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The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between
quasifree carriers and magnetic impurities but also to a local spin-independent disorder potential for the carriers.
Based on a quantum kinetic theory for the carrier and impurity density matrices as well as the magnetic and
nonmagnetic carrier-impurity correlations, the influence of the nonmagnetic scattering potential on the spin
dynamics in DMS after optical excitation with circularly polarized light is investigated using the example
of Mn-doped CdTe. It is shown that non-Markovian effects, which are predicted in calculations where only the
magnetic carrier-impurity interaction is accounted for, can be strongly suppressed in the presence of nonmagnetic
impurity scattering. This effect can be traced back to a significant redistribution of carriers in k-space which is
enabled by the build-up of large carrier-impurity correlation energies. A comparison with the Markov limit of
the quantum kinetic theory shows that, in the presence of an external magnetic field parallel to the initial carrier
polarization, the asymptotic value of the spin polarization at long times is significantly different in the quantum
kinetic and the Markovian calculations. This effect can also be attributed to the formation of strong correlations,
which invalidates the semiclassical Markovian picture and it is stronger when the nonmagnetic carrier-impurity
interaction is accounted for. In an external magnetic field perpendicular to the initial carrier spin, the correlations
are also responsible for a renormalization of the carrier spin precession frequency. Considering only the magnetic
carrier-impurity interaction, a significant renormalization is predicted for a very limited set of material parameters
and excitation conditions. Accounting also for the nonmagnetic interaction, a relevant renormalization of the
precession frequency is found to be more ubiquitous.

DOI: 10.1103/PhysRevB.95.045204

I. INTRODUCTION

Most of the devices based on the spintronics paradigm that
are commercially available today use the fact that spin-up
and spin-down carriers exhibit different transmission and
reflection probabilities at interfaces involving ferromagnetic
metals [1,2]. However, some applications, like spin transistors
[3], require the control not only of spin-up and spin-down
occupations, but also of the coherent precession of spins per-
pendicular to the quantization axis provided by the structure.
For this purpose, spintronic devices based on semiconductors
are preferable to metallic structures since the dephasing time
in a metal is about three orders of magnitude shorter than
in a semiconductor [4]. In the context of semiconductor
spintronics [5–7], a particularly interesting class of materials
for future applications are diluted magnetic semiconductors
(DMS) [8–22], which are obtained when semiconductors are
doped with transition metal elements, such as Mn, which act
as localized magnetic moments. While some types of DMS,
such as Ga1−xMnxAs, exhibit a ferromagnetic phase [8,23],
other types of DMS, like the usually paramagnetic CdMnTe,
are especially valued for the enhancement of the effective
carrier g factor by the giant Zeeman effect that can be used,
e.g., to facilitate an injection of a spin-polarized current into a
light-emitting diode [24].

A number of different aspects of DMS have been in-
vestigated in the past. These include the growth as well as
structural and material properties of bulk DMS and DMS het-
erostructures (cf. review articles Refs. [8,25,26] and references
therein), the magnetic order [27] and its control via ultrafast
demagnetization after optical excitation [28–31], which is

particularly relevant for strongly p-doped DMS, or collective
effects such as the formation of magnetic polarons [32–35] and
spin waves [36,37]. Important insights into the fundamental
spin physics in DMS can be obtained by investigating the
spin dynamics in ultrafast optical pump-probe experiments
[10,20,38,39]. For this purpose, intrinsic or n-doped DMS are
particularly transparent because they are usually paramagnetic
and, thus, the long-range magnetic order of the impurities,
which complicates the analysis of the measured signals, is
negligible.

In these systems, the spin dynamics is typically dominated
by spin-flip scattering of quasifree carriers at the magnetic
impurities, which leads to an exchange of spins between
the carrier and impurity subsystems [22]. The exchange
interaction responsible for the spin-flip scattering, which
can be modeled by a Kondo-like Hamiltonian [40,41], has
two distinct microscopic origins, the exchange part of the
Coulomb interaction between carriers and impurities and a
virtual hopping of quasifree carriers onto d-shell states of
the magnetic impurities [42]. The contribution of the latter to
the exchange interaction follows directly from a Schrieffer-
Wolff transformation [43]. The same microscopic sources
that yield the Kondo-like magnetic exchange interaction are
also responsible for a nonmagnetic local interaction between
carriers and impurities in the DMS. In Cd1−xMnxTe, the
nonmagnetic interaction (∼1.6 eV [44]) is about one order of
magnitude stronger than the magnetic interaction (∼220 meV
[45]). To understand why the nonmagnetic carrier-impurity
interaction in Cd1−xMnxTe is so strong, it is instructive to
consider a model where electrons at unit cells without Mn
atoms experience the band structure of CdTe and electrons at
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unit cells where the Cd ions are replaced by Mn experience
the band structure of MnTe. CdTe crystallizes in a zinc-blende
structure, while the lowest energetic crystal structure of bulk
MnTe is the NiAs structure [46]. Thus, when CdTe is doped
with Mn impurities, the MnTe units are also forced into a
zinc-blende structure. This leads to a large energy penalty
with respect to its bulk form and, thus, to a significantly higher
local conduction band edge than CdTe, which determines the
strength of the effective nonmagnetic local carrier-impurity
interaction.

Despite its strength, the nonmagnetic carrier-impurity
interaction in DMS has been discussed in the literature, to
the best of our knowlegde, only in the context of transport
problems [41], where it gives rise to an additional contribution
to the resistance due to nonmagnetic impurity scattering, and
for explaining shifts of the optical spectra of semiconductor
structures upon doping with magnetic impurities [44]. The
effects of nonmagnetic impurity scattering have, so far, not
been addressed in the literature in the context of ultrafast spin
dynamics in DMS. The reason for this is that the spin dynamics
in DMS is almost always described by theoretical approaches
that end up with Markovian rate equations for the spin transfer
between quasifree carriers and impurities and other processes
[19,22,30,31,47–52]. On the level of rate equations, the
nonmagnetic impurity scattering of carriers at the impurities
is an elastic process that conserves the spins of carriers and
impurities individually and only leads to a redistribution of
carriers to states with the same energy as before the scattering
event. As a consequence, the carrier occupation and spin
density remains unchanged by the nonmagnetic scattering
in systems with a parabolic band structure and isotropic
carrier distributions in k space. Thus rate equations only
predict an influence of nonmagnetic impurity scattering on
the spin dynamics if, e.g., k-dependent effective fields due
to spin-orbit coupling are present like in the Elliott-Yafet
[53] or D’yakonov-Perel’ [54] mechanisms. Although it is,
in principle, possible to study DMS systems where the carrier
spin dephasing in such effective fields competes with spin-flip
scattering [55], this situation is not very common and, in
this article, we focus on DMS with negligible spin-orbit
interaction.

In recent studies based on a non-Markovian quantum kinetic
theory [56] that did not account for nonmagnetic impurity
scattering, it was predicted that in certain situations, such as
confined systems like quantum wells and optical excitations
close to the band edge [57], the spin dynamics in DMS after
optical excitation deviates significantly from the Markovian
exponential behavior. For example, the time evolution of
the spin polarization can become nonmonotonic [58]. Fur-
thermore, genuine many-body correlation effects, such as a
renormalization of the carrier spin precession frequency and
the build-up of correlation energy [59] may influence the
ultrafast spin dynamics. The build-up of correlation energy was
found to enable a scattering of electrons to states with higher
kinetic energy and it affects, in particular, the asymptotic
values of the carrier spin polarization in the presence of an
external magnetic field at long times after the optical excitation
[60]. Also, these many-body correlation effects cannot be
explained in a theoretical description based on Markovian rate
equations for uncorrelated carriers and impurities. Since the

appearance of non-Markovian behavior and correlation effects
depends strongly on the dynamics of carriers in k space, it
can be expected that the strong nonmagnetic carrier-impurity
interaction, which is present in real DMS but has not been
included in the framework of the quantum kinetic theory
[56] so far, significantly influences the non-Markovian spin
dynamics.

The goal of the present paper is to investigate the influence
of the nonmagnetic carrier-impurity interaction on the ultrafast
electron spin dynamics in paramagnetic II-VI DMS after
optical excitation. To this end, the quantum kinetic theory
of Ref. [56] is extended and not only the magnetic s-d
interaction is taken into account, but also the nonmagnetic
carrier-impurity interaction as well as Zeeman energies for
carriers and impurities, which makes it possible to study the
spin dynamics in the presence of an external magnetic field.

Here, we find that in the conduction band of a narrow
Cd1−xMnxTe quantum well, non-Markovian effects predicted
by calculations neglecting the nonmagnetic carrier-impurity
interaction are strongly suppressed by nonmagnetic impurity
scattering. While, in this case, the nonmonotonic behavior
of the spin dynamics disappears, the quantum kinetic theory
predicts quantitative changes in the effective spin transfer rate
compared with its Markovian value obtained by Fermi’s golden
rule. The suppression of the non-Markovian features is mainly
caused by a significant redistribution of carriers away from the
band edge where the non-Markovian effects are particularly
strong [57]. This carrier redistribution is facilitated by the
build-up of strong carrier-impurity correlations providing a
correlation energy of the order of a few meV per electron that
leads to an increase of the average kinetic electron energy
by about the same amount. Due to the different strengths
of the interactions in the conduction band of Cd1−xMnxTe,
the nonmagnetic carrier-impurity correlation energy is much
larger than the magnetic correlation energy studied before
in Ref. [59]. In other cases, such as in the valence band
of Cd1−xMnxTe, the nonmagnetic impurity scattering can be
much weaker than the magnetic spin-flip scattering and the
non-Markovian effects prevail. In the presence of an external
magnetic field parallel to the initial carrier spin polarization,
the correlation-induced change of the asymptotic value of the
carrier spin polarization at long times t with respect to its
mean field value [60] is found to be significantly enhanced
when in addition to the magnetic carrier-impurity interaction
also the nonmagnetic interaction is accounted for. If the
initial carrier spin polarization is perpendicular to the external
magnetic field, the carrier spins precess about the effective
field comprised of the external field and the mean field due to
the impurity magnetization. As shown in Ref. [59], the carrier-
impurity correlations built up by the magnetic s-d interaction
renormalize the carrier spin precession frequency. Here, we
show that when both, the magnetic and the nonmagnetic
interactions are taken into account, the renormalization of
the carrier spin precession frequency can be different in sign
and magnitude compared with calculations in which only the
magnetic interaction is considered.

The article is structured as follows: first, quantum kinetic
equations of motion for the carrier and impurity density
matrices as well as for the magnetic and nonmagnetic carrier-
impurity correlations are formulated for a DMS with magnetic
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and nonmagnetic carrier-impurity interactions. Then, we
derive the Markov limit of the quantum kinetic theory
which enables a comparison and allows us to distinguish the
genuine quantum kinetic effects from the Markovian behavior.
Furthermore, from the Markov limit we can derive analytic
expressions for the carrier-impurity correlation energies as
well as the correlation-induced renormalization of the carrier
spin precession frequency. After having laid out the theory,
we present numerical simulations of the quantum kinetic
equations for the conduction band of a Cd1−xMnxTe quantum
well including magnetic and nonmagnetic scattering at the Mn
impurities and discuss the energetic redistribution of carriers
as well as the correlation energies. Then, we estimate the influ-
ence of nonmagnetic impurity interaction on the spin dynamics
in the valence band of Cd1−xMnxTe. Finally, we discuss the
effects of the nonmagnetic impurity scattering on the spin
dynamics in DMS in the presence of an external magnetic
field parallel and perpendicular to an initial nonequilibrium
carrier spin polarization.

II. THEORY

A. DMS Hamiltonian

In the present paper, we consider an intrinsic DMS such as
Cd1−xMnxTe in the presence of an external magnetic field.
The effective magnetic s-d exchange interaction between
conduction band carriers and localized magnetic impurities
is usually modeled by [41,45]

Hsd = Jsd

∑
I i

ŜI · ŝiδ(RI − ri), (1a)

where ŜI and ŝi are the spin operators of the I th magnetic
impurity and the ith conduction band electron, respectively,
and RI and ri are the corresponding positions. Jsd is the
magnetic coupling constant, which defines the strength of
the magnetic carrier-impurity interaction. We assume that
the nonmagnetic carrier-impurity interaction can be written
similarly as

Himp = J0

∑
J i

δ(RJ − ri), (1b)

where J0 is the nonmagnetic coupling constant. In order to
account for spin-independent scattering not only at Mn im-
purities but also at additional nonmagnetic scattering centers,
such as in quaternary compound DMSs like HgCdMnTe [55],
we allow the number of scattering centers Nimp in general to
be larger than the number of magnetic impurities NMn. Here,
we use the notation that the index I runs from 1 to NMn while
the index J runs from 1 to Nimp. The value of the coupling
constant for the magnetic impurity interaction in DMS is
well established in the literature [45]. Here, we determine
the value of the nonmagnetic carrier-impurity interaction so
that the shifts of optical spectra upon doping of CdTe with
Mn [44] are reproduced within the mean-field/virtual-crystal
approximation of Himp.

Note that we assume that the carrier-impurity interaction is
short-range although it originates mainly from the Coulomb
interaction between carriers and impurities. This assumption
is justified for II-VI DMS, since the Mn impurities are

incorporated into the II-VI lattice isoelectrically. Thus the
long-range monopole part of the Coulomb interaction between
electrons and Mn impurities is the same as the corresponding
part of the interaction between electrons and the Cd ions
that are replaced by the Mn ions. Therefore the long-range
part of the nonmagnetic Mn-carrier interaction is already
covered by the effective crystal Hamiltonian, where Coulomb
interactions are screened by the sea of electrons in the valence
bands. The long-range part of the Coulomb interaction may
be expected to be relevant in III-V DMS, where Mn ions
typically act as acceptors and remain negatively charged
[8]. However, even in the case of GaMnAs, models using
a local approximation for the nonmagnetic carrier-impurity
interaction have been successfully employed in the framework
of the V -J tight-binding model of Ref. [61], where a good
quantitative agreement with ab initio calculations for the
Curie temperature and with experimental data for the optical
conductivity was obtained.

In second quantization and in k space, the total Hamiltonian
of the DMS system under consideration is

H = H0 + Hsd + Himp + H e
Z + H Mn

Z , (2a)

H0 =
∑
kσ

�ωkc
†
σkcσk, (2b)

Hsd = Jsd

V

∑
kk′σσ ′

∑
Inn′

Snn′ · sσσ ′c
†
σkcσ ′k′ei(k′−k)RI P̂ I

nn′ , (2c)

Himp = J0

V

∑
kk′σ

∑
J

c
†
σkcσk′ei(k′−k)RJ , (2d)

H e
Z =

∑
kσσ ′

�geμBB · sσσ ′c
†
σkcσ ′k, (2e)

H Mn
Z =

∑
Inn′

�gMnμBB · Snn′ P̂ I
nn′ , (2f)

where H0 is the single-electron Hamiltonian due to the crystal
potential and H e

Z and H Mn
Z are the carrier and impurity Zeeman

energies.
In Eq. (2), c

†
σk and cσk denote the creation and annihilation

operators for conduction band electrons with wave vector k
in the spin subband σ = {↑,↓}. The magnetic Mn impuri-
ties are described by the operator P̂ I

nn′ = |I,n〉〈I,n′| where
|I,n〉 is the nth spin state (n ∈ {− 5

2 ,− 3
2 , . . . , 5

2 }) of the I th
magnetic impurity located at RI . The band structure of the
semiconductor is described by �ωk, which we assume to be
parabolic ωk = �k2

2m∗ with effective mass m∗. V denotes the
volume of the sample. Sn1n2 and sσ1σ2 are the vectors with
components consisting of spin- 5

2 and spin- 1
2 spin matrices for

the impurities and the conduction band electrons, respectively,
where the unit � has been substituted into the definition of
Jsd so that sσ1σ2 = 1

2σ σ1σ2 , where σ σ1σ2 are the Pauli matrices.
Finally, ge and gMn are the g factors of the electrons and the
impurities, respectively, and μB is the Bohr magneton.

Furthermore, we consider a narrow quantum well where
only the lowest confinement state is excited. Projecting the
total Hamiltonian in Eq. (2) onto the corresponding subspace
is essentially equivalent to replacing the three-dimensional

045204-3



M. CYGOREK, F. UNGAR, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 95, 045204 (2017)

bulk wave vectors k and k′ by two-dimensional in-plane wave
vectors [62].

B. Quantum kinetic equations of motion

The goal of this article is to study the spin dynamics in DMS
after resonant optical excitation with circularly polarized light.
To this end, we derive equations of motion for the carrier
and impurity density matrices as well as carrier-impurity
correlations based on a correlation expansion scheme [56].
The principles of such a theory go back to the cumulant
expansion of higher order correlations by Kubo [63]. For
investigations of the ultrafast dynamics in semiconductors,
correlation expansion methods have been proven very fruitful
in the past, in particular, when many-body effects arise due
to Coulomb or carrier-phonon interactions [64–66]. A density
matrix formalism for the investigation of spin dynamics in
semiconductors has been provided by the kinetic spin Bloch
equation [48]. The latter, however, were formulated only for
uncorrelated single-particle density matrices using the Markov
approximation to integrate out correlations arising from the
many-body interactions.

In Ref. [56], a density matrix theory was developed for
the single-particle density matrices as well as the carrier-
impurity correlations built up by the Kondo-like magnetic
interaction Hsd in DMS. This theory has been modified in
order to describe the spin dynamics in the presence of a finite
impurity magnetization [67] and external magnetic fields as
well as k-dependent effective spin-orbit fields [62]. Here, we
extend the quantum kinetic theory further to also include the
nonmagnetic impurity interaction Himp.

Following Ref. [56], we seek to obtain a closed set of
equations for the reduced carrier and impurity density matrices
as well as for the carrier-impurity correlations:

Mn2
n1

= 〈
P̂ I

n1n2

〉
, (3a)

C
σ2
σ1k1

= 〈
c
†
σ1k1

cσ2k1

〉
, (3b)

C̄
σ2k2
σ1k1

= V
〈
c
†
σ1k1

cσ2k2e
i(k2−k1)RJ

〉
, for k2 
= k1, (3c)

Q
σ2n2k2
σ1n1k1

= V
〈
c
†
σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2

〉
, for k2 
= k1. (3d)

Mn2
n1

and C
σ2
σ1k1

are the impurity and electron density matrices

and C̄
σ2k2
σ1k1

as well as Q
σ2n2k2
σ1n1k1

are the nonmagnetic and magnetic
carrier-impurity correlations, respectively. In Eq. (3), the

brackets denote not only the quantum mechanical average of
the operators, but also an average over a random distribution
of impurity positions, which we assume to be on average
homogeneous so that 〈ei(k2−k1)RJ 〉 = δk1k2 .

The equations of motion for the variables defined in
Eq. (3) can be derived using the Heisenberg equations of
motion for the corresponding operators. Note, however, that
this procedure leads to an infinite hierarchy of variables
and equations of motion, since, e.g., the equation of motion
for 〈c†σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2
〉 contains also terms of the

form 〈c†σ1k1
cσke

i(k−k1)RI ei(k2−k)RI ′ P̂ I
n1n2

P̂ I ′
nn′ 〉 for I ′ 
= I which

cannot be expressed in terms of the variables in Eq. (3). Thus,
in order to obtain a closed set of equations, one has to employ a
truncation scheme. Here, we follow the procedure of Ref. [56]:
we factorize the averages over products of operators and define
the true correlations to be the remainder when all combinations
of factorizations have been subtracted from the averages. For
example, we define (for k2 
= k1)

δ
〈
c
†
σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2

〉
:= 〈

c
†
σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2

〉
−(〈

c
†
σ1k1

cσ2k2

〉〈
ei(k2−k1)RI

〉〈
P̂ I

n1n2

〉
+〈

c
†
σ1k1

cσ2k2e
i(k2−k1)RI

〉〈
P̂ I

n1n2

〉
+〈

ei(k2−k1)RI 〉〈c†σ1k1
cσ2k2 P̂

I
n1n2

〉)
, (4)

where δ〈. . . 〉 denotes the true correlations. The basic
assumption of the truncation scheme of Ref. [56] is
that all correlations higher than δ〈c†σ1k1

cσ2k2e
i(k2−k1)RI 〉 and

δ〈c†σ1k1
cσ2k2e

i(k2−k1)RI P̂ I
n1n2

〉 are negligible. This assumption
results in a closed set of equations of motion for the reduced
density matrices and the true correlations. However, it turns
out [68] that the equations of motion can be written down
in a more condensed form when switching back to the full
(nonfactorized) higher-order density matrices as variables,
after the higher (true) correlations are neglected. For details of
this procedure, the reader is referred to Refs. [56,68].

Applying this truncation scheme to the total Hamiltonian
(2) including magnetic and nonmagnetic carrier-impurity
interactions as well as the Zeeman terms for carriers and
impurities leads to the equations of motion for the variables
defined in Eq. (3):

− i�
∂

∂t
Mn2

n1
=

∑
n

�ωMn · (
Snn1M

n2
n − Sn2nM

n
n1

) + Jsd

V 2

∑
n

∑
kk′σσ ′

[
Snn1 · sσσ ′Q

σ ′n2k′
σnk − Sn2n · sσσ ′Qσ ′nk′

σn1k

]
, (5a)

−i�
∂

∂t
C

σ2
σ1k1

=
∑

σ

�ωe · (
sσσ1C

σ2
σk1

− sσ2σCσ
σ1k1

) + Jsd
NMn

V 2

∑
nn′

∑
kσ

(
Snn′ · sσσ1Q

σ2n
′k1

σnk − Snn′ · sσ2σQσn′k
σ1nk1

)

+J0
Nimp

V 2

∑
k

(
C̄

σ2k1
σ1k − C̄

σ2k
σ1k1

)
, (5b)

−i�
∂

∂t
Q

σ2n2k2
σ1n1k1

= �
(
ωk1 − ωk2

)
Q

σ2n2k2
σ1n1k1

+ b
σ2n2k2
σ1n1k1

I + b
σ2n2k2
σ1n1k1

II + b
σ2n2k2
σ1n1k1

III + b
σ2n2k2
σ1n1k1

imp
, (5c)

−i�
∂

∂t
C̄

σ2k2
σ1k1

= �
(
ωk1 − ωk2

)
C̄

σ2k2
σ1k1

+ c
σ2k2
σ1k1

I + c
σ2k2
σ1k1

II + c
σ2k2
σ1k1

III + c
σ2k2
σ1k1

sd
(5d)
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with

b
σ2n2k2
σ1n1k1

I =
∑
nσσ ′

Jsd
[
Snn1 · sσσ ′

(
δσ1σ ′ − Cσ ′

σ1k1

)
C

σ2
σk2

Mn2
n − Sn2n · sσσ ′

(
δσσ2 − C

σ2
σk2

)
Cσ ′

σ1k1
Mn

n1

]
, (5e)

b
σ2n2k2
σ1n1k1

II =
∑

σ

�ωe · (
sσσ1Q

σ2n2k2
σn1k1

− sσ2σQ
σn2k2
σ1n1k1

) +
∑

n

�ωMn · (
Snn1Q

σ2n2k2
σ1nk1

− Sn2nQ
σ2nk2
σ1n1k1

)
, (5f)

b
σ2n2k2
σ1n1k1

III = Jsd

V

∑
n

∑
kσ

{(
Snn1 · sσσ1Q

σ2n2k2
σnk − Sn2n · sσ2σQσnk

σ1n1k1

)

−
∑
σ ′

sσσ ′ · [
Cσ ′

σ1k1

(
Snn1Q

σ2n2k2
σnk − Sn2nQ

σ2nk2
σn1k

) + C
σ2
σk2

(
Snn1Q

σ ′n2k
σ1nk1

− Sn2nQ
σ ′nk
σ1n1k1

)]}
, (5g)

b
σ2n2k2
σ1n1k1

imp = J0

[(
C

σ2
σ1k2

− C
σ2
σ1k1

)
Mn2

n1
+ 1

V

∑
k

(
Q

σ2n2k2
σ1n1k − Q

σ2n2k
σ1n1k1

)]
, (5h)

and

c
σ2k2
σ1k1

I = J0
(
C

σ2
σ1k2

− C
σ2
σ1k1

)
, (5i)

c
σ2k2
σ1k1

II =
∑

σ

�ωe · (
sσσ1C̄

σ2k2
σk1

− sσ2σ C̄
σk2
σ1k1

)
, (5j)

c
σ2k2
σ1k1

III = J0

V

∑
k

(
C̄

σ2k2
σ1k − C̄

σ2k
σ1k1

)
, (5k)

c
σ2k2
σ1k1

sd = Jsd

∑
nn′

∑
σ

Mn′
n Snn′ · (

sσσ1C
σ2
σk2

− sσ2σCσ
σ1k1

) + Jsd

V

NMn

Nimp

∑
nn′

∑
kσ

Snn′ · (
sσσ1Q

σ2n
′k2

σnk − sσ2σQσn′k
σ1nk1

)
, (5l)

where b
σ2n2k2
σ1n1k1

X
are the source terms for the magnetic carrier-

impurity correlations, c
σ2k2
σ1k1

X
are the sources for the nonmag-

netic correlations and

ωMn = gMnμBB + Jsd

�

1

V

∑
kσσ ′

sσσ ′Cσ ′
σk, (6a)

ωe = geμBB + Jsd

�

NMn

V

∑
nn′

Snn′Mn′
n (6b)

are the mean-field precession frequencies of the impurity and
carrier spins, respectively. The first terms on the right-hand side
of Eqs. (5a) and (5b) represent the precession of the impurity
and carrier spins in the mean field due to the carrier and
impurity magnetization as well as the external magnetic field.
The second terms in Eqs. (5a) and (5b) describe the effects of
the magnetic carrier-impurity correlations on the impurity and
carrier density matrices and the last term of Eq. (5b) describes
the scattering of carriers at nonmagnetic impurities.

In analogy to the situation without nonmagnetic impurity
scattering (J0 = 0) studied in Ref. [68], we label the source
terms of the correlations on the right-hand side of the Eqs. (5c)

and (5d) as follows. The terms b
σ2n2k2
σ1n1k1

I
are the inhomogeneous

driving terms depending only on single-particle quantities.

b
σ2n2k2
σ1n1k1

II
are homogeneous terms which describe a precession-

type motion of the correlations in the effective fields ωe and

ωMn. The source terms b
σ2n2k2
σ1n1k1

III
comprise the driving of the

magnetic correlations by other magnetic correlations with
different wave vectors and describe a change of the wave

vectors of the correlations due to the s-d interaction. bσ2n2k2
σ1n1k1

imp

denotes the contributions to the equation for the magnetic
correlations due to the nonmagnetic impurity scattering. The

source terms c
σ2k2
σ1k1

X
for the nonmagnetic correlations are clas-

sified analogously. A straightforward but lengthy calculation
confirms that Eq. (5) conserve the particle number as well as
the total energy comprised of the single-particle contributions
and the correlation energies.

C. Markov limit

Although Eq. (5) can readily be used to calculate the spin
dynamics given a set of appropriate initial conditions, it is
instructive to derive the Markov limit of the quantum kinetic
equations [62,67,68]. On the one hand, this enables us to
distinguish the Markovian behavior from genuine quantum
kinetic effects. On the other hand, it allows us to derive
analytic expressions for the correlation energies and the
renormalization of the precession frequencies in the presence
of an external magnetic field [59].

The derivation of the Markov limit comprises two steps
[62]. First, the equations of motion for the correlations
are formally integrated yielding explicit expressions for the
correlations in the form of a memory integral. This yields
integro-differential equations for the single-particle variables,
where the values of the single-particle variables at earlier times
enter. Second, the memory integral is eliminated by assuming
a δ-like short memory.

However, the first step, which involves the formal integra-
tion of the carrier-impurity correlations, can, in general, be
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complicated. Nevertheless, if the source terms b
σ2n2k2
σ1n1k1

III
and

c
σ2k2
σ1k1

III
as well as the correlation-dependent part of b

σ2n2k2
σ1n1k1

imp

and c
σ2k2
σ1k1

sd
are neglected, the formal solution of Eqs. (5c) and

(5d) becomes much easier. In absence of nonmagnetic impurity
scattering, it has been shown that these source terms are indeed
numerically insignificant [68]. Furthermore, a straightforward
calculation shows that neglecting these terms also yields a
consistent theory with respect to the conservation of the total

energy. Whether neglecting the terms b
σ2n2k2
σ1n1k1

III
, c

σ2k2
σ1k1

III
and

the correlation-dependent parts of b
σ2n2k2
σ1n1k1

imp
and c

σ2k2
σ1k1

sd
is

indeed a good approximation in the presence of nonmagnetic
impurity scattering can be tested by comparing the numerical
results of the quantum kinetic equations with and without
accounting for these source terms.

Neglecting the aforementioned source terms in Eq. (5), we
first formulate a set of quantum kinetic equations for the new
dynamical variables:

〈Si〉 =
∑
n1n2

Si
n1n2

Mn2
n1

, (7a)

nk =
∑

σ

Cσ
σk, (7b)

si
k =

∑
σ1σ2

si
σ1σ2

C
σ2
σ1k, (7c)

C̄
αk2

k1
=

∑
σ1σ2

sα
σ1σ2

C̄
σ2k2
σ1k1

, (7d)

Q
αk2
lk1

=
∑
σ1σ2

∑
n1n2

sα
σ1σ2

Sl
n1n2

Q
σ2n2k2
σ1n1k1

, (7e)

where 〈S〉 is the average impurity spin and nk and sk are the
occupation density and spin density of the carrier states with
wave vector k, respectively. C̄

αk2
k1

as well as Q
αk2
lk1

comprise
the nonmagnetic and magnetic carrier-impurity correlations.
In Eq. (7), we use a notation in which the Latin indices are
in the range {1,2,3}, while the Greek indices also include the
value 0, where s0

σ1σ2
= δσ1σ2 is the 2 × 2 identity matrix. The

corresponding equations of motion for the variables defined in
Eq. (7) are explicitly given in the Appendix.

Note that the source terms b
αk2
lk1

I
for the correlations Q

αk2
lk1

depend on the second moments of the impurity spins 〈SiSj 〉 =∑
n1n2n3

Si
n1n2

S
j
n2n3M

n3
n1

for which we do not present equations
of motions, although such equations can, in principle, be
derived from Eq. (5). Here, we use the fact that for typical
sample parameters the optically induced carrier density is
usually much lower than the impurity concentration, so that the
average impurity spin only changes marginally over time [68].
For the numerical calculations, we assume that the impurity
density matrix can be approximately described as being in
thermal equilibrium at all times where the effective impurity
spin temperature TMn can be obtained from the value of
〈S〉. From this thermally occupied density matrix, the second
moments 〈SiSj 〉 consistent with 〈S〉 can be calculated in each
time step.

The equations of motion for the variables defined in
Eq. (7) are the starting point for the formal integration of the

correlations. Note that Eqs. (A1d)–(A1g) for the correlations
Q

αk2
lk1

and C̄
αk2

k1
can be transformed into the general form

∂

∂t
Q

k2
k1

= −i(ωk2 − ωk1 )Qk2
k1

+ iχ1ωeQ
k2
k1

+ iχ2ωMnQ
k2
k1

+ b
k2
k1

I
, (8)

where χ1,χ2 ∈ {−1,0,1} and the terms proportional to ωe =
|ωe| and ωMn = |ωMn| originate from the precession of the

correlations described by the source terms b
σ2n2k2
σ1n1k1

II
and c

σ2k2
σ1k1

II
.

The term b
k2
k1

I
here denotes the contributions from the source

terms b
σ2n2k2
σ1n1k1

I
, c

σ2k2
σ1k1

I
, b

σ2n2k2
σ1n1k1

imp
and c

σ2k2
σ1k1

sd
and only depends

on the single-particle variables. The formal integration of
Eq. (8) yields

Q
k2
k1

(t) =
∫ t

0
dt ′ei[ωk2 −(ωk1 +χ1ωe+χ2ωMn)](t ′−t)b

k2
k1

I
(t ′). (9)

The Markov limit consists of assuming a short memory,
i.e., the assumption that the correlations at time t depend only
significantly on the single-particle variables at the same time

t , so that one is inclined to evaluate b
k2
k1

I
(t ′) in Eq. (9) at t ′ = t

and to draw the source term out of the integral. However,
first, one has to make sure that the source terms are indeed
slowly changing variables. For example, the carrier spin can
precess rapidly about an external magnetic field. Therefore we
first analyze the mean-field precession of the single-particle
quantities and split the source terms into parts oscillating with
some frequencies ω of the form

b
k2
k1

I
(t ′) MF=

∑
ω

∑
χ∈{−1,0,1}

eiχω(t ′−t)b
k2
k1

ω,χ
(t). (10)

Then, the different oscillating parts b
k2
k1

ω,χ
(t) can be drawn

out of the memory integral and the remaining integral can be
solved in the limit of large times t [62]:

∫ t

0
dt ′ ei�ω(t ′−t) t→∞−→ πδ(�ω) − i

�ω
. (11)

This procedure yields particularly transparent results in
the case where the external magnetic field and the impurity
magnetization are collinear, as is usually the case when
the number of impurities exceeds the number of quasifree
carriers (NMn 
 Ne), and the impurity density matrix is
initially occupied thermally. Choosing the direction of ωe

as a reference and defining s
‖
k1

:= s · ωe
ωe

, S‖ := Ŝ · ωe
ωe

and

ω
‖
Mn := ωMn · ωe

ωe
, the Markovian equations obtained for the

spin-up and spin-down occupations and the perpendicular
carrier spin component with respect to the direction of ωe,

n
↑/↓
k1

:= nk1

2
± s

‖
k1

, (12a)

s⊥
k1

:= sk1 − ωe

ωe
s
‖
k1

, (12b)
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are given by

∂

∂t
n

↑/↓
k1

= π

�2V 2

∑
k2

{
δ
(
ωk2 − ωk1

)[
J 2

sdNMn
1

2
〈S‖2〉 ± JsdJ0(NMn + Nimp)〈S‖〉 + 2J 2

0 Nimp

](
n

↑/↓
k2

− n
↑/↓
k1

)

+ δ
[
ωk2 − (

ωk1 ± (ωe − ω
‖
Mn)

)]
J 2

sdNMn

[(
〈S⊥2〉 ± 1

2
〈S‖〉

)(
1 − n

↑/↓
k1

)
n

↓/↑
k2

−
(

〈S⊥2〉 ∓ 1

2
〈S‖〉

)(
1 − n

↓/↑
k2

)
n

↑/↓
k1

]}
,

(13a)
∂

∂t
s⊥

k1
= − π

�2V 2

∑
k2

{
δ
(
ωk2 − ωk1

)[
J 2

sdNMn
1

2
〈S‖2〉(s⊥

k2
+ s⊥

k1

) − 2J 2
0 Nimp

(
s⊥

k2
− s⊥

k1

)]

+ δ
[
ωk2 − (

ωk1 + (ωe − ω
‖
Mn)

)]1

2

(
〈S⊥2〉 − 1

2
〈S‖〉(1 − 2n

↓
k2

))
s⊥

k1

+ δ
[
ωk2 − (

ωk1 − (ωe − ω
‖
Mn)

)]1

2

(
〈S⊥2〉 + 1

2
〈S‖〉(1 − 2n

↑
k2

))
s⊥

k1

}

+ωe × s⊥
k1

+ 1

�2V 2

∑
k2

{
− JsdJ0

ωk2 − ωk1

〈S〉 × [
(Nimp − NMn)s⊥

k2
+ (NMn + Nimp)s⊥

k1

]

− J 2
sdNMn

ωk2 − (
ωk1 + (ωe − ω

‖
Mn)

) 1

2

(
〈S⊥2〉 − 1

2
〈S‖〉(1 − 2n

↓
k2

))(
ωe

ωe
× s⊥

k1

)

+ J 2
sdNMn

ωk2 − (
ωk1 − (ωe − ω

‖
Mn)

) 1

2

(
〈S⊥2〉 + 1

2
〈S‖〉(1 − 2n

↑
k2

))(
ωe

ωe
× s⊥

k1

)}
. (13b)

The first line on the right-hand side of Eq. (13a), which
is proportional to n

↑/↓
k2

− n
↑/↓
k1

, describes a redistribution
of occupations of spin-up and spin-down states within a
shell of defined kinetic energy via the term proportional to
δ(ωk2 − ωk1 ). For a parabolic band structure, this implies a
redistribution between states with the same modulus |k| of the
wave vector k, while the total carrier spin remains unchanged.
If accompanied by a wave-vector dependent magnetic field
like a Rashba or the Dresselhaus field, this term leads to
a D’yakonov-Perel’-type suppression of the spin dephasing.
Here, however, we do not consider any wave vector dependent
field and the system under investigation is isotropic in k space,
so that the first line in Eq. (13a) has no influence on the
dynamics of the total spin. The second line in Eq. (13a)
describes a spin-flip scattering from the spin-up band to
the spin-down band and vice versa. Since these bands are
energetically split by �ωe and a flip of a carrier spin involves
a corresponding flip of an impurity spin in the opposite
direction, which requires a magnetic (Zeeman) energy of
�ω

‖
Mn, the total magnetic energy released in a spin-flip process

is ±�(ωe − ω
‖
Mn). Thus δ[ωk2 − (ωk1 ± (ωe − ω

‖
Mn))] ensures

a conservation of the total single-particle energies in the
Markov limit. It is noteworthy that, if the mean-field dynamics
of the source terms as in Eq. (10) is not correctly taken into
account, other energetic shifts are obtained in the δ function,
which yields equations in the Markov limit that are not
consistent with the conservation of the single-particle energies
[62]. Note also that the right-hand side of Eq. (13a) correctly
deals with Pauli blocking effects. Because the nonmagnetic
impurity scattering enters in the equations of motion (13a) for
the spin-up and spin-down occupation only via the first line
which plays no role in an isotropic system, it has no influence
on the spin dynamics in the Markov limit.

The first three lines in Eq. (13b) for the perpendicular
carrier spin component, which are proportional to δ functions,
indicate an exponential decay of the perpendicular carrier
spin component towards zero. The last three lines describe
a precession of the perpendicular carrier spin component. The
mean-field precession frequency ωe is renormalized by the
carrier-impurity correlations. This renormalization originates
from the imaginary part of the memory integral in Eq. (11).
Besides the terms proportional to 1

ωk2 −(ωk1 ±(ωe−ω
‖
Mn))

, which

are also present when only the magnetic s-d interaction is
taken into account [59], the nonmagnetic impurity scattering
introduces another contribution which is a cross-term, i.e.,
it is absent when either the magnetic or the nonmagnetic
impurity scattering is absent, which can be seen from the
fact that it is proportional to the product of Jsd and J0. In
the quasicontinuous limit, the sum over k2 can be replaced
by an integral over the spectral density of states. In quasi-
two-dimensional systems like quantum wells, the spectral
denstiy of states D(ω) = Am∗

2π�
is constant. Thus the frequency

renormalization can be integrated and yields logarithmic
divergences

∑
k2

1

ωk2 − ω0
=

∫ ωBZ

0
dω D(ω)

1

ω − ω0

= Am∗

2π�
ln

∣∣∣∣ωBZ − ω0

ω0

∣∣∣∣ (14)

at the poles ω0 = ωk1 and ω0 = ωk1 ± (ωe − ω
‖
Mn). These

logarithmic divergences are similar to the ones obtained in
the discussion of the Kondo effect in metals with magnetic
impurities [40]. Despite the formal divergence, the summation
over a nonsingular carrier distribution always leads to a finite

045204-7



M. CYGOREK, F. UNGAR, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 95, 045204 (2017)

value of the precession frequency of the total carrier spin, since
the logarithm is integrable [62]. From Eq. (14), one can see
that the cut-off energy �ωBZ, which corresponds to the width
of the conduction band and is typically of the order of 1 eV,
enters as a new model parameter in the theory and cannot
be eliminated by assuming that ωBZ → ∞, since then the
frequency renormalization also diverges. As a consequence,
the Markovian expression for the frequency renormalization
can only give an order-of-magnitude estimation and a more
detailed treatment of the band structure is necessary if a
quantitatively more accurate description is required.

For the special case of zero external magnetic field,
vanishing impurity magnetization and low carrier densities,
equation (13) are equivalent to the simple rate equations

∂

∂t
sk1 = − 1

τ
sk1 , (15)

where the rates coincide with that obtained by Fermi’s golden
rule or equivalent approaches [19,22,30,31,47–52]. In two
dimensions, one obtains [58]

1

τ 2D
=35

12

J 2
sdm

∗

�3

NMn

V

1

d
. (16)

D. Correlation energy

In Eqs. (9) to (11), Markovian expressions for the carrier-
impurity correlations are derived as functionals of the car-
rier and impurity variables. Using these expressions, it is
straightforward to also obtain analytic expressions for the
carrier-impurity correlation energies as functionals of the
carrier spins and occupations [62]. Splitting the averages over
the magnetic and nonmagnetic carrier-impurity interactions
into mean-field and correlated contributions,

〈Hsd〉 = 〈
H MF

sd

〉 + 〈
H cor

sd

〉
, (17a)

〈Himp〉 = 〈
H MF

imp

〉 + 〈
H cor

imp

〉
, (17b)

〈
H MF

sd

〉 = JsdNMn

V

∑
k

〈S〉 · sk, (17c)

〈
H cor

sd

〉 = JsdNMn

V 2

∑
k,k′

∑
i

Qik′
ik , (17d)

〈
H MF

imp

〉 = J0Nimp

V

∑
k

nk, (17e)

〈
H cor

imp

〉 = J0Nimp

V 2

∑
k,k′

C̄0k′
k , (17f)

one obtains in the Markov limit

〈
H cor

sd

〉 = −JsdNMn

V 2

∑
k1k2

{ 1
2Jsd〈S‖2〉nk1 + 2J0〈S‖〉s‖

k1

ωk2 − ωk1

+ Jsd
(〈S⊥2〉 − 1

2 〈S‖〉)(1 − n
↓
k2

)
n

↑
k1

ωk2 − (
ωk1 + (ωe − ω

‖
Mn)

)
+ Jsd

(〈S⊥2〉 + 1
2 〈S‖〉)(1 − n

↑
k2

)
n

↓
k1

ωk2 − (
ωk1 − (ωe − ω

‖
Mn)

) }
, (18a)

〈
H cor

imp

〉 = −2
J0Nimp

V 2

∑
k1k2

J0nk1 + Jsd〈S‖〉s‖
k1

ωk2 − ωk1

. (18b)

Equation (18) have the same poles as Eq. (13b) for the
frequency renormalization and, thus, also contain formally
logarithmic divergences in two-dimensional systems.

III. RESULTS

After having derived the quantum kinetic equations for
the description of the spin dynamics in DMS including
magnetic and nonmagnetic scattering and having obtained
rate-type Markovian equations, we now present results of
numerical simulations. Here, we focus on the case of a 4-
nm-wide Cd0.93Mn0.07Te quantum well. For this material, the
magnetic coupling constant is Jsd = −15 meV nm3 (N0Jsd =
−220 meV) [45], while the nonmagnetic coupling constant
is approximately J0 = 110 meV nm3 (N0J0 = 1.6 eV) [44],
where N0 is the number of unit cells per unit volume.
Furthermore, we use a conduction band effective mass of
m∗ = 0.1 m0 and assume that the impurity magnetization is
described by a thermal distribution at a temperature of T = 2 K
and the g factors of the conduction band carriers and Mn
impurities are ge = −1.77 and gMn = 2, respectively [60]. We
assume that there are no other scattering centers present beside
the Mn impurities, which implies Nimp = NMn.

Here, we are interested in pump-pulse measurements,
where the spin dynamics of the carrier system is probed after
resonant excitation with a circularly polarized light beam that
directly induces a spin polarization of the optically excited
carriers via spin selection rules. We assume that the spins
of the optically excited holes are pinned due to the strong
heavy-hole–light-hole splitting in narrow quantum wells and
only the dynamics of the conduction band electron spin is
of interest. For our calculations, we further assume that an
ultrafast circularly polarized Gaussian pump pulse resonant to
the band gap has excited spin-up electrons into the conduction
band at time t = 0 and we use a corresponding Gaussian
spectral electron occupation of the spin-up conduction band as
an initial value for the carrier density matrix. This assumption
requires that the pump pulse is weak enough, so that Pauli
blocking and saturation effects during the excitation, e.g.,
Rabi flops, are negligible. Here, we consider a pump pulse
with full width at half maximum (FWHM) pulse duration
of about 350 fs, which translates into a spectral width of
the initial Gaussian occupation of spin-up electrons with
standard deviation of Es = 0.4 meV. Earlier studies where
only the magnetic carrier-impurity interaction was taken into
account showed that the predictions of such initial value
calculations are very well reproduced if the optical excitation is
directly taken into account via the corresponding light-matter
interaction Hamiltonian in dipole approximation [69].

With these initial values, the equations of motion are
integrated numerically using a Runge-Kutta algorithm. To
this end, the k space is discretized and truncated, i.e., only
taken into account up to a cutoff energy of �ωBZ = 40 meV.
Moreover, we assume that the initial occupation of the carrier
density matrix is isotropic in the two-dimensional k space.
Then, the values of the density matrices and the correlations
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(b)QKT1, J0 = 0 meVnm3

QKT2, J0 = 0 meVnm3

QKT1, J0 = 110 meVnm3

QKT2, J0 = 110 meVnm3

Markov

t = 0 ps
J0 = 0 meVnm3, t = 10 ps
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FIG. 1. (a) Time evolution of the carrier spin for zero magnetic field with (J = 110 meV nm3) and without (J = 0) nonmagnetic impurity
scattering. QKT1 (points) denotes the results according to the full quantum kinetic equation (5), while QKT2 (lines) describes the results
of the reduced set of equation (A1). The purple dash-dotted line shows the results of the Markovian equation (13), which is independent
of nonmagnetic impurity scattering. The inset shows a magnification of the region where the quantum kinetic theory for J0 = 0 predicts a
nonmonotonic behavior. (b) Occupation of carrier states at t = 0 and t = 10 ps for the calculations with and without nonmagnetic impurity
scattering.

depend for all times only on the modulus |k| of the wave vector
k and not its polar angle in the two-dimensional k space. This
implies that for each k index of a density matrix or correlation,
only a one-dimensional continuum has to be discretized, which
speeds up the numerics significantly.

We first discuss the spin dynamics in the conduction band of
a Cd0.93Mn0.07Te quantum well for zero magnetic field with a
focus on the impact of nonmagnetic impurity scattering on the
spin dynamics and investigate the redistribution of carriers
in k space as well as the build-up of correlation energy.
Then, we study the spin dynamics in the valence band in a
simplified model. Finally, we investigate the spin dynamics
in the presence of an external magnetic field parallel and
perpendicular to the carrier spin polarization and discuss, in
the latter case, how the nonmagnetic impurity scattering affects
the carrier spin precession frequencies.

A. Zero magnetic field

Figure 1(a) shows the time evolution of an initially polarized
electron spin in a Cd0.93Mn0.07Te quantum well for vanishing
magnetic field. The Markovian equation (13), which are not
affected by nonmagnetic impurity scattering for the case
considered here and are therefore independent of J0, predict
a simple exponential decay of the carrier spin, which is
transferred to the impurities. Note that due to NMn 
 Ne, the
asymptotic value of the carrier spin for long times t is close to
zero, since the impurities act as a spin bath. If only the mag-
netic spin-flip scattering is accounted for (J0 = 0), the time

evolution according to the quantum kinetic theory is nonmono-
tonic and shows an overshoot below the asymptotic value.
Such an overshoot has already been discussed in Refs. [57,58].
Here, we find that these non-Markovian effects are strongly
suppressed in the calculations including nonmagnetic impurity
scattering (J0 = 110 meV nm3) and the time evolution of the
total spin follows the Markovian dynamics more closely. An
exponential fit to the dynamics of the full quantum kinetic
theory yields an effective spin transfer rate about 15% smaller
than the Markovian rate in Eq. (16). Interestingly, while the
full quantum kinetic equation (5) yield identical results as the
reduced set of equation (A1) in the case without nonmagnetic
impurity scattering, deviations between both approaches can
be clearly seen when the nonmagnetic impurity scattering is
taken into account.

In order to understand the suppression of the nonmonotonic
features in the spin dynamics with nonmagnetic impurity
scattering, it is useful to recapitulate the findings of Ref. [57],
where the origin of the non-Markovian behavior of the spin
dynamics in absence of nonmagnetic impurity scattering
was discussed: it was found that the depth of the memory
induced by the correlations is of the order of the inverse
energetic distance of the carrier state under consideration to
the band edge times �. Memory effects become insignificant
if the kinetic energy of the carrier �ωk1 is much higher
than the energy scale of the carrier-impurity spin transfer
rate �

τ
. For the parameters used in the simulations, one

obtains from Eq. (16) a value of τ 2D = 2.97 ps and therefore
�

τ
≈ 0.22 meV. Figure 1(b) shows the redistribution of carriers
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FIG. 2. Kinetic energy (red line), magnetic correlation energy
(blue line), non-magnetic correlation energy (purple line) and total
energy (cyan line) per electron for the quantum kinetic calculation
shown in Fig. 1 with J0 = 110 meVnm3. The red circles show
the kinetic energy obtained from the Markovian calculation in
Fig. 1. The pluses and crosses depict the results according to
the analytic Markovian expressions for the correlation energies in
Eq. (18) evaluated using the carrier distribution of the quantum kinetic
calculation at selected time steps.

in the calculations with and without nonmagnetic impurity
scattering. One can clearly see that, while without nonmagnetic
impurity scattering the carrier distribution at t = 10 ps is
only slightly broadened, including the nonmagnetic impurity
scatterings leads to a drastic redistribution of carriers to states
many meV away from the initial distribution. For these states,
the memory is very short compared with the spin relaxation
time and therefore the Markovian approximation is justified.

The redistribution of carriers to states several meV away
from the band edge raises questions about the conservation of
energy, since for zero magnetic field the mean-field energy
of the system is comprised of only the kinetic energy of
the carriers. In the quantum kinetic calculations, however, we
also consider the carrier-impurity correlations which introduce
correlation energies that are not captured in a simple single-
particle picture. The different contributions to the total energy
over the course of time for the simulations presented in Fig. 1
are shown in Fig. 2. There, it is shown that the average kinetic
energy per electron increases from the initial value of the
order of the width of the initial carrier distribution to a much
larger value of about 4 meV on a time scale of about 0.5 ps.
This energy is mostly provided by a decrease of nonmagnetic
correlation energy from zero to a negative value. The magnetic
correlation energy is comparatively small since the magnetic
coupling constant Jsd is about one order of magnitude smaller
than the nonmagnetic coupling constant J0. The pluses and
crosses in Fig. 2 show the results of the analytic expressions

(18) for the correlation energies evaluated using the carrier
distributions of the full quantum kinetic theory in the respective
time steps. The analytic results are found to coincide with the
values extracted from the quantum kinetic theory after the first
0.5 ps. Even though the analytic expressions for the correlation
energies are obtained within the Markovian description, it
should be noted that in the Markovian equations of motion
(13) for the spins and occupations only single-particle energies
are considered for evaluating the energy balance. As in our
case, the single particle energies comprise only the kinetic
energies of the carriers, the latter are constant in the Markovian
description in sharp contrast to the quantum kinetic treatment.
Note also that the total energy comprised of single-particle and
correlation energies remains constant in the quantum kinetic
simulations, which provides a further test for the numerics.

B. Valence band

The fact that in the conduction band of a Cd1−xMnxTe
quantum well the nonmagnetic scattering at the impurities
suppresses the characteristic nonmonotonic features of gen-
uine quantum kinetic behavior raises the question whether this
statement is true in general and non-Markovian effects always
only change the spin dynamics quantitatively. In this section,
we provide an example of a situation where the non-Markovian
features are not suppressed due to impurity scattering.

We consider now the valence band of a Cd1−xMnxTe
quantum well. The details of the valence band structure in
a quantum well are influenced by, e.g., spin-orbit coupling,
strain or the shape of the confinement potential. In principle,
these effects can be described in terms of k.p theory as
contributions to a Kane or Luttinger Hamiltonian [70], which
can be mapped onto �ωk1 and �ωe · sσ1σ2 in the quantum kinetic
equation (5) provided ωe is considered k-dependent and sσ1σ2

is generalized to a basis of traceless Hermitian 4 × 4 matrices
for the description of the heavy- and light-hole subbands.
However, the matrix elements of the Luttinger Hamiltonian
depend explicitly on the polar angle of the wave vector k
in k space that has to be resolved in numerical calculations,
which increases the numerical demands enormously. Thus a
realistic description of the band structure is beyond the scope
of this article. Instead, we perform a model study, where we
assume that heavy-hole and light-hole bands are degenerate.
In this case, we can use the quantum kinetic theory derived for
the conduction band and take the material parameters for the
heavy holes. The magnetic coupling constant in the valence
band is Jpd = 60 meV nm3 [45] and the heavy-hole mass is
mh = 0.7m0 [71]. The difference of the band gaps between
CdTe and zinc-blende MnTe of about 1.6 eV is split into
the conduction and valence band offsets by a ratio of 14:1
[72]. Thus one obtains a value for the nonmagnetic coupling
constant in the valence band of about J0 = 7 meV nm3. The
results of the quantum kinetic simulations for these parameters
are shown in Fig. 3.

In comparison with the conduction band, the four times
larger magnetic coupling constant in the valence band leads
to much stronger non-Markovian effects. In particular, one
finds not a single overshoot, but pronounced oscillations of
the spin polarization about its asymptotic value. In Fig. 3,
the calculations with and without accounting for nonmagnetic
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FIG. 3. Spin dynamics in a degenerate valence band of a
Cd0.93Mn0.07Te quantum well with and without accounting for
nonmagnetic impurity scattering.

impurity scattering yield virtually identical results. Thus, due
to the fact that in the valence band the nonmagnetic coupling
constant is much smaller than the magnetic coupling constant,
no suppression of non-Markovian effects in the spin dynamics
is observed.

C. Finite magnetic field: Faraday configuration

Next, we investigate the effects of nonmagnetic impurity
scattering on the spin dynamics in DMS in the presence of an
external magnetic field. In this section, we study the case in
which the external field and the initial carrier spins are parallel,
which is known as the Faraday configuration. This case has

also been considered in Ref. [60], but without accounting for
nonmagnetic impurity scattering.

In Fig. 4(a), the time evolution of the carrier spin polar-
ization parallel to an external magnetic field B = 100 mT is
shown. Note that the nonmonotonic behavior that can be seen
in the case without an external magnetic field is suppressed
for finite external fields even if the nonmagnetic scattering is
disregarded. The most striking feature in the time evolution of
the carrier spin polarization is that the Markovian result and the
quantum kinetic simulations predict very different asymptotic
values of the spin polarization at long times t .

As discussed in Ref. [60], the different stationary values
are related to a broadening of the distribution of scattered
carriers in the spin-down band, which is shown in Fig. 4(b).
Note that the broadening of the carrier distribution is not
primarily an effect of energy-time uncertainty, which is
commonly found in quantum kinetic studies [73,74], since
the width of the distribution does not shrink significantly over
the course of time [60]. Rather, it is a consequence of the
build-up of correlation energy which enables deviations from
the conservation of the single-particle energies in spin-flip
scattering processes.

In the Markov limit, the stationary value is obtained when a
balance between scattering from the spin-up to the spin-down
band and vice versa is reached. In the quantum kinetic calcula-
tions, the distribution of the scattered carriers is broadened, so
that also spin-down states below the threshold �ωe − �ω

‖
Mn are

occupied, whose back-scattering is suppressed since there are
no states in the spin-up band with the matching single-particle
energies. If additionally the nonmagnetic impurity scattering
is taken into account, the scattered impurity distribution is
even broader and more spin-down states with kinetic energies
below �ωe − �ω

‖
Mn are occupied, so that the back-scattering is

more strongly suppressed and the deviation of the asymptotic
value of the spin polarization from the Markovian value is even
larger.
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FIG. 4. (a) Time evolution of the carrier spin polarization parallel to an external magnetic field (B = 100 mT). (b) Spin-up (↑) and
spin-down occupations (↓) at t = 0 and 10 ps.
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decaying cosine to the quantum kinetic results and the analytic expressions obtained from Eq. (13b) and the occupations from the quantum
kinetic calculations. The black dash-dotted lines in (c) and (d) show the analytic results for a cut-off energy of �ωBZ = 1 eV.

D. Finite magnetic field: Voigt configuration

The situation in which an external magnetic field and the
optically induced carrier spin polarization are perpendicular
to each other is usually referred to as the Voigt configuration
and is the subject of this section. In this situation, the carrier
spin precesses about the effective magnetic field ωe due to
the external field and the impurity magnetization. As shown
in Ref. [59], where the nonmagnetic impurity scattering was
disregarded, the carrier-impurity correlations are responsible
for a renormalization of the precession frequency. There, it was
also shown that the strength of this renormalization depends
on the details of the carrier distribution and the strength of the
effective field ωe.

In Fig. 5(a), we present simulations of the spin dynamics
in a DMS in Voigt geometry for an external magnetic
field of B = 25 mT, which corresponds to a situation with
|〈S〉| ≈ 0.05, where the magnetic-correlation-induced fre-
quency renormalization according to Ref. [59] is particularly
strong. Simulations with (J0 = 110 meVnm3) and without
(J0 = 0) accounting for the nonmagnetic impurity scattering
are compared to Markovian calculations based on Eq. (13).
Note that for the Markovian calculation shown in Fig. 5 the

frequency renormalization was not taken into account. The
results of all simulations shown in Fig. 5(a) are very similar
and follow closely the form of an exponentially damped cosine.
Note that at long times, the phases of the oscillations of
the calculations accounting for nonmagnetic impurity scat-
tering matches the Markovian calculation without frequency
renormalization, while accounting only for magnetic spin-flip
scattering leads to oscillations with a slightly higher frequency.

The frequency renormalization for the simulations shown
in Fig. 5(a) is presented in Fig. 5(c), where an exponentially
decaying cosine is fit to the quantum kinetic results and,
for comparison, the total precession frequency including
the correlation-induced renormalization in the Markovian
description in Eq. (13b) evaluated using the spin-up and
spin-down occupations of the quantum kinetic simulations is
depicted. Due to the time evolution of the occupations, also
the renormalization predicted by Eq. (13b) becomes a function
of time, which, however, is for all times close to the constant
extracted by fitting the quantum kinetic result. The calculations
without nonmagnetic impurity scattering predict an increase
of the carrier spin precession frequency of about 2%–3% with
respect to the mean-field value ωe, which is consistent with
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the findings of Ref. [59]. On the other hand, the contribution
from the nonmagnetic carrier-impurity correlations leads to a
decrease of the precession frequency which partially cancels
the contribution from the magnetic correlations.

In Figs. 5(b) and 5(d), the time evolution of the carrier spin
polarization and the frequency renormalization are shown for
an external magnetic field of B = 100 mT. In this case, the
envelope of the spin polarization decays only exponentially
for the calculations without nonmagnetic impurity scattering.
For J0 = 110 meV nm3, the spin polarization follows the
exponential decay of the simulation with J0 = 0 only up to
about 5 ps. After that, it decays much slower, which is a
new non-Markovian effect that is absent if the nonmagnetic
impurity scattering is disregarded. As can be seen in Fig. 5(d),
the frequency renormalization due to the magnetic interaction
alone is almost zero. Nevertheless, when the nonmagnetic
carrier-impurity correlations are taken into account, the pre-
cession frequency shows a decrease of about 2%–3%. Thus, in
contrast to the correlation-induced renormalization in absence
of nonmagnetic scattering where the renormalization is only
observable for a very narrow set of initial conditions [59],
including the nonmagnetic carrier-impurity interaction results
in a significant renormalization for a much broader set of
excitation conditions.

It is noteworthy that the frequency renormalization in
the quantum kinetic calculations is well reproduced by the
Markovian expression in Eq. (13b). The numerical demands
of the full quantum kinetic equations require a restriction of
the conduction band width �ωBZ used in the calculations to
a few tens of meV. However, in realistic band structures, the
band widths are of the order of eV. In order to give an order-
of-magnitude estimation of the frequency renormalization for
such band widths, we present in Figs. 5(c) and 5(d) also
the results of the Markovian expression for the frequency
renormalizations using the value of �ωBZ = 1 eV together with
the occupations obtained in the quantum kinetic calculations
for �ωBZ = 40 meV. This estimation yields a renormalization
of the precession frequencies due to the combined effects
of magnetic and nonmagnetic scattering of about 5%–7%.
A quantitatively more accurate description requires a more
detailed treatment of the band structure, which is beyond the
scope of this article.

Note also that the frequency renormalization due to the
nonmagnetic carrier-impurity correlations is dominated by a
cross-term proportional to JsdJ0 [cf. fourth line in Eq. (13b)].
Thus, the sign of the frequency renormalization depends on the
relative signs of the coupling constants Jsd and J0. In principle,
this allows a determination of the sign of the magnetic coupling

constant Jsd, which cannot be obtained directly, e.g., by
measuring the giant Zeeman splitting of excitons [45].

IV. CONCLUSION

We have investigated the influence of nonmagnetic im-
purity scattering at Mn impurities on the spin dynamics
in Cd1−xMnxTe diluted magnetic semiconductors. To this
end, we have developed a quantum kinetic theory taking the
magnetic and nonmagnetic carrier-impurity correlations into
account. The Markov limit of the quantum kinetic equations is
derived in order to distinguish the Markovian dynamics from
genuine quantum kinetic effects.

In the Markov approximation, the nonmagnetic impurity
scattering is found to have no influence on the spin dynamics in
DMS whatsoever. However, in narrow Cd1−xMnxTe quantum
wells where the spin dynamics induced by the magnetic
carrier-impurity interaction alone is predicted to show sig-
nificant non-Markovian features, such as overshoots of the
carrier spin polarization below its asymptotic value for long
times [58], these nonmonotonicities are found to be strongly
suppressed when also the nonmagnetic impurity scattering is
accounted for. In contrast, in the valence band of Cd1−xMnxTe,
the nonmagnetic carrier-impurity interaction for holes is much
weaker than the magnetic interaction and therefore does not
influence the spin dynamics visibly.

Furthermore, many-body correlation effects, such as the
renormalization of the carrier spin precession frequency and
the build-up of correlation energy, are significantly enhanced
by the nonmagnetic carrier-impurity interaction. For example,
the correlation energy built up by the nonmagnetic carrier-
impurity interaction is more than one order of magnitude larger
than the contribution due to the magnetic interaction alone.
This is also the reason why significant deviations from the
conservation of the single-particle energies during spin-flip
scattering events are obtained when nonmagnetic impurity
scattering is accounted for on a quantum kinetic level. As a
consequence, the carriers are redistributed in k space. The most
prominent manifestation of this redistribution is the change of
the asymptotic value of the carrier spin polarization at long
times in the presence of an external magnetic field parallel to
the optically induced carrier spin polarization.
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APPENDIX: REDUCED SET OF EQUATIONS OF MOTIONS

The equations of motions for the variables defined in Eq. (7) are
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