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We investigate the possible existence of the bound state in the system of three bosons interacting with each
other via zero-radius potentials in two dimensions (it can be atoms confined in two dimensions or triexciton states
in heterostructures or dihalogenated materials). The bosons are classified in two species (a,b) such that a-a and
b-b pairs repel each other and a-b attract each other, forming the two-particle bound state with binding energy
EZZ) (such as biexciton). We developed an efficient routine based on the proper choice of basis for analytic and
numerical calculations. For zero-angular momentum we found the energies of the three-particle bound states

e,(f) for wide ranges of the scattering lengths and found a universal curve of €,

@ / e;,z) which depends only on the

scattering lengths but not the microscopic details of the interactions.
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I. INTRODUCTION

The quantum three-body problem was first solved by
Skorniakov and Ter-Martirosian for three fermions in the zero-
range-interaction limit [1]. The integral equation approach
introduced by Skorniakov and Ter-Martirosian was then
generalized to include finite and long range interactions by
Faddeev [2]. It was recognized [3,4] that the Skorniakov-Ter-
Martirosian equation gives a spectrum that is not bounded
from below. This pathology was then resolved by Efimov [5,6],
which gives a condensation of three-particle bound states at
infinite scattering length. This trigged the fruitful field of
Efimov physics in three dimensions [7—10]. In two dimensions,
the counterpart is studied for the case of three interacting
bosons [11-15] and charged particles [16,17].

Our interest in few-body problems in two dimensions is
trigged but not exhausted by the study of the many body
physics in exciton Bose-Einstein condensates in GaAs-based
quantum well structures [18-21]. In these systems we have
two kinds of bright excitons with spin projection m = %1
to the structural axis, where the same spin projections repel
each other and the opposite spin projections attract each other
[22-24]. In such systems with attractive interspecies coupling,
formation of few-body bound states is the possible route to
the instability of the condensates. This problem was addressed
in three dimensions by Petrov [25], whereas little is known
about such instability in two dimensions [26]. Investigation in
our paper can be viewed as a first step towards quantitative
understanding of the instabilities in two-component Bose-
Einstein condensates in two dimensions, especially for the
excitonic systems in quantum well structures.

In the literature, three-boson problems in two dimensions
are only solved for the case with the same kind of interaction
(either repulsive or attractive) between bosons [11,13-15,28].
To address the stability of the two-dimensional system,
we need to take into account both repulsive and attractive
interactions and for all possible scattering channels. We then
consider three interacting bosons in two dimensions. The
interactions between particles are short ranged, and we model
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them as contact interaction with finite radius ry. This is suitable
for excitonic systems in quantum well structures, where the
short-ranged exchange interaction is much stronger than the
direct dipole-dipole interaction [29]. We also make the choice
that particle 1 and particle 2 are alike (species a) and repel
each other; while particle 3 is different (species b) and attracts
the other two. Then the Hamiltonian of the system under
consideration is as follows (we choose the unit such that
m=h=1):

H

V?
= X 5 M8 = bl + 8l

i=1,23

(1.1
where the two-dimensional § function is understood to have a
finite radius rp. A; > 0 and A, > 0 represent the repulsive and
attractive couplings, whose low energy scattering lengths are
denoted as o and «.., respectively:

2 2
)f); a>=ecroexp<k—7:), (1.2)

a. =€ ro exp (
where C = 0.577... is the Euler constant and we have the
relation that v . < rp K o

Short-ranged interactions in two dimensions are well

known to present logarithmic poles in the low-energy scat-
tering amplitude [30-32]:

N2k
In(2i /ka>)’

V7 /2k

fl) == In(2i /ka)’

f<lk) = — (1.3)

where k = /2ue is the momentum associated with the two-
particle energy, and u is the reduced mass which in our case

equals to 1/2. The expression (1.2) gives the two-particle
2 for the attractive potential as follows (at

binding energy ¢,
such energy f>(i,/e,(]2)) — 00):

o?

>

e = (1.4)
The corresponding pole for the repulsive potential occurs at
momentum |k| > 1/rp, which is beyond the logarithmic pole
approximation and must be disregarded in the calculation as a
spurious solution.
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The purpose of this paper is to analyze the three-particle
bound state energies ef) as functions of the scattering lengths
o and «v. The remainder of the paper is organized as follows.
In Sec. I we introduce the parametrization scheme of the
problem and give the formal solution to the resulting one-
dimensional Schrodinger equation via a boundary-matching-
matrix technique. We also introduce a convenient running basis
to the problem, which is suited for numerical implementations.
In Sec. III we give out the explicit solutions for zero and
nonzero angular momentum separately. Large scale behaviors
are analyzed analytically and three-particle binding energies
are calculated numerically. Finally in Sec. IV we summarize
the results and compare our methods with existing ones.
Technical details are relegated to the Appendices.

II. FORMALISM
A. Parameterization of the configuration space
For the configuration space of the system under considera-
tion, we use the Faddeev parametrization [33]

ro=ri—ry p3=(r +ry—2r3)/V3. 2.1

After that, we perform the usual separation of radial and
angular parts of the four dimensional vector (r2,03)":

<”2) —rN, N> =1.
P3

This spherical separation enables us to assign a discrete
set of angular level labels j for the wave function ® =
(P, Py, ---)7, due to the fact that the angular momentum
operator is compact [34,35].

Usually, the angular part of the four-dimensional vector
is represented in terms of hyperspherical coordinates in the
literature [36—44], but the resulting algorithms have slow
convergence and the number of states scales as the square
of the number of levels included. Here we adopt the Hopf
coordinates, which gives faster convergence and number of
states proportional to the number of levels included (see

Appendix A):
\/ 1%" cos ¢y

1— .
Tx Nt ¢1

2.2)

N = (2.3)

1
£ cos ¢

[14x o
Tx s ¢)2

Substituting the above parametrization of the configuration
space into Eq. (1.1), we will get the following one-dimensional
matrix Schrodinger equation:

1 :
b — [__irai+w

r39r or r2 :|(I> =<®, 2:4)

where the effective potential operator U(r) is a sum of the
angular momentum operator and the interaction term:

U(r) =4L% + r*V,(n). (2.5)
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The angular momentum operator under Hopf coordinates has
the following form:

. 3 3 93 33
L2 — __(1 _ x2)_ _ 1 _ [ ,
0x dx 2(1—x) 2(1+4+x)

(2.6)

and the interaction term can be written in the following form
showing explicitly the scale dependence (see Appendix A):

N 2
V= —5 > wd(—n-n), @27
Tl
where ;1) = A and 3 = —A; are the repulsive and attractive

coupling constants, respectively; the scale dependent § func-
tion is defined as §,(x) = §(x — 2r§ /r?), which takes care of
the finite radius. The configuration space is projected onto the
three-dimensional unit sphere (¢ = ¢ — ¢,):

n= (mcosgb,msinqﬁ,x), (2.8a)
n; = (0’071)5 n2,3 = <:|: \/TE,O, - %) (Zgb)

The total angular momentum m is a good quantum
number because its corresponding operator commutes with
the Hamiltonian:

0 0
- — 4+ —, =0.
[ l(ﬁ«m +a¢2> H}

For each m the Hilbert state is characterized by the three-
dimensional angular momentum j (integer for even m and
half-integer for odd m). The eigenvalue of L2 is of order ;2
and the degeneracy of each level is (2 4 1). Also the bosonic
symmetry of the system requires the following symmetry
property of the eigenfunction ®(n):

2.9)

®(ny,ny,n;) = ®(—ny,,ny,n;). (2.10)

The interaction term makes the states deviate from free
motion. There are three § functions in total, thus at most three
states are affected for each level j. Because we are considering
a bosonic system, only symmetric states are physical, which
leaves us at most two affected states for each level j; all
the other states can be ignored because they belong to the
space orthogonal to the possible physical bound states. Hopf
coordinates are such a choice that enables us to identify
the relevant states directly, instead of representing them as
a sum of many hyperspherical harmonics (for more detail, see
Appendix A).

B. Solution of the one-dimensional Schrodinger equation

After the effective potential operator U (r) is obtained, we
are left with the problem of solving the one-dimensional
matrix Schrodinger equation (2.4). Naive approach to this
radial equation is to numerically solve Eq. (2.4) by limiting the
basis to N functions, but it is practically inaccessible due to the
exponential instability of the wave function even if one of the N
boundary conditions or energies is not chosen correctly. Thus
we choose another approach [17], converting the Schrodinger
equation (2.4) into a first order nonlinear differential equation
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for the boundary-matching-matrix A(r) defined as follows:
do

r

- = —A(R)®(R).

r=R

@2.11)

Then the differential equation of A(r) is obtained by requiring
the invariance of Eq. (2.11) with respect to 1ength scale R:

e + _d2<1> dA ®(R) A(R) (2.12)
_ r = —— — E— . .
dr dr? |, _x dR R
From the Schrodinger equation (2.4) we have
o 3 i + U . (2.13)
—_— = —€ .
dr2 ~—  rdr 2

Substitute this back into Eq. (2.12) and multiply both sides by
r = R, then we obtain

—Rd—<I>(R)

r=R dR
(2.14)
Finally refer back to the definition of A, which is Eq. (2.11),
and we obtain the radial renormalization equation:

|:(f\(r) - 2)"@ + (U - r26)<1>]
dr

~

dA
dinr

The advantage of the boundary-matching-matrix method is
its numerical stability, meaning that even if the original wave
function is subject to exponential growth with respect to r, our
newly defined matrix A(r) is subject to at most linear growth:

@)1 ~ exp(r) = [|AM)] S 7. (2.16)

The initial condition for Eq. (2.15) is obtained as a solution in
theregionry < r < 1, where only kinetic energy is important:

=r?e—U(r)—2A + A%

(2.15)

dA A <
=0, AC—=>0=0-V4L2+1), (2.17)
dinr|,_,
then the initial matrix A(r — () is diagonal:
Aij(r — O) = —2158,‘]‘, (218)

where [;(l; + 1) is the eigenvalue of angular momentum
operator L? for level i.

The large scale (r — oo) behavior of Eq. (2.15) is
determined by setting U;;(r) ~ —r2e;) 8i00jo, Where 61(72) is
the two-particle threshold in application to the Hamiltonian
defined in Eq. (2.4). The equation has a stable trajectory for

€ <0Oand j #0:

Aij = —(S,'j |€|r (219)

(j #0).
While for € > 0 and j # 0, the trajectory shows periodic
divergence jumps, typical for a spherical wave. For the lowest
level j = 0, there are also two situations: If € < —¢, ), then
the solution will also go to a stable trajectory as

Ao = —/|e + ¢

|r. (2.20)
If e > —eb , the solution again corresponds to a spherical
wave, which has periodical divergence jumps at the position
that are zeros of the wave function (see Fig. 1). These divergent
solutions actually form the continuum of the states of one
bound biexciton and one exciton far away.
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(a) e <0

(b) e>0

(

FIG. 1. Schematic diagram for large scale behavior of Eq. (2.15),
where (a) and (b) are shown for levels j # 0, (c) and (d) are shown
for the lowest level j = 0 Left is shown for energy slightly below
(a) zero for j # 0 (c) —¢, 2 for ] = 0. Right is shown for energy well
above (b) zero for j # 0 (d) —e.” for j = 0.

~

(c) € S _q()z) (d) e> —ef)

In the intermediate region, we solve for the possible three-
particle bound states. The bound state is determined by the
way Ao approaches the stable trajectory defined in Eq. (2.20),
and two typical situations are shown in Fig. 2: (1) There is only
one three-particle bound state with binding energy e,(f) If the
energy is between the three- partlcle binding energy —e( ) and

the two-particle threshold — eb , the evolution of A will show
a single jump before being attracted to the stable trajectory; if
the energy is smaller than —e,(f), Ao will be directly attracted to
the stable trajectory; the evolution of Ay will diverge only when
the energy is tuned exactly at the three-particle binding energy.
(2) There are two three -particle bound states with binding
energies —e; i < —€, % The evolution of Ay with different

energies is similar to the previous case, but it will show two

I N

—e® <o - —_®

r

(e) e= —61(732) f) e= —el()sl)

(d) —el()sz) <e< —el()Z)

FIG. 2. Schematic diagram for intermediate scale behavior of
Eq. (2.15). Above: There is only one bound state. Below: There are
two bound states, where we have —effi < —e,(f; Note that if only (c)

or (f) is realized, a bound state does not exist.
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jumps before being attracted to the stable trajectory if the
energy is tuned to lie between —ef; and —eb) Following
this line of reasoning, we can see the fact that the number
of three-particle bound states 1s determlned by the number of
infinite jumps of Ag ate < —eb , which is exactly the content

of the Levinson theorem [45 46].

C. Running basis

Sometimes, the following running basis that diagonalizes
matrix U (r) is most convenient for both analytic and numerical
calculations:

2.21)

0 = (Ixo)sIx1)s ), UMIxj) = uj(mlx)s

where |x;) is the angular part of the jth component of the
normalized wave function vector ®(r), whose expression will
be derived later in Sec. III via the Green’s function method.
This set of basis is called running basis because it changes
with the length scale r. Then we do an unitary transformation
to bring Eq. (2.15) to the running basis:

U=000",
A=0A0",

Uij = 8;ju;i(r), (2.22a)

(2.22b)

then the radial renormalization equation under the running
basis reads (hereinafter we will drop the tilde symbol for
simplicity):

~

dA

+[A,Dl=r* -0 —2A + A%,
dnr

(2.23)

where the antisymmetric matrix D is the Berry connection:

do!
dlnr

D= 0, ie Dy=—Dy= |2
! ! dnr

Xj>. (2.24)

It is very tempting (at least at large length scales) to
neglect D altogether, which corresponds to the adiabatic
approximation with a diagonal matrix A. However it is not
correct because of the following reason. Consider the lowest
order correction 8A;; to the adiabatic result Af-?) = A;djj
for the lowest level (i = 0), then the renormalization group
equation for Ay(r) reads:

dA

2A0 + A}

— Z(SAoijo + Do;SA jo) + ZaAOJSAJO’
J#0 770
(2.25)

where § Ag; can be obtained from the first order correction to
the adiabatic approximation of Eq. (2.23):

A()D()j — DOjAj = —28A()j + A()SAOJ' + SAQ]‘A]‘, (226)

which gives us the expression for § Ag; as:
Ao — A;
0T A (2.27)

Substituting the expression for §Ag; into Eq. (2.25) and
using the antisymmetry of the Berry connection D, we finally
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obtain:
dAg
Ty = rle — uo(r)+Z|D0j|2 —2A0+ A]
Jj#0
280-2 T?
Dy |? 2.28
+ >0 <>,|[A+A _2} (2.28)

J#0

The large scale behavior of the solution is determined by the
following quantity:

. 2 2 _
Tim | r’e — | uo(r) + Z | Dy, | =y. (229
Jj#0 6_751@
If y > 1, the solution is unstable at € = —622), it has an

infinite number of jumps, which would correspond to an
infinite number of three-particle bound states. If y < 1, the
solution is stable; it corresponds to the power law decay of
the wave function. Only for the marginal value y = 1, should
the situation correspond to the noninteracting particle (one
exciton and one biexciton) in two dimensions. On the physical
ground we should have y = 1, thus it is important to check for
the consistency by direct calculation of the quantity y, taking
into account the Berry connection as in Eq. (2.29). We will
show this calculation in later sections, see Eq. (3.25).

In summary, we have shown in this section that the running
basis is a convenient choice, whose leading order is the
usual adiabatic approximation [41,43] and the correction to
it is the Berry connection. we have also argued that the
Berry connection must be included for physically consistent
calculation, thus we will use the exact formalism in our
numerical calculation shown later.

III. EIGENSTATES AND EIGENVALUE
OF OPERATOR U(r)

To obtain the full solution of the problem, we need
to solve for the eigenvalues and eigenfunctions (which
define our running basis) of operator U (r). We define the
following Green’s function for the angular Laplacian near
pole n':

72 / 2 ’
[4L° —u;(")]Gj(n,n’) = ;8,(1 —n-n). 3.1

We first solve the Green’s function with n’ along the north
pole (n’ = n;), then perform SO(4) rotations to obtain the
Green’s functions near the other two poles. After that we can
use the obtained Green'’s function to make the following ansatz
for eigenfunctions of operator U(r), taking into account the
bosonic symmetry:

xj(m) = o;G;(n,n)+ B;[G;(n,n) + G;(n,n3)],
(3.2a)

U@r)x;(n) = u;(r)x;(n). (3.2b)

Once the eigenproblem of operator U(r) is solved, then
it is straightforward to solve Eq. (2.23) analytically or
numerically.
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The solution of Eq. (3.1) for n’ = r; can be variable
separated:

Gj(n,ny) = G (x)e™timd, (3.3a)

. 2
[40,.m, — u; (]G (x) = ;5,(1 —x), (3.3b)

0 D1
my,my; — T L — X )—
? ox ax
mi m3

+ 20 —x)  2(1+x)°

(3.3¢)

As discussed in Sec. IT A, total angular momentum m = m; +
my is a good quantum number, therefore we can consider
different angular momentum separately. We will first discuss
the case with zero angular momentum, where three-particle
bound state is possible; then we will show that no three-particle
bound state exists for nonzero angular momentum.

A. Zero angular momentum: Analytics

In this section, we will analyze the large scale behavior
of the case with zero angular momentum. It can be solved in
two limiting cases, one of which agrees with the perturbative
result and the other one shows the importance of including
the Berry connection for the system to have physical marginal
value y = 1.

For zero angular momentum we are dealing with the
following Green’s function:

481 29 G —251 34
— 5( —x)a—uj(r) j(x)—;r( —x). (34

This is just the Legendre equation of degree v; (except near
point x = 1) if we make the following substitution:

uj= 4Vj(Vj + 1) (35)
Then the solution can be obtained by comparing the singu-
larities [47] near point x = 1, which gives us the following
expression for the Green’s function (here we use subscript v;
instead of j for Green’s function to emphasize the dependence
on degree v;):

1
4cos[(v; + 1/2)r] B,

G, (x) = (=x), (3.6)

and it is regularized at point x = 1 by the finite radius ry:

1 16 1
Gy, (1) = E[ln? —W(—v) =Y+ 1)+ 211(5)},
(3.7)

where § = r3/r? and W(x) is the digamma function.

In the sector of zero angular momentum, only scalarlike
combinations will enter the wave function, thus the specifica-
tion of Eq. (3.2a) to zero angular momentum is

xjm) = ;G (n-n) + B;[G.,(n - n2) + G, (n - n3)).
(3.8)
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Substituting this ansatz into Eq. (3.2b), we will obtain the
following constraints on the coefficients:

froam o @)
—ij (_%); % - G”/(l) - G"j(_%) 'Bj .
3.9)

By setting the determinant to zero we obtain the equation of
the spectrum:

[mi ~ F(v,-)—i-ZJTGV,(—l)]
o ’ ! 2
x [mL — F(v;) +47G,, <—1>}
o ! 2

1\ 12
= 2|:2nGv] <—§):| , (3.10)
where the function F(v;) is defined as:
F(vj) = 3[W(-v)) + V(v; + D]+ 217G, (—3). (3.11)

Here o - are the scattering lengths for attractive and repulsive
coupling, respectively, see Eq. (1.2).

The solution to the equation of spectrum can be solved
analytically in the following two limiting cases: uo — 0 and
lug] = —ug — oo; while for general cases we will solve it
numerically. In case of uy — 0, we have ug ~ 4vy — 0 from
Eq. (3.5). We first rewrite Eq. (3.10) into a more convenient
form:

2 L 1
In~—F(v)) In_-—F())

=— , (3.12
G, ()

then we substitute the following behaviors for relevant func-
tions into the above equation:

3
F(vp >0 ~—-C—1In % + O(vy),

(3.13a)
1 1 V3
2n G, | —= ~—— —1In— 4 O(v). (3.13b
T o< 2) - T + O(v). ( )
Finally, we obtain the following solution:
up 2 1
— ~2yy = , 3.14
2 M T NI F0) T — FO) (319

that is just the perturbative result of the effective potential
uo(r).

In the case of |ug| — oo, we have the following asymptotic
behaviors:

u0=—%+i,\, k:%‘/luo+1|—>oo, (3.15a)
Flop) ~ Ik — —— + o(i), (3.15b)
2472 A3

Gy, (—l> ~ ; exp <—2—n)»), (3.15¢)

2 2 /314 3
then using Eq. (3.10) we obtain the following solution:
i = Do jugl =2 — 2. (3.16)
o 2 3|ug|

045401-5



TIANHAO REN AND IGOR ALEINER

The other solution associated with «. corresponds to the
spurious state discussed previously in the introduction section
and should be dropped. Solving Eq. (3.16) iteratively we will
obtain the large scale behavior of the effective potential:

up(r — o0) = —r’el?’ —4/3 4+ 0(r™), (3.17)

where 6;2) =4/a? is the two-particle threshold. According
to the discussion at the end of Sec. II C, this result will give
us y = % > 1 in the adiabatic approximation, which shows
the necessity of including the Berry connection D;; [see
Eq. (2.24)].

The integral expression for the Berry connection D;; is:

1 ! o d xi(n)
Djj=——— dx dodpy———x(n).
' 872 /NiN; /,1 /0 D192y X1
(3.18)
Using the ansatz for x;(n) of Eq. (3.8) and the Green’s functiop
in Eq. (3.6), we will find that the Berry connection matrix D
is given by:
D — (oo + 28 B;)
Y 8a2 /NN (v — v v+ 1)
where the normalization factor N; of the angular eigenfunc-
tions is calculated to be

[(o +262)8, G (D) + [287 +4ei ]9, G (— 3)]
@) 2y + 1) '

(3.19)

(3.20)
The details of the derivation of these results can be found in
Appendix D. According to Eq. (2.28), we have the correction
to the effective potential of the lowest level as:

Aug(r — 00) = Y| Do;|*.
J#0
This can be calculated using the following trick. Firstly,
Eq. (3.9) for the eigenstate coefficients (o, 8) can be rewritten
in a more compact form:

(3.21)

A . o
H =0, = , 3.22
(V)ex o <J§ﬂ> (3.22)
where the 2 x 2 matrix Hamiltonian A (v)is
; i+ Gu(D); V2G,(-3)
Hyv)=2r| " | | B
V2G,(=3):  GuD)+Gu(—3) = 5
(3.23)

and the normalization condition for the eigenstate coefficients
(a0, B) can be chosen as the following [48]:

a®a’ =o,Ho,=detH-H™". (3.24)

Using the matrix Hamiltonian H(v) and the normalization
condition defined above, we can express the righthand side of
Eq. (3.21) as a contour integration on the complex plane of
variable v:

11 1
Z|D0j|2=_ —,?{dv
2| 2ni Je

J#0

Tr[ResK (v) - K(v)]

(vo — v)?

N L ygdvTr[ResI%(va‘)-le(v)]
27i Jeo (v — v)?

}, (3.25)
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Im v

B e
O o Re v
C
L[]
*
Yo
[ ]
V*

FIG. 3. Integration contour for the calculation of Au,. The
contour is along the real axis, where the first order poles reside. There
are four extra poles off the real axis, which correspond to true bound
state (vp) and spurious bound state (vy), respectively. The physical
meaning of true bound state and spurious bound state is discussed at
the end of Sec. I.

where the matrix function K (v) is formally defined as K v) =
H~'(v). It has poles where the matrix Hamiltonian has zeros,
and decays rapidly enough when |v| goes to infinity. The
derivation of this result can be found in Appendix E, and
the integration contour is shown in Fig. 3.

The integration contour can be deformed to enclose the
other four poles off the real axis and the integration can be
easily carried out, leading to the following result:

1
Aug = Z | Do, |* = 3
J

which combined with Eq. (3.17) gives us the marginal result
y = 1. This shows the importance of including Berry connec-
tion matrix D and the physical consistency. With this marginal
situation, the existence and property of the three-particle bound
state must be handled numerically.

(3.26)

B. Zero angular momentum: Numerics

The numerical implementation of the renormalization
group equation (2.23) is simple, it is just a set of first-order
ordinary differential equations and the second-order numerical
integration algorithm is efficient enough for our purpose. The
initial matrix Eq. (2.17) is diagonal, the first-order correction
matrix D is antisymmetric, and the effective potential matrix
7 is diagonal; these conditions guarantee that during the
evolution all eigenvalues of matrix A are real as they should
be. The algorithm is divided into two steps: First we run
the renormalization process at energy slightly below the two-
particle threshold, the existence of three-particle bound state
is reflected in the divergence of the highest eigenvalue of A,
and the number of bound states equals to the number of jumps
of the highest eigenvalue [49] by Levinson’s theorem [45,46],
as discussed at the end of Sec. II B. Second, if the bound state
exists, we further run the renormalization process with varying
energies to determine the binding energy of the three-particle
bound state. Typical behaviors of different energies are shown
in Fig. 4, where energy slightly above the three-particle binding
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40 T T T

100

L
- Smuf{mg States with €] > —¢(” ] > _ (3
[ €

30 b W ‘ ~

40 ‘
20f ® e 5 1

FIG. 4. Eigenvalues of matrix A, calculated for energy slightly
above (e.) and below (e_) the binding energy 51(;3)- Inset shows the
result for energy well above 51(;3)’ which is the typical behavior for

spherical waves.

energy shows a single jump and energy slightly below the
three-particle binding energy shows no divergence. If the
energy is well above the three-particle binding energy,
the situation corresponds to a spherical wave, where periodic
jumps will occur at the zeros of the wave function.

The calculation is carried out using MATLAB [50] on a
laptop with the number of levels included N = 40. Each run
of the renormalization process takes less than 10 minutes [51]
and inclusion of more levels only changes the result by less
than 1%. For zero angular momentum, there exists at most
one three-particle bound state. At large «-. /« - ratio, the ratio
between three-particle binding energy and the two-particle
threshold versus o /o - falls on a universal curve, as illustrated
in Fig. 5. A similar universal curve also appears in the case
of three boson all interacting attractively [13—15]. According
to the result for vanishing intraspecies interaction [13,28], the
universal curve in Fig. 5 should approach 1.39 asymptotically
at infinite . /. ratio. Curiously, the convergence to 1.39
is extremely slow: It only reaches 0.4 for a. /a. = 250, the
largest scattering length ratio shown in Fig. 5. In fact, the curve
reaches ~1 only for o, for. ~ 108 and the correction to 1.39 in
the large o~ /o limit scales as 1/ In(« /o). This curious fact

- e,®
e
040
035}
030}
025}
020}
0.15}
0.10 a.

50 100 150 200 250 a.

—o— a.=0.5
—=— q.=0.6

—- a.=0.9

FIG. 5. The universal curve of (51(73) - e,(,z)) / ef versus o /o at

large scattering length ratios. Data points are collected in the region
o /a. = 10, and with three different values of «.. They fall on the
same curve within the numerical accuracy.
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TABLE 1. Critical values of «. corresponding to different o
when the three-particle bound state disappears into the two-particle
threshold.

o 0.80 0.82 0.85 0.90 0.95
af 1.82 1.85 1.90 1.99 2.09

>

can be partially understood from the first order perturbation
theory with respect to the small parameter f_ from Eq. (1.3).
It seems that the result (ef) - 622)) / 622) = 1.39 is practically
inaccessible due to the logarithmic slow convergence. Into
the region with small «. /o ratio, universality breaks and
the three-particle binding energy merges into the two-particle
threshold at critical values, we listed several critical values
in Table I. It’s notable that our calculation only takes the
two scattering lengths o and o as input parameters [see
Eq. (3.10)]. The microscopic cutoff 7y only appears in the
initial condition, where the kinetic energy dominates and the
limit7 — Ocan be safely taken [see Eq. (2.17)]. These indicate
that the property of the three-particle bound state depends only
on the scattering lengths o ,c—, but not on the microscopic
details of the interactions.

C. Nonzero angular momentum

The solution to Eq. (3.1) with n’ along north pole (n’ = n;)
and total angular momentum m # 0 has the following form
(see Appendix B):

1 Fv;+m+1)
4cosm(v;+ 1) T+ DLOm +1)
x RM(1 — NTA|N)

G™(n.m) = (N - By)"

Rl(j;")(x)zzFl(—Vj,Vj‘i‘m‘l‘1;m+1;x)v (327)

where the four-dimensional vector B; and 4 x 4 matrix A, are
defined as

A= B, =(0,0,1,)7, (3.28)

O )
0

and N is the following four-dimensional unit vector:

1/I%J‘cos ¢’
,/1’—" sin ¢’
N = 2 sing (3.29)

1+ ’
=+ cos¢’

[14x
> sing’

where ¢’ is an arbitrary phase. To obtain the Green’s function
with n" along the other two poles, we rotate vector By and
matrix A, by 277/3 on a three-dimensional unit sphere, which
corresponds to /3 rotation in four dimensions. The rotation
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matrices are as follows:

;0 FF 0
0 1 0o F4L

Ros = s : ; , (3.30)
0o +£ 0 1

Applying the rotation matrices to the four-dimensional vector
B, and 4 x 4 matrix A| we get:

1 V3
Lo &8 o
A o o L 0 £
Ar3 =Ry3A 1R, 5 = ,
A VR 3 0
NG 3
0o £ o 2
T
3 3
By3 =TRy3B| = (q:%_,q:%_i,l/Q,i/Z) . (3.31)

Substituting the ansatz for eigenfunctions in Eq. (3.2a) with
the above specification into Eq. (3.2b), we will obtain the
following constraints on the coefficients (here we add the
superscript to emphasize the dependence on the angular
momentum m):

1 m .
&+ G,
~Gy21);

— Y

GIM(12) +GY(13) [
L — G2 - G23) ) \B)

' ' (3.32)
where we have used the shortened notation Gﬂ)’:’)(lm) =

Gﬁj’:‘)(nl,nm). Still the equation of spectrum is obtained via
setting the determinant to zero. By performing the asymptotic
analysis similar to those for zero angular momentum, we will
obtain the following solution to the effective potential ug">(r)
up to first order correction (Appendix E):

ug"(r > 00) = —r’e) + (m* = )+ 0™ (3.33)

thus for nonzero angular momentum, the wave function we
will obtain is subject to power-law decay, and no three-particle
bound state is guaranteed at large length scale. To confirm the
absence of three-particle bound state, we need the calculation
not only at large length scale, but also in the intermediate
region, which we will still investigate numerically.

The numerical implementation for nonzero angular mo-
mentum is essentially the same as that for zero angular
momentum, if we substitute the proper angular eigenfunctions
into the corresponding formulas. The result shows that there is
no three-particle bound state for nonzero angular momentum.
To get a sense of what is happening among different m values,
we also calculated the effective potential uo(r)/r> for the
lowest level, the curve has a minimum in the case of m = 0
while for m > 0 the potential is monotonously decreasing
with increasing r (Fig. 6), then it is straightforward to see
the possibility of getting a three-particle system bounded for
m = 0 and its unlikeness for m > 0.

IV. CONCLUSION

In summary, we investigated the existence of three-particle
bound states in a two-species, interacting bosonic system
in two dimensions where coupling between like bosons is
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0.15
01 m=0r,=20r.=0.5
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0
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ug(r) /72
O = N W OO

ug(r)/r?

10 20 r 30 40 50 0 10 20 r 30 40 50

FIG. 6. Effective potential uy(r)/r*> for m = 0,1 with input
parameters o = 20 and «. = 0.5. The dashed line indicates the
position of the two-particle threshold.

repulsive and otherwise attractive. We developed a simple and
efficient algorithm via choice of proper parametrization and
base functions. Large scale behavior of the system is handled
analytically and interaction region is handled numerically. Our
result shows that there is only one three-particle bound state for
zero angular momentum, and it will merge into the two-particle
threshold at small ratio between scattering lengths (the critical
ratio ol /o is about 2.2 ~ 2.3). In contrast, there exist
two three-particle bound states when the couplings between
all the three bosons with equal masses are attractive, as in-
vestigated in the literature [11,13-15,28]. For nonzero angular
momentum, there is no three-particle bound state. The two
scattering lengths provide enough information to determine
the three-particle binding energy, while the microscopic cutoff
ro and the interaction constants A , do not enter any way other
than through the scattering lengths. Our result is in agreement
with the previous investigations [13,52] in the sense that there
are only a finite number of three-particle bound states in two
dimensions, in contrast to the condensation of infinite number
of three-particle bound states in three dimensions, and we
showed this fact both analytically [the parameter y define in
Eq. (2.29) is equal to or smaller than unity, which excludes the
possibility of infinite number of bound states] and numerically.

Existing approaches for this kind of quantum three-body
problem in the literature are mainly different variations of the
Skorniakov-Ter-Martirosian methods. It can be implemented
in real space and solved via the integral equations for the
scattering amplitude [53,54], or be implemented in momentum
space and solved via the diagrammatic techniques for scatter-
ing matrix [28,55,56]. It can also be converted into a series
of solvable differential equations [57]. All these approaches
involve several numerical integrations over unbounded spaces
or kernel inversion, some of them are limited to s-wave
resonant scattering. The hyperspherical method has been used
for few-body problems in two dimensions [37—42], with the
usual approach of representing states as a sum of many
hyperspherical harmonics. Our paper therefore provides an
alternative approach to the quantum three-body problems,
simple and efficient, involving only direct root finding and
evolving of a first-order ordinary differential equation to
an intermediate length scale (for example, the divergence
behavior showing the existence of bound state is already clear
atarelatively small length scale r ~ 20 in Fig. 4, and there is no
need to evolve the equation further to any larger length scale). It
is capable of handling both short- and long-range physics, free
of numerical instability, and converges fast enough to avoid
parallelism on clusters. Also our choice of basis via Hopf co-
ordinates reduces the squared proliferation of hyperspherical
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harmonics to a linear one with increasing number of included
levels, which saves greatly in numerical endeavor.

We believe that the scenario considered here is realized
experimentally in the excitonic systems in two dimensions
(for example, the GaAs-based quantum well structures), and it
is natural to generalize the present formalism to four-particle
problems or to fermionic systems. Further investigation of the
four-particle problem should reveal more quantitative features
of the two-component bosonic systems in two dimensions,
thus shedding more light on the rich phenomena observed in
excitonic system in quantum well structures or microcavities.
Another system that the present results can be potentially
applied to is the bosonic dipoles in the bilayer geometry,
where dipoles on the same layer attract [58] while on different
layers repel [59,60], and the short-range limit is applicable
for sufficiently large interlayer distances or small dipole
lengths. The present formalism only considered bosonic
systems in two dimensions, where three-particle states only
exist in s-wave channel and there are only a finite number
of them. It is recently proposed that the fermionic system
in two dimensions fine-tuned to p-wave resonance can host
an infinite tower of three-particle bound states, which is
called the super Efimov effect [61]. Since our formalism
can handle all possible scattering channels by construction,
it is promising to generalize the present formalism to the
fermionic systems to verify the existence of the proposed
super Efimov effect in the p-wave channel.
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APPENDIX A: HOPF COORDINATES, CONTACT
INTERACTIONS, AND LAPLACIAN

Under the Hopf coordinates in Eq. (2.3) and the three-
dimensional unit vectors defined in Eq. (2.8a), we can express
the distances between particles as follows:

2

.
Irial* = S0 —n-n),

2
Iris? = %(1 —nemy), =12

(AD)
We make the choice that the interaction between particle 3
with the other two is attractive and the interaction between
particle 1 and 2 is repulsive.

Vip = M8X(rn), Vis=—a8%(riz), i=12. (A2)

The short-ranged interactions are modeled as contact inter-
action with finite radius rg, thus the § function in the above
expression actually depends on length scale in the following
manner:

1 rr?

8w~ —s[ S0 —n-n)—1i]
(r) i ( )— 1§
2 .2 2 ,
=—4l0—n-n)y———|=—650—n-n).
r? r2 wr?
(A3)
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This particular form of the cutoff is not unique, but only
observable values of o - enter into the final result.

Under the Hopf coordinates, the full Laplacian operator can
be calculated using the covariant form

1 iy
VZ:—V,-\/Eg”Vj, gzdetg,

(A4)
NG
where Hopf variables are (r,x,¢;,¢,) and the metric is
1
r2
A H1—x2)
8= 2D e (A5)
(14x)r?
2
The result is just what we got in the main text:
19 59 4L
V= P+ A6
Boar ar | 2 (46)
where the angular momentum operator is
. 3 3 33 33,
PP =)y —— % % (A])
ax ax  2(1—x) 2(1+x)

Correspondingly, the separation of variable for an angular
function F(x,¢;,¢,) with desired symmetry is

F(X,¢)1,¢2) = f(x)eim1¢]+im2¢2’

then the eigenstates are labeled by the quantum number set
(I,m,my), where [(I 4+ 1) is the eigenvalue of operator I:z, and
m  are integer numbers. By including interaction terms, we
replace the operator 422 with the effective potential operator
U(r) = 4L* + r2V(r) in Eq. (2.5). Consequently we replace
the quantum number [ with effective potential u(r), where u(r)
is the eigenvalue of operator U (r), while keeping the quantum
numbers m; , intact. This separation of variable scheme in
accordance with Hopf coordinates enables us to consider
different angular momentum m , separately, and just as what
we got in the main text, only the sector with zero angular
momentum m; = my = 0 hosts the possible bound state.
Within the zero angular momentum sector, we have argued
that there are at most two relevant states for each level in the
main text, which is shown in Fig. 7. This leads to the conclusion
that in search of possible bound state, we only need to consider
at most 2N states, where N is the number of levels included.

(A8)

APPENDIX B: GREEN’S FUNCTION

Following the definition in Eq. (3.1), we first solve for the
north pole n’ = n; and then rotate the solution to the other
two poles. The construction of the Green’s function can be
carried out following the standard procedure of separation of
variables:

G(n,ny) = G(x)exp(im¢1 + imaehr),
(B1)
mi m3 }

~

ad il
LP=|——1—-x)—
[Bx( x)8x+

_|_
21—-x)  2(1+x)
In expansion of Green’s function in terms of eigenfunctions of
L?, we only need to consider those that are connected to the
8 function, thus we require m; = 0 and the eigenfunctions to
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v (vi+ 1) vi(vi+ 1)
A
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6 [
2 |
r r

(a))\1=)\2:0 (b)>\1:0,)\2>0

vi(v;+1)

(¢) A1 >0,22>0

FIG. 7. Schematic diagram for eigenstates of several low-lying
levels within the zero angular momentum sector, where u; = 4v;(v; +
1) is the eigenvalue of the effective potential operator U(r).In (a) with
v; = [;, itis just the eigenvalue of angular momentum operator £2. In
(b), only attraction is included and only one state is altered for each
level, the other unaltered states are denoted as dashed lines. In (c),
both attraction and repulsion is included, and unaltered states are still
denoted as dashed lines.

be regular around x = —1. These eigenfunctions then can be
represented in terms of hypergeometric functions [47]:

N m . m . m m
LX) = (, + 5) (J £y 1)x§. )(x),

2
m) L+ \"2 (14 (B2)
XPw=(—) R"(—")
R (x) =2Fi(—j.j+m+Lim+ 1:x),

where m = m + m, = m, and j takes the value 0,1,2,....
By using the representation of § function

I (=Y Qj+m+DIG+m+1)
S(x)z—z( Y(2j+m ) ‘(J m )X(' )(x),
2 Fm+DCG+1) /
(B3)

we immediately obtain the expression for Green’s function:

j=0

1 Cwv+m+1)
4cosm(v+ 1) T+ DIGm +1)

x R™(1 — NTA\N),

G"(n,n)=(N - By)"

(B4)

where the vector B and matrix Al are

Al = , By =(0,0,1,)". (BS)
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APPENDIX C: EQUATION OF SPECTRUM
AND ASYMPTOTIC ANALYSIS - GENERAL
ANGULAR MOMENTUM

The equation of spectrum is obtained by setting the deter-
minant of Eq. (3.32) to zero. In order to calculate the involved
quantities G(’")(lm) we need to put the three-dimensional unit
vectors in Eq (2.8a) back on the four-dimensional unit sphere.
This can be done using the following correspondence:

n, — N; = (0,0, cos¢’, sing)7,

V3o
ny3 — N273 = (:FT cos¢’,

T
3 1 1
:F\/T_ sin¢>/,§cos¢/,§ Sind/) . (CD

where ¢’ is an arbitrary phase. By direct calculation we will
obtain the following results

G™11) = ™ f(v,m)R™(1)

GUV(12) = oo™ f (v, m)R(m)G)
GM(13) = —e™? f(v,m)R}" (%)
Gl = e f (v, m)R(m)Gx)
G™(22) = eim¢’ f,m)R™(1)

G™M(23) = () eme f(v,m)Rgm)(%) (C2)

where the factor f (v,m) is defined as
1 Cw+m+1)
flvm) = : .
4cos[(v+3)m] T+ DI (m + 1)

and R (x) has a singularity at x = 1 which is regularized by
the finite radius ry:

(C3)

1 16
f,m)R™(1) = [m — —W(—) =V +m+1)

1)

)

where § = rj / r~ and the W(x) is the digamma function [47].
Putting all these results together, we finally obtain the equation
of spectrum for general value of m:

r 1
In z - EM(U_,-,m)

[m L - lM(uj,m) + 27 (— )’”N(vj,m)i|
=227 N(v;,m)]%, (C4

with the following definition of the relevant quantities:

Mw,m)=VY(—v)+ VYW +m+1),
Nw.m) = 1 1 rv+m+41) Rﬁ””(l)
2" 4cos[(v+ 1) T+ DI (m + 1) 4

(C5)
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where C = 0.577... is the Euler constant. Specification of
Eq. (C4) to the case m = 0 is just what we got previously in
Eq. (3.10).

We then analyze the large scale behavior of the lowest
level. With increasing length scale r, the angular eigenvalue
uo becomes more and more negative, and the imaginary part of
v becomes larger. In the limit |ug| = —ug — 00, we have the
following asymptotic behavior of the relevant functions [47]:

4 — 3m?
3luol

exp (= 5 v/luol)

|uao]'/*

M(vy,m) ~ Injug| —2In2 —

(Co)
N(vo,m) ~

Then asymptotically, the equation of spectrum (C4) reduces to

r 1 4 —3m?
In— = -Injuy| —In2 — ——,
o 2 6|ug|

where only the solution associated with «.. is chosen because

the other solution associated with o. corresponds to the

spurious state discussed previously in the introduction section.

Solving this equation iteratively we will get the large scale
behavior of the effective potential:

(C7)

ud"(r — 00) = —rel’ + (3m* —4)/3+ 0(r™2), (C8)

where e,(f) =4/a? is the two-particle threshold binding
energy. This is the result under adiabatic approximation.

APPENDIX D: CALCULATION OF THE MATRIX
ELEMENTS OF THE BERRY CONNECTION

Here we calculate the matrix elements of the Berry
connection for the case with zero angular momentum m = 0.
Firstly we verify the orthogonality of the eigenstates y;(n) in
Eq. (3.8) and calculate the normalization factor N; in Eq. (3.20)
via the overlap integral:

1 1 2w
(xilxj) = —2/ dxf dprdgrxi(m)y;j(n). (D)
8= J_y 0

Substituting the expression in Eq. (3.8) into the above integral,
we will get

(xilx;) = (aia; +28;8)) 11 + 2(e; B; + o i + BiBj)12,
(D2)
where the two integral I, , are

1 1 2
[1 = w/ dx/ d¢1d¢2Gvi(n N n])GV].(n : nl)’
T J-1 0 (D3)

L=—
2Tz |

Substituting Eq. (3.6) into Eq. (D3) and performing the
integration, we will get

1 2
dx / d$1d$aG, (n-n))G, (n - ns).
1 0

1 1

h= 4 (v; — vi)(wi +v; + 1) (G GVX(X)]’HI’
1 1

L (G () = Gu,(0)],__,-

T Am = v+ D)
(D4)
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Substituting these back into the overlap integral in Eq. (D1),
and applying the constraint on coefficients (¢;,8;) in Eq. (3.9),
we finally arrived at

0 @#J)
[(e2+282) 0, G, 0+ [ 28214810, G, (-]
(4m)(2v;+1)

(Xilxj) = .
(=)

(D5)

Secondly we try to calculate the matrix element of the Berry
connection in Eq. (2.24). The scale dependence only appears
in the regularized Green’s function G,,(1), thus the relevant
quantity that contributes to the derivative with respect to Inr
is inside integral /;:

1 1 1 ! ri
= —-— — n —
4 (v —vj)) (v +v; + 121 1y

I,

+ (), (Do)

where we have used the expression for G,,(1) in Eq. (3.7), and
the scale r is equipped with subscript to differentiate between
|xi) and |x;). The derivative involved in Eq. (2.24) is then
performed with respect to ; and we finally get the expression
for the matrix element D;; as

(ajor; + 2B, B))
Sﬂz,/NiNi(U,’ — l)j)(l)i + V; + 1)’

with the normalization factor N; given by (x;|x;)-

D;; = D7)

APPENDIX E: FIRST ORDER
CORRECTION TO ADIABATICS

In this section we present the detail of calculation of the first
order correction to the effective potential iy in Eq. (3.21) and
optain the result in Eq. (3.25). Using the matrix Hamiltonian
H(v) in Eq. (3.23) and normalization condition in Eq. (3.24),
together with the expression for the first order correction in
Eq. (3.19), we arrive at the following expression:
2= vy + D(2v; +1)

[vo(vo + 1) — v;(v; + D]?
Tr[&o cap - a; -&J.T]

3y, det H9,, det H
. 2vo + DH(2v; + 1)

[vo(vo + 1) —vj(v; + D]?
Tr[det Ay - Ay ' det A, - H;']

% 0 i

dy, det H 0y, det H

| Do

(ED)

The last line can be further simplified to the following form
using the residuals of K = H~!:

D '|2: Qvo + D(2v; + 1)
T oo + D — vi(vy + DP
X Tr[ResI%(vO) . Resle(vj)]. (E2)

The total correction Aug in Eq. (3.21) can then be converted
into a contour integration on the complex plane of variable v,
where the integration contour is along the real axis. On that
complex plane, each v; is a first-order pole along the positive
real axis, and each has its counterpart on the negative real axis.
There are four extra poles off the real axis, corresponding to
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true bound state (vp) and spurious bound state (vy), respectively (see Fig. 3). Finally the expression for Aug are as follows:

12— (vo + D2, + 1) T
Z |Dy;|” = ; oo+ D — 1,0, & 1)]2Tr[ResK(vo) ResK (v))]

J#0

> L | TResK () Resk (1))

= — = r[ResK (vg) - ResK (v;
— Jvy vo—v; vo+v;+1 0 J
J#0
11 fd Tr[ResK (vo) - K (v)] 1 J Tr[ResK (vo) - K (v)]

=-{— v - — v
2| 27i Jo (vo — v)? 2ri Jo (vo +v+1)2

1 L % dvTr[ResI%(vo) -KW)] N L ?g dvTr[ResI%(v;;) -K)] ’ E3)
2| 2mi (v — V)2 27i (v —v)?

where we have used the fact that ResK (vy) = —ResK (v3) and the factor 1/2 appears because we are only summing over positive

real poles. This is nothing but Eq. (3.25) in the main text.
Similarly we can calculate the same first order correction to adiabatics for the case of nonzero angular momentum m. By
direct calculation similar to the case of zero angular momentum we obtain the following result for the Berry connection D;;:

2 m)
)
Dij = m/ d’“/ iy T L0
1

(s + 2 5) 3y S RT—Tt (E4)

X" )

1
872, /N,N;

where the normalization factor N; of the angular eigenfunctions is calculated to be

v L(eF 42892, G0 + 2087 + daipi ], G~ 3)] )
e 2m(4)Q2v; +m + 1) ’

and the single-argument Green’s function is defined as

m/2
G (x) = (—1 ;”C) f m)R(’”)(l ;") (E6)

where the functions f(v,m) and R (x) are defined in Appendix C. For the correction to the effective potential of the lowest
level, we still have

Aug”(r — 00) = Y |D; . (E7)
J#0
This can be calculated exactly the same way as the case m = 0. The only change is the expression for the matrix Hamiltonian
H(®):

. 1 (m) 1 : 2 (my(_1
H(u)=2n<*l 6 V26 (-3) ) (ES)

VEGE(=1) G+ (G (1) -

Az

The rest of the calculation is essentially the same as the case m = 0, and the contour integration trick eventually gives us the
following result:

262 +(m* = 1)+ 007, (E9)

This shows that the marginal value y = 1 is only realized when m = 0; for nonzero angular momentum, no bound state is
guaranteed for the system.

Auf"(r — 00) = 1/3, uy’(r — 00) =
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