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Imaging snake orbits at graphene n- p junctions
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We consider conductance mapping of the snake orbits confined along the n-p junction defined in graphene
by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations
at the magnetic field and the Fermi energy scales by the properties of the n-p junction as a conducting channel.
We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall
conditions the currents flow near the edges of the sample and along the n-p junction. The conductance mapping
resolves only the n-p junction and not the edges. The conductance oscillations along the junction are found in the
maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide
support to localized resonances at one of the sides of the junction with current loops that interfere with the
n-p junction currents. The interference results in a series of narrow lines parallel to the junction with positions
that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited
transparency of finite-width n-p junctions are also discussed.

DOI: 10.1103/PhysRevB.95.045304

I. INTRODUCTION

The gapless band structure of graphene allows for electrical
doping with formation of n-type and p-type regions defined
by external potentials [1]. With the electron mean-free path
[2,3] of several μm, the n-p junctions [4–6] in graphene are
an attractive playground for studies of electron optics [7–12]
implemented in the solid state. In particular, the n-p junctions
in the quantum Hall conditions [5,13–15] form waveguides
[16] for electron currents, which in the semiclassical picture go
along snake orbits [10,17–28] formed by inversion [29] of the
orientation of the Lorentz force [30] with the carriers passing
across the junction from the conductance to the valence band.

In this work we consider the possibility of mapping the
snake orbits confined along the n-p junction using scanning
gate microscopy [31–37] (SGM). The SGM microscopy
[31–37] with a charged tip of an atomic force microscope float-
ing above the sample allows one to probe the quantum transport
properties of devices with a spatial resolution. Cyclotron and
skipping orbits—which are related to the snake orbits by
the magnetic deflection—have already been experimentally
resolved [36,37] for magnetic focusing [12,24,38–41] of
electron currents in unipolar graphene sheets.

For the purpose of the present work we consider a four-
terminal cross junction—a geometry of a quantum Hall bar
studied previously both by experiment [3,11,42–44] and theory
[17,24] of ballistic transport in graphene. We determine the
transport properties of the n-p junction defined within the
sample using the atomistic tight-binding approach. We find
the characteristic conductance oscillations [10,24,25,25,40]
as a function of the magnetic field that are identified with
formation of snake orbits. The experimental conductance
oscillations can be exactly reproduced by a coherent quantum
transport simulation as shown in Ref. [25]. In this work we
explain the periodicity of the conductance oscillations by the
details of the dispersion relation of the n-p junction waveguide
[8,45] as due to superposition of the junction modes producing
scattering density oscillations of the largest wavelength. A
perfect agreement with the results of the quantum transport
simulation is found in the entire quantum Hall regime.

We demonstrate that the potential of the scanning probe
produces variation of the sample conductance but only when
the probe floats above the n-p junction. The probe deflects
the electron paths changing the destination terminal of the
electron currents and thus affecting the conductance. Outside
the junction the sample does not react to the probe as the
backscattering is suppressed in the quantum Hall conditions.
Although the electron paths are not as clearly resolved as
for the magnetically focused trajectories [36,37], the period
of the conductance oscillations along the junction is close
to the length of the snake orbit period. For stronger tip
potentials series of resonances are found on the lines parallel
to the junction—but only on one of its sides—where the tip
potential supports formation of the quasibound states. For
these resonances a current loop is found around the probe
which interferes with the wave function flow along the junction
waveguide.

II. THEORY

A. Model Hamiltonian

We consider a four-terminal cross structure which is
depicted in Fig. 1(a). We use the tight-binding Hamiltonian

H =
∑

k

Uk(rk)c†kck +
∑
〈i,j〉

tij c†i cj + H.c., (1)

where the second summation denotes the nearest-neighbor
pairs and Uk(rk) is the external on-site potential energy on
the kth site in the lattice. The magnetic field is taken into
account by the Peierls substitution

tij = t exp

(
2πei

h

∫ rj

ri

A · dl
)

with the hoping energy t = −2.7 eV. In this paper we consider
the magnetic field perpendicular to the graphene surface B =
(0,0,B) and use the Landau gauge A = (−By,0,0). In order
to model samples of linear size of about 300 nm we apply the
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FIG. 1. (a) The sketch of the four-terminal device. The source and drain leads are denoted by L1 and L2 labels, respectively. L3 and L4

leads are voltage probes. The gray dashed line denotes the n-p junction induced by an external potential. (b) The potential profiles along the
blue line in (a) for Sm = 4 nm and Sm = 21 nm modeled with Eq. (2). The n region is located to the left from the n-p interface. (c)–(f) The
probability current maps obtained for electrons incoming from each of the leads Li (incident direction is denoted by the black arrow). The
maps are computed for B = 1.3 T, EF = eVPNJ/2 = 40 meV.

scaling method proposed in Ref. [46] with the scaling factor
of 10.

We consider a system in which the n-p junction is formed
by external potentials induced by the gate electrodes along
the diagonal of the cross junction. The potential profile of the
junction is modeled with an analytical formula

UPNJ(x) = eVPNJ

e−x ′/Sm + 1
, (2)

where the x ′ axis coincides with the y = x line with the origin
at the diagonal of the cross junction [see the dashed blue line
in Figs. 1(a) and 1(b)]. In Eq. (2) eVPNJ is the potential energy
variation across the junction, and Sm controls the width of the
n-p interface. The potential (2) for eVPNJ > EF induces the n-p
junction with the p-type conductivity in the upper-right part
of the device of Fig. 1(a). In this paper we follow the choice of
Ref. [25] and restrict our considerations to the symmetric case
when the carrier densities are the same in the n- and p-type
regions, i.e., for eVPNJ = 2EF.

In order to simulate the SGM mapping we use the
Lorentzian approximation for the tip-induced potential

Utip(r; rtip) = d2
tipVtip

|r − rtip|2 + d2
tip

,

where rtip is the position of the tip, dtip is the Lorentzian width,
and Vtip is the tip-induced amplitude. The tip-induced potential
is controlled by external voltages, and its width is close to the
distance between the tip and the sheet that confines the electron
gas [47]. Here, we choose dtip = 25 nm. The potential energy

Utip(r; rtip) enters the on-site term of the Hamiltonian (1), i.e.,
U = Utip + UPNJ.

In the experimental implementation of the mapping that
is considered here, the main challenge seems to rely in a
simultaneous formation of the n-p junction by electrostatic
gating and the scanning gate microscopy of the sample. The
gate electrons that form the n-p junction are usually deposited
on top of the structure [41] and hence they are bound to screen
the electrostatic potential of the tip exactly at the position of the
n-p junction. A solution to this problem was provided recently
with the system of split gates defined under the graphene plane,
for which the n-p junctions are open for the action of the
floating probe [48]. The graphene suspended above the gates
[25] is also accessible for the scanning gate operation.

B. Conductance

In order to evaluate the transport properties of the device
we use the Landauer-Büttiker approach together with the wave
function matching method [49,50] which requires a numerical
solution of the scattering problem. A low temperature ∼0 K
and a source-drain bias within the linear response regime are
assumed.

The probability currents obtained for B = 1.3 T, EF =
40 meV, and electrons incident from different leads are shown
in Figs. 1(c)–1(f), with snakelike trajectories in Figs. 1(c)
and 1(e). Note that already for this magnetic field value (i)
the current flows only near the edges [51] and along the n-p
junction and (ii) backscattering to the input lead is absent.
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The conductance from lead p to q denoted as Gqp is
computed from the Landauer formula

Gqp = G0

∑
m,n

∣∣T q,n
p,m

∣∣2
, (3)

where T
q,n
p,m is the scattering transmission amplitude with which

an electron entering the device at lead p in mode m will leave
the device at lead q in mode n. The summation runs over
all propagating modes in the leads and G0 stands for the
conductance quantum G0 ≡ 2e2

h
. For more details about the

applied computational method see, e.g., [49,50,52].
The conductance matrix G elements [53] for the four-

terminal device are determined from solution of the scattering
problem according to Eq. (3),

G =

⎛
⎜⎝

g11 −G12 −G13 −G14

−G21 g22 −G23 −G24

−G31 −G32 g33 −G34

−G41 −G42 −G43 g44

⎞
⎟⎠

with gii = ∑
j �=i Gij .

In the quantum Hall conditions some elements of this matrix
are zero [see Figs. 1(c)–1(f)]. In our device the quantum Hall
edge transport appears for B � 0.8 T, and then the conductance
matrix acquires the form

G =

⎛
⎜⎝

G14 0 0 −G14

−G21 G21 + G23 −G23 0
0 −G32 G32 0

−G41 0 −G43 G41 + G43

⎞
⎟⎠.

Additionally, we have G23 + G43 = G32 = νp and G21 +
G41 = G14 = νn with νp/n being the spin-degenerated filling
factors in the p/n regions. In the linear transport conditions
the current in each of the leads is given by I = GV for
a given bias. We choose L1 and L2 to be source-drain
electrodes, with the source V1 = VS and the drain V2 = VD

potentials, respectively. Terminals L3 and L4 are used as
voltage probes, which amounts to I3 = I4 = 0 and so I1 = −I2

(the plus sign stands for the current that enters the device).
The condition I3 = I4 = 0 immediately implies V3 = VD .
This fact can be also deduced from Fig. 1(d)—the current
from the drain terminal passes to L3 without scattering.
From the form of the second row of the G matrix, we
have I2 = −G21VS + (G21 + G23)VD − G23VD = G21(VD −
VS). Hence, in the quantum Hall conditions the current flow
is determined uniquely by the G21 matrix element, which is
studied in detail below.

III. RESULTS

A. Conductance oscillations due to snake orbits

Figure 2(a) shows the G = G21 conductance as a function
of the magnetic field and the Fermi energy. The result contains
an oscillatory pattern—marked with the dashed rectangle—
similar to the one found [25] experimentally and identified
with formation of snake orbits along the n-p junction. The
snake state oscillations are visible in a quite large range of
both EF and B. For further studies we fix the value of Fermi
energy EF = 40 meV and analyze the results as a function
of magnetic field. The zoomed fragment of Fig. 2(a) near

FIG. 2. (a) G21 conductance as a function of magnetic field B

and Fermi energy EF = eVPNJ/2. (b) Zoom of the white rectangle
in (a). (c) Cross section along the dashed line in (b). The red labels
correspond to the SGM images in Figs. 3(a)–3(e). The filling factors
in the channels are given above the plot and the inset to the right
shows the zoom of conductance in the high magnetic field limit.

EF = 40 meV is depicted in Fig. 2(b) and the cross section of
the plot for EF = 40 meV is given in Fig. 2(c).

Classically, these oscillations can be understood as due to
the variation of the cyclotron orbits (with radius Rc = �k/eB)
as a function of B. The electron current can be then sent
to either the L2 or L4 lead, depending on the value of Rc.
Figures 3(a)–3(e) show the electron current distribution for the
electron incident from the lead L1 at EF = 40 meV. The values
of the external magnetic field are denoted by the corresponding
letters in Fig. 2(c). Besides the current confinement along the
n-p junction one notices deflection of the electron paths, in
particular in the p-type (upper right) region of the device, with
a radius that decreases with the external magnetic field.

In terms of the quantum transport theory, the snake orbits
along the n-p junction—similarly to the skipping orbits [40]
near the edge of the sample—appear as a result of the
superposition of Landau level states

S(x,y) =
ML∑
m=1

ameikmxχm(y), (4)

where km and χm denote the mth Fermi level wave vector and
the corresponding transverse mode, respectively. The scatter-
ing amplitudes am depend on specific boundary conditions.

For simplicity let us assume that the particle is propagating
along the x direction. For the case when ML = 1 the electron
density |S(x,y)|2 = |a1χ1(y)|2 does not depend on x and there
is no room for the density variation along the edge or the
junction. In this case the idea of the classical cyclotron orbit
is irrelevant. For superposition of two or more modes the
|S(x,y)|2 density results from a superposition of modes with
different Fermi wave vectors, leading to the oscillating pattern.

Figure 4(a) shows the dispersion relation for a horizontal
channel in lead L1 which is denoted by the green arrow in
the inset. For B = 1.2 T there are three modes which are
propagating to the right (green dots) and three modes for
opposite direction (red dots). The wave vectors ki can be
computed from condition Ei(ki) = EF [49,52]. In Fig. 4(b)
we show the dispersion relation for a channel created along
the n-p junction of width Sm = 4 nm (see the inset). For
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FIG. 3. (a)–(e) Probability current distribution in the absence of
the scanning probe (left column) and (f)–(j) SGM images (right
column) for magnetic fields B = 0.6, 1, 1.14, 1.2, 1.4 T that are
indicated in Fig. 2(c).

the junction the number of right-propagating Landau levels
is now doubled (six right and six left propagating modes).
The doubling of the states in the n-p junction was recently
discussed for steplike junctions in Ref. [26] with reference to

FIG. 4. (a) Electron dispersion relation for the lead L1. The green
and red dots denote the Fermi level wave vectors for the right- and
the left-moving modes, respectively. (b) Same as (a) but computed
for a channel along the n-p junction interface and for Sm = 4 nm.
(c) Same as (b) but for a smoother junction Sm = 21 nm. auc is
the length of the unit cell vector along which the dispersions are
computed. The results were calculated for B = 1.2 T and EF =
40 meV.

the Bogoliubov quasiparticles and can be explained as a result
of coupling the n-type and the p-type conductivity regions,
in this case with three conduction and three valence bands at
each side of the junction.

We find that the state doubling is not always present in
smooth junctions of a finite width; see, e.g., Figs. 4(b) and 4(c)
where a small shift of the Fermi energy line will decrease the
number of right-moving modes from 6 to 4. The slope of
the energy bands as function of the width of the junction Sm

changes: the plateaus at the extrema of the bands get narrower
in k [cf. the bottoms of the bands in Figs. 4(b) and 4(c)]
for increased Sm, which results in particular in a stronger
dependence of the Fermi wave vectors on both EF and B off the
band extrema. In Fig. 5(a) we show the evolution of the first six
Fermi ki wave vectors for right-moving modes as a function
of magnetic field. The black lines correspond to Sm = 4 nm.

The conductance oscillations of Fig. 2(c) can be explained
by the superposition of the modes propagating along the
junction. We consider the Fermi wave vectors and look for
the closest pair of k’s that correspond to the positive velocity
dE/dk > 0. A superposition [see Eq. (4)] of these two modes
produces a charge density variation of the largest wavelength
λmax = 2π/kmin,

kmin ≡ min
i,j

|ki − kj |. (5)

Within the range of the magnetic field from B = 0.8 T
to 1.6 T the minimal distance between the right-going
wave vectors appears for the two lowest ones in Fig. 5(a)
and the two highest ones. Both distances are found equal.
For a superposition of the two modes with the clos-
est wave vectors S = ai exp(ikix)χ1(y) + aj exp(ikjx)χ2(y).
Hence the charge density along the junction can be put in
a form |S|2 = |ai |2|χi(y)|2 + |aj |2|χj (y)|2 + 2Re(a∗

i aj )χ∗
i (y)
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FIG. 5. (a) Black lines show the wave vectors ki for the right-
going modes at the Fermi level of the n-p junction interface from
Fig. 4(b). The vertical dashed line corresponds to Fig. 4(b); see the
green dots in both the plots. The blue line shows the calculated kmin

values according to Eq. (5). (b) kmin(B) [see Eq. (5)] for different
values of the junction smoothness parameter Sm. (c) The gray solid
line, the exact result; the blue dashed line (PNJ model), the best
fit obtained from formula (6) for the dispersion relation of the n-p
junction as a conducting channel; the red line, the best fit obtained for
the wave vectors of the energy bands of the input lead L1. (d) The value
of kmin plotted for armchair and zigzag ribbons (dashed curves)—in
the leads of Fig. 1(a) as well as for the n-p junction; dash-dotted
curve and solid curve for a zigzag and an armchair ribbon with the
n-p junction defined along its axis with Sm = 4 nm.

χj (y) − 4Re(a∗
1a2) sin2( (ki−kj )x

2 )χ∗
i (y)χj (y). The last term is

responsible for the oscillations of the density along the
junction, and the G21 conductance depends on the destination
of the current that reaches the end of the n-p junction at its
contact with the edge. At that point the electron current reaches
either L4 or L2. The oscillations of Fig. 2(c) can be described
by a a simple phenomenological formula

G(B) = a + be−cB sin2

(
kmin(B)L

2

)
, (6)

where the exponential part accounts for the observed decay of
the oscillations at high B and L = 455 nm is the length of the
junction.

The decrease of the amplitude for higher magnetic field can
be understood based on the recent Ref. [8], which shows that
the transmission coefficient for electron traveling through the
n-p junction of a finite width is below 1. Here we consider the
junction with Sm = 4 nm which according to Ref. [8] gives
the transmission probability ∼0.5. Now, if we increase the
magnetic field the number of times that the electron passes
across the n-p interface increases, hence the reduction of the
conductance oscillation amplitude.

Figure 2(c) shows that the conductance oscillations vanish
in the strong external magnetic field limit that reduces the

filling factor to ν = 2, i.e., when a single subband with the spin
degree of freedom is present. Above 1.6 T, the conductance
only depends on the external magnetic field. The results
indicate a nearly constant value near 0.3 G0, which is close to
the 0.25 G0 value obtained in Ref. [6] by both the continuum
approximation and the tight-binding model for the armchair
nanoribbon with a perpendicular n-p junction. For the present
geometry the high magnetic field limit is not exactly a plateau,
and the conductance variation is observed; see the inset to
Fig. 2(c).

The results of the fit with formula (6) for the dispersion
relation for the n-p junction [Fig. 4(b)] are denoted as the “PNJ
model” in Fig. 5(c)—the dashed blue line, which above 0.9 T
agrees perfectly with the numerical conductance. A similar
analysis was performed in Ref. [24] but for the dispersion
relation of the input lead and not the n-p junction itself. The
fit for the dispersion relation of the input lead is given by the
red line in Fig. 5(c), in which the agreement is not as good
as for the “PNJ model.” Note that the fit becomes even worse
for a larger magnetic field, where the out-of-phase range is
visible. A distinct shift can also be spotted in Fig. 4(f) of
Ref. [24] between the model and numerical values, however at
lower B. The present result indicates that the properties of the
band structure of the n-p junction as the conducting channel
precisely determine the period of the conductance oscillations
on the magnetic field scale in the quantum Hall conditions.

Figure 5(c) shows the value of kmin as calculated for
the armchair and the zigzag ribbons—without the external
potential variation—as well as the ribbons in which the n-p
junction is defined along its symmetry axis. The later case
corresponds to the graphene band marked by dashed red lines
in Fig. 4(c). For the ribbon with the n-p junction along its
axis the current is confined along the junction and ignores the
form of the edge of the ribbon, which makes the results for the
snake states independent of the details of the structure outside
the junction itself. The figure shows that for the ribbon without
the external potential the value of kmin highly depends on the
ribbon edge; hence the fit of Eq. (6) depends on the type of
the edge, which is not the case for the ribbons with the n-p
junction.

B. Imaging the snake states

1. Weak perturbation

As weak perturbation we consider the tip potential of
Vtip = 10 meV—four times smaller than the Fermi energy.
In Figs. 3(f)–3(i) we show the SGM conductance maps for the
current distribution given in the left column in Figs. 3(a)–3(e).

The conductance does react to the external perturbation—
but only for the scanning probe near the n-p junction. No
effect is observed for the tip in the leads. The tip deflects the
trajectory to L4 or L2 leads but no backscattering is present
which is characteristic to the quantum Hall conditions, hence
the flat maps for the probe above the leads.

Figures 3(a) and 3(f) correspond to the magnetic field
where a conductance peak [Fig. 5(c)] is observed. For this
magnetic field the cyclotron radius is comparable to the length
of the n-p junction. The SGM image [Fig. 2(f)] does not
resolve the details of this orbit. Moreover, here and for other
B values the SGM maps have an approximate symmetry with
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FIG. 6. (a) The conductance map for Vtip = 30 meV and B = 1 T.
(b) The zoom of the black rectangle in (a). The labels correspond to
tip locations considered in Fig. 7.

respect to the inversion through the bisector of the junction
(here y = x line) which is missing in the current plots.

For the subsequent conductance peak marked by “b)”
in Fig. 2(c) the cyclotron radius of the deflected electron
trajectory [Fig. 5(c)] is already 	 5 times shorter than L

[see Fig. 3(b)] and the distance between the extrema of
conductance map [Fig. 3(g)] along the junction is comparable
to the cyclotron radius. This also found for higher magnetic
fields—Figs. 3(c) and 3(h), 3(d) and 3(i), and 3(e) and 3(j)—
although the visibility of the oscillation becomes unequal at
the opposite sides of the junction. The nontransparency of the
finite-width junction for electrons [8], discussed in the context
of Fig. 5(c), is one of the possible reasons responsible for the
reduction of the conductance visibility at high magnetic field.

For magnetic fields above 1.6 T which correspond to the
filling factor of ν = 2 [see Fig. 2(c)], the conductance maps
resolve only the contact of the n-p junction to the edge where
opposite extrema are found on both ends of the junction [the
effect is already visible in Fig. 3(e)] and the conductance
variation along the junction far from the edges disappears.

2. Strong perturbation

The SGM images for a stronger tip potential Vtip = 30 meV
and B = 1 T are displayed in Fig. 6—to be compared with
Fig. 3(b) for Vtip = 10 meV. The asymmetry of the plot
between the n and p sides of the junction is increased for
larger Vtip. Moreover, a number of resonances is found at the
p side at lines parallel to the junction. The current density
plots for tip location over the points indicated in Fig. 6(b) are
displayed in Fig. 7. The resonances are related to current loops
that encircle the tip. The current loops are found for the tip on
the p side only. The tip potential repels the carriers on the
conduction band side of the junction. The currents on the n

side simply avoid the perturbation and no loop of current is
found. For the carriers on the valence band side the potential
maximum induced by Vtip is attractive and thus it supports a
quasibound state. The exact positions of the resonances depend
on the magnetic field in a periodic manner, which is related
to the Aharonov-Bohm effect for the current circulation around
the tip that couples to the junction current. The conductance
across the junction is displayed in Fig. 8 along the dashed line
marked in Fig. 6(a) as a function of the external magnetic field.

FIG. 7. Probability current distribution obtained for the probe
locations denoted in Fig. 6(b).

For lower magnetic fields the resonances are found also for the
tip near the n-p junction on the n side. For a given tip location
the spacing between the subsequent resonances depends on the
magnetic field. For higher magnetic fields the clockwise loop
that is seen in Fig. 7 is made tighter by the Lorentz force which
acts to the right of the current orientation on the p conductivity
side. For a reduced radius of the current loop the magnetic field
period corresponding to a flux quantum is increased.

FIG. 8. The conductance along the horizontal dashed line in
Fig. 6(b) as a function of the magnetic field.
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FIG. 9. (a) The conductance as a function of magnetic field and the junction smoothness parameter Sm. The white label corresponds to
the case shown in Fig. 5(b). (b)–(e) The probability current distribution and the corresponding conductance maps for the work points marked
in (a).

C. Conductance maps for wider n- p junctions

So far we have discussed the case of a thin junction
with Sm = 4 nm. From the discussion in Sec. III A we know
that the width of the junction strongly affects the dispersion
relation. We calculated the conductance at EF = 40 meV [as
in Fig. 2(c)] as a function of the junction width Sm and the
magnetic field. In the result presented in Fig. 9(a) one notices
that (i) the resonance lines bend towards lower magnetic field
as Sm is increased and (ii) the amplitude of the oscillations
decreases with Sm. The feature (i) results from the fact that
the spacing between the nearest k vectors is increased for
wider junctions and at higher magnetic field [Fig. 5(b)]. The
corresponding resonances appear for smaller magnetic field
values at larger Sm. The finding (ii) seems due to a decreased
transparency of the junction with its width found recently in
Ref. [8]. To summarize, we find that for a smooth junction
snake orbits appear for lower magnetic fields but at the expense
of the visibility of oscillations.

Figures 9(b)–9(e) show the probability current plots and
SGM conductance maps for the work points marked in
Fig. 9(a) and Vtip = 10 meV along a selected resonance
line. One may see that once we increase Sm the snake
features become less resolved both in the current plots and the
conductance maps. The current along the n side increases with
Sm. The deflected trajectories remain at the p side, where also
the amplitude of the conductance map remains stronger than on
the n side. In Fig. 9(e) the number of spin-degenerated modes
is 5 instead of 3; hence the current plot contains additional
features from higher modes. However, in the corresponding
SGM image no additional features are found.

IV. SUMMARY AND CONCLUSIONS

We have discussed the conductance mapping of the snake
orbits confined at the n-p junction in graphene. We indicated a
precise relation of the conductance oscillations at the magnetic
field scale with the Fermi wavelengths of the n-p junction as
a waveguide. We found that the maps of conductance contain
oscillating patterns along the junction with a period of the
oscillation that is close to the period of the snake orbit. The
visibility of the map decreases with the external magnetic
field due to an increased number of the electron passages
across the junction and a nonideal transparency of the n-p
junction of a finite width. The conductance maps are found
to be nearly symmetrical across the bisector of the junction
with an asymmetry between the n and p sides. For stronger tip
potentials resonant quasibound states are formed under the tip
at one of the junction sides. The interference of the quasibound
states with the junction currents produces resonances parallel
to the junction with positions that react strongly to the
external magnetic field via the Aharonov-Bohm phase shift.
We demonstrated that the width of the n-p interface affects
the oscillation period and the visibility of the conductance
maps.
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