABS energy levels
are grouped in narrow bunches. Numerical results clearly
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FIG. 15. Analytical solution given by Eqs. (32) and (33). (a) Stray
level with Text = 0 at node 0 for a set values of the parameter α ranging
from 0 to π/2 in steps of π/16. (b) Fit of the analytic expression of
the stray level (blue) to the numerically calculated curve (red) in the
case of α = 0.229π .

demonstrate two distinct types of bunch crossings: regular and
irregular. To explain this, and the fine structure of the bunches
far from the crossing points, we develop the perturbation

theory up to the second order of
√

R̂ =
√

1 − T̂ , and apply it.
For numerical illustrations and concrete theory applications,
we concentrate on a convenient line (ϕ1,ϕ2,ϕ3) = (1,3,6)ϕ in
the 3D space of phases.

A. Two types of crossings

Figure 16 illustrates two types of crossings found in our
numerical calculations. In Fig. 16(a), we zoom in a crossing
of the two bunches that follow the reference curves cos(ϕ10/2)
and cos(ϕ03/2) (dashed lines in the plot) in the vicinity of
ϕc = 2π/7. We see that the energy levels are predominantly
distributed above and below these curves. There is a mismatch
of numbers of levels in the bunches, M3 > M0. M3 − M0 ex-
cess levels exhibit a quasilinear dependence near the crossing
point (red curves), while M0 pairs of levels exhibit a typical
pairwise quasihyperbolic level repulsion behavior. Despite
disorder, the phase dependence is very regular in the vicinity
of the crossing. This is an example of a regular crossing.

Figure 16(b) exemplifies an irregular crossing. While the
phase dependence of all levels is quasilinear at some distance
from the crossing, the dependence is obviously irregular in the
vicinity of crossings, as expected for disordered system. This
is true for the excess levels (red curves) as well. No levels are
found below the reference lines. The distribution of the levels
exhibits a sharp edge at the lowest lines.

In both cases, the smile gaps are formed on the left and
on the right of a crossing. Figures 16(a) and 16(b) show a

FIG. 16. Numerics: two types of bunch crossings in the open
limit. The Andreev levels and assumed parameters are referred from
Fig. 9(a). The parameters for the number of levels in the bunches
is M0 = 100, M1 = 120, and M3 = 110. The ratio is M/N = 10−3.
(a) and (b) illustrate a regular and an irregular crossing, respectively.
Red lines show excess levels, their number being M3 − M0 in (a) and
M1 − M0 in (b). The dashed blue lines indicate the reference curves
of the bunches, cos(ϕ10/2) and cos(ϕ03/2) in (a) and cos(ϕ10/2) and
cos(ϕ12/2) in (b).

qualitative difference in the gap opening in the vicinity of
a crossing ϕc. For a regular crossing, the gaps open in a
quasilinear fashion �E ∝ (ϕ − ϕc), which follows the lines in
the extreme open limit. For the irregular one, the gap closing
and opening near the crossing point follows a law that signifies
disorder, δgap ∝ (ϕ − ϕ0)(3/2), and the point of the opening ϕ0

is noticeably shifted with respect to ϕc.
There is a clear difference between the two types of

crossings. The perturbation analysis presented below shows
that the degeneracy lifting of the regular crossings is dominated
by first-order perturbations. The first-order terms vanish for an
irregular crossing, so the degeneracy lifting is governed by
second-order terms.

B. Perturbation theory

In this section, we develop a perturbation theory suitable
for the open limit M/N � 1. In this case, the transmission
eigenvalues for ŝ(i) in Eq. (13) are distributed near 1 (R̂ ∼ 0).
We can thus use the reflection amplitudes as the parameters of
the perturbation expansion. The determinant equation (7) can
be rewritten as an eigenvalue equation for a Hermitian matrix:

Ĥeff( �ϕ)|ψ〉 = tan χ |ψ〉, (34)

with an effective Hamiltonian given by

Ĥeff( �ϕ) ≡ i
1 − Ŝ( �ϕ)

1 + Ŝ( �ϕ)
. (35)
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To simplify the notation, we drop the “hat” symbol for the
matrices K , U , H , S, and R. We expand the scattering matrix
in

√
R up to second order, S ≈ S0 + S1 + S2, and substitute

the result to the Hamiltonian (35):

Heff( �ϕ) ≈ H0 + H1 + H2, (36)

H0 = i
1 − S0

1 + S0
, (37)

H1 = −i2
1

1 + S0
S1

1

1 + S0
, (38)

H2 = i2
1

1 + S0

(
S1

1

1 + S0
S1 − S2

)
1

1 + S0
. (39)

H1 and H2 are of the order
√

R and R, respectively.
Before specifying to our setup, we review a general pertur-

bation theory approach for degenerate levels with perturbation
terms of first and second order. Let |ni〉 be an eigenstate of the
unperturbed Hamiltonian H0|ni〉 = H (0)

n |ni〉 where all states
with the same n are degenerate. To first order, the splitting
of these energy levels is obtained from diagonalization of a
matrix

Heff = 〈ni |H1|nj 〉. (40)

To second order, this degeneracy-lifting matrix is con-
tributed by products of the matrix elements of H1 and the
elements of H2:

Heff =
∑

m=n,k

〈ni |H1|mk〉〈mk|H1|nj 〉
H

(0)
n − H

(0)
m

+ 〈ni |H2|nj 〉. (41)

For the 4T-ring we expand Eq. (21) in
√

R and arrive at

se ≈ K + (−
√

R + K
√

RK)

+[
K

√
RK

√
RK − 1

2 (KR + RK)
]
. (42)

Since S0 is given in Eq. (26), the unperturbed Hamiltonian is
rewritten as H0 = U ∗ tan(�̂/2 + mπ )UT with integer m. Its
eigenvector is given by U ∗|i〉 with a normalized |i〉.

In this respect, it is instructive to use an equivalent matrix
G = UT

√
RU as a perturbation parameter. It satisfies G∗ =

G†. With this, we obtain

UT S1U
∗ = eiϕ̂Ôe−iϕ̂(ÔGÔ−G†) + eiϕ̂(ÔG†Ô − G)e−iϕ̂Ô,

(43)

UT S2U
∗ = eiϕ̂Ôe−iϕ̂

[
ÔGÔGÔ − 1

2 (ÔGG† + G†GÔ)
]
,

+eiϕ̂
[
ÔG†ÔG†Ô − 1

2 (ÔG†G + GG†Ô)
]
e−iϕ̂Ô,

+eiϕ̂(ÔG†Ô − G)e−iϕ̂(ÔGÔ − G†). (44)

Equations (43) and (44) are used to compute the perturbation
corrections.

C. Regular crossings

In this section, we concentrate on the perturbative correc-
tions that arise from the first-order terms in

√
R in the effective

Hamiltonian (36). In the extreme open limit (M/N → 0), R

vanishes resulting in a Mi-fold degeneracy of the levels in the
bunch associated with the ith QPC. Generally, one expects

this degeneracy to be lifted already in the first nonvanishing
order of the perturbation theory. This, however, is not the case
in our 4T-ring setup. As a matter of fact, the matrix elements
of the first-order perturbations vanish, 〈n|H1|n′〉 = 0, for all
states n,n′ that belong to the same bunch. However, this does
not imply that the first-order terms are completely irrelevant:
they play a role in the vicinity of the crossing points of two
bunches j,i removing the Mi + Mj -fold degeneracy near this
point. Here, H1 mixes the levels of different bunches. In the
following, we concentrate on the vicinity of a specific crossing.
The results can be straightforwardly extended to all other
crossings of the same type.

We consider the crossing of the bunches following
cos(ϕ10/2) and cos(ϕ03/2) along the line (ϕ1,ϕ2,ϕ3)=(1,3,6)ϕ.
The ABSs corresponding to ϕ10 and ϕ03 are localized at QPC
0 and 3 (and connecting terminals), respectively. The crossing
occurs at ϕ = 2π/7 as shown in Fig. 9(a). The effective
Hamiltonian including zeroth- and first-order terms reads

H0 + H1 = U ∗
[

tan (ϕ̂/2)−2i
1

1+eiϕ̂
(UT S1U

∗)
1

1+eiϕ̂

]
UT ,

where UT S1U
∗ is defined by Eq. (43). To perform a projection

on the subspace of degenerate levels, it is instructive to
subdivide the matrix G in Mi × Mj blocks G

(k)
ij , i, j being

the QPCs adjacent to the node k. The projected Hamiltonian
reads

Heff =
(

tan(ϕ03/2) h∗G(0)
30

hG
(0)†
30 tan(ϕ10/2)

)
. (45)

where the diagonal terms are of zeroth order and given by the
degenerate expressions tan(ϕ03/2) and tan(ϕ10/2) (Note that
at ϕ = 2π/7, tan(ϕ03/2) = tan(ϕ10/2)), while the nondiagonal
terms are of the first order and lift the degeneracy. Here,
h ≡ h(ϕ10,ϕ03) is given by

h(ϕ10,ϕ03) ≡ tan(ϕ03/2)

cos(ϕ10/2)
eiϕ10/2. (46)

G
(0)
30 is a matrix of transmission amplitudes describing the scat-

tering of electrons that move from node 3 to node 1 reflecting
in the node 0. Note that G

(0)
30 = t

(0)
31 . The eigenvalues of Heff

are readily expressed in terms of the eigenvalues gi of the
positively defined matrix G

(0)†
30 G

(0)
30 . Assuming M3 > M0, we

notice M3 − M0 zero eigenvalues of gi . In this approximation,
this results in M3 − M0 degenerate levels following the curve
tan χ = tan(ϕ03/2). For M0 nonzero eigenvalues, the energies
are determined from ε/� = 1/

√
1 + tan2 χ and

tan χ = 1
2 {tan(ϕ03/2) + tan(ϕ10/2)}

± 1
2

√
{tan(ϕ03/2) − tan(ϕ10/2)}2 + 4gi |h|2. (47)

Since this expression is only valid in the vicinity of ϕc = 2π/7,
we need to expand in this vicinity in terms of small φ = ϕ − ϕc

and take h as a function of φ. This gives

εgi ,± = εc + (C0 + C3)

2
φ ±

√
gi |h(φ)|2 + (C0 − C3)2

4
φ2,

(48)

045411-15



YOKOYAMA, REUTLINGER, BELZIG, AND NAZAROV PHYSICAL REVIEW B 95, 045411 (2017)

where coefficient C0,3 and |h| are of the order of 1, their
concrete values are of no interest now. This makes the quasi-
hyperbolic phase dependence of the energies and the absence
of irregular fluctuations explicit. In this form, the expression
describes the vicinity of any crossing point of regular type.

The randomness of the setup is manifested in the random-
ness of the eigenvalues gi . In the limit of weak reflection,
M/N ≡ r � 1, the matrix G

(0)†
30 can be regarded as a member

of the Gaussian ensemble [43]. As it has been shown in
Ref. [43], in the limit of big numbers of channels M0,M3 ≈ M

the distribution of eigenvalues has the specific form

ρ(g) = �(4r − g)
M

2πr

√
4r

g
− 1. (49)

This distribution is bounded by 4r , the average 〈g〉 = r and
equals to the standard deviation

√
〈g2〉 − 〈g〉2. The eigenvalue

density diverges at g → 0 and vanishes upon approaching 4r .
Upon the end of this section, let us compare in detail

the above analytical results with numerical ones. Figure 17
demonstrates the regular crossing with the comparison for two
different ratios r = 10−3 [(a) and (c)] and r = 10−4 [(b) and
(d)] in the vicinity of a crossing at ϕc = 2π/7. We assume that
the numbers of channels in all nodes are equal, Mi = 100.
Thin black curves in Figs. 17(a) and 17(b) give the ABS
energies by numerical calculation for a single realization
of the random scattering matrices. The analytical results
by up to the second-order perturbation explain the regular
crossing behavior for an interval of eigenvalue distribution
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FIG. 17. Comparison of the first-order perturbation results in
Eq. (48) with full numerical results for two ratios r = 10−3 [(a)
and (c)] and r = 10−4 [(b) and (d)] in the vicinity of one regular
crossing at ϕ = 2π/7 ≡ ϕc. (a) and (b) demonstrate the Andreev
levels (thin black curves) and analytical results by the perturbation
with g = 〈gi〉 = r (thick solid green line) and g = 0,4r (thick dashed
green line). The dotted line in (a) and (b) indicates the half-sum of
the two energies for gi = 0, ε̄gi=0 = (εgi=0,+ + εgi=0,−)/2, namely,
the first two terms in Eq. (48). (c) and (d) are corrected results by
substracting the half-sum from Eq. (48). The blue solid curve in (c)
and (d) indicates the points of minimum separation of two anticrossing
levels for various gi . This curve implies asymmetric deviation with
respect to ϕ − ϕc. The dotted lines indicate zero.

of the parameter gi , [0,4r]. We find a small deviation of
the Andreev levels from the interval region above a line
εgi=0,−(φ), especially at φ > 0 in Fig. 17(a). This deviation
is strongly suppressed for smaller r in (b). Let us replot the
levels by substracting a linearly increasing component with φ,
ε̄gi=0 = (εgi=0,+ + εgi=0,−)/2 = εc + (1/2)(C0 + C3)φ, from
both the analytical and numerical ones. In Figs. 17(c) and
17(d), the spectrum looks quasihyperbolic with respect to φ.
However, the minimal point of difference between the lower
and upper energies shifts slightly to positive φ with the increase
of gi from zero. This shift is owing to φ dependence of |h|2 in
the third term in Eq. (48).

First-order corrections are important for crossings between
level bunches formed in adjacent QPC. These contributions
vanish at crossings between level bunches of nonadjacent QPC.
Also, even for the case of two adjacent QPC, the parameter
h can vanish at the crossing point, as it does for the crossing
exemplified in Fig. 16(b). In all these situations, as well as far
from the crossings, the degeneracy is lifted by second-order
terms.

D. Fine structure of a bunch

We start our consideration of the second-order corrections
with the degeneracy lifting in a bunch far from the crossing
points. As a concrete example we take the bunch of degenerate
levels in the QPC 0 with zero-order energies ε/�= cos(ϕ10/2).
The consideration of other bunches is similar. As discussed,
the first-order terms vanish. The second-order terms, given by
Eq. (41), are collected into the following matrix:

Heff = f (ϕ10,ϕ03)t (0)
31 t

(0)†
31 + f (ϕ10,ϕ21)t (1)†

02 t
(1)
02

+f (ϕ10,ϕ01)
(
r

(1)
00 − r

(0)†
11

)(
r

(1)†
00 − r

(0)
11

)
, (50)

where the factors are defined as

f (a,b) ≡ sin(a/2) sin(b/2)

cos2(a/2) sin(a/2 − b/2)
. (51)

The transmission and reflection matrices in Eq. (50) are
components of the scattering matrices s(0) and s(1). For
instance, t

(0)
31 describes the scattering of an electron moving

from node 1 to 3 via node 0. The split energy levels in the
bunch are directly related to the eigenvalues of Heff .

Heff is a linear superposition of three random (positively
defined) matrices that do not depend on phases, the factors
f are smooth functions of phases. One of the f s diverges
upon approaching a regular crossing indicating the increasing
importance of first-order corrections. Since the matrices are
random, and generally do not commute, we expect to see the
irregular dependence on the phase imposed on a regular one.
The typical eigenvalues of the matrices are � r ≡ M/N . Since
f � 1, the regular level velocities are roughly estimated as
vr � r , and irregular ones as vir � r/

√
M . However, there

are reasons to doubt this estimation, since it is not evident
how noncommutative the matrices are. Besides, the relative
degree of irregularity should depend on relative magnitudes of
different f : if one of the factors dominates, the eigenvalues of
Heff are determined by the eigenvalues of a single matrix and
are therefore smooth functions of phase.
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FIG. 18. Parametric dependence of the eigenvalues of H2nd(c)
given by Eq. (52). Transmission and reflection matrices in the
expression are computed from a random realization of the scattering
matrices. We set M = 100 (matrix size is 100×100). The ratio is
M/N = 10−3. (a) The eigenvalues of H2nd(c). In 0 < c < 2, they are
all positive. (b) The velocities vs the eigenvalues at c = 0.1 (top), 0.7
(middle), and 2 (bottom panel). In the bottom panel, we also give a
linear fit.

To comprehend this with an example, we first consider a
modification of Eq. (50) that depends on a single parameter c:

H2nd(c) = (1 − c/2)t (0)
31 t

(0)†
31 + (1 − c/2)t (1)†

02 t
(1)
02

+c
(
r

(1)
00 − r

(0)†
11

)(
r

(1)†
00 − r

(0)
11

)
. (52)

Figure 18(a) shows the dependence of the eigenvalues 〈H2nd〉i
on c. Since H2nd is positively defined for 0 � c � 2, all
eigenvalues are positive in this interval. The spectrum is
more dense at smaller eigenvalues. For small c, one can see
the irregular dependence in the form of level wiggles. For
c > 1, the third term in H2nd tends to dominate. In this case,
the spectrum shows a quasilinear regular dependence of the
eigenvalues. At c = 2, the first and second terms vanish, H2nd

is given by a single positively defined matrix, and the lower
boundary of the distribution is close to zero. To quantify this,
we plot in Fig. 18(b) the level velocities 〈∂H2nd/∂c〉i versus the
corresponding eigenvalue. The dots are randomly distributed
around a smooth curve. For the calculation, we took M = 100
and r = 10−3, so the above rough estimation gives vr � 10−3,
vir/vr � 0.1. This is qualitatively valid at small values of the
parameter c. At larger c, the irregular part of the velocities
is hardly visible at the regular background. We thus conclude
that the domination of one of the terms in the Hamiltonian effi-
ciently quenches the irregular dependence of the eigenvalues.

Let us now turn to the dependence of the energies on the
real phases rather than on the factors. In the interval between
ϕ = 2π/3 and 4π/5, all factors in Eq. (50) are negative, so
that Heff in Eq. (50) is a negatively defined matrix. This gives
positive shifts of the ABS energies εi with respect to the
zero-order value � cos(ϕ10/2). We plot the shifts in Fig. 19(a).
We concentrate on a narrow interval around ϕ = 0.73π , where
it is easier to distinguish the regular and irregular dependences
of the energies and where the rough estimation predicts about
one wiggle per level. Even in this relatively small interval,
the band width of the ABS energies in Fig. 19(a) changes
significantly. The visible phase dependence is mostly regular.

0

0.01

0

0.01

0 0.01

0.7 0.76

1

0

2

3

4

0.7 0.76

FIG. 19. Fine structure of the bunch (M = 100, M/N = 103). (a)
The ABS energy shifts from cos(ϕ10/2) in a narrow interval centered
at ϕ = 0.73π [see Fig. 9(a) for a bigger plot]. (b) The level velocities
vi = 〈(ie−i2χ

√
1 − (ε/�)2/2)∂S/∂ϕ〉i at ϕ = 0.73π vs the energy

shifts εi . The fitting line is given by v = a(ε/�) (a � 1.53412). The
lower panel shows the velocities upon subtracting the linear fit. (c)
ABS energies upon subtracting εi(ϕ=0.73π ){exp(a(ϕ − 0.73π ))−1}
from each curve. The remaining dependence is mostly irregular.

In Fig. 19(b), we plot the velocities of the ABS levels at a fixed
phase ϕ = 0.73π versus the energy shifts. We see that apart
from its irregular component, the velocity is approximately
proportional to the corresponding energy shift. We understand
from the previous example that this signifies the dominance of
one of the three terms in Heff . In the lower panel of Fig. 19(b),
we substract the linear fit revealing the irregular part. Its
magnitude conforms the estimations. The regular part of the
phase dependence can be fitted by an exponential function of ϕ.
We subtract the estimated exponential function, ∼ exp[a(ϕ −
0.73π )], from the ABS energy shifts in Fig. 19(c) revealing the
irregular dependence on the phase. This dependence looks like
a standard expectation for a parametric dependence derived
from the RMT [42].

E. Irregular crossings

We extend the discussion of the second-order corrections to
crossing points. As an example, we concentrate on the crossing
point presented in Fig. 16(b). The bunches from QPC 0 and
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QPC 1 cross here. One would expect first-order terms coming
from the scattering between these channels via the common
node 1. However, at the particular line in phase space, the
coefficient h(ϕ01,ϕ12) in front of these terms [cf. Eqs. (45) and
(46)] vanishes at the crossing point. We need to investigate the
second-order terms. They may be arranged in a block structure
corresponding to states in QPC 0 and 1,

Heff =
(

H00 H
†
10

H10 H11

)
. (53)

We have already evaluated one of the diagonal blocks in the
previous subsection, H00 ≡ Heff as given by Eq. (50). Another
block is obtained by the index permutation:

H11 = f (ϕ12,ϕ01)t (1)†
20 t

(1)
20 + f (ϕ12,ϕ23)t (2)

31 t
(2)†
31

+f (ϕ12,ϕ21)
(
r

(1)
22 − r

(2)†
11

)(
r

(1)†
22 − r

(2)
11

)
, (54)

while the nondiagonal block is given by

H10 = g(ϕ12,ϕ10)
(
r

(1)
22 − r

(2)†
11

)
t

(1)
02

+ g(ϕ10,ϕ12)∗t (1)†
20

(
r

(1)†
00 − r

(0)
11

)
, (55)

where

g(a,b) ≡ sin(a/2)

2 cos2(a/2) cos(b/2)
ei(a−b)/2. (56)

We need to evaluate this matrix at the crossing point
ϕc = 2π/3, where eiϕ10 = eiϕ12 and f and g thus satisfy

f (ϕ10,ϕ21)f (ϕ12,ϕ21) = |g(ϕ12,ϕ10)|2. (57)

With this, the matrix can be presented in the form

Heff = AA† + BB† (58)

with

A ≡
(√

f10,03t
(0)
31 √

f12,23t
(2)†
31

)
, (59)

B ≡
(

eiα
√

f10,21t
(1)†
02 e−iβ

√
f10,01

(
r

(1)
00 − r

(0)†
11

)
eiβ

√
f12,21

(
r

(1)
22 − r

(2)†
11

)
e−iα

√
f12,01t

(1)†
20

)
.

(60)

Here we introduced the abbreviation fij,kl ≡ f (ϕij ,ϕkl). The
representation (58) makes explicit that the second-order matrix
is positively defined.

To consider the vicinity of the crossing point, we add the
zero-order terms. It is convenient to incorporate these terms
into the parameter ξ proportional to the phase deviation from
the crossing point so that the resulting matrix reads

Heff(ξ ) = 1

2

(
ξ (ϕ)

−ξ (ϕ)

)
+ Heff . (61)

In Fig. 20, we present the eigenvalues [Fig. 20(a)] and the
eigenvalue velocities [Fig. 20(b)] of Heff(ξ ). Since Heff is
positively defined, −|ξ |/2 is the precise lower boundary of
the resulting spectrum, this is clearly seen in the spectrum.
Far from the crossing, the levels are separated into two bands.
The eigenvalues are readily given by ξ/2 + Hi

00, −ξ/2 + Hi
11,

Hi
00,11 being the eigenvalues of the two diagonal blocks. The

ξ dependence is thus very regular far from the crossing. The

0 0.02 0.04

0

 0.4

-0.4
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 0.4

-0.4

0

 0.2

-0.2

0 0.03-0.030 0.03-0.03

0

 0.5

-0.5

0

 0.05

FIG. 20. Irregular crossing. We plot the eigenvalues and the
velocities of Heff (ξ ) given by Eq. (61). The parameters are the same as
in Fig. 18. The matrix size of Heff (ξ ) is 200×200 (M0 = M1 = 100).
(a) Eigenvalues of Heff (ξ ). The left panel shows all eigenvalues.
Dashed red lines in the left panel correspond to H = ±ξ/2. In
the right panel, we plot three groups of selected eigenvalues with
indexes i = 1 ∼ 6 (black), 81 ∼ 86 (red), and 101 ∼ 106 (blue). (b)
Velocities of the corresponding eigenvalues (a). (c) The velocites vs
the eigenvalues ξ = 0 (top), 0.01 (middle), and 0.02 (bottom).

eigenvalues of the diagonal blocks are distributed according to
Eq. (49). This explains the rather definite width of the bands
and the concentration of the eigenvalues at the lower edges.

The ξ dependence is clearly irregular directly at the crossing
where two bands merge, while the degree of the irregularity
depends on the position of the level with respect to the lower
boundary of the spectrum. We illustrate the latter in the right
panels of Figs. 20(a) and 20(b) selecting three groups of few
levels. The lowest six levels closely follow the lower boundary
−|ξ |/2, their velocities changing sharply at ξ ≈ 0 exhibiting
no visible irregularities. For the group of the six levels close to
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the upper edge of the lower band, the regular part of the velocity
changes nonmonotonically changing sign near the openings of
the smile gaps, while the velocity of the group closer to the
lower edge is monotonic. The groups come close to each other
in the interval −0.01 < ξ < 0.01 where the bands merge. The
irregular dependence with about a dozen wiggles is observed
in a twice bigger interval.

Figure 20(c) demonstrates a correlation between the eigen-
values and their velocities. At ξ = 0 (top panel), the regular
part of the velocity cancels owing to symmetry and substantial
irregular variations are seen.

Close to the opening of the smile gap, at ξ = 0.01
(middle panel), the lower levels have negative velocities,
starting with −1/2. The velocities increase upon increasing
the eigenvalue saturating at ≈ 0.25 where they still exhibit
significant irregularities. For ξ = 0.02 where the bands already
separated, we see the velocities reaching 1/2 at the lower edge
of the upper band. The velocity distribution is clearly divided
into two groups corresponding to the bands.

V. CONCLUSIONS

We have proposed a setup of a multiterminal superconduct-
ing nanodevice, 4T-ring, that has an interesting and complex
spectrum of ABS and exemplifies the opportunities of nanode-
sign in such structures. The spectrum can be readily tuned by
the superconducting phases of the terminals and is defined in
a 3D parametric space of independent phases. The properties
of the spectrum crucially depend on the ratio between conduc-
tances (or numbers of channels) of the quantum point contacts
inside the ring and those connected to the superconducting
terminals, Gi/Go. The spectrum exhibits a variety of gaps:
the proximity gaps that open at zero energy and smile gaps
where the levels are present below and above the gap. We have
investigated in detail the spectrum demonstrating gaps with
an irregular parametric dependence of the ABS energies in
combination with rather ordered gaps. While disorder-specific
manifestations are typical for a generic random system, the
order emerges from the rich topological properties that are
specific for the setup. The topological nature of the system
protects the existence of proximity and smile gaps.

The topology of the first kind is associated with the
proximity gaps. The semiclassical Green function at zero
energy, which gives the density of states, is associated with five
topological numbers, n4 and n0,1,2,3. They satisfy the relation
n4 = ∑

i=0,1,2,3 ni suggesting a similarity with the classifica-
tion of topological insulators. The number n4 and the set of ni

distinguish the gapped and gapless regions in the 3D parameter
space of phases ϕi . At small values of the ratio (open limit), the

proximity gap is open almost everywhere except the vicinities
of the special points ϕij = π . The gapped regions separated
by the points can be labeled by the four topological numbers
n0,1,2,3. At big values of the ratio (closed limit), several regions
become gapless, where n4 = 0.

The topology of the second kind emerges from the fact
that the transmission distributions of the device nodes have
gaps at low transmissions in the open limit. This protects four
topological numbers that are numbers of transport channels
in each inner QPC in the device. We explain the existence
and properties of the smile gaps by making use of those
rather concealed topological numbers. The smile gap can
be punctured by injecting artificial transmission eigenvalues
in the gap of the transmission distribution. This opens up
unique design opportunities to generate isolated levels in a
quasicontinuous spectrum.

The spectrum is highly degenerate in the extreme open
limit of very conductive outer QPCs. The ABS levels are
grouped in narrow bunches that cross. We have discussed a
perturbation theory for degenerate levels and investigated the
complex lifting of this degeneracy with an increase of the ratio.
In the vicinity of the crossings, the spectrum demonstrates
either regular or irregular behavior depending on the presence
of first-order terms. Random fluctuations of the level spacings
upon changing the phase, which is a signature of a random
system, can be seen in isolated bunches as well as at the
irregular crossing points.

The proposed system realizes new kinds of topology
in mesoscopic physics, to be compared with, for instance,
Majorana fermions [44], and Weyl singularities [22,23]. In
four-terminal junction, we can find the Weyl singularity and
the new kind of topological protection of minigap structure in
the spectrum with the use of no exotic materials and unconven-
tional superconductivity, which illustrates the potential of an
extension to multiterminal superconducting heterostructures.
Therefore, the proposed multiterminal system with supercon-
ductors has a strong advantage for building artificial exotic
states and for application to solid devices.
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