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Interlayer transport through a graphene/rotated boron nitride/graphene heterostructure
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Interlayer electron transport through a graphene/hexagonal boron-nitride (h-BN)/graphene heterostructure is
strongly affected by the misorientation angle θ of the h-BN with respect to the graphene layers with different
physical mechanisms governing the transport in different regimes of angle, Fermi level, and bias. The different
mechanisms and their resulting signatures in resistance and current are analyzed using two different models,
a tight-binding, nonequilibrium Green function model and an effective continuum model, and the qualitative
features resulting from the two different models compare well. In the large-angle regime (θ > 4◦), the change in the
effective h-BN band gap seen by an electron at the K point of the graphene causes the resistance to monotonically
increase with angle by several orders of magnitude, reaching a maximum at θ = 30◦. It does not affect the peak-
to-valley current ratios in devices that exhibit negative differential resistance. In the small-angle regime (θ < 4◦),
umklapp processes open up new conductance channels that manifest themselves as nonmonotonic features in a
plot of resistance versus Fermi level that can serve as experimental signatures of this effect. For small angles and
high bias, the umklapp processes give rise to two new current peaks on either side of the direct tunneling peak.
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I. INTRODUCTION

Graphene (Gr), a two-dimensional (2D) material made of
carbon atoms arranged in a honeycomb structure, has excellent
electronic, thermal, and mechanical properties that make it
a promising candidate for nanoelectronic devices [1,2]. 2D
hexagonal boron nitride (h-BN) has the same 2D honeycomb
structure as graphene. Its lattice constant is closely matched to
that of graphene, and its large band gap and good thermal and
chemical stability make it an excellent insulator, substrate, and
encapsulating material for graphene and other 2D materials
[3,4]. There have been a number of experimental and theoreti-
cal studies of the in-plane electronic properties of graphene on
h-BN [5–10]. In general, in a h-BN graphene heterolayer sys-
tem, whether grown by chemical vapor deposition or assem-
bled by mechanical stacking, the graphene will not be crystal-
lographically aligned with the h-BN. The misalignment results
in a small change in the in-plane graphene electron velocity [8].

Interest in the effect of misorientation on cross-plane
transport began with bilayer graphene, and the first coherent
tunneling calculations showed a 16 order of magnitude change
in the interlayer resistance as a function of the misalignment
angle [11]. Including phonon-mediated transport reduced the
dependence on angle to a few orders of magnitude [12].
Replacing the source and drain misoriented graphene sheets
with source and drain misoriented graphite leads resulted in the
same angular dependence and very similar quantitative values
for the coherent current [13]. This demonstrated sensitivity to
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interlayer misorientation motivates us to examine the effect in
Gr/h-BN/Gr devices.

There is also significant interest in Gr/h-BN/Gr heterostruc-
tures for electronic device applications [14–33]. Gr/h-BN/Gr
structures display negative differential resistance (NDR)
[20,24,27,30–32,34], and theoretical calculations predict max-
imum frequencies of several hundred GHz [26]. The NDR
arises from the lineup of the source and drain graphene Dirac
cones combined with the conservation of in-plane momentum.
In one experiment in which plateaus were observed in the
current-voltage characteristics instead of NDR, the experi-
mental results could be matched theoretically by ignoring
momentum conservation [23]. In the theoretical treatments,
the focus has been primarily on the rotation between top and
bottom graphene layers and the resulting misalignment of the
Dirac cones [20,27,32]. Recently, the effect of misalignment of
both the h-BN and the graphene layers including the effects of
phonon scattering have been investigated using the low-angle
effective continuum model [30,35].

In this work, we focus on the effect of the h-BN mis-
alignment and consider a system of two aligned graphene
layers serving as the source and the drain separated by one
or more AB stacked layers of h-BN that are misoriented
with respect to the graphene. An illustration of such a
system is shown in Fig. 1(a). This system is analyzed using
two different models and the results from the two models
are compared. Commensurate rotation angles in the range
1.89◦ � θ � 27.8◦ are simulated with a tight-binding model
and the nonequilibrium Green’s function (NEGF) formalism.
The small-angle regime is also analyzed with a continuum
model similar to that used in Ref. [35]. The qualitative features
of the two different models compare well, and the continuum
model elucidates the physics of the small-angle regime

The misorientation of the h-BN with respect to the graphene
can have several possible effects that dominate in different
regimes of angle and applied bias. (a) For devices under high
bias, it can alter the transverse momentum conservation and
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FIG. 1. (a) Atomistic geometry of the graphene/boron ni-
tride/graphene heterostructure. The top and bottom layers are aligned
graphene. The middle boron nitride layer is rotated with respect to
the graphene layers. (b) In k space, the relative rotation between the
Brillouin zone of h-BN (red) with respect to that of graphene (black).
(c) The energy gap of monolayer h-BN at the K point of graphene as
a function of rotation angle.

thus degrade the NDR. (b) It can alter the potential barrier
seen by the electrons at the K points in the graphene, and thus
alter the interlayer tunneling current and resistance. (c) As in
misoriented graphene on graphene, it can result in destructive
quantum interference that reduces the current. A signature
of this effect is that over a range of angles, the coherent
interlayer resistance scales monotonically with the size of the
commensurate unit cell [12,13]. (d) For small-angle rotations,
umklapp processes can open up new channels of conductance
resulting in new features that depend on Fermi level, angle,
and bias. The presence or absence of these effects and under
what conditions they manifest themselves will become clear
in the analysis.

The paper is organized as follows. Section II A describes the
tight-binding model and the NEGF method used to calculate
the coherent resistance for different commensurate angles
and different h-BN layer thicknesses. Section II B describes
the effective continuum model employed to analyze the low-
angle regime. Section III describes and discusses the results.
Conclusions are given in Sec. IV. The Appendixes gives details
of the tight-binding model and calculations.

II. MODELS AND METHODS

A. Tight-binding transport calculations

The interlayer transport in the Gr/h-BN/Gr device illus-
trated in Fig. 1 is analyzed using a tight-binding Hamiltonian
and a nonequilibrium Green’s function (NEGF) approach
for the transport. The device Hamiltonian has the following

TABLE I. Parameters for the tight-binding model. t0 is the
intralayer, off-diagonal matrix element. All other parameters are
described by Eq. (2).

In-plane interaction
Interlayer interaction

t0(eV) t⊥(eV) d⊥(Å) λz(Å) λxy(Å) α

C-C 2.85 0.39 3.35 0.60 1.70 1.65
B-N 2.52 0.60
C-B 0.62 3.22 0.54 0.84 2.04
C-N 0.38 3.22 0.41 0.97 2.03

block-tridiagonal form:

H =
⎛
⎝HT (k) tT (k) 0

t†T (k) HBN(k) tB(k)
0 t†B(k) HB(k)

⎞
⎠, (1)

where k is the wave vector in the x-y plane, HT (B) is the
Hamiltonian of the uncoupled top (bottom) graphene layers,
HBN is the Hamiltonian of the h-BN layer(s), and tT (B) is the
block of matrix elements coupling HT (B) to HBN. The elements
tij of the off-diagonal blocks tT (B) representing the interaction
between atom i in a graphene layer and atom j in the adjacent
h-BN layer are given by [12]

tij = t⊥ exp

(
− rij − d⊥

λz

)
exp

[(
ξij

λxy

)α]
, (2)

where d⊥ is the interlayer disatnce, rij is the distance between

two atoms i and j , and ξij = [(xi − xj )2 + (yi − yj )2]
1/2

is
the projected in-plane distance between the two atoms. The
lattice constant of the entire system is set to that of graphene.
The misoriented commensurate primitive unit cells are created
using the approach described in Ref. [36]. Parameters for
this tight-binding model were extracted by fitting the band
structures to density functional theory (DFT) results. The
onsite energy for C is set to 0 and the onsite energies of the B

and N atoms are 3.40 and −1.31 eV, respectively. For multiple
h-BN layers, we adapt the interlayer h-BN interaction strength
t ′ = 0.60 eV from Ref. [37]. All other parameters are shown
in Table I.

Since this is essentially a 2D-2D tunneling problem, the
coherent interlayer transmission through the Gr/h-BN/Gr
structure is calculated within a NEGF approach using the
“generalized boundary conditions” described in Ref. [38].
Within the NEGF approach, the graphene layers act as the
“contacts” and the h-BN layer acts as the “device.” The surface
Green’s functions of the top and bottom graphene layers are

gT (B)(E,k) =
[(

E + i
γ

2

)
I − HT (B)(k)

]−1
, (3)

where I is the identity matrix, and the energy broadening γ =
80 meV is chosen to match that of Ref. [11]. Given the surface
Green’s functions, the rest of the NEGF calculations follow as
usual. Here, the “device” Green’s function is

Gr (E,k) = [EI − HBN(k) − �T (E,k) − �B(E,k)]−1, (4)

where the self-energies resulting from coupling to the graphene
layers are �T = t†T gT tT and �B = tBgBt†B . The transmission
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coefficient is

T (E,k) = tr[�T Gr�BGr†], (5)

where �T = t†T aT tT , �B = tBaBt†B , aT (B) = −i(gT (B) −
g†T (B)) is the spectral function of the top (bottom) graphene
layer, and tr[. . . ] indicates a trace of the matrix.

Integrating Eq. (5) for the transmission over the first com-
mensurate Brillouin zone, the energy-dependent transmission
coefficient per unit area is

T (E) =
∫

1st BZc

d2k
4π2

T (E,k). (6)

This integration is performed numerically on a square grid

with �kx = �ky = 0.005 Å
−1

(see Appendix A for further
details). The linear conductance is given by

G = 2
e2

h

∫
dET (E)

(
− ∂f

∂E

)
, (7)

where the factor of 2 accounts for the spin degeneracy, and
the integration over k accounts for the valley degeneracy. The
resistance is the inverse of the conductance, R = 1/G.

For finite-bias calculations, an applied bias Vb = �/e is
symmetrically applied across the device by setting Hi,j

T =
δij�/2 and Hi,j

B = −δij�/2. When multiple h-BN layers are
present, the potential drops linearly within the h-BN region
since h-BN is an insulator. The tunneling current flowing
through the device is given by

I = 2e

h

∫
dET (E)[f (E − μT ) − f (E − μB)], (8)

where μT = μt + �/2 and μB = μb − �/2 are the chemical
potentials of the top and bottom graphene, respectively, f (E)
is the Fermi distribution function, and �V = μt − μb is the
potential difference between the charge neutral points of the
two Gr layers. �V accounts for the effect of gating and doping.
We refer to �V as the built-in potential in analogy with a pn
junction since this is the potential that exists before the bias is
applied.

B. Effective continuum model

As the rotation angles become smaller, the commensurate
unit cells become very large. As a result, NEGF calculations
with the large tight-binding Hamiltonians become computa-
tionally challenging. In order to better understand the physics
governing the interlayer transport at small rotation angles, we
construct an effective continuum model. In the small-angle
region (θ < 10◦), the coupling matrix between graphene and
h-BN layer is of the following form [20,30,39]:

Hint = 1

3

∑
j=1,2,3

e−iqj (θ)·rTj , (9)

where

Tj =
(

tCBη(j−1) tCNη−(j−1)

tCB tCNη(j−1)

)
. (10)

In Eq. (10), the row indices correspond to the A and B atoms
of the graphene, and the column indices correspond to the B

and N atoms of the h-BN. The lower off-diagonal element

corresponds to a C atom directly over a B atom. All other
elements correspond to a C atom in the center of an equilateral
triangle of B atoms or N atoms. The hopping amplitudes tCB

and tCN between a C atom and a B or N atom are the same
as those listed in Table I. The phase factors η = ei(2π/3) result
from the matrix elements of the Bloch sums evaluated at the
K points. The index j labels the three equivalent corners of
graphene’s Brillouin zone corresponding to the three K points.
The momentum shift qj (θ ) is the momentum misalignment
between the three equivalent K points of the h-BN and those
of the graphene. Specifically,

q1(θ ) = kD(0,θ ),

q2(θ ) = kD

(
−

√
3

2
θ,−1

2
θ

)
, (11)

q3(θ ) =kD

(√
3

2
θ,−1

2
θ

)
,

where kD = 4π
3a

is the magnitude of the K point of graphene.
When θ = 0, q = 0, and the sum in Eq. (9) will cause the
diagonal and upper off-diagonal elements of Hint to vanish,
leaving a coupling matrix corresponding to AB stacking with
the B atom directly above the C atom.

By eliminating HBN from Hamiltonian (1), we reduce the
3 × 3 Hamiltonian into an effective 2 × 2 Hamiltonian and
obtain the effective interaction Hamiltonian between the top
and bottom graphene layers as [40]

UT B(ε) = Hint (ε − HBN)−1H†
int . (12)

The low-energy electronic structure of h-BN can be described
by a gapped Dirac-type Hamiltonian that acts on the B and N

pz orbital basis around a given K point,

HBN(�K) =
(

εB �υBN�Keiθ�K

�υBN�Ke−iθ�K εN

)
. (13)

The energies εB and εN are the onsite energies of the B and
N atoms, while υBN is the velocity that is determined by the
in-plane matrix elements between the B and N atoms given in
Table I. The �K is the connection vector between K point of
graphene and h-BN. Then, we obtain

(ε − HBN)−1 = 1

(ε − εN )(ε − εB) − (�υBN�K)2

×
(

ε − εN 0
0 ε − εB

)
. (14)

The off-diagonal term vanished due to the threefold symmetry
of �K. Combining Eqs. (9), (12), and (14), the effective
interaction Hamiltonian is

UT B(ε) = 1

9

∑
i,j=1,2,3

eiGij (θT ,θB )rTi(ε − HBN)−1Tj , (15)

where Gij (θT ,θB) = qi(θT ) − qj (θB) is the momentum dif-
ference shift during transmission. Since the top and bottom
graphene layers are aligned (θT = θB),

|Gij | =
{

0 for i = j,√
3kDθT for i �= j .

(16)

045303-3



SUPENG GE et al. PHYSICAL REVIEW B 95, 045303 (2017)

This can be interpreted as the momentum being conserved
for transmission between aligned Dirac cones of the top and
bottom graphene layers. For transmission between misaligned
Dirac cones, the momentum shifts by |Gij | = √

3kDθT .
The tunneling matrix element for the transmission between

the top and bottom layers is

Tα,β(kT ,kB ) =
∑

i,j=1,2,3

t
α,β

i,j (kT ,kB )δ(kT − kB − Gij ), (17)

where

t
α,β

i,j (kT ,kB) = 1
9φ†

α(kT )Ti(ε − HBN)−1Tjφβ(kB) (18)

and the eigenvectors of the graphene layers are φα(k) =
1√
2
[1,αeiθk ]eik·r, where α = ±1 is the band index. The linear

conductance is [11]

G = e2gsgv

�A
∑

kT ,kB

α,β

|Tα,β(kT ,kB )|2

× A[εα(kT ),εF ]A[εβ(kB),εF ] (19)

or

G = e2gsgv

�A
∑
k,α,β

i,j = 1,2,3

∣∣tα,β

i,j (k,k + Gij )
∣∣2

× A[εα(k),εF ]A[εβ(k + Gij ),εF ], (20)

where gs = 2 and gv = 2 account for the spin and valley
degeneracy, respectively, and A is the cross-sectional area. A

is the spectral function approximated by a Lorentzian function
near the Fermi energy [32] with a broadening lifetime that is
the same as that used in the NEGF calculations.

To better understand the effect of the rotation, we divide
the conductance into three parts

G = Gi=j + G
α=β

i �=j + G
α �=β

i �=j , (21)

where the first part

Gi=j = e2gsgv

�

∑
k,α = β

i = j = 1,2,3

∣∣tα,β

i,j (k,k)
∣∣2

A2[ε(k),εF ] (22)

represents the coherent transport process where the momentum
is conserved between top and bottom graphene layers. The
second and third terms correspond to umklapp processes in
which the second term is an intraband process

G
α=β

i �=j = e2gsgv

�A
∑

k,α = β

i �= j = 1,2,3

∣∣tα,β

i,j (k,k + Gij )
∣∣2

× A[εα(k),εF ]A[εα(k) + α�υ
√

3kDθ,εF ], (23)

and the third term is an interband process,

G
α �=β

i �=j = e2gsgv

�

∑
k,α �= β

i �= j = 1,2,3

∣∣tα,β

i,j (k,k + Gij )
∣∣2

A[εα(k),εF ]

× A[εβ(k) + β(�υ
√

3kDθ − 2εF ),εF ]. (24)
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FIG. 2. Zero-temperature coherent resistance of twisted (a) Gr/1
layer h-BN/Gr heterostructure and (b) Gr/3 layer h-BN/Gr het-
erostructure as a function of Fermi energy for different commensurate
rotation angles. The dashed line shows the Fermi energy of 0.26 eV
used to calculate the resistance values in Fig. 3. The resistances are
calculated from the tight-binding, NEGF approach.

III. RESULTS

Figure 2 shows the tight-binding, NEGF calculations of
the zero-temperature, coherent resistance versus Fermi energy
(EF ) for heterostructures with (a) a single h-BN layer and (b)
three h-BN layers. The Fermi level EF varies from −0.5 to
0.5 eV around the charge neutrality point for a range of rotation
angles from 0◦ to 27.79◦ as indicated in the legend. The lowest
black curve is the coherent resistance for the ABA unrotated
heterostructure. For all of the angles shown, the resistance
monotonically falls as the Fermi level moves away from the
charge neutrality point where the density of states of the
graphene layers is a minimum. In contrast to rotated bilayer
graphene (r-BLG), for the two lowest angles 6.01◦ and 7.34◦,
there is no sudden change in resistance with Fermi energy
around 0.3–0.4 eV [compare with Figs. 2(a) and 2(b) of
Ref. [13]].

The vertical dashed lines in Fig. 2 correspond to a Fermi
level of 0.26 eV. This is the Fermi level previously used for
comparisons of the interlayer conductivity of misoriented bi-
layer graphene [11–13]. The numerical values of the resistance
at EF = 0.26 eV are given in Table II in Appendix B. As the
h-BN layer becomes misaligned, the resistances increase by
factors of 200 and 430 for the monolayer and trilayer h-BN
structures, respectively. This trend in the variation of resistance
with rotation angle is similar to the experimental observations
in Ref. [14]. There, it was shown that the conductance can vary
by a factor of 100 for different devices with the same h-BN
thickness. For both the monolayer and trilayer h-BN structures,
the increase in the resistance is a monotonic function of the
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FIG. 3. Zero-temperature coherent resistance of graphene/1 layer
h-BN/graphene (upward-pointing triangles) and graphene/3 layer
h-BN/graphene (downward-pointing triangles) as a function of the
effective energy gap of the monolayer h-BN and three-layer h-BN at
the K point of the graphene. The angles are given next to each data
point. The red lines show exponential fits to the data, R = R0e

αEG .
The values of α are shown next to the fitted line. EF = 0.26 eV.

h-BN rotation angle as the rotation angle increases from 6◦ to
27.79◦. This trend is also in contrast to that of r-BLG. In the
r-BLG system, at low energies near the charge neutrality point,
the coherent interlayer resistance is a monotonic function of
the supercell lattice constant as opposed to the rotation angle
[compare to Fig. 1(d) of Ref. [12]].

To investigate process (b) in which rotation of the h-BN
alters the tunnel barrier, we calculate the energy gap of
ML and trilayer h-BN at the h-BN k point corresponding
to graphene’s K point as a function of rotation angle as
illustrated in Fig. 1(b). The resulting effective band gap for
ML h-BN is plotted versus rotation angle in Fig. 1(c). Since
the direct band gap (4.7 eV) of h-BN occurs at its K point, the
minimum h-BN band gap “seen” by an electron at the K point
in the graphene layer occurs for h-BN rotation angles of 0◦
and 60◦ when graphene’s K point is aligned with h-BN K or
K ′ points. The effective h-BN band gap seen by an electron at
the K point in the graphene layer monotonically increases as
the h-BN is rotated from θ = 0◦, and it reaches a maximum at
θ = 30◦. In the Brillouin zone of the h-BN, this corresponds
to the band gap near the M point. This monotonic increase
in the tunnel barrier with angle follows the same monotonic
trend as the increase in resistance with angle.

To analyze the relation between the effective energy gap and
resistance, we show in Fig. 3 a semilog plot of the resistance as
a function of the effective h-BN band gap (for different rotation
angles) at EF = 0.26 eV. For angles greater than 4◦, the tunnel
current scales exponentially with the effective band gap as
one would expect for tunneling through a potential barrier.
Therefore, for θ > 4◦, we find that the dominant process
affecting the tunnel current is the change in the effective h-BN
band gap “seen” by the electrons at the K point in graphene.

However, for small angles θ < 4◦, there is clearly a very
different trend and a different dependence of the resistance
on the h-BN rotation angle. The different dependencies arise
from different parallel conductance channels that dominate at
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FIG. 4. Zero-temperature coherent resistance of Gr/1 layer
h-BN/Gr as a function of rotation angle for Fermi energies equal
to 0.26 eV (blue) and 0.16 eV (red). The solid lines show the
results calculated from the continuum model, and the triangles show
the results from the tight-binding, NEGF calculation. The smallest
commensurate rotation angle calculated numerically is 1.25◦.

different angle regimes. To analyze the low-angle region of the
curve, we turn to the effective continuum model.

A more detailed picture of the low-angle regime is given
in Fig. 4 which shows the resistance versus h-BN rotation
angle calculated with both the continuum model and the
NEGF tight-binding model for two values of EF . The solid
lines are from the continuum model, and the triangles are
from the NEGF, tight-binding model. More low angles are
included in the NEGF calculations, and the smallest rotated
angle calculated from the NEGF, tight-binding model is 1.25◦.
Both models show a nonmonotonic dependence of resistance
on angle at very low angles θ < 2.5◦. While the magnitudes
differ between the two models, the overall trends match well.

The continuum model tells us that there are three parallel
conductance channels corresponding to the direct and two
umklapp processes in Eqs. (21)–(24). The individual channels
dominate in different angle regimes. The angle at which each
channel dominates is primarily determined by the overlap of
the spectral functions in Eqs. (22)–(24). For the direct term,
Gi=j of Eq. (22), the spectral functions always overlap since
the top and bottom graphene layers are aligned. For the two
umklapp terms, the overlaps of the spectral functions are
functions of the angles, and the overlaps become negligible for
�υ

√
3kDθ >> �/τ, εF . Therefore, for larger angles, θ > 4◦,

the direct channel dominates, and the dependence on the angle
is through the matrix element which, through HBN(k) and the
effective interaction, includes the effect of the increase in the
apparent h-BN band gap with angle as described above and
shown in Fig. 1(c).

The maximum overlap of the spectral functions in the
“interband” term of Eq. (24) occurs when �υ

√
3kDθ = 2εF .

This term is maximum at rotation angle θm = 2εF /�υ
√

3kD ,
and it decreases for angles greater than or less than θm. This
interband term is responsible for the dip in resistance for θ

between 1◦ and 2◦ in Fig. 4. It also explains the shift in angle
with Fermi level. As the Fermi level is increased, the local
minimum moves to larger rotation angles since the angle of
maximum overlap θm is linearly proportional to εF .
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The maximum overlap of the spectral functions in the “in-
traband” term of Eq. (23) occurs at θ = 0. As θ increases, this
channel monotonically decreases with the decrease governed
by the decreasing overlap of the spectral functions. Since
this channel has a maximum as θ goes to zero, it governs
the initial increase in resistance for the smallest angles. The
three individual contributions to the continuum model (direct,
interband, and intraband, are shown in Fig. 5 for the two
different Fermi levels, 0.26 and 0.16 eV.

While analyzing the resistance as a function of rotation
angle is useful for clarifying the physics, verifying the trends
shown in Fig. 4 would be very difficult experimentally.
Experimentally, it is far easier to fix the angle and sweep
the Fermi level of the top and bottom graphene layers.
The resulting resistances calculated both from the NEGF,
tight-binding and the continuum models for a 1-ML h-BN
rotation angle of 3.89◦ are shown in Fig. 6(a).

Both models show nonmonotonic behavior of the resistance
as the Fermi level is swept between 0.5 and 0.6 eV. To observe
this feature at lower Fermi levels, a smaller angle is required,
and to observe the feature experimentally a larger resistance
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FIG. 6. Resistance versus Fermi level of the Gr/1 layer h-BN/Gr
structure (a) calculated by both the continuum model and the NEFG
method with θ = 3.89◦, and (b) calculated by the continuum model
only with θ = 1.50◦.
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FIG. 7. Current as a function of bias voltage for different potential
differences �V between the two graphene layers. (a) Graphene/1
layer h-BN/graphene with no rotation; (b) graphene/1 layer h-
BN/graphene with a 21.79◦ rotation angle; (c) graphene/3 layer
h-BN/graphene with no rotation; (d) graphene/3 layer h-BN/graphene
with a 21.79◦ rotation angle; (e) graphene/5 layer h-BN/graphene
with no rotation; (f) graphene/5 layer h-BN/graphene with a 21.79◦

rotation angle.

is required. The larger resistance is achieved by increasing the
number of h-BN layers from 1 to 5. The resistance versus Fermi
level calculated from the continuum model for a 5-ML h-BN
layer rotated by 1.50◦ is shown in Fig. 6(b). The nonmonotonic
feature moves to lower energies and now occurs as the Fermi
level is swept between 0.2 and 0.3 eV. The overall magnitude
of the resistance is between 100 and 1000 �μm2 which should
be large enough to be observable, and it can be increased by
increasing the number of h-BN layers.

So far, we have focused on the zero-bias resistivity to
elucidate the physics. However, interest in this system is
driven by potential applications, and one application of current
investigation is a high-frequency oscillator that exploits the
negative differential resistance observed under high bias. To
understand how the misorientation of the h-BN layer affects the
current-voltage (I-V) characteristic of this structure, we show
in Fig. 7 the NEGF, tight-binding calculations using Eq. (8)
of the I-V characteristics for the unrotated structure and the
structure with the h-BN layer rotated by 21.78◦ for h-BN layer
thicknesses of 1, 3, and 5 ML. The three I-V characteristics
in each plot are for three different built-in potentials �V

between the two graphene layers. The panels on the left are
for the unrotated structure while the panels on the right are
for the 21.79◦ structure. In Figs. 7(a) and 7(b), it is shown
that the rotation of monolayer h-BN decreases the current by
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FIG. 8. Current as a function of bias voltage for different potential
differences �V between the two graphene layers for the 5 layer h-BN
structure with a h-BN rotation angle of θ = 0.5◦.

nearly two orders of magnitude. This relative decrease in the
tunneling current becomes progressively greater as the number
of h-BN layers is increased, as shown in the other subplots.
For the case of five h-BN layers, the tunneling current is nearly
four orders of magnitude smaller. As expected, this decrease
in the tunneling current and its scaling is consistent with the
resistance increasing with the rotation angles as shown in
Fig. 2. While the current decreases with rotation angle, the
peak-to-valley current ratio is unaffected.

For small rotation angles, it is interesting to consider
whether new qualitative features appear in the nonlinear I-V
characteristic. To answer that question, we applied the effective
continuum model to calculate I-V curves of a structure with
θ = 0.5◦. The results in Fig. 8, for three different values of
built-in voltage �V , are qualitatively different from the I-V
curves for large-angle rotation since several regions of NDR
appear depending on the initial built-in potential. The first
and third peaks arise from the interband component which
is maximum at Vbias = ±�υ

√
3kDθ − �V . The middle peak

that occurs at Vbias = −�V is caused by the direct tunneling
term.

The model used for these calculations does not include
lattice mismatch between the graphene and the h-BN since
that prohibits the creation of a commensurate unit cell required
for the numerical tight-binding calculations. If we consider
the lattice mismatch in the effective continuum model, the
size of commensurate Brillouin zone will change from kDθ

to kD

√
θ2 + δ2, where δ is the lattice mismatch between the

graphene and the h-BN. The mismatch kD

√
θ2 + δ2 will still

decrease monotonically with a decrease in the rotation angle.
Therefore, the relation between conductance and rotation
angle is qualitatively the same as the angle is decreased. The
only difference is that in the small-angle region, kD

√
θ2 + δ2

decreases more slowly than kDθ , and it has a minimum value
kDδ when the angle is zero.

IV. CONCLUSIONS

Electron transport through a Gr/h-BN/Gr structure is
examined within a tight-binding model with commensurate
rotation angles and within an effective continuum model.
The two graphene layers are aligned, and the h-BN layer is
rotated by an angle θ with respect to the graphene layers.
For angles greater than 4◦, the resistance is dominated by the

change in the effective h-BN band gap seen by an electron at
the K point of the graphene. In this large-angle regime, the
effect of rotating the h-BN is to increase the barrier height
of the h-BN tunnel barrier at the K point of the graphene.
For θ � 4◦, the resistance monotonically increases with the
rotation angle, and it reaches a maximum at θ = 30◦. As θ

is increased from 0◦ to 30◦, the coherent interlayer resistance
increases by factors of 200 and 430 for monolayer and trilayer
h-BN layers, respectively. For devices that exhibit NDR under
high bias, rotation of the h-BN primarily serves to reduce
the overall magnitude of the current. It does not degrade
the peak-to-valley current ratios. In this large-angle regime,
since the dominant physics is that of single-barrier direct
tunneling, phonon scattering should have negligible effect
on the low-bias, angle-dependent trends and magnitudes of
the interlayer resistances. Since NDR results from momentum
conservation, phonon scattering will reduce the peak-to-valley
ratios, but this effect also exists in the unrotated structure.
While we do not expect a significant dependence of the phonon
scattering on the rotation angle of the h-BN in the large-angle
regime, this is an open question for further study.

The small-angle regime (θ � 4◦) reveals qualitatively new
features both in the low-bias interlayer resistances and in the
high-bias I-V characteristics. The new features arise due to
the opening of new conductance channels corresponding to
umklapp processes. With the two graphene layers aligned,
umklapp processes give rise to two new conduction channels
corresponding to an intraband term and an interband term. The
angular and energy dependence of these terms is primarily
determined by the overlap of the top and bottom graphene
spectral functions that are shifted in momentum space with
respect to each other by an umklapp lattice vector. For a fixed
rotation angle θ of the h-BN layer, both the intraband and
interband terms peak at a Fermi level εm

F ≡ �vkDθ
√

3/2. At
this Fermi level, the two spectral functions in the interband
term perfectly overlap, so that the interband term dominates.
This strong peak in the interband term results in a distinct,
nonmonotonic feature in a plot of the interlayer resistance
versus Fermi energy that occurs as the Fermi level is swept
through ±εm

F . The qualitative trends of this nonmonotonic
feature are reproduced in the tight-binding calculations for
structures with small commensurate rotation angles, although
the overall magnitude of the feature is less. The interband
term also gives rise to two extra peaks in the nonlinear I-V
characteristic on either side of the peak resulting from the
direct tunneling term. Amorim et al. [35] found that phonon
scattering and incoherent scattering in this low-angle regime
reduces the magnitude of the features resulting from umklapp
processes, but it does not remove them, so that the new features
in the low-angle regime should be experimentally observable.
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FIG. 9. Transmission coefficient T (E,k) in the first Brillouin at
energy of 0.5 eV for graphene/1 layer h-BN/graphene heterostructure
with rotation angle (a) 21.79◦, (b) 9.43◦.

APPENDIX A: TIGHT-BINDING MODEL AND
METHOD DETAILS

The transmission coefficient over k in the first Brillouin
zone T (E) = ∫

1st BZ
d2k
4π2 T (E,k) was numerically integrated

on a square grid with �kx = �ky = 0.005 Å
−1

. Figure 9
shows the momentum-resolved transmission T (E,k) in the
first Brillouin zone corresponding to the two commensu-
rate rotation angles of 21.79◦ and 9.43◦ at E = 0.5 eV.
The transmission is centered at the K and K ′ and peaks on
the isoenergy surface.

To extract a tunneling decay constant of the h-BN predicted
by the interlayer tight-binding parameters, we calculate the
resistance of 1, 3, 5, and 7 layers of h-BN for two angles
of θ = 0◦ and θ = 21.79◦ at EF = 0.26 eV. Figure 10 shows
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FIG. 10. Resistance versus number of h-BN layers for rotation
angles of 0.00◦ and 21.79◦ at a Fermi energy of EF = 0.26 eV. The
dashed lines show the exponential fits R = R0e

κ·n where n is the
number of h-BN layers. The decay constants κ are shown next to
the fits for the two structures.

the exponential increase in resistance with increasing number
of h-BN layers for both structures. Fitting the results to an
exponential function R = R0e

κ·n, where n is the number of
h-BN layers, gives values for κ of 2.6 and 3.6 for the unrotated
and rotated structures, respectively. These values are similar
to an experimentally extracted value of κ = 4.0 [41].

APPENDIX B: RESULTS OF RESISTANCE AS A
FUNCTION OF ROTATION ANGLE

The numerical values of the resistance at EF = 0.26 eV are
given in Table II.

TABLE II. Effective h-BN energy gap and the coherent resistances at EF = 0.26 eV for different commensurate rotation angles and two
different h-BN thicknesses of 1 and 3 ML. The resistances are calculated from the tight-binding, NEGF approach.

Gr/1 layer h-BN/Gr Gr/3 layer h-BN/Gr

θ (degrees) Energy gap (eV) Resistance (�μm2) Energy gap (eV) Resistance (�μm2)

0.00 4.709 0.007601 4.709 0.7972
1.25 4.726 0.03710
1.41 4.730 0.03758
1.54 4.734 0.03711
1.61 4.737 0.03521
1.70 4.740 0.03308
1.79 4.743 0.03028
1.89 4.748 0.02844 4.713 2.752
2.00 4.752 0.02954
2.13 4.758 0.03481
2.45 4.774 0.05355
2.88 4.798 0.07565 4.726 4.474
3.15 4.815 0.08741
3.48 4.838 0.09981
3.89 4.869 0.1132 4.753 5.510
4.41 4.913 0.1288 4.774 6.094
5.08 4.976 0.1481 4.807 6.977
6.01 5.075 0.1753 4.865 8.495
7.34 5.237 0.2182 4.971 11.43
9.43 5.529 0.3048 5.184 18.87
13.17 6.106 0.5371 5.653 46.48
17.90 6.813 0.9770 6.274 123.6
21.79 7.280 1.120 6.701 199.7
27.80 7.686 1.563 7.073 344.3
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