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We theoretically investigate the effective g factor in the black phosphorus (BP) thin films (TFs) based on a
multiband k · p theory. We demonstrate that the effective single particle g factor in pristine BP TF is anisotropic
arising from its anisotropic band structure with g∗

xx ≈ g∗
yy ≈ 2.0 and g∗

zz sensitively depending on the interband
coupling and the band gap. The g∗

zz approaches 2.0 with increasing hole doping density and gate electric field
since both of them minish the interband coupling by reducing the overlap integral between the electron and hole
wave functions. We also estimate the exchange interaction enhancement on the effective single particle g factor
by using the screened Hartree-Fock approximation. The exchange interaction enhanced g factor (gex) shows
maxima (minima) at odd (even) filling factors. The effective g factor (g∗) oscillates with the increase of magnetic
field and sensitively depends on the Landau level broadening as well as the gate electric field since both of them
affect the interband coupling and the electron-electron interactions.
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I. INTRODUCTION

Black phosphorus (BP) is a two-dimensional (2D) layered
material with the atomic layers coupled by van der Waals
interactions [1–4]. It is the most stable phase among several
allotropes of the group V element phosphorus under normal
conditions [5]. Recently, few layer BPs attracted intensive
attention due to its unique electronic properties and potential
applications in nanoelectronics [1–4,6–10]. Inside each layer,
phosphorus atoms are covalently bonded with three adjacent
atoms to form a puckered honeycomb structure due to the
sp3 hybridization [1,4]. BP in its bulk form possesses a
direct band gap 0.3 eV located at Z point [1,2,7–9,11]. This
direct band gap moves to the � point in few layer BPs and
increases to 2.0 eV when the thickness decreases to monolayer
[4,11–13]. Therefore, BP is an appealing candidate for a
tunable photodetector from the visible to the infrared part
of the electromagnetic spectrum [14,15]. Furthermore, the
field-effect transistor based on few layer BP is found to have an
on/off ratio of 105 and a carrier mobility at room temperature
as high as 103 cm2/V s [1–3,6], which make BP a favorable
material for the next generation electronics.

The low energy dispersion of bulk BP around Z point can be
well described by an anisotropic two-band k · p Hamiltonian
[16,17]. One can obtain the low-energy Hamiltonian for BP
thin films (TFs) by applying a confinement in the perpendicular
z direction. To date, various interesting properties for BP TFs
have been predicted theoretically and verified experimentally,
particularly those related to the strain induced gap modifi-
cation [4], tunable optical properties [18], layer controlled
anisotropic excitons [13,19], anisotropic Landau levels (LLs)
[20], anomalous magneto-optical properties [21,22], quantum
Hall effect [23], and quantum oscillations [24–29]. However,
less attention has been paid to the effective g factor in BP
TFs [23]. The effective g factor is defined by the scaling
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factor g∗ between the external magnetic field B and the
spin-splitting energy (g∗μBB). It always deviates from 2.0
(the bare Landé g factor g0 in the vacuum) in conventional
semiconductors [30–33] since the spin-orbit coupling and
electron-electron interactions can affect the quasiparticle
energies and renormalize their energy levels, leading to a
correction to the spin-splitting energy and the bare electron
g factor. A better knowledge of the effective g factor is
important for the understanding of magnetotransport, quantum
oscillations, magneto-optical spectra of BP, which is just like
what had been done in conventional semiconductors [30–33],
i.e., the two-dimensional (2D) electron gas in the interface of
GaAs/AlGaAs.

In this work we theoretically investigate the effective g

factor in the BP TFs based on a multiband k · p theory.
We demonstrate that the effective single particle g factor in
pristine BP TF is anisotropic arising from its anisotropic band
structure with g∗

xx ≈ g∗
yy ≈ 2.0 and g∗

zz sensitively depending
on the interband coupling and the band gap. The g∗

zz in pristine
BP ranges from 2.14 to 2.90 as the BP thickness increases
from monolayer to bulk. It approaches 2.0 with increasing
hole doping density and gate electric field since both of
them minish the interband coupling by reducing the overlap
integral between the electron and hole wave functions. We also
estimate the exchange interaction enhancement on the effective
single particle g factor by using the screened Hartree-Fock
approximation. The exchange interaction enhanced g factor
(gex) shows maxima (minima) at odd (even) filling factors. The
effective g factor (g∗) oscillates with the increase of magnetic
fields and sensitively depends on the Landau level broadening
as well as the gate electric field because both of them affect
the interband coupling and electron-electron interaction.

The paper is organized as follows. In Sec. II we calculate
the electronic structure of BP TFs self-consistently and the
single particle g factor as well as the exchange interaction
enhancement on it. In Sec. III we present some numerical
examples and discussions on the band structure and g factor
of BP TFs. Finally, we summarize our results in Sec. IV.
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FIG. 1. Schematic illustration of experimental setup on black
phosphorus (BP) thin film (TF) structure, which is sandwiched by
the hexagonal boron nitrogen (h-BN) TFs to avoid degeneration. The
graphite back gate induces a strong electric field in the BP TF.

II. MODEL AND FORMULISM

A. Electronic structure of BP TFs

In black phosphorus thin films, breaking translation sym-
metry in the z direction moves the direct gap from the Z point
to the � point. The low-energy effective Hamiltonian of BP
TFs around � point can be expressed by H = Hk‖ + Hkz

with
its in-plane and out-of-plane dynamics taken separately. The
in-plane part is given by [16,17]

Hk‖ =
(

Ec + αck
2
x + βck

2
y γ kx

γ kx Ev − αvk
2
x − βvk

2
y

)
, (1)

where Ec = 0.15 eV (Ev = −0.15 eV) is the conduction
(valence) band edge of bulk BP, αc,v and βc,v are related
to the effective masses by α(c,v) = �

2/2m(c,v)x and β(c,v) =
�

2/2m(c,v)y with [16] mcx = 0.15, mcy = 1.07, mvx = 0.12,
mvy = 0.71, and γ = 2.308 eV nm describes the interband
coupling between conduction and valence band. We take the
free electron mass m0 as the unit of all the effective masses
throughout the paper. The out-of-plane Hamiltonian is given
by

Hkz
=

(
ηck

2
z 0

0 −ηvk
2
z

)
+ eEzz + V (z), (2)

where η(c,v) = �
2/2m(c,v)z with mcz = 0.29 and mvz = 0.61,

Ez is the graphite back gate induced electric field (see Fig. 1),
and V (z) describes the potential profile in the z direction which
consists of the hard wall confining potential at the sample
surfaces, and Vin(z) is the internal electrostatic potential caused
by charge distribution in the TFs.

For a finite thickness BP with given electric field and V (z),
the subbands εj and the corresponding eigenstates ϕj (z) can
be obtained numerically by diagonalizing the Schrödinger
equation Hkz

(−i∂z)ϕj (z) = εjϕj (z), where j is the subband
index. On the other hand, the internal electrostatic potential
Vin(z) is determined by the Poisson equation

d2Vin(z)

dz2
= − [n(z) + p(z) + Nd (z)]

ε
, (3)

where n(z), p(z), and Nd (z) are the densities of electrons,
holes, and dopant in the z direction, respectively, and ε is the
dielectric constant. Meanwhile, n(z) and p(z) can be obtained

from [34,35]

n(z) = −|e|2kBT

π�2

∑
j

mj∗
c F

(
Ef − Ec − εc

j

)∣∣ϕc
j (z)

∣∣2
,

p(z) = |e|2kBT

π�2

∑
j

mj∗
v F

(
Ev + εv

j − Ef

)∣∣ϕv
j (z)

∣∣2
, (4)

where c and v refer to the conduction band and valence
band, respectively, F (E) = ln [1 + exp (E/kBT )] with Ef is
the Fermi energy, and m

j∗
c (mj∗

v ) refers to the effective mass

given by [34]
√

m
j∗
cxm

j∗
cy (

√
m

j∗
vxm

j∗
vy ). Solving the Schrödinger

and Poisson equations self-consistently [34,35], we obtain the
band structure and corresponding eigenstates of BP TFs.

B. Effective single particle g factor of BP TFs

The effective g factor is defined by the scaling factor g∗
between the external magnetic field B and the spin-splitting
energy Es = g∗μBB. Armed with the electronic structure of
the BP TFs obtained in Sec. II, we now calculate the effective
single particle g factor of 2D hole gas in BP TFs based on a
multiband k · p theory. Within the k · p framework, we find
that the analytical form of the components for the effective
single particle g factor tensor in a crystal is given by

g∗
αβ = g0

[
δαβ + 1

im0

∑
l

P α
n,lP

β

l,n − P
β

n,lP
α
l,n

E
(0)
n − E

(0)
l

]
, (5)

with P = p+ �

4m0c2 (σ × ∇V ), P α
n,l = 〈n|Pα|l〉, P

β

l,n =
〈l|Pβ |n〉, where |n〉 is the Bloch state corresponding to the
nth Bloch band E(0)

n , g0 = 2.0 is the bare Landé g factor in
the vacuum. The sum index l runs over all the Bloch bands
except the nth. The detail derivation of Eq. (5) is presented in
Appendix A. For the effective single particle g factor of the
conduction and valence band, we can approximately take the
summation in Eq. (5) runs over only �+

2v and �−
4c band because

only the interband coupling 〈�−
4c|px |�+

2v〉 is dominant among
all the symmetry allowed interband couplings related to the
conduction and valence band [36] . Therefore, we obtain the
effective single particle g factor as

g∗
xx = g0 + g0

im0

QyQ
∗
z − QzQ

∗
y

E
(0)
�+

2v,↑
− E

(0)
�−

4c,↑
,

g∗
yy = g0 + g0

im0

QzQ
∗
x − QxQ

∗
z

E
(0)
�+

2v,↑
− E

(0)
�−

4c,↑
, (6)

g∗
zz = g0 + g0

im0

QxQ
∗
y − QyQ

∗
x

E
(0)
�+

2v,↑
− E

(0)
�−

4c,↑
,

with matrix elements Qj = 〈ϕ+
2v|ϕ−

4c〉〈�+
2v,↑|Pj |�−

4c,↑〉(j =
x,y,z), where ϕ is the envelope function obtained in Sec. II A.
It has been shown that the dominant components of electron
states near � point are pz orbital [4,36,37], 〈�+

2v,↑|Pz|�−
4c,↑〉

is therefore very small, and can be safely neglected. Hence,
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we have

g∗
xx 	 g∗

yy 	 2.0, g∗
zz 	 g0

(
1 + 2α42Px1|〈ϕ+

2v|ϕ−
4c〉|2

Egm0

)
,

(7)
where Px1 = 〈�+

2v|px |�−
4c〉 are the interband couplings be-

tween �+
2v and �−

4c, α42 = i�
4m0c2 〈�−

4c|∂xV |�+
2v〉 are the param-

eter related to the spin-orbit coupling in BP, and 〈ϕ+
2v|ϕ−

4c〉 =
〈ϕv|ϕc〉 is the overlap of the electron and hole wave functions.
The parameter Px1 can be extracted from the interband cou-
pling as [4] Px1 = γm0/� = 1.99 × 10−6 eV s/m. While the
parameter α42 can be determined with the help of experiment
data. According to a recent magnetotransport experiment in a
7.5 nm hole doped BP TF [27], the band gap Eg is 0.57 eV and
the g∗

zz extracted from the Zeeman energy is 2.47. The overlap
integral 〈ϕv|ϕc〉 can be obtained from the self-consistent
calculation. The hole concentration nh in the experimental
sample ranges from 2.5 to 4.7 (in unit of 1012 cm−2). We
find that the overlap integral 〈ϕv|ϕc〉 is 0.9978, 0.9968, 0.994
for doping concentration 2.5, 3, 4 (in unit of 1012 cm−2).
Hence, we can safely take 〈ϕv|ϕc〉 as 0.996. According to
the fact of these experimental data, we obtain that α42 is
3.86 × 10−7 eV s/m. Meanwhile, the band gap follows [19]
EN

g = A/N0.73 + B with A = 1.7 eV, B = 0.3 eV for pristine
BP TFs. It is worthwhile to note that Eq. (7) is also applicable
to the effective single particle g factor of conduction band.

C. Exchange interaction enhancement on the g factor

In this section we evaluate the exchange interaction
enhancement on the g factor via a screened Hartree-Fock
approximation. We only evaluate the enhancement on g∗

zz

which is the most interested component of the g factor
tensor in BP TFs. The expression for the exchange interaction
enhancement to the Landau level (LL) energy, calculated by
using the wave functions 

(σ )
n,ky

(r,z) is given by [32]

�(σ )
n = −

∑
n′,σ ′

∑
ky ,k′

y

∫
dz

∫
dz′

∫
d2r

∫
d2r′

×[


(σ )
n,ky

(r,z)
]†[


(σ ′)
n′,k′

y
(r′,z′)

]†
V (r − r′,z,z′)

×
(σ ′)
n′,k′

y
(r,z)(σ )

n,ky
(r′,z′), (8)

where V (r − r′,z,z′) is the Coulomb interaction potential
donating the interaction between two point charges at (r,z)
and (r′,z′), and 

(σ )
n,ky

(r,z) is the single particle states. The

method to obtain 
(σ )
n,ky

(r,z) is presented in Appendix B. Using
the the Fourier transformation of the Coulomb potential

V (r − r′,z,z′) =
∫

d2q
(2π )2

K(q,z,z′)eiq·(r−r′), (9)

the exchange interaction energy can be rewritten as

�(σ )
n = −

∑
n′,σ ′

∑
ky ,k′

y

∫
d2q

(2π )2

∫
dz

∫
dz′φ(σ )(z)φ(σ ′)(z)

×φ(σ ′)(z′)φ(σ )(z′)J σ,σ ′
n,n′ (q)K(q,z,z′)J σ ′,σ

n′,n (−q),

with

J
σ,σ ′
n,n′ (q) = 〈

�
(σ )
n,ky

(r)
∣∣eiq·r∣∣�(σ ′)

n′,k′
y
(r)

〉
=

M∑
m,m′=0

(
cv,n∗
m c

v,n′
m′ + dv,n∗

m d
v,n′
m′

)〈m,ky |eiq·r|m′,k′
y〉,

while J
σ ′,σ
n′,n (−q) = 〈�(σ ′)

n′,k′
y
(r′)|e−iq·r′ |�(σ )

n,ky
(r′)〉 is similar to

J
σ,σ ′
n,n′ (q). The form factors Fmm′(q) = 〈m,ky |eiq·r|m′,k′

y〉 for
m′ � m case is

Fmm′(q) =
√

m!2m

m′!2m′ (iκqlB)m
′−mei(m′−m)θLm′−m

m

(
κ2q2l2

B

2

)
×e−κ2q2l2

B/4eiκqy (ky+k′
y )l2

B/2δky,k′
y−qy

, (10)

where q =
√

q2
x + q2

y , θ = arctan(qx/qy), and Lα
n(x) is the

associate Laguerre polynomials. For m′ < m case, it can be
determined by the identity Fmm′(q) = [Fmm′(−q)]∗. Using
the relations

∑
kx

→ LxLy/2πl2
B , d2q = qdqdθ , finally, we

obtain the exchange interaction correction energy as

�(σ )
n = −

∑
n′,σ ′

v
(σ ′)
n′

∫
dθ

∫
qdq

(2π )2

∫
dz

∫
dz′|φ(σ )(z)|2

×J
σ,σ ′
n,n′ (q)K(q,z,z′)J σ ′,σ

n′,n (−q)|φ(σ ′)(z′)|2, (11)

with

v(σ )
n = 2πl2

B

∫ [
1 − f

(
E(σ )

n

)]
D

(
E − E(σ )

n

)
dE, (12)

where v(σ )
n is the filling factor in the hole band as we mainly

focus on the hole doped samples, and D(E − E(σ )
n ) is the

density of states of each LL. In order to take into account the
LL broadening arising from the random potential caused by
defects and impurities in actual samples, we use a Gaussian

profile for D(E), which is given by D(E) = 1
2πl2

B

√
2π�

e
− E2

2�2 .

We take the LL broadening as � = �0

√
B to include the

magnetic field dependent effect. On the other hand, the Fourier
transform of the Coulomb potential is determined by the
equation below:(

q2 − ∂2

∂z2

)
K(q,z,z′) = −2πe2

ε
δ(z − z′), (13)

with the solution given by K(q,z,z′) = 2πe2

εq
e−q|z−z′ |, where

ε is the dielectric constant. Furthermore, to include the
contribution of the spatial dispersion through the screening
effect in the two-dimensional hole gas into the exchange
interaction correction energy, we have to make a change
as K(q,z,z′) → K(q,z,z′)/̃ε(q), where ε̃(q) is the dielectric
function. In the long-wave Thomas-Fermi approximation the
two-dimensional hole gas dielectric function has the following
form [32]:

ε̃(q) = 1 +
∑
n,σ

D
(
EF − E(σ )

n

) ∫
dz

∫
dz′|φ(σ )(z)|2

×J
σ,σ ′
n,n′ (0)K(q,z,z′)J σ ′,σ

n′,n (0)|φ(σ ′)(z′)|2. (14)
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FIG. 2. Band profile and electron density for states in the con-
duction (blue lines) and valence (red lines) band obtained from self-
consistent calculations for hole doping density nh = 5 × 1012 cm−2

with gate electric field (a) Ez = 0 and (b) Ez = 0.5 MV/cm. The
dielectric function ε = 10 and temperature T = 30 K. Notably, the
density probabilities for electron and hole ground states are both
positive and plotted schematically in the figure to describe the spatial
distribution of electron and hole states in the BP thin film without and
with external electric fields.

The energy of the LLs therefore has the form

Ẽ(σ )
n = E(σ )

n + �(σ )
n , (15)

with the exchange interaction taken into account. The effective
g factor can be extracted from

g∗ =
∣∣Ẽ(↑)

nF
− Ẽ

(↓)
nF

∣∣
μBB

= g∗
zz +

∣∣�(↑)
nF

− �
(↓)
nF

∣∣
μBB

= g∗
zz + gex,

(16)
where μBB is the spin splitting arising from Zeeman effect
and gex is the exchange interaction enhanced g factor.

III. RESULTS AND DISCUSSIONS

In what follows, we will give some numerical examples and
discussions on the band structure and the effective g factor
for BP TFs. Figure 2 presents the band profile and electron
density for states in conduction (blue lines) and valence (red
lines) band for a 10 nm BP TF under hole doping density
nh = 5 × 1012 cm−2 and T = 30 K (a) with and (b) without
gate electric field. According to our calculations, only the first
hole band is occupied. As shown in Fig. 2(a), we find that the
build-in electric field arising from the doping pushes the holes
to the two surfaces of TFs but the hole wave function still
has a large overlap with the electron’s. Here the band edges
are adjusted to reproduce the estimated gap [19] (Ec + ε1

c −
Ev − ε1

v ≈ 0.5) of a 10 nm TF (N ≈ 20). When a gate electric
field Ez = 0.5 MV/cm is applied as depicted in Fig. 2(b),
the energy gap remains ∼0.32 eV due to the screening effect.
However, the gate electrical field pushes the electrons and holes
in opposite directions, leading to spatially separated electron
and hole states. Meanwhile, we find that the free holes are
mostly confined within few BP atomic layers at the surface,
which is consistent with the recent experiment observation
[23].

FIG. 3. (a) The z component of g factor (g∗
zz ) in pristine BP TFs as

a function of the number of layers; (b) the g∗
zz versus the hole doping

concentration nh under different BP thickness; (c) the g∗
zz versus

the gate induced electric field Ez under hole doping concentration
nh = 3 × 1012 cm−2 with different thickness. The blue solid (red
dash-dotted) line represent the results for 7.5 (10) nm BP TF.

According to Eq. (7), we find that the effective single
particle g factor in pristine BP TF is anisotropic arising from
the anisotropic band structure with g∗

xx 	 g∗
yy 	 2.0, and g∗

zz

sensitively depend on the band gap and the interband coupling.
The g∗

zz can be tuned by the sample thickness and the doping
concentration as well as the gate electric field. Figure 3 presents
the g∗

zz as functions of (a) the number of BP layers (N ),
(b) the hole doping concentration, and (c) the gate electric
field. As shown in Fig. 3(a), we find that the g∗

zz in pristine BP
TFs becomes larger when the number of BP layers increases
because it minishes the band gap [19,38]. The g∗

zz in monolayer
pristine BP equals 2.14 and approaches 2.90 when the sample
is thick enough. The percentage change compared with the bare
g factor in vacuum ranges from 7% to 45% with increasing
BP thickness. From Fig. 3(b), we find that the g∗

zz decreases
with increasing doping concentration since the doping induced
build-in electric field pushes the holes to the two surfaces of
the TFs which reduces the overlap integral (〈ϕv|ϕc〉). However,
this effect is inapparent when the sample thickness decreases
[see the red dash-dotted line and the blue solid line in Fig. 3(b)]
since the overlap integral becomes larger with decreasing BP
thickness under the same doping density. Consequently, for
the ultrathin (monolayer) limit, we can safely conclude that the
g∗

zz is nearly unaffected by the doping density. Likewise, the
gate electric field has similar effect on g∗

zz with that of doping
because both of them reduce the overlap integral. However,
the effect induced by the gate electric field manifest is more
apparent. As presented in Fig. 3(c), the g∗

zz declines with the
gate electric field Ez dramatically for both 7.5 and 10 nm thick
BP TFs. The reason is that the gate electric field pushes the
electrons and holes in opposite directions [see Fig. 2(b)], which
minishes the overlap integral significantly. For relatively large
gate electric field, i.e, Ez > 0.8 MV/cm, the g∗

zz approaches
2.0 due to the spatially separated electrons and holes [see
Fig. 2(b)] which contribute to negligible interband coupling.
In this case we have g∗

xx ≈ g∗
yy ≈ g∗

zz = g0 which means that
the effective single-particle g factor in BP TF is isotropic.

Figure 4 presents (a) the exchange interaction enhanced g

factor gex and (b) the effective g factor g∗ as a function of
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FIG. 4. (a) The exchange interaction enhancement on the g factor
gex and (b) the effective g factor g∗ as a function of filling factor ν (hole
doping concentration nh = eB/h) under magnetic field B = 30 T for
different LL broadenings width � = �0

√
B meV with and without

electric field Ez (in unit of MV/cm).

filling factor (hole doping density) under a fixed magnetic
field B = 30 T for different LL broadenings � with and
without gate electric field Ez. As shown in Fig. 4(a), we find
that the gex shows maxima at the Fermi level for odd values
of the LL filling factor, arising from the maximal difference of
the hole concentrations with opposite spins |n↑ − n↓|. How-
ever, the hole numbers with opposite spin at even filling factors
are almost the same, leading to the minimum enhancement
to the g factor because of the minimum |n↑ − n↓|, which is
similar to that in conventional two-dimensional (2D) electron
gas [32,33]. The gex decreases with increasing LL broadening
� since larger LL broadening heightens the screening effect
and reduces the difference of hole numbers with opposite
spins. When a gate electric field is applied, the holes are
pushed into only one side of the sample located at about
three atomic BP layers [see the |ϕv|2 shown in Fig. 2(b)].
In consequence, compared with the zero electric field case, the
distance of the holes are reduced and therefore the Coulomb
interaction is enhanced, leading to a larger gex for the same
LL broadening. From Fig. 4(b) we find that the behavior of
the effective g factor g∗(=g∗

zz + gex) is similar to that of gex.
However, the gate electric field has dual influence on g∗. On
one hand, the gate electric field minishes the g∗

zz via reducing
the overlap integral. On the other band, it enlarges the gex

via decreasing the distances of the holes which contributes to
enhanced Coulomb interaction. Hence, we find crosses in the
g∗ for finite gate electric field and the zero case for the same
LL broadenings.

Figure 5 displays (a) the exchange interaction enhanced
g factor gex and (b) the effective g factor g∗ as a function

FIG. 5. (a) The exchange interaction enhancement on the g factor
gex and (b) the effective g factor g∗ as a function of magnetic field
B when the hole doping density is 2.0 × 1012 cm−2 for different LL
broadenings � = �0

√
B meV with and without electric field Ez (in

unit of MV/cm).

of magnetic field under hole doping density 2.0 × 1012 cm−2

for different LL broadenings � with and without gate electric
field Ez. As illustrated in Fig. 5(a), when the magnetic field
increases, the degeneracy of each LLs lifts by Zeeman splitting,
and the Fermi level shifts from the paired spin split LLs one by
one. Therefore, we find that the gex oscillates with the magnetic
field and shows maxima (minima) at odd (even) filling factors.
The gex sensitively depends on the LL broadening � since it
affects the screening effect [see Eq. (14)] and the difference of
the hole numbers between opposite spins |n↑ − n↓|. Notably,
we observe that the gex factor becomes nearly a constant (see
the blue dashed and navy dash-dotted lines) for relatively large
LL broadening because the Zeeman gap is nearly quenched
in this circumstance. We believe that the constant gex is
more close to the experiment data since the broadening of
photoluminescence (PL) spectra is about 20 meV [39], which
implies that there are a large number of defects and impurities
in the sample. And this will result in a large LL broadening.
When a gate electric field is applied, the holes are pushed into
only one side of the sample which minishes the distance of
the holes [see the |ϕv|2 shown in Fig. 2(b)]. Consequently, the
Coulomb interaction is enhanced which leads to a larger gex

for the same LL broadening compared with that of zero gate
electric field case. From Fig. 5(b) we find that the g∗ break
into two branches arising from different g∗

zz under zero and
finite gate electric field. The g∗

zz is 2.51 and 2.0, respectively,
corresponding to Ez equal to 0 and 0.5 MV/cm. Other features
of the g∗ is similar with that of the gex.
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IV. SUMMARY

In summary, we theoretically studied the effective g factor
in the BP TFs based on a multiband k · p theory. We demon-
strated that the effective single particle g factor in pristine BP
TF is anisotropic arising from its anisotropic band structure
with g∗

xx ≈ g∗
yy ≈ 2.0 and g∗

zz sensitively depending on the
interband coupling and band gap. The g∗

zz in pristine BP ranges
from 2.14 to 2.9 as the BP thickness increases from monolayer
to bulk. It approaches 2.0 with increasing hole doping density
and gate electric field since both of them minish the interband
coupling by reducing the overlap integral between the electron
and hole wave functions. We also estimated the exchange
interaction enhancement on the effective single particle g

factor by using the screened Hartree-Fock approximation. The
exchange interaction enhanced g factor (gex) shows maxima
(minima) at odd (even) filling factors. The effective g factor
(g∗) oscillates with increasing magnetic fields and sensitively
depends on the Landau level broadening as well as the gate
electric field because both of them affect the interband coupling
and electron-electron interaction.
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APPENDIX A

In this Appendix we present the detail derivation for the
effective single particle g factor. Within the k · p framework,
the Schrödinger equation can be expressed as [40,41]

∑
n′

⎛⎝∑
αβ

Dnn′αβkαkβ − Eδnn′

⎞⎠ψn′ = 0, (A1)

where the Hamiltonian matrix element coefficients are given
by

Dnn′αβ = �
2

2m0
δnn′δαβ + �

2

m0

∑
l

P α
n,lP

β

l,n

E
(0)
n − E

(0)
l

, (A2)

with P = p+ �

4m0c2 (σ × ∇V ), P α
n,l = 〈n|Pα|l〉, P

β

l,n =
〈l|Pβ |n〉, where |n〉 is the Bloch state corresponding to the
nth band E(0)

n . The sum index l runs over all the Bloch bands
except the nth. Hence, the secular equation can be written as

∑
n′

⎛⎝∑
αβ

1

2

[
DS

nn′αβ{kα,kβ} + DA
nn′αβ[kα,kβ]

] − Eδnn′

⎞⎠ψn′

= 0, (A3)

where DS
nn′αβ and DA

nn′αβ are the symmetric and asym-
metric part of Dnn′αβ (i.e., DS

nn′αβ = (Dnn′αβ + Dnn′βα)/2
and DA

nn′αβ = (Dnn′αβ − Dnn′βα)/2), respectively. [kα,kβ] and
{kα,kβ} are commutator and anticommutator, respectively.

DS
nn′αβ can be written as

DS
nn′αβ = �

2

2m0

(
δnn′δαβ +

∑
l

P α
n,lP

β

l,n′ + P
β

n,lP
α
l,n′

E
(0)
n − E

(0)
l

)
, (A4)

and the antisymmetric part DA
nn′αβ is given by

DA
nn′αβ = �

2

2m0

∑
l

P α
n,lP

β

l,n′ − P
β

n,lP
α
l,n′

E
(0)
n − E

(0)
l

. (A5)

When the system is subjected to a magnetic field, the secular
equation becomes∑

n′

(∑
αβ

1
2

[
DS

nn′αβ{kα,kβ} + DA
nn′αβ[kα,kβ]

]
+μBσ · B − Eδnn′

)
ψn′ = 0,

(A6)

where the Bohr magneton μB = |e|�/2m0, [kα,kβ] =
εαβγ eBr/i�, and εαβγ is the Levi-Civita symbol. We consider
an external magnetic field applied along z axis. The momentum
p is now replaced by the canonical momentum p → p + eA,
where A = B(−y,x,0)/2 is the vector potential adopting the
symmetry gauge. In this case, [kα,kβ] = 2m0μBB/i�2, the
secular equation becomes

∑
n′

⎛⎝μB
�

2

2im0

∑
l

P α
n,lP

β

l,n′−P
β

n,lP
α
l,n′

E
(0)
n −E

(0)
l

Bz + μBmsBz

+∑
αβ

1
2DS

nn′αβ{kα,kβ} − Eδnn′

⎞⎠ψn′ = 0,

(A7)
then we obtain the analytical form of the effective magnetic
moment of the electron in a crystal:

μ = μB

[
δαβ + 1

im0

∑
l

P α
n,lP

β

l,n − P
β

n,lP
α
l,n

E
(0)
n − E

(0)
l

]
. (A8)

Hence, the components of the g factor tensor g = 2μ/μB is
given by

g∗
αβ = g0

[
δαβ + 1

im0

∑
l

P α
n,lP

β

l,n − P
β

n,lP
α
l,n

E
(0)
n − E

(0)
l

]
, (A9)

which is just the analytical expressions of the effective single
particle g factor tensor in Eq. (5).

APPENDIX B

To estimate the influence of the exchange interaction on
the effective single particle g factor of BP TF under a
perpendicular magnetic field, we first have to calculate the
2D electron spectrum in the absence of exchange interaction,
i.e., the single particle states. In this Appendix we present the
derivation of the single particle state 

(σ )
n,ky

(r,z). In this case, the
Hamiltonian for the system turns into HTF = Hk|| + Hz + Hkz

,
where Hz = 1

2g∗
zzσμBB is the Zeeman energy with g∗

zz the
single particle g factor calculated in Sec. II B, σ = ±1
donates spin up and down, respectively. Owing to the strong
confinement of perpendicular magnetic field, we can decouple
the motion of electron in the x-y plane and the z direction.
We have solved the z dependent part of Hamiltonian HTF self-
consistently and obtained the subbands with the corresponding
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wave functions ϕj (z) in Sec. II B. Here we only need to focus
on the in-plane part.

When a perpendicular magnetic field B = (0,0,B) is
applied, taking Landau gauge A = (0,Bx,0) and defining the

creation operators as â =
√

mcxωc

2�
(x + x0 + i

px

mcxωc
), we find

that the in-plane part Hamiltonian Hk|| turns into

Hk|| =
(

Hc Hcv

H ∗
cv Hv

)
, (B1)

where Hc = E
j
c + (â†â + 1

2 )�ωc + 1
2g∗

zzσμBB,Hv = E
j
v −

(â†â+ 1
2 )�ωv+(â2+â†2)�ω′+ 1

2g∗
zzσμBB,Hcv = �ωγ (â+â†),

ωc = 2
√

αcβc/ l2
B is the cyclotron frequency, x0 = l2

Bky

is the cyclotron center, and lB = √
�/eB is the magnetic

length, E
j

c/v are the thickness dependent subband edges
which can be determined by the self-consistent calculations
ωγ = γ rxy/

√
2�lB , ωv = (rx + ry)ωc, ω′ = (rx − ry)ωc/2,

with rxy = (βc/αc)1/4, rx = αv/2αc, and ry = βv/2βc. The
eigenvalues and eigenvectors can be evaluated numerically
by taking the eigenvectors |n,ky〉 of the number operator

n̂ = â†â as the basis functions. In real space representation,
〈x|n,ky〉 = eiky y√

Lx
φn[κ(x + x0)/lB], φn[κ(x + x0)/lB] are the

wave functions of one-dimensional harmonic oscillator with
cyclotron center x0 and κ = 1/rxy . Therefore, the in-plane
part wave function of the system can be expressed as

�
(σ )
j,n,ky

(x,y) =
M∑

m=0

(
cn
m

dn
m

)
|m,ky〉, (B2)

where n is the Landau level (LL) index and j is the subband
index. Throughout the paper, we only focus on the LLs belong
to the first hole subband of BP TFs. The index j for wave
functions and matrix elements of different operators will be
omitted. Combining with the wave functions of the z direction,
we obtain the wave function of the system 

(σ )
n,ky

(r,z) given by


(σ )
n,ky

(r,z) = ϕ(σ )(z)�σ
n,ky

(x,y). (B3)

Under the help of the above wave functions, we can calculate
the exchange interaction enhancement to the LL energy and
extract the enhanced g factor from it.
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