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Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals
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We identify a possible mechanism of the plasmon instabilities in periodically gated two-dimensional electron
systems with a modulated electron density (plasmonic crystals) under direct current. The instability occurs due
to the amplified reflection of the small density perturbations from the gated/ungated boundaries under the proper
phase-matching conditions between the crystal unit cells. Based on the transfer-matrix formalism, we derive
the generic dispersion equation for the traveling plasmons in these structures. Its solution in the hydrodynamic
limit shows that the threshold drift velocity for the instability can be tuned below the plasmon phase and carrier
saturation velocities, and the plasmon growth rate can exceed the collisional damping rate typical of III–V
semiconductors and graphene at room temperature.
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I. INTRODUCTION

The emission of terahertz (THz) radiation from two-
dimensional electron systems (2DESs) under direct current has
been observed in a large number of experiments, starting from
the pioneering work of Tsui, Gornik, and Logan [1]. At the
current stage of technology, the emission from these structures
remains up to room temperature [2], and its frequency is
voltage tunable from 0.5 to 2 THz [3], while the linewidth
can be as narrow as ∼40 GHz [4]. It is commonly accepted
that the radiation appears as a result of plasmon excitation
[1,5–7] in 2DESs and the subsequent coupling of plasmons
to the free-space radiation upon interaction with single [7]
or multiple [8] metal gates. The periodically gated 2DESs
typically demonstrate emissions of higher power and narrower
linewidth [4,9,10] compared to the plasmonic transistors
with a single gate. Despite these experimental advances, no
accepted theory on the mechanism of plasmon self-excitation
in grating-gated plasmonic nanostructures exists.

Early works have suggested the excitation of plasmons by
hot electrons [11]. However, in the latest experiments [4]
the emission starts in a thresholdlike manner, which signifies
the occurrence of plasma instability. In the simplest case
of dc electron flow in a 2DES parallel to the conducting
gate, the dissipative instabilities [12] can develop at a drift
velocity equal to the plasmon velocity. A similar estimate of
threshold velocity was obtained for amplified transmission
of radiation through a periodically gated 2DES with uniform
density [5,6,13]. Such high velocity can hardly be achieved
in an experiment, particularly due to the choking of electron
flow [14].

*aleksandr.petrov@phystech.edu

The onset of terahertz emission in grating-gated 2DESs at
low longitudinal electric field (∼1 kV/cm in [10]) motivated
the search for the low-threshold plasmon instabilities. In
Refs. [15–17] it was supposed that the latter can emerge due
to the transit time effects in the high-field domains of 2DESs.
However, the transit time effects generally require deviations
from the linear relation between the current and electric field,
e.g., due to velocity saturation. The voltage drop across each
cell of an experimentally relevant grating-gated 2DES [9]
is less than 20 mV, and the transit time effects should be
suppressed at such voltages.

A new class of plasma instabilities based on amplified
plasmon reflection in bounded 2DESs was put forward by
Dyakonov and Shur [7]. Their threshold velocity is limited
only by the carrier scattering by impurities or phonons and can
be made very low in sufficiently clean systems. At the same
time, the Dyakonov-Shur (DS) instability relies on essentially
asymmetric boundary conditions at the 2DES contacts: the
impedance at the drain should be greater than that at the source
[18]. Such asymmetry is not present in a weakly biased isolated
gated cell in an infinite 2DES [Fig. 1(b)].

In the present paper, we theoretically show that the
reflection-type plasma instabilities can develop in periodically
gated 2DES (plasmonic crystals) with a modulated electron
density [see Fig. 1(a)]. We find that the traveling waves with
quasimomentum not at the edge of the plasmonic Brillouin
zone are generally more unstable than purely periodic waves
considered in Refs. [6,13]. We show that the drift velocity
required for the emergence of unstable modes can be well
below the plasmon phase velocity. This is in contrast to the
case of “plasmonic boom” instabilities in all-gated plasmonic
crystals with a varying carrier density [19] or varying width
[20] that occur at “superplasmonic” drift velocities. Remark-
ably, the proposed mechanism of instability requires neither
transit-time nor velocity saturation effects [15,16]. It can thus
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FIG. 1. (a) Schematic view of a field-effect transistor with
a two-dimensional conducting channel and periodic grating-gate
structure. Schematic view of plasmon reflections from gated/ungated
boundaries (b) under an isolated gate in an infinite 2DES and (c) in
the multigate structure. The reflection from the right boundary leads
to the wave amplification under direct current, while the reflection
from the left boundary leads to the wave attenuation in (b). However,
this attenuation can be compensated by the wave incident from the
neighboring cell in (c). The symbols T̂b, T̂g , T̂ −1

b , and T̂u stand for the
transfer matrices describing the plasmon propagation across the parts
of plasmonic crystal.

be responsible for the plasmon instabilities and THz emission
in grating-gate structures with graphene and GaN channels,
where the critical field and saturation velocity are very large
[21].

Our mechanism of instability can be understood as follows.
In a single gated cell of a plasmonic crystal, the downstream
plasmon undergoes an amplified Dyakonov-Shur reflection
from the gated/ungated boundary [22,23]. In an isolated gated
cell, the reflected upstream wave would be attenuated upon
the reflection from the opposite boundary. But under proper
phase-matching conditions in multigate structures, the fraction
of the plasmon energy from the previous cell can compensate
the reflection loss of the upstream wave [Fig. 1(c)]. This
periodic amplified reflection results in the net instability.

In Sec. II, we derive the generic dispersion equation for
the plasmons in a periodically gated 2DES in the presence
of the electron drift and discuss the stability of the solutions.
In Sec. III, we find the eigenfrequencies and the growth rates
of the unstable plasmonic modes in the hydrodynamic limit.
Section IV discusses the possible experimental manifestations
of this instability and further extensions of the model.

II. PLASMON DISPERSION AND CONDITIONS
OF INSTABILITY

To provide a quantitative picture of plasmon instability in
the structure shown in Fig. 1(a), we derive the dispersion
equation for the traveling waves with a nonzero Bloch phase
θ = qL, where q is the quasimomentum and L is the length

of the plasmonic crystal cell. According to the microscopic
studies of wave reflection at the gated/ungated boundary [24],
the net amplitude of the wave can be approximated as a sum of
the “fast” downstream and “slow” upstream plasmons in both
the gated and ungated sections. This so-called quasioptical
approximation provides sufficient accuracy for long ungated
sections and/or high frequencies [25]. We denote the plasmon
wave vectors as k

g,u
± , where the plus sign stands for the

downstream waves, the minus sign stands for the upstream
waves, and the superscripts g and u denote the gated and
ungated sections, respectively. The amplitudes of electric
potential in these waves are denoted as δϕ

g,u
± .

Let us compose the vectors δϕg,u = {δϕg,u
+ ,δϕ

g,u
− }T. In the

neighboring cells of the crystal, they can differ only by the
factor eiθ . On the other hand, they are related via the transfer
matrix of the unit cell T̂ , δϕN = T̂ δϕN+1. This leads us to the
general dispersion equation [26]

det(T̂ − Î eiθ ) = 0, (1)

where Î is the identity matrix. The transfer matrix of the unit
cell is represented as the product of four matrices indicated
in Fig. 1(c), T̂u, characterizing the ungated section; the matrix
of the wave reflection and transmission at the ungated/gated
boundary T̂b; the transfer matrix of the gated part T̂g; and T̂ −1

b
for another boundary:

T̂ = T̂u · T̂b · T̂g · T̂ −1
b . (2)

The transfer matrices of free wave propagation T̂g,u have
the diagonal form

T̂g,u =
(

eik
g,u
+ Lg,u 0

0 eik
g,u
− Lg,u

)
, (3)

where Lg and Lu are the lengths of the gated and ungated
regions, respectively. Keeping in mind the flow-induced
nonreciprocity, we can present the T matrix describing the
boundary as [27,28]

T̂b = 1

t+

(
1 −r−
r+ t−t+ − r−r+

)
, (4)

where r+(−) and t+(−) are the reflection and transmission
coefficients of the waves incident from the ungated (gated)
region. In the absence of drift, r+ = −r−. In the presence of
current, the reflection coefficients r+ and r− have different
moduli, in particular due to the difference of the forward and
backward wave velocities.

Knowing all elements of the T matrices, one readily obtains
the dispersion equation for plasmons in a drifting 2DES with
a grating gate:

cos

(
θ + k

g
+ + k

g
−

2
Lg + ku

+ + ku
−

2
Lu

)

= cos

(
k

g
+ − k

g
−

2
Lg

)
cos

(
ku
+ − ku

−
2

Lu

)

−Z sin

(
k

g
+ − k

g
−

2
Lg

)
sin

(
ku
+ − ku

−
2

Lu

)
, (5)

where

Z = 1 − 2 r+r−/(t+t−) (6)
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FIG. 2. Dispersion curves ω′(θ ) (solid lines, left scale) and
plasmon growth rates ω′′(θ ) (dashed lines, right scale) calculated for a
GaAs-based 2DES with the grating gate at different drift velocities ug

normalized by the plasma-wave velocity s. The instability develops
from the stable anticrossing at ug/s = 0.15 through the merging
of the dispersion curves (ug/s ≈ 0.17) to the unstable anticrossing
(ug/s = 0.2). The threshold velocity for instability uth ≈ 0.17 s.
Dashed circles highlight the plasmonic band gap being transformed
into the instability domain with increasing velocity.

is the “modulation depth” factor. Equation (5) is generic, and
its functional form does not depend on the transport properties
in gated and ungated sections and at the boundaries. In the
absence of a drift, it is similar to the plasmon dispersion in
a fully gated 2DES with a modulated density [19] or to the
photon dispersion in one-dimensional photonic crystals [29]
and electron dispersion in the Kronig-Penney potential. All
the information about “bulk” carrier transport in Eq. (5) is
contained in the frequency-dependent plasmon wave vectors
kg(ω) and ku(ω), while all the information about boundary
transport is enclosed in the coefficients r and t .

In what follows, we shall solve Eq. (5) for complex
plasmon frequencies ω = ω′ + iω′′ at real Bloch phase θ . The
appearance of roots with a positive imaginary part ω′′ > 0
would imply the exponential growth of the plasmon amplitude
in time, δϕ ∝ eω′′t , i.e., the plasmon instability. It appears
that the instability conditions for the waves described by
(5) can be derived in a very general form. As the system
approaches the instability with increasing drift velocity, the
stable anticrossing of the plasmon bands transforms into an
unstable one by passing through the gap shrinkage (Fig. 2)
[30]. For a real-valued coefficient Z, this shrinkage occurs
when (1) the absolute value of the right-hand side of Eq. (5)
equals unity, which is the condition of plasmonic band gap,
and (2) the frequency derivative of the right-hand side equals
zero, which is the condition of infinite smallness of the gap.
In addition, if the frequency dependence of the modulation
depth is weak, which will be justified in the next section, these
conditions are equivalent to

Z = 1, (7)

k
g
+ − k

g
−

2
Lg + ku

+ − ku
−

2
Lu = πm, m ∈ Z. (8)

Physically, the condition Z = 1 corresponds to the perfect
energy transfer from the wave in the ungated section to the
wave in the gated one, r+ = 0.

III. ANALYSIS OF THE DISPERSION RELATION

The usefulness of Eq. (5) stems from the fact that it can
be applied to a wide class of two-dimensional systems once
their plasmon dispersion relations k(ω) in the presence of drift
are known. The calculation of the reflection and transmission
coefficients governing the value of Z can also be done by
various methods differing in complexity and accuracy [24,31].

For numerical estimates of the critical velocity and insta-
bility growth rates, we use the frequency dependencies of
the wave vectors k

g,u
± (ω) obtained within the hydrodynamic

model. The latter is justified when carrier-carrier collision
frequency exceeds the plasma frequency and the frequency
of the carrier collisions with impurities and phonons. Both
the theoretical estimates [7,32] and experiments [33,34]
support the applicability of the hydrodynamic model up to
the terahertz frequencies in III–V 2DESs and graphene [35].
The simultaneous solution of Poisson, Euler, and continuity
equations (see Appendix A for details) leads us to

k
g
± = ω

ug ± s
, (9)

ku
± = ωuu ± a ∓

√
a2 ± 2aωuu

u2
u

, (10)

where ug,u are the carrier drift velocities, s = √
eVg/m∗

is the plasma wave velocity in the absence of drift, a =
πe2nu/(εm∗), nu is the carrier density in the ungated region,
Vg is the gate-to-channel bias, ε is the gate dielectric constant,
and m∗ is the electron effective mass. The latter is taken to be
0.067m0, which is appropriate for GaAs [36], a widely used
material for high-electron-mobility transistors.

The determination of the reflection and transmission co-
efficients requires an imposition of the boundary conditions
for the electric potential, drift velocity, and carrier density at
the gated/ungated interface. If the electron transport obeyed
the hydrodynamic equations at the transient regions as
well, the boundary conditions for the determination of r and
t would represent the continuity of (1) current and (2) carrier
energy [19,20]. The latter may be obtained by integrating the
Euler equation across the transient region. However, the length
of the transient regions is comparable to the screening length
in the 2DES and is generally smaller than the collision-limited
free path. This makes the ballistic description of the transport
at the boundary favorable to the hydrodynamic approach.

Within the ballistic approach, the current across the bound-
ary is calculated as the difference of particle fluxes supplied
by the gated and ungated sections. As a result, the variation of
current δj becomes a linear function of the quasi-Fermi-level
drop across the boundary, δFg − δFu [37], which should be
used as the second boundary condition. The explicit form of
this relation is presented in Appendix B, Eq. (B11). However,
the reflection coefficient r can be determined with sufficient
accuracy (see Fig. 6) if we simply require the continuity
of electric potential across the gated/ungated boundary,
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δϕg = δϕu. This results in the following expressions for the
reflection and transmission coefficients:

r+ = −1 − 2 k
g
+d

1 + 2 k
g
+d

, r− = −k
g
+

k
g
−

1 + 2 k
g
−d

1 + 2 k
g
+d

, (11)

t+ = 4 k
g
+d

1 + 2 k
g
+d

, t− = 1 − k
g
+/k

g
−

1 + 2 k
g
+d

. (12)

With the above reflection and transmission coefficients, the
dependence Z(ω) has a smooth minimum with the minimal
value below unity at any nonzero flow velocity, which justifies
the neglect of dZ/dω in the derivation of the instability
condition. As seen from Eqs. (6) and (7), the threshold velocity
for the instability corresponds to the reflectionless passage of
the upstream plasmon from the ungated to the gated sections
(r+ = 0). At given frequency ω, this velocity is

uth = |s − 2 ωd| ≈ s

∣∣∣∣1 − 4π
d

λ

∣∣∣∣, (13)

where λ is the plasmon wavelength in the gated section. In
typical experiments [38], the plasmon wavelength λ is on the
order of hundreds of nanometers, while the gate-to-channel
separation d is several tens of nanometers. Despite the fact
that the ratio d/λ is usually small, a large prefactor of 4π in
Eq. (13) provides an extra order of magnitude to this ratio,
and the instability can develop at drift velocities far below the
plasmon velocity s.

These findings are substantiated in Fig. 2, which shows
the calculated plasmon eigenfrequency ω′(θ ) and growth rate
ω′′(θ ) in GaAs-based 2DES under the grating gate at different
drift velocities. The lengths of the gated and ungated sections
are Lg = 0.6 μm and Lu = 0.25 μm, respectively, the gate-to-
channel separation is d = 10 nm, gate dielectric permittivity
ε = 12.9, and the carrier densities are ng = 5 × 1011 cm−2

and nu = 2 × 1012 cm−2. The onset of the instability with
increasing drift velocity represents a transformation of a
stable-type plasmon band anticrossing to the unstable one via
passing through the gapless plasmon bands. In the unstable
case, the neighboring branches of the dispersion curves merge
through the complex plane with the two complex conjugate
solutions for each Bloch phase (in Fig. 2, the solutions with
ω′′ < 0 are not shown). For the parameters in Fig. 2, the
unstable mode at 2.9 THz appears at uth = 0.17 s, in agreement
with Eq. (13).

Above the threshold velocity, the waves are unstable for a
finite range of the quasiwave vectors. Generally, these unstable
wave vectors lie away from the edges of the Brillouin zone;
that is, their Bloch phase θ = qL 	= 0, 2π, 4π . The reason is
that the extrema of the plasmonic bands (being at the edges
of the Brillouin zone at zero drift velocity) are shifted away
by the Doppler effect. Within the unstable domains, the real
part of the plasmon frequency ω′ almost does not depend
on the quasiwave vector, while its imaginary part ω′′ varies
abruptly. Expanding the dispersion equation (5) near the band
anticrossing at θ ≈ θcr and ω ≈ ωcr , we find

ω′′2 = 2|θ − θcr |
(dα/dω)2

|tan[θcr + α(ωcr )]|, (14)

where α(ω) = (kg
+ + k

g
−)Lg/2 + (ku

+ + ku
−)Lu/2. Equation

(14) describes the square-root growth of the imaginary part of
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FIG. 3. Dispersion curves ω′(θ )/2π (solid lines, left scale) and
instability growth rates ω′′(θ ) (dashed lines, right scale) at high drift
velocity ug = 0.59s and other parameters as in Fig. 2.

the plasmon frequency above the critical Bloch phase observed
in Fig. 2.

As the drift velocity increases, the branches of plasmon
dispersion become denser, as illustrated in Fig. 3. This is
explained by the fact that the backward wave vector in the
gated region grows as k

g
− ∝ 1/(ug − s), and at large velocities

even a slight variation of the frequency results in a strong
variation of the right-hand side of dispersion equation (5).
One can also observe that the highest plasmon growth rate
is achieved at the frequency for which the modulation depth
Z has the minimal value. This is seen from an arc-shaped
envelope of the dependencies ω′′(θ ) in Fig. 3: the frequency
of ∼2.4 THz corresponds to the minimum of Z(ω) and to the
maximum of the unstable mode growth rate.

It is remarkable that the maximization conditions for
the instability growth rate can be derived analytically. This
maximum is achieved in the middle of the unstable domain
with respect to the quasimomentum θ , and the wider the
instability domain is, the larger the growth rate is. The center of
the unstable domain corresponds to zero-frequency derivatives
of both the left-hand (lhs) and right-hand (rhs) sides of Eq. (5).
Moreover, the instability growth rate can be maximized with
respect to all other parameters of the problem (gate length,
carrier density, etc.) by requiring the maximum difference
of the lhs and rhs of Eq. (5) in the middle of the unstable
domain. In this case, the imbalance between the rhs and lhs
as a function of real frequencies can be compensated only via
the introduction of a sufficiently large imaginary part of the
frequency.

The superposition of these requirements leads us to the
following conditions for the growth rate maximization:

Z → min, (15)

k
g
+ − k

g
−

2
Lg = π

2
+ πn, n ∈ Z, (16)

ku
+ − ku

−
2

Lu = π

2
+ πm, m ∈ Z. (17)
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The two latter equations can be considered antireflection
conditions for coatings represented by gated and ungated
regions and, at the same time, the Dyakonov-Shur eigenfre-
quency conditions for the gated and ungated plasma resonators
[7]. This supports our interpretation of the instability as an
amplified DS reflection supplemented by the perfect energy
transfer between the cells of a plasmonic crystal.

We further notice that the flow-induced corrections to the
phases in Eqs. (16) and (17) are order O(u2

g,u). When the carrier
density in the ungated region exceeds that in the gated region
(which corresponds to the range of parameters considered),
the phase (17) can be considered flow independent. This leads
us to the eigenfrequency providing the highest growth rate (at
m = 0)

ω′
res =

√
π2e2nu

εm∗Lu

. (18)

The growth rate ω′′
max at this frequency is obtained via sepa-

rating the real and imaginary parts of Eq. (5) and expanding
them with respect to ω′′ and u. This leads us to

ω′′2
max = 2[1 − Z(ω′

res)]

Z(ω′
res)T

2
1 + 4T1T2 − (T1u1/s)2

, (19)

where T1 = sLg/(s2 − u2
g) and T2 = ω′

resLu/2a.
The dependence of the maximum growth rate on the drift

velocity and the length of the ungated region is shown in
Fig. 4. The gate-to-channel separation equals 20 nm, and
the gate length is 0.17 μm. It can be seen that a length of
ungated domain L∗

u exists and the corresponding resonant
frequency ω′∗

res = s/2d such that the development of instability
is thresholdless. At higher drift velocities, the highest value of
ω′′ is also achieved roughly at that frequency. The regions
filled with white in Fig. 4 correspond to the stability of modes
with frequency ω′

res; the equation for the boundary between
stable and unstable domains is readily obtained by substituting
ω = ω′

res into the condition Z(ω,u) = 1.
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FIG. 4. Color map of the instability growth rate vs drift velocity
and the length of the ungated region at the resonant frequency
[Eq. (18)]. Gate length Lg = 0.17 μm; gate-to-channel separation
d = 20 nm. The instability at Lu = 0.25 μm is thresholdless with
respect to the drift velocity [see Eq. (13)] and has the highest growth
rate.

IV. DISCUSSION

For a realistic estimate of the instability growth rate one has
to include damping due to carrier-phonon and carrier-impurity
scattering. This can generally be achieved by adding a friction
term in the Euler equation. For high momentum relaxation
rates τp (ωτp � 1) the scattering typically reduces the growth
rate calculated within the collisionless model by 1/2τp [7].
The compensation of collisional damping by the instability
growth in GaAs at 77 K [mobility μ = 2 × 105 cm2/(Vs)]
occurs at ω′′ = 65 × 109 s−1. Under optimal conditions, this
corresponds to the velocity u∗ = 0.03 s = 1.8 × 104 m/s,
which is well below the carrier saturation velocity of
3 × 105 m/s. The reduction in the saturation velocity with
increasing temperature limits the critical temperature for plas-
mon instability in GaAs to approximately 200 K. However, in
2DESs based on different III–V semiconductors, the instability
is feasible up to room temperature. One example is InAs with
room-temperature mobility μ = 2.6 × 104 cm2/(V s) [39]
corresponding to the compensation of damping at the growth
rate ω′′ = 1.5 × 1012 s−1. This growth rate can be achieved
at u∗ ≈ 3.4 × 105 m/s, which is more than two times smaller
than the carrier saturation velocity.

Another aspect of carrier relaxation is the voltage drop
along the channel, which may distort the uniform carrier
density within a single cell of the plasmonic crystal. From the
above estimates for InAs at 300 K, we find this voltage drop to
be �V ≈ u∗Lg/μ = 11 mV, which is indeed small compared
to the gate voltage required to support the given carrier density
under the gates Vg = ms2/e = 210 mV. A further increase
in drift velocity requires considerably larger voltage drops
due to the saturation effects. Particularly, u = 3 × 105 m/s
is achieved at �V ≈ 40 mV. While the density uniformity
under a single gate is maintained even in high fields, the
uniformity over the whole crystal can be supported by applying
a gradually changing voltage to the gates with the aid of
separative capacitors [19].

The maximum attainable growth rate in Fig. 4 of
1.2 × 1012 s−1 corresponds to the momentum relaxation time
of 0.4 ps. This time is much shorter than the electron-
phonon scattering time in graphene at room temperature,
τp ≈ 3 ps [40]. Hence, one might expect the development of
amplified-reflection instabilities in graphene-based transistors
with grating gates [41]. We note, however, that the study
of plasma instabilities in graphene requires an essential
modification of hydrodynamic equations [32,42] and will be
left for future work.

For a quantitative comparison of the presented model and
experimental data on THz emission in grating-gate structures
[4] one needs to consider the reflection of the unstable traveling
waves at terminals of plasmonic crystal. The geometrical
asymmetry of the plasmonic crystal unit cell (the presence
of two gates of unequal length) should also be taken into
account. This can be done within the developed transfer matrix
formalism, although the resulting dispersion equations are
quite cumbersome. The geometrical asymmetry was shown
to be crucial for efficient THz detection in plasmonic field-
effect transistors [43] and is expected to be beneficial for
achieving the low-threshold instabilities [17], although the
full theory of the asymmetry effect on the instability has yet
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to be developed. Further possible extensions of our model
include the renouncement of quasioptical approximation and
full electrodynamic treatment of the plasmon reflection at
the boundaries, including the excitation of the evanescent
waves [24]. Within the same formalism, one can also consider
the self-excitation of the edge plasmons traveling along
the gated/ungated boundary [22], which might have larger
instability growth rates compared to the bulk modes.

In conclusion, we have theoretically demonstrated the insta-
bility of direct current flow in grating-gated 2DESs against the
excitation of traveling plasmons. The mechanism of instability
is associated with the amplified Dyakonov-Shur-type plasmon
reflection from gated/ungated boundaries and proper phase
matching of plasmons under the neighboring gates. Using
the transfer matrix approach, we have derived the generic
dispersion relation for plasmonic crystals with flow-induced
nonreciprocity. In a particular case of alternating gated and
ungated regions of a 2DES, this equation has unstable solutions
at flow velocities which can be well below the plasma wave and
saturation velocities. The growth rate of predicted instability is
of the order of (but not limited to) 1.2 × 1012 s−1, which makes
the instability feasible in InAs-based 2DESs and in graphene
at room temperature.
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APPENDIX A: PLASMON DISPERSION IN A DRIFTING
TWO-DIMENSIONAL ELECTRON GAS

In this appendix, we sketch the derivation of Eqs. (9) and
(10). The details can be found in Refs. [7,12]. The system of
hydrodynamic equations describing one-dimensional transport
in semiconductor plasma reads:

∂tn + ∂x(nu) = 0, (A1)

∂tu + u∂xu = (e/m∗)∂xϕ, (A2)

where n is the carrier density, u is the carrier drift velocity, ϕ

is the local electric potential, and ∂t and ∂x stand for the partial
derivatives with respect to the time and coordinate. Poisson’s
equation reads

∂2
z ϕ + ∂2

xϕ = 4πenδ(z), (A3)

where the z axis is directed normally to the 2DES plane
located at z = 0. In the gated section, the boundary conditions
are ϕ|z=d = 0, ϕz=−∞ = 0, where d is the gate-to-channel
separation; in the ungated section, the boundary condition
is ϕz±∞ = 0. Assuming small harmonic perturbations of all
quantities, ϕ = δϕei(kx−ωt), u = u0 + δuei(kx−ωt), n = n0 +
δnei(kx−ωt), we find the linearized equations of motion for
the electron plasma:

−i(ω − ku0)δn + ikn0δu = 0, (A4)

−i(ω − ku0)δu = ik(e/m∗)δϕ. (A5)

The solution of Poisson’s equation is presented as

−Cg,uδϕ = eδn, (A6)

where Cg,u are the effective capacitances of the gated and
ungated sections, Cg = ε/(4πd) provided kd  1, and Cu =
kε/(2π ). The criterion of consistency for Eqs. (A4)–(A6) leads
us to the dispersion laws (10). We also note that Eqs. (9)
and (10) can be obtained by applying a Galilean transform
ω → ω − ku0 to the plasmon dispersion law in the 2DES ω2 =
(4πn0e

2k/εm∗)[1 + coth(kd)]−1 [44] in the limits kd  1 and
kd � 1, respectively.

APPENDIX B: AMPLIFIED REFLECTION AT THE
GATED/UNGATED BOUNDARY

In this appendix we establish the reflection coefficient
of a plasma wave incident from the gated section to the
gated/ungated boundary. An example of the band diagram
of the transient region between these sections is shown in
Fig. 5; the wave is assumed to be incident from the left. We
shall show that plasmon reflection from the boundary can lead
to the wave amplification under direct current flow, similar
to the reflection from the drain side of the Dyakonov-Shur
transistor [7]. It is remarkable that the amplified reflection
persists for various regimes of carrier transport across the
boundary, including (1) the ballistic transport, in which the free
path between electron collisions lee is larger than the length
of the transient region, and (2) the hydrodynamic transport,
in which lee is the shortest length in the system. We also note
that the amplified reflection is also described with sufficient
accuracy if we require the continuity of electric potential across
the boundary.

Hydrodynamic transport across the boundary. If the hydro-
dynamic equations were valid across the whole plasmonic
crystal, the boundary conditions matching the transport in
gated and ungated parts of the channel would require the
continuity of current,

j = nu = const, (B1)

and the continuity of carrier energy [19,20],

E = m∗u2/2 − eϕ = const. (B2)

FIG. 5. Schematic band diagram of the junction between the
gated (left) and ungated (right) regions. EC

g,u denote the positions of
conduction-band bottoms, and εF

g,u are the respective Fermi energies.
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The latter is nothing but the Bernoulli equation for electron
plasma neglecting the pressure term. We present the wave
amplitude in the gated section as a sum of incident and reflected
waves, δϕg = δϕ

g
+eik

g
+x + δϕ

g
−eik

g
−x . In the ungated section, we

retain only the transmitted wave δϕu = δϕu
+eiku

+x . Expressing
the current and carrier energy via the potential with Eqs. (A4),
(A5), and (A6), we arrive at the continuity relations

δϕ
g
+

2k
g
+d

+ δϕ
g
−

2k
g
+d

= δϕu
+, (B3)

δϕ
g
+

ω − k
g
+ug

+ δϕ
g
−

ω − k
g
−ug

= δϕu
+

ω − ku+uu
. (B4)

The reflection coefficient under the requirement of energy
continuity rE = δϕ

g
−/δϕ

g
+ is expressed as

rE = s + u0

s − u0

1 − 2 dω
s

(
1 − ku

+uu

ω

)
1 + 2 dω

s

(
1 − ku+uu

ω

) . (B5)

The first fraction (exceeding unity) describes the am-
plified Dyakonov-Shur reflection [7], while the second
one describes possible wave leakage from the gated
section.

Ballistic transport across the boundary. In the ballistic
limit, the net current across the boundary is the difference
of carrier fluxes supplied by the gated (jg→u) and ungated
(ju→g) regions, as shown in Fig. 5:

jg→u = 2

(2π�)2

∫
px>pcr

vxf (p)d2p, (B6)

ju→g = 2

(2π�)2

∫
px<0

vxf (p)d2p, (B7)

where v and p are the electron velocity and momentum,
respectively, pcr = √

2m(Ec
u − Ec

g) is the minimal carrier
momentum required to overcome the barrier at the boundary,
and Ec

u and Ec
g are the positions of the conduction-band bottom

in the respective regions. In accordance with the hydrodynamic
description in the bulk, we take the distribution function in the
local equilibrium form

f (p) = exp

[
− (p − m∗u)2

2m∗T

]
, (B8)

where u is the drift velocity and T is the temperature in the
energy units. Evaluating the integrals, we find the net current
j = jg→u + ju→g across the boundary:

j = ng

[
e−ξ 2

g

2
√

π
vT + erfc(ξg)

2
ug

]

+ nu

[
e−ξ 2

u

2
√

π
vT + erfc(ξu)

2
uu

]
. (B9)

Here ξg = (vcr − ug)/vT , ξu = uu/vT , vT = √
2T/m∗, vcr =

pcr/m∗, erfc(x) = 2/
√

π
∫ ∞
x

e−y2
dy is the complementary

error function, and ng,u is the carrier density in the respective
region.

Assuming small harmonic perturbations of the quantities
Ec

g , Ec
u, ng , nu, ug , and uu in Eq. (B9), we find the microscopic

boundary condition relating the ac current across the boundary
δj to the ac variations of density, velocity, and electric
potential:

δj = δng

[
e−ξ 2

g

2
√

π
vT + erfc(ξg)

2
ug

]

+ δnu

[
e−ξ 2

u

2
√

π
vT + erfc(ξu)

2
uu

]
+ngvT

e−ξ 2
g

2
√

π

(
δEC

g −δEC
u

)
T

+ ngδug

[
1√
π

vcr

vT

e−ξ 2
g + erfc(ξg)

2

]
+ nuδuu

erfc(ξu)

2
.

(B10)
The current continuity equation (B3) along with Eq. (B10)
allows one to obtain the plasmon reflection coefficient rb under
the assumption of ballistic electron transport:

rb = −α+ − β/(2 k
g
+d)

α− − β/(2 k
g
−d)

, (B11)

where

α± = (
s2 ∓ svcr + v2

T /2
)
e−ξ 2

g

−√
πvT (s ± ug) + (ug ∓ s)vT

√
πerfc(ξg)

2
, (B12)

β = v2
T ku

+de−ξ 2
u + s2e−ξ 2

g +
√

π

2
erfc(ξu)vT uu

×
[
−2ku

+d + s2

u2
g

(
nu

ng

)3 ku
+uu

ω − ku+uu

]
. (B13)

Continuity of electric potential across the boundary. Instead
of using the cumbersome microscopic condition (B10), one
can require the continuity of quasi-Fermi level across the
boundary, which is the boundary condition commonly used in

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

u /sg =0.05
u /sg =0.2
u /sg =0.35

Frequency ’/2 (THz)ω π

FIG. 6. Calculated plasmon reflection coefficients from the
gated/ungated boundary vs frequency at different drift velocities in the
gated section (in units of plasma-wave velocity s). Solid lines stand
for the reflection coefficients obtained with microscopic calculation
of ballistic current at the interface rb; dashed lines stand for the
reflection coefficients obtained by matching of ac potential variations
rϕ , and thin dotted lines stand for the coefficients obtained with the
energy conservation boundary condition rE .
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modeling transport across the heterojunctions [37]. In addition,
the variations of carrier Fermi energy are typically small
compared to the variations of electric potential, δεF /eδϕ ≈
vT /s  1. In such a situation, the continuity of the quasi-Fermi
level is equivalent to the continuity of the electric potential.
The reflection coefficient for the potential continuity boundary
condition rϕ is obtained by combining Eq. (B3) and the
potential continuity equation

δϕ
g
+ + δϕ

g
− = δϕu

+. (B14)

This leads us to

rϕ = −k
g
−

k
g
+

1 − 2k
g
+d

1 − 2k
g
−d

= s + ug

s − ug

1 − 2dω
s+ug

1 + 2dω
s−ug

, (B15)

which is obtained from expression (B11) by setting α+ =
α− = β = 1.

The comparison of reflection coefficients rE , rb, and rϕ

calculated with various boundary conditions is presented in
Fig. 6. The discrepancy between all three results is small
(less than 10%). This speaks in favor of the fact that the
amplified reflection from the gated/ungated interface emerges
due to the different dispersion laws of plasmons in gated and
ungated domains and is relatively insensitive to the details of
transport at the boundary. Due to the close results obtained
with various approaches, we use the reflection and trans-
mission coefficients calculated with the potential continuity
boundary condition in calculations of plasmon spectra and
instabilities.
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