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The coefficient α of the Rashba spin-orbit interaction is calculated in an asymmetric quantum well consisting
of Ga0.47In0.53As (well), Al0.48In0.52As (left barrier), and AlxGa1−xAsySb1−y (right barrier) as a function of the
external electric field perpendicular to the well Eex

z which is controlled by the gate voltage. This coefficient α,
which depends on the band offset, can be tuned to be zero by adjusting the Al fraction x in the right barrier
layer to the optimum value x0 in the case where the wave function vanishes at the left heterointerface. Such
a composition-adjusted asymmetric quantum well is proposed as a structure in which the magnitude of α can
be switched by changing the polarity of Eex

z . The calculation shows that, when |x − x0| < 0.01, the on/off |α|
ratio >40 for a large enough |Eex

z | (|Eex
z | > 107 V/m for a well width of 20 nm), which results in the on/off

spin-relaxation-rate ratio exceeding 103 in the Dyakonov-Perel mechanism.

DOI: 10.1103/PhysRevB.95.045301

Spintronics [1,2], which explores the application of the
spin degree of freedom to electronics, is one of the major
subjects in applied physics. As a milestone in spintronics,
Datta and Das have proposed a spin field-effect transistor
(FET) [3], in which the spin orientation of an electron, in
transport through a two-dimensional channel, rotates around
the in-plane effective magnetic field (Beff) induced by the
Rashba spin-orbit interaction [4–7]. The angular frequency of
the spin rotation is proportional to Beff (≡|Beff|). This effective
magnetic field switches the current on and off each time the
change of Beff increases the angle of the spin rotation in the
channel by π . Therefore the action of this spin FET relies on
the control of Beff by the gate voltage, that is, by the external
electric field perpendicular to the plane Eex

z , which has been
confirmed by experiments in quantum wells [8–10].

Another spin FET [11,12], called the spin-lifetime FET,
has been proposed by Hall and others in which the spin
relaxation switches the current on by changing the electron
distribution from fully spin-polarized to unpolarized. The
spin-lifetime FET, in contrast to the Datta-Das spin FET,
uses only one component of the spin polarization vector. The
action of the spin-lifetime FET relies on the switching of the
spin relaxation rate by the change of the gate voltage. As
a method to vary the spin-relaxation rate, the original paper
[11,12] proposed to use the above-mentioned Eex

z dependence
of Beff (∝|Eex

z |) in quantum wells [8–10], which makes
the spin-relaxation rate in the Dyakonov-Perel mechanism
[13–15] [∝(Beff)2] proportional to (Eex

z )2. The decrease of
Eex

z from a higher value EH
z to a lower one EL

z reduces the
current from Ion ∝ (EH

z )2 to Ioff ∝ (EL
z )2, leading to the on/off

current ratio Ion/Ioff = (EH
z /EL

z )2. Unfortunately, this method
requires a precise control of the gate voltage to achieve a high
on/off current ratio because EL

z must be in the close vicinity
of Eex

z = 0.
We have recently found [16] that Beff due to the Rashba

spin-orbit interaction and the resulting spin-relaxation rate
vary in a wide range by changing the band offsets (of
conduction, valence, and split-off bands) between the well
and barrier semiconductors in a quantum well. In particular,
the coefficient α of the Rashba spin-orbit interaction (and of

Beff) can be tuned to vanish by adjusting the band offsets.
For example, in a quantum well consisting of Ga0.47In0.53As
(well) and AlxGa1−xAsySb1−y (barrier), where the band
offsets change with the Al fraction x, α and the associated
spin-relaxation rate become zero at an optimum fraction x0.

In this paper we propose and explore the gate-voltage-
induced switching of the Rashba coefficient α by using
the above-mentioned band-offset dependence of α. The first
key factor of the proposed switching is an asymmetric
quantum-well structure with two barrier layers formed by
different semiconductors, AlxGa1−xAsySb1−y (x ≈ x0) and
Al0.48In0.52As. This combination of barrier semiconductors is
chosen so that one (the other) interface is that in a symmetric
quantum well with a small |α| (a large |α|). The second is
the wave function deformation due to the external electric
field Eex

z , which is produced by the gate voltage. Then the
gate voltage switches |α| on and off as the external electric
field moves the wave function to the interface with a large |α|
and to that with a small |α|. We examine the on/off |α| ratio
when the Al fraction x in AlxGa1−xAsySb1−y deviates from
the optimum value x0 and investigate the required |Eex

z |.
We consider an electron in the conduction band of a

quantum-well structure which is formed by three different
semiconductors with the zinc-blende structure (Fig. 1): SL

B in
the left barrier layer (z < zL

I ), SW in the well layer (zL
I < z <

zR
I ), and SR

B in the right barrier layer (zR
I < z). Due to the

translational symmetry along the x and y axes, the associated
wave numbers, kx and ky , are conserved. The Schrödinger
equation for the ground-subband wave function ϕ0(z) and the
corresponding eigenvalue ε0 is[

p̂2
z

2m
+ VW(z)

]
ϕ0(z) = ε0 ϕ0(z), (1)

where p̂z = −i�∇z = −i�∂/∂z and m is the effective mass
of the conduction band. The confining potential VW(z) is

VW(z) = V c
bo(z) + Ves(z). (2)

Here V c
bo(z) is the potential due to the conduction-band offset

(Fig. 1), the expression of which is given later with those
for valence bands. The second term Ves(z), which is the
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FIG. 1. A quantum-well structure consisting of three different
semiconductors with the zinc-blende structure, SL

B, SW, and SR
B. V c

bo(z)
is the potential due to the conduction-band offset.

electrostatic potential due to the charge distribution in the
quantum-well structure, satisfies the Poisson equation

∇2
z Ves = −An(z), (3)

where

A = 4πe2

ε
, n(z) = Ns[ϕ0(z)]2, (4)

with ε the static dielectric constant, −e the electron charge
(e > 0), and Ns the sheet density of electrons. The total electric
field is Ez = ∇zVes/e, while the external electric field Eex

z is
that induced by ionized donors and charge induced on the
gate electrode. Such charges, which are placed in z < zL

d and
z > zR

d , are assumed to be far away from the quantum well so
that Eex

z acting on electrons is constant (this assumption can
be satisfied by employing the widely used modulation doping
where the spacer layer thicker than 10 nm is inserted between
the well layer and each doped layer so that the penetration
of the wave function into each doped layer is negligible). We
introduce the areal external-charge density in the left side of
the well (z < zL

d ), σL, and that in the right side (z > zR
d ), σR.

Then the boundary condition for Ves at z = zL
d becomes

∇zVes = A(σL/e)
(
z = zL

d

)
. (5)

The charge neutrality gives eNs = σL + σR, while Eex
z =

(2π/ε)(σL − σR).
We derive the formula for the spin-orbit interaction induced

by the band offsets and the electrostatic potential, which
is denoted by V so

W , as well as the Rashba coefficient α in
the case of an asymmetric quantum well consisting of three
different semiconductors [17]. In deriving V so

W we employ
the k · p theory developed for heterostructures [18,19] (it
has been shown in a number of papers [9,10,20–24] that the
Rashba coefficient α derived by the k · p theory in various
heterostructures agrees well with the experimental value and
with that calculated in the tight-binding model). Then we
obtain, for an electron with wave numbers kx and ky in the
conduction band,

V so
W = P 2

3
G(z)(σxky − σykx), (6)

where σx and σy are the Pauli spin matrices and P is the Kane
matrix element [25]. In this equation,

G(z) = ∇z

(
1

E − Ẽv
− 1

E − Ẽs

)
, (7)

where E is the electron energy measured from the conduction-
band bottom of SW, while Ẽv (Ẽs) is the diagonal element of

the 8 × 8 Kane Hamiltonian, corresponding to the heavy-hole
plus light-hole bands (the split-off band). They are given by

Ẽv = EK0 − Eg + V v
bo(z) + Ves(z),

Ẽs = EK0 − Es
g + V s

bo(z) + Ves(z).
(8)

Here EK0 = (�2/2m0)(k2
x + k2

y + k̂2
z ) with m0 the electron rest

mass and k̂z = −i∇z, and Es
g = Eg + 	so with Eg (	so) the

band gap (the spin-orbit splitting) of SW, while V v
bo(z) [V s

bo(z)]
is the potential due to the band offset for an electron in the
heavy-hole plus light-hole bands [the split-off band]. These
potentials together with that for the conduction band, V c

bo(z) in
Eq. (2), are expressed by

V i
bo(z) = V iL

bo (z) + V iR
bo (z), V i


bo (z) = 	E

i h
(z), (9)

where i = c,v,s, 
 = L,R, and

hL(z) =
{

1
(
z < zL

I

)
,

0
(
z > zL

I

)
,

hR(z) =
{

0
(
z < zR

I

)
,

1
(
z > zR

I

)
,

(10)

while 	E

c , 	E


v, and 	E

s are the band offsets of the

semiconductor S

B relative to SW: 	E


c = E

c − Ec, 	E


v =
E


v − Ev, and 	E

s = E


s − Es with Ec (E

c ) the energy of the

conduction-band bottom, Ev (E

v) that of the valance-band top,

Es (E

s ) that of the split-off-band top in SW (in S


B). We can also
express Eg and 	so as Eg = Ec − Ev and 	so = Ev − Es.

Here we neglect E, EK0, and Ves(z) in G(z),
compared to Eg and Es

g, while we take into ac-
count the contribution from ∇zVes(z) to G(z), that is,
[(Eg − V v

bo)−2 − (Es
g − V s

bo)−2]∇zVes, in which we neglect V v
bo

and V s
bo since they are nonzero only in the barrier layers where

the squared wave function is small (we have confirmed by
the numerical calculation that the correction due to V v

bo and
V s

bo in this contribution is less than 6 percent in the cases we
considered in this paper). We finally obtain the expression for
V so

W :

V so
W = a(z)(σxky − σykx), (11)

with

a(z) = η
[∇z

(
bL

offV
cL

bo + bR
offV

cR
bo + Ves

)]
. (12)

Here η is the effective coupling constant of the spin-orbit
interaction for an electron in the conduction band of the
semiconductor SW, given by

η = P 2

3

[
1

(Eg)2
− 1(

Es
g

)2

]
, (13)

and b

off (
 = L,R) is defined by [16]

b

off = 	E


v

/[
Eg

(
Eg − 	E


v

)] − 	E

s

/[
Es

g

(
Es

g − 	E

s

)]
	E


c

{
1/(Eg)2 − 1

/(
Es

g

)2} .

(14)
Equation (11) with (12) shows that the spin-orbit interaction
V so

W for an electron in the conduction band, due to the band
offsets and the electrostatic potential, is not proportional to
∇zVW except the case where bL

off = 1 and bR
off = 1.

The Rashba coefficient α is defined by the expectation value
of a(z) with respect to ϕ0(z) = 〈z|0〉,

α = 〈0|a(z)|0〉. (15)
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FIG. 2. The factor bR
off [Eq. (14)] for SW = Ga0.47In0.53As and

SR
B = AlxGa1−xAsySb1−y as a function of the Al fraction x in SR

B

[16]. We have used band parameters in Ref. [30] and employed
the linear interpolation of band offsets between x = 0 and x = 1
to obtain 	ER

c [eV] = 0.436 + 1.43x, 	ER
v [eV] = 0.444 − 0.354x,

and 	ER
s [eV] = 0.373 − 0.371x, corresponding to Ga0.47In0.53As,

Eg[eV] = 0.816, and 	so[eV] = 0.330.

Here we use the equality 〈0|(∇zVW)|0〉 = 0, which means that
forces on an electron in a bound eigenstate are balanced [26,27]
(the equality is derived according to [28] in [29]). Then we
obtain the expression of α using values of the wave function
at interfaces:

α = η
(
bL

off − 1
)〈0|(∇zV

cL
bo

)|0〉 + η
(
bR

off − 1
)〈0|(∇zV

cR
bo

)|0〉
= η

(
bL

off − 1
)[

ϕ0
(
zL

I

)]2(−	EL
c

) + η
(
bR

off − 1
)[

ϕ0
(
zR

I

)]2

× 	ER
c .

(16)

First we assume, for simplicity, that the wave function van-
ishes at the left heterointerface, that is, ϕ0(zL

I ) = 0 [the numer-
ically calculated wave function, shown in Fig. 3(b), is reduced
considerably at the left heterointerface by applying a large
negative Eex

z although it does not vanish completely]. In this
case, from Eq. (16), we have α = η(bR

off − 1)〈0|(∇zV
cR

bo )|0〉,
which vanishes at bR

off = 1. In Fig. 2, we plot bR
off for SW =

Ga0.47In0.53As and SR
B = AlxGa1−xAsySb1−y as a function of

the Al fraction x in SR
B where y is determined so that SR

B is
lattice-matched to SW [16]. This figure shows that bR

off = 1
at a value x0 which is close to x = 0.3 for the values of band
parameters from Ref. [30]. Therefore, an asymmetric quantum
well consisting of SW = Ga0.47In0.53As, SL

B = Al0.48In0.52As
(bL

off = −0.32), and SR
B = AlxGa1−xAsySb1−y with x = x0

(bR
off = 1) has |α| ≈ 0 for a large negative Eex

z where ϕ0(zL
I )

is considerably reduced, while it acquires a substantial value
of |α| for a large positive Eex

z where ϕ0(zL
I ) is increased. This

means that |α| is switched on and off by changing the polarity
of Eex

z .
Now we evaluate the on/off ratio of |α|, denoted

by Rα , when x slightly deviates from x0. We start
from the expression of α in the case of ϕ0(zL

I ) =

0
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FIG. 3. Calculated results of (a) VW(z) and (b) ϕ0(z)
for different values of the external force Fz = −eEex

z in
Al0.48In0.52As/Ga0.47In0.53As/AlxGa1−xAsySb1−y (x = 0.3). The pa-
rameter W (=zR

I − zL
I ) is the well width. The dimensionless quantities

are defined by ṼW = VW/Ry∗, ϕ̃0 = ϕ0(a∗
B )1/2, z̃ = z/a∗

B , F̃z =
Fz/(Ry∗/a∗

B ), W̃ = W/a∗
B , and Ñs = Ns(a∗

B )2 with a∗
B = �

2ε/(me2)
and Ry∗ = �

2(a∗
B )−2/(2m). For Ga0.47In0.53As, a∗

B = 17.1 nm and
Ry∗ = 3.04 meV. Therefore W̃ = 0.6 and Ñs = 6 correspond to
W = 10.3 nm and Ns = 2.05 × 1016 m−2.

0, α = η(bR
off − 1)〈0|(∇zV

cR
bo )|0〉. By using ϕ0(zL

I ) = 0
as well as 〈0|(∇zVW)|0〉 = 0 and 〈0|(∇zVes)|0〉 = eEex

z ,
we have 〈0|(∇zV

cR
bo )|0〉 = 〈0|(∇zV

c
bo)|0〉 = 〈0|(−∇zVes)|0〉 =

−eEex
z and then obtain α = η(bR

off − 1)(−eEex
z ). Similarly we

obtain α = η(bL
off − 1)(−eEex

z ) in the case of ϕ0(zR
I ) = 0. Then

the on/off ratio Rα , when the polarity of Eex
z is changed with

a large enough |Eex
z |, becomes

Rα ≡ |α|on

|α|off
=

∣∣bL
off − 1

∣∣∣∣bR
off − 1

∣∣ . (17)

For a deviation of |x − x0| = 0.01, we have |bR
off − 1| ≈ 1/30

from Fig. 2. Therefore we obtain Rα ≈ 40, which leads to the
on/off ratio of the spin-relaxation rate (Rsr) exceeding 103 in
the Dyakonov-Perel mechanism where Rsr = (Rα)2.

In order to examine how large |Eex
z | is necessary

to realize the on/off |α| ratio Rα in Eq. (17), we
perform a numerical calculation for ϕ0(z) by solving
the Schrödinger equation Eq. (1) and the Poisson equation
Eq. (3) self-consistently, in which we discretize the
z coordinate. The obtained ϕ0(z) as well as VW(z) in
Al0.48In0.52As/Ga0.47In0.53As/AlxGa1−xAsySb1−y (x = 0.3)
are plotted in Fig. 3 for five different values of the external
force Fz = −eEex

z (the energy separation between the ground
subband and the first-excited subband increases with |Eex

z | and
the excited subbands are not occupied by electrons in the cases
we considered in this paper), while the value of α as a function
of Fz is presented in Fig. 4 for three different quantum wells.
All of the three quantum wells have a common material in
the well layer, Ga0.47In0.53As. The difference of the three is
in the combination of interfaces, LL, SS, and LS, where L
{S} is the interface which gives a large {small} |boff − 1|,
Ga0.47In0.53As(well)/Al0.48In0.52As(barrier) with boff − 1 =
−1.32 {Ga0.47In0.53As(well)/AlxGa1−xAsySb1−y(barrier)
(x = 0.3) with boff − 1 = −0.05}.
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FIG. 4. Rashba coefficient α as a function of the external force
Fz = −eEex

z for three combinations of interfaces: LL, SS, and LS (see
text). (a) The well-width (W ) dependence for LS. (b) The electron-
sheet-density (Ns) dependence for LS. The dimensionless Rashba
coefficient is defined by α̃ = (α/η)/(Ry∗/a∗

B ). For the definition of
other quantities, see the caption of Fig. 3.

In the case of bL
off = bR

off (=boff) as in LL and SS,
Eq. (16) becomes α = η(boff − 1)〈0|(∇zV

c
bo)|0〉 = −η(boff −

1)〈0|(∇zVes)|0〉 = η(boff − 1)Fz, where we have used the
equalities 〈0|(∇zVW)|0〉 = 0 and 〈0|(∇zVes)|0〉 = eEex

z =
−Fz. Therefore α of LL and that of SS are independent of
the well width W and Ns. They are plotted in Fig. 4 as straight
lines with different gradients.

The calculated α(Fz) of LS, presented in Fig. 4, approaches
the steep-slope α(Fz) of LL in Fz < 0 and the gentle-slope
α(Fz) of SS in Fz > 0 as |Fz| increases, which demonstrates
the switching of |α| by changing the sign of Fz (α of LS
deviates from zero at Fz = 0, which is derived in [31]). A
rough estimate for the value of |Fz|, at which α(Fz) of LS
merges with that of LL or SS, denoted by Fc

z , is given by
the potential difference between two interfaces e|Eex

z |W =
|Fz|W equal to the energy difference between the ground
subband and the first excited subband at Ns = 0 and Eex

z = 0
in the infinite-barrier model ε1 − ε0 = 3�

2π2/(2mW 2). This
estimate shows a strong W dependence of Fc

z : Fc
z ∝ W−3,

which explains the W dependence (at Ns = 0) presented in
Fig. 4(a). Using dimensionless variables, F̃ c

z = Fc
z /(Ry∗/a∗

B)

and W̃ = W/a∗
B with a∗

B = �
2ε/(me2) and Ry∗ =

�
2(a∗

B)−2/(2m), such an estimate is expressed as
F̃ c

z = 3π2W̃−3, which gives F̃ c
z = 137 for W̃ = 0.6 and

F̃ c
z = 17.1 for W̃ = 1.2. This estimate for F̃ c

z is consistent
with that extracted from Fig. 4(a). The corresponding value
of |Eex

z |, denoted by Ec
z , becomes Ec

z = 2.4 × 107 V/m
(W = 10.3 nm) and Ec

z = 3.0 × 106 V/m (W = 20.5 nm)
when a∗

B = 17.1 nm and Ry∗ = 3.04 meV for Ga0.47In0.53As
is used. On the other hand, the dependence of α on the
electron sheet density Ns is weak as shown in Fig. 4(b). We
therefore find that |Eex

z | above Ec
z = 3π2W̃−3Ry∗/(ea∗

B ) is
required to realize the on/off |α| ratio Rα given by Eq. (17).
From the numerical result in Fig. 4(a) showing that α of LS
for W̃ = 1.2 is well approximated by α of LL (Fz < 0) and
α of SS (Fz > 0) at |F̃z| > 50, it is derived that Rα reaches
the value in Eq. (17) at |Eex

z | > 107 V/m for W = 20.5 nm
(|Eex

z | = 3 × 107 V/m has been experimentally attained [32]).
In conclusion, we have calculated the coefficient of the

Rashba spin-orbit interaction, α, as a function of the ex-
ternal electric field perpendicular to the well, Eex

z , in an
asymmetric quantum well consisting of Ga0.47In0.53As (well),
Al0.48In0.52As (left barrier), and Al0.3Ga0.7AsySb1−y (right
barrier). We have found that |α| and the resulting spin-
relaxation rate in the Dyakonov-Perel mechanism can be
switched on and off by changing the polarity of Eex

z when |Eex
z |

is large enough. The required |Eex
z | is proportional to W−3 with

W the well width, and weakly depends on the electron sheet
density.

The Dresselhaus spin-orbit interaction [33] also contributes
to the spin relaxation in the Dyakonov-Perel mechanism
in addition to the Rashba spin-orbit interaction which has
been considered in this paper. However, in a quantum well
parallel to the (110) plane of the zinc-blende structure, the
effective magnetic field induced by the Dresselhaus spin-orbit
interaction is perpendicular to the well layer and does not
give the spin relaxation in the Dyakonov-Perel mechanism for
the spin component perpendicular to the well layer. This has
been shown theoretically in [15] and the resulting reduction in
the spin relaxation rate has been demonstrated experimentally
in [34–37]. Therefore the estimate of the spin relaxation rate,
given in this paper, does not change in (110) quantum wells for
the perpendicular spin component even when the Dresselhaus
spin-orbit interaction is considered in addition to the Rashba
spin-orbit interaction.
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H. Lüth, J. Appl. Phys. 83, 4324 (1998).
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[26] A. Därr, J. P. Kotthaus, and T. Ando, in Proceedings of the 13th

International Conference on the Physics of Semiconductors,
Rome, edited by F. G. Fumi (North-Holland, Amsterdam, 1976),
p. 774.

[27] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

[28] W. Zawadzki and P. Pfeffer, Phys. Rev. B 64, 235313
(2001).

[29] From Eq. (1) ϕ0(z) = 〈z|0〉 is the eigenfunction corresponding
to the eigenvalue ε0 of the Hamiltonian Ĥ = p̂2
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