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3Sierra Nevada Corporation, 15245 Alton Parkway, Suite 100, Irvine, California 92618, USA
4Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Strasse 3, 06120 Halle (Saale), Germany

(Received 10 October 2016; revised manuscript received 5 January 2017; published 24 January 2017)

We predict that a driven localized magnetic moment coupled to mobile carriers of a metal or semiconductor
surface or interface generates a specific dynamics of the carrier spin density as well as a transient spin current.
Numerical results illustrate the time-dependent Friedel oscillations and the associated ultrafast Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction as well as the spin current generated by the impurity spin flipping. Retardation
effects of the indirect exchange interaction of the impurity spins via the conduction electrons are found and
discussed. Our results point to an alternative way of controlling the local magnetization on a subpicosecond time
scale via appropriate tuning of the external fields that drive the magnetic dynamics of a localized moment.
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I. INTRODUCTION

In the contemporary era of spintronics, the study of
subpicosecond dynamics of impurity spins localized on metal
and semiconductor surfaces and interfaces is becoming in-
creasingly important. The surface spin dynamics provides
a new platform to probe the interaction of localized spins
with a two-dimensional (2D) electronic subsystem, which is
utilizable for various spintronic applications such as memory
devices [1], quantum gates [2], 2D spin field-effect transistors,
light-emitting diodes, etc. [3]. A further application is the
spin pumping across the interface between ferromagnetic and
normal metals [4]. Manipulation of the spin state of a single
on-surface paramagnetic impurity can be achieved with a
terahertz (THz) pulse [5–7] by using all-electric means such
as a tunneling tip in the scanning tunneling microscopy (STM)
setup [8,9] or the gated channel in a Si-based field-effect
transistor [9].

The indirect exchange interaction, mediated by near-surface
electrons, couples localized spins and facilitates a spatial
spin transfer (spin current) once the local spin switches
its direction [4,10,11]. Thus, the spin density generated by
dynamic impurity in a 2D electron gas acts on other magnetic
moments, and their collective dynamics can be described
phenomenologically by the Landau-Lifshitz-Gilbert (LLG)
equation (see Ref. [1] for a review). In studies of spin-
reversal processes, the dynamic Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [4,12–14] and the phenomeno-
logical (so-called micromagnetic) approach based on the LLG
equation have been used to describe fast spin switching and
subsequent magnetic relaxation. An underlying assumption
is the separation of time scales: The magnetic relaxation is
governed by the LLG dynamics on picosecond and longer time
scales [5,15], while femtosecond processes should be treated
microscopically (quantum mechanically) considering individ-
ual impurities based on a dynamic RKKY interaction. This
problem has already been discussed in several articles related
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to the electronic properties of some metals, semiconductors
[16,17], and, most recently, graphene [18–21].

To date, the dynamic RKKY interaction has been treated
mostly in a frequency domain where it describes the response
to a periodic-in-time spin perturbation [11–13,16,22,23].
However, various experimental conditions deal with an abrupt
(pulsed) spin reversal necessitating a time-domain analysis,
which is done in this paper. We study the dynamics of the
spin polarization and the spin current generated by a fast
reversal of a single-impurity spin S0(t) coupled to a 2D electron
gas of a host via s-d interaction. The electron gas becomes
magnetically polarized, resulting in a time-dependent Friedel
oscillations of the electron spin density s(r,t) around the
localized spin (spin-density waves). The spatial and temporal
evolution of the electron spin density and the spin current
are calculated as they depend on the impurity spin-flip rate.
Our primary goal here is to study the possibility to generate
propagating spin density and spin current in 2D structures by
dynamically manipulating the localized impurity moments.

II. TIME-DEPENDENT FRIEDEL OSCILLATIONS
OF THE SPIN POLARIZATION AROUND DYNAMICAL

IMPURITY SPIN

We begin with the standard Hamiltonian of the s-d
exchange interaction between the dynamic magnetic impurity
with spin S0(t) located at r = 0 and a 2D electron gas of a host
crystal,

Hsd = −�
2�

2m∗ + g

n
δ(r) σ · S0(t), (1)

where � is the 2D Laplace operator, n = N/A is the sheet
density of the host atoms, g is the coupling constant, and σ is
the vector of the Pauli matrices. We assume that the spin S0(t)
can be described classically. The Hamiltonian (1) describes
the exchange coupling of the spins of 2D electron gas with
a single-impurity spin S0(t) which varies its orientation with
time. This variation can be represented by spin rotation around
a certain axis within some time interval. The rotation can be
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experimentally arranged by a terahertz pulse or by locally
applied magnetic field in the STM setup.

Due to the magnetic coupling of the electrons and localized
moment S0(t), Friedel oscillations of 2D electron spin density
s(r,t) develop around the localized spin. To obtain the response
of 2D electron gas to the impurity spin flip we will use
the perturbation theory in the coupling constant g. In the
lowest order of perturbation theory we find the time-dependent
distribution of spin polarization s(r,t) at a distance r from
S0(t),

sμ(r,t) = − ig

�
Tr

∫ t

−∞
dt ′ σμ G0(r,t ; 0,t ′) σν

× S0ν(t ′) G0(0,t ′; r,t), (2)

where μ,ν = x,y,z, Tr means the trace over the spin indices,
and G0(r,t ; r′,t ′) is the Green’s function of unperturbed
Hamiltonian (1), i.e., its first term [24],

G0(r,t ; r′,t ′) =
∫

d2k
(2π )2n

∫ ∞

−∞

dε

2π

× eik·(r−r′)e−iε(t−t ′)/�

ε − εk + εF + i� sgn ε
, (3)

where εk = �
2k2/2m∗ (m∗ is the electron effective mass),

εF = �
2k2

F /2m∗ is the Fermi energy (accordingly, kF is the
Fermi momentum), and � = �/2τ is the electron relaxation
rate (accordingly, τ is the momentum relaxation time) related
to the scattering of electrons from nonmagnetic impurities or
defects.

Calculating in Eq. (3) the integrals over ε and the angle
between vectors k and r − r′, we find

G0(r,t ; r′,t ′) = − ieiεF (t−t ′)/�

2πn

∫ ∞

kF

kdk J0(k|r − r′|)

× e−i(εk−i�)(t−t ′)/�, t > t ′, (4)

G0(r,t ; r′,t ′) = ieiεF (t−t ′)

2πn

∫ kF

0
kdk J0(k|r − r′|)

× e−i(εk+i�)(t−t ′)/�, t < t ′, (5)

where J0(x) is the Bessel function [25].
Substituting Eqs. (4) and (5) in Eq. (2) and calculating the

trace of Pauli matrices, we obtain

sμ(r,t) = − ig

4π2n2�

∫ t

−∞
dt ′ S0μ(t ′)

∫ ∞

kF

kdk

× J0(kr)
∫ kF

0
k′dk′ J0(k′r) e−i(εk−εk′ −2i�)(t−t ′)/�.

(6)

Expression (6) defines the magnetic response of a 2D electron
gas to the time-dependent perturbation S0μ(t).

Now we consider the experimentally relevant case when
S0(t) switches from an orientation along the z axis to the
opposite direction by rotating around the x axis. This means
that its y component is time dependent with the following

parametrization:

S0y(t) =
{
S̃0 cos(πt/T ), |t | < T/2,

0, |t | � T/2,
(7)

corresponding to uniform rotation of vector S0. Here T is the
spin-flip time. Using Eqs. (6) and (7), we obtain

sy(r,t) = − igS̃0

4π2n2�

∫ min{t, T /2}

−T/2
dt ′ cos

(
πt ′

T

)

×
∫ ∞

kF

kdk J0(kr)
∫ kF

0
k′dk′ J0(k′r)

× e−i(εk−εk′ −2i�)(t−t ′)/�. (8)

For a very large time of spin flip, T → ∞ (more exactly, if
the spin-flip time T is longer than the electron relaxation time
τ and also T � t), it follows from (8) that sy(r,t) becomes
time independent,

sy(r,T → ∞) � − igS̃0

4π2n2

∫ ∞

kF

kdk J0(kr)

×
∫ kF

0
k′dk′ J0(k′r)

εk − εk′ − 2i�
. (9)

The integrals in Eq. (9) can be evaluated exactly in the case
of � → 0 (static spin polarization has already relaxed, so that
in this case τ → ∞). Taking the limit of � → 0 in (9) and
expressing the integral from kF to ∞ as a difference of integrals
from zero to ∞ and from zero to kF allow us to obtain a
linear equation for the integrals in (9), which yields finally the
ordinary RKKY result (see, e.g., Refs. [26–28]) for the static
single spin S0 in a 2D electron gas,

sy(r) � −gm∗k2
F S̃0

8πn2�2
[J0(kF r) N0(kF r) + J1(kF r) N1(kF r)],

(10)

where N0(z) and N1(z) are the Neumann functions [25].
To calculate the 2D electron gas response (8) numerically,

we can express, similar to the static case, the integral from
kF to ∞ via those from zero to ∞ and from zero to kF . This
procedure yields the following result:

sy(z,t0) = −sy0

∫ t0+T0/2

a

cos
π (t0 − x)

T0
e−x/τ0dx

×
∫ ∞

0
y1J0(y1z)dy1

∫ 1

0
yJ0(yz)

× sin
[
x
(
y2

1 − y2)], (11)

where a = 0 if t0 < T0/2 and a = t0 − T0/2 if t0 > T0/2,
sy0 = gk4

F S̃0/(4π2εF n2), εF (t − t ′)/� = x, y = k/kF , y1 =
k′/kF , t0 = εF t/�, τ0 = εF τ/�, T0 = εF T /�.

The spatial dependence of RKKY-type spin density is
shown in Fig. 1 at different dimensionless running times t0 for
different spin-flip times T0. The choice of parameters has been
dictated by the experimental situation in fast optical switching
on a femtosecond time frame: 80 fs [15] and 60 and 12 fs
[6]. The shortest pulse corresponds to T0 = 20 (εF = 1 eV) or
T0 = 2 (εF = 0.1 eV). Electron momentum relaxation time is
in picoseconds, so below we use τ0 = 100.
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FIG. 1. Spin-density oscillations at different dimensionless times
t0 [as explained in the legend in (a)]. (a)–(d) show different choices
of T0, as shown in each panel. Dimensionless relaxation time
τ0 = 100.

It is seen in Fig. 1 that at small T0 [Figs. 1(a) and 1(b)]
the spatial spin distributions differ strongly from the static
curve (10) and have irregular oscillatory behavior, while the
curves for T0 = 20 [Fig. 1(d)] follow the static one, especially
at small t0 < T0/2. This behavior is also seen in Fig. 1(c),
where an intermediate regime of T0 = 5 is depicted. Also,
at smaller T0 the amplitude of system response is higher
and decays drastically at elevated times. The main factor
here is the relation between running time t0 and the time
of external spin flip T0. Namely, at t0 < T0/2 the amplitude
of the response is high, and spatial (Friedel) oscillations are
irregular. In the opposite case, t0 < T0/2, the oscillations
become more regular and approach the static regime at large
enough T0 = 20. Note that the irregular oscillatory behavior
in the curves corresponding to T0 < 20 is due to the fact that
the time response of the system to the localized spin flip (7)
“spoils” regular Friedel oscillations, given by Eq. (10).

The behavior in Fig. 1 is further visualized in Fig. 2, where
the spin-flip time T0 is now the parameter. In can be seen
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FIG. 2. Spin-density oscillations for different spin-flip times T0,
as explained in the legend in (a). (a)–(d) show different values of t0.
Dimensionless relaxation time τ0 = 100.
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FIG. 3. Time dependences of spin polarization taken at different
spatial points, shown in the legend. Insets visualize the temporal
behavior of the curves for kF r = 6 (top) and kF r = 12 (bottom). The
curves are plotted for T0 = 2 and τ0 = 100.

that when T0 increases, the spin-density oscillations become
increasingly more regular. At the same time, at larger time
instants t0, the spin amplitude decreases substantially, which
is seen in Figs. 2(a)–2(d). Also, at large kF r the spin density
decays quickly, which is especially true for small T0. The
nonmonotonic dependence on T0 can also be observed: At t0 =
1 the curve with T0 = 1 has the highest amplitude at moderate
kF r < 5, while this curve has the smallest amplitude for t0 = 5
and 10. At large t0 = 10 [Fig. 2(d)] the highest amplitude is
for the curve for T0 = 20, which once more demonstrates the
dependence of the system response on the ratio t0/T0.

The temporal evolution of the spin density is shown in
Fig. 3. As the amplitude of the system response is much smaller
at z = kF r = 6 and 12, the details of corresponding curves are
shown in the insets. The main effect here is the time lag in
the system response as the distance from the source (magnetic
impurity spin) grows. Indeed, while at z = 1 the maximal
response occurs at t0 ≈ 1, at larger distances the maximal
response amplitude (although it is much smaller than that at
z = 1) occurs at t0 ≈ 2.5 (z = 6) and t0 ≈ 4 (positive pulse,
z = 12). This demonstrates the retardation effect, when the
system response appears earlier at a small distance from the
impurity spin. The effect is clearly seen in Fig. 3 for kF r = 6
and kF r = 12. For a small distance, kF r = 1, the retardation
is very small but still exists.

III. SPIN CURRENT GENERATION BY IMPURITY
SPIN REVERSAL

Now we are in a position to calculate the spin current,
generated by the dynamical impurity spin. The spin current
operator for our model has the form

Ĵ
μ

i = i�

2m∗ (
←
∇i −

→
∇i) σμ, (12)

where Latin indices refer to 2D coordinates in the x-y plane,
i = x,y, and the arrows over operator ∇i show the direction
of the operator action. In our perturbation approach, the
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expectation value of the spin current reads

J
μ

i (r,t) = − g

2m∗ Tr
∫ t

−∞
dt ′

(
∂

∂ri

− ∂

∂r ′
i

)

× σμ G0(r,t ; 0,t ′)σν S0ν(t ′) G0(0,t ′; r′,t)
∣∣∣∣
r=r′

.

(13)

Substitution of expressions (4) and (5) for the Green’s
function yields the following explicit expression for the spin
current:

J
μ

i (r,t) = − g

8π2m∗

∫ t

−∞
dt ′ S0μ(t ′)

(
∂

∂ri

− ∂

∂r ′
i

)

×
∫ ∞

kF

kdkJ0(kr)
∫ kF

0
k′dk′ J0(k′r ′)

×e−i(εk−εk′−2i�)(t−t ′)/�

∣∣∣
r=r′

. (14)

Calculating the derivatives of the Bessel functions and
substituting expression (7) for S0y(t), we obtain

J
y

i (r,t) = ri

r
J y(r,t), (15)

where the coefficient ri/r = (x/r, y/r) = (cos ϕ, sin ϕ)
signifies the angular part of the spin current (15). It appears
from the derivative ∂f (r)/∂ri = (ri/r)(df/dr), where f (r) is
a function of only modulus r =

√
x2 + y2. Thus, we call the

term J y(r,t), which depends only on r , the radial spin current.
In this case, the x and/or y components of spin current (15)
are obtained by simply multiplying J y(r,t) by cos ϕ or sin ϕ.

Then the explicit expression for radial spin current reads

J y(r,t) = gS̃0

8π2m∗n2

∫ min{t,T /2}

−T/2
[I1(t − t ′) − I2(t − t ′)]

× cos

(
πt ′

T

)
dt ′, (16)

where

I1(t − t ′) =
∫ ∞

kF

k2dk J1(kr)

×
∫ kF

0
k′dk′ J0(k′r) e−i(εk−εk′ −2i�)(t−t ′)/�,

I2(t − t ′) =
∫ ∞

kF

kdkJ0(kr)

×
∫ kF

0
k′2dk′ J1(k′r) e−i(εk−εk′−2i�)(t−t ′)/�.

Applying the above procedure, it is easy to show that in the
static regime (T → ∞, τ → ∞) the spin current is zero. This
situation is opposite to that with the dynamic spin density. This
means that there is no spin flow in thermodynamic equilibrium.

In dimensionless variables the radial spin current acquires
the following form:

J y(z,t0) = J0

∫ t0+T0/2

a

cos
π (t0 − x)

T0
e−x/τ0

× [I1(x,z) − I2(x,z)]dx, (17)
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FIG. 4. Radial spin current Friedel oscillations at different di-
mensionless time instants t0 [legend in (d)] and spin-flip times T0.
(a)–(d) show different T0. Dimensionless relaxation time τ0 = 100.

with

I1(x,z) =
∫ ∞

0
y2J1(yz)dy

×
∫ 1

0
y1J0(y1z) cos

[
x
(
y2

1 − y2
)]

dy1,

I2(x,z) =
∫ ∞

0
yJ0(yz)dy

×
∫ 1

0
y2

1J1(y1z) cos
[
x
(
y2

1 − y2
)]

dy1,

where we denote J0 = gk5
F �S̃0/(8π2m∗εF n2) and the rest of

variables are similar to those in Eq. (11).
The spatial dependence of radial spin current is presented

in Fig. 4 at different values of t0 and T0. Similar to the case
of spin dynamics shown in Fig. 1, the physical picture here
is determined by the interplay between t0 and the spin-flip
time T0. Irregular oscillations are seen, similar to the case of
dynamic spin response (Fig. 1). This means that the external
spin flip not only generates the radial spin current but also
spoils the regular Friedel oscillations in it. The nonmonotonic
dependence on spin-flip time T0 can be observed here. Really,
for t0 = 1 the maximal spin current amplitude occurs at T0 = 2
[Fig. 4(b)], while for t0 = 3 the maximal amplitude appears
approximately at T0 = 5 [Fig. 4(c)]. At both smaller and larger
T0 the spin current amplitude, corresponding to a specific time
instant, is much less. At large T0 = 20 (note the large relaxation
time τ0 = 100) the spin current decays to zero, as has been
discussed above.

In Fig. 5, we present the spatial dependence of the radial
spin current but now the spin-flip time T0 is the parameter.
It can be seen that if T0 increases, the amplitude of the spin
current decays drastically. The same behavior occurs at larger
times t0: at t0 = 10 the spin current is almost 50 times (except
for the case of large T0 = 20) less than that at t0 = 1. At large
distances, the radial spin current also decays quickly. The tem-
poral evolution of the radial spin current is reported in Fig. 6.
As the current amplitude is much smaller at z = kF r = 6
and 12, the details are shown in the insets. Figure 6 illustrates
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FIG. 5. Radial spin current Friedel oscillations plotted against
spin-flip times T0 [legend in (a)]. (a)–(d) show different t0. Dimen-
sionless relaxation time τ0 = 100.

the spin pumping that is clearly seen in the main panel at
kF r = 1, where the spin current increases in time while the
pulse lasts and then drops down after the pulse ends. Similar
behavior is seen (although with a much smaller amplitude) in
the insets with higher kF r . The retardation effect (see also
Fig. 3) is also seen in the spin current. Namely, at larger
distances from the local spin, the maximum spin current occurs
at larger times t0.

One more remark is needed here. When the impurity spin
begins to rotate, the ambient 2D electron gas responds (after a
time delay) by the difference in the local chemical potentials
for spin-up and spin-down populations, which is indeed a spin
accumulation effect. When the spin-up population prevails,
we have a positive peak; otherwise, we have a negative one.
As the spin accumulation peaks at kF r = 1 are already high,
i.e., the majority of the electron spins are involved in them,
for kF r > 1 the spin accumulation is accordingly low. The
same effect has been observed experimentally and simulated
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FIG. 6. Temporal evolution of radial spin current taken at differ-
ent spatial points, shown in the legend. Insets visualize the temporal
behavior of the curves for kF r = 6 (top) and kF r = 12 (bottom). The
curves are plotted for T0 = 2 and τ0 = 100.

by a simple phenomenological model of the spin diffusion
in Ref. [29]. The close qualitative resemblance of Figs. 3(c)
and 4(c) of Ref. [29] and our Figs. 3 and 6 is immediately
seen.

IV. SUMMARY AND OUTLOOK

Although the indirect RKKY exchange interaction is well
known in solid-state physics, this topic has become recurrent
in the emergent field of ultrafast spintronics. As time- and
spin-resolved spectroscopic tools become more sophisticated
and available, the predicted effects should become accessible
to experiment. For instance, in a recent work [30] the presence
of a nonequilibrium spin current has been sensed by the emitted
THz radiation. Our predicted spin currents can readily be
detected by these new methods so that the anticipated power
spectrum follows from the calculated time dependence of the
spin currents.

Here, based on dynamic RKKY-type coupling in the time
domain, we studied the temporal spin excitation and spin
current evolution in a 2D electron gas. Our theoretical approach
adequately describes spin excitation propagation after fast
optical or all-electrical spin reversal on a 2D object like a
metal and/or semiconductor surface as well as in a degenerate
semiconductor inversion layer or interface.

Our approach complements the standard LLG theory for
smaller (femtosecond) time scales, when phenomenological
treatment of spin dynamics becomes inadequate. The results
presented in this paper relate the femtosecond external pulse
length to time and spatial propagation of the perturbation
induced by a 2D RKKY interaction. We have shown that the
system reaction to the local spin switching is retarded; that is,
there is a time lag between impurity spin direction switching
and system response in the form of local magnetization and/or
spin current, which can clearly be observed at large distances.
Our analysis shows that at chosen values of spin flip and
electron relaxation times the charge-carrier concentration of
ns = 1013 to 1014 cm−2, typical for thin semiconducting films
and inversion layers, is sufficient to observe experimentally
the femtosecond magnetic response. Since the results are
valid for a variety of 2D magnetic objects like adatoms,
nanoparticles, and vacancy-induced magnetic moments on
the semiconductor surface, this may open the path to new
ways of transporting magnetic information in multilayer
spintronic devices, which may be used in magnetic memory
devices [1,3,21].

The spin-density excitation of electron gas generated by
magnetic impurity (6) determines the dynamic exchange
interaction of two magnetic impurities at a distance r . It
can be an arbitrary pair of localized spins in magnetic
semiconductors like GaMnAs [3]. The parameters of these
host magnetic semiconductors (Fermi energy EF � 30 meV,
heavy-hole mass m � 0.5m0, and average distance between
impurities r � 10−6 cm) make it possible to observe clearly
the dynamics of the above indirect exchange interaction for
times T ∼ r/vF � 1 ps. At the same time, the impurity spins
are distributed chaotically in a semiconducting host, so that
their separation is random. Therefore, to observe reliably the
indirect exchange interaction dynamics it is necessary to use
pairs of impurity spins (magnetic atoms) with an a priori given
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distance between them. Also, they should be well separated
from the environment.

Recently, a lot of attention has been attracted to “atom-
by-atom engineered structures” of nanomagnets built from
magnetic adatoms at the surface of nonmagnetic metal (see,
for example, Ref. [31] and references therein). For example,
they can be Fe or Co single atoms or clusters on the
Cu(111) substrate. In the static case, the interaction between
magnetic adatoms has the usual RKKY form [31–33]. The
main advantage of the technology of such systems is the
possibility of precise control of their parameters. As shown
in Refs. [7,34], the dynamics of magnetic switching in these
structures is also under consideration with switching times of
10 ns and distances r � 1 nm. Taking the Fermi velocity for Cu
vF � 108 cm/s, we find that a dynamical correction of 1% to
the static RKKY could be observed at times T � 100 fs, i.e., at
much smaller switching times than those in the experiment of
Ref. [7]. The related dynamics of a single spin switching in the
experiment [34] has been theoretically analyzed in Ref. [35].

Therefore, we believe that the dynamical exchange inter-
action is much more important in structures with magnetic
adatoms on a nonmagnetic semiconductor substrate. Namely,
these structures permit us to measure experimentally both
dynamic spin polarization and spin current, generated by the
spin reversal of a magnetic adatom (like Fe, as in Ref. [35],
or Mn), localized on the surface. For example, sandwich
structures, fabricated in Ref. [29], can be equipped with the
adatom on their surface as well as by the scanning tunneling
microscopy tip to detect (in the spin-resolved case) the spin
rotations and currents. The latter phenomena in this case are
caused by the spin reversal of the magnetic adatom and can
be measured for structures with different thicknesses of the
Cu layer (see Ref. [29]), which mimics our kF r parameter.
To observe the spin current it is more appropriate to use the
standard technique of transversal electric current measurement
with the inverse spin Hall effect. To do so, one can place

nonmagnetic heavy-metal spin-orbit impurities (e.g., Au) at a
distance from the rotated spin.

Using the above estimations we can also find the upper limit
of the frequency of signals, which can be transmitted between
magnetic atoms on the metallic surface at a distance of 1 nm.
This frequency is about 1 THz, which corresponds to signals
with a duration of 100 fs transferred with a periodicity of 1 ps.
For shorter pulses the signal would be significantly distorted;
instead of isolated pulses, the neighboring atom would receive
some irregular oscillation packets like those presented in Fig. 3.

In this work we do not discuss possible experimental ways
for very fast reversal of the localized spins. This problem has
been discussed in numerous papers in relation to the possibility
of ultrafast magnetic memory [36–39]. The main idea is to use
a transverse-to-spin pulsed magnetic field so that the spin flip
is due to free precession to the angle π . It turns out that this
idea permits us to reach the picosecond spin flips in magnetic
nanoparticles. The main parameters limiting such a macrospin
rotation are related to magnetic anisotropy, the damping factor,
and the temperature. Obviously, spin rotation of a free single
adatom at the surface of a 2D nonmagnetic semiconductor
should be much faster.

One can also use ultrafast laser excitation of an atom
(molecule) with the corresponding change of its electronic
state from the nonmagnetic to the magnetic one and back again
from the excited magnetic state to the equilibrium nonmagnetic
state. In this case we have to use the different [from that in
Eq. (7)] parametrization of S0(t) in Eq. (6). For instance, it
can be parametrized as S0(t) = S̃0/ cosh2(t/T ), which does
not change our results qualitatively.
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