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Using the nonequilibrium Keldysh Green’s function formalism, we investigate the effect of defects on the
electronic structure and transport properties of two-dimensional topological insulators (TI). We demonstrate
how the spatial flow of charge changes between the topologically protected edge and bulk states and show
that elastically and inelastically scattering defects that preserve the time-reversal symmetry of the TI lead to
qualitatively different effects on the TI’s local electronic structure and its transport properties. Moreover, we
show that the recently predicted ability to create highly spin-polarized currents by breaking the time-reversal
symmetry of the TI via magnetic defects [J. S. Van Dyke and D. K. Morr, Phys. Rev. B 93, 081401 (2016)] is robust
against the inclusion of a Rashba spin-orbit interaction and the effects of dephasing, and remains unaffected by
changes over a wide range of the TI’s parameters. We discuss how the sign of the induced spin currents changes
under symmetry operations, such as reversal of bias and gate voltages, or spatial reflections. Finally, we show
that the insight into the interplay between topology and symmetry of the magnetic defects can be employed for
the creation of intriguing quantum phenomena, such as highly localized magnetic fields inside the TI.
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I. INTRODUCTION

Topological insulators (TIs) have attracted great interest
over the last decade [1–4], not only because they represent an
intriguing state of matter whose properties are determined by
topology, but also because of their possible applications [5,6]
in fields ranging from spintronics [7] to quantum computation
[8]. TIs are characterized by nonzero topological invariants
[9] that reflect the coexistence of gapless edge or surface
states with insulating bulk states. As such, considerable efforts
have focused on the classification of the topological states and
their possible realization in experiment [1,3,10,11]. A crucial
element of TIs is the presence of a spin-orbit interaction, which
in two-dimensional (2D) topological insulators [12–16] leads
to the existence of helical edge states [15,17]. These edge states
represent Kramers doublets of counterpropagating states with
opposite spin polarization, as shown in Fig. 1. This unique
locking of momentum and spin immediately implies that elec-
trons can only scatter between these helical edge states through
a process that involves backscattering in combination with a
spin flip. It is this requirement that renders these helical edge
states robust against any defects that preserve the time-reversal
symmetry of the system [17], such as elastically scattering
potential defects, as well as against ensuing localization effects
[18]. The resulting robustness of the topologically protected
edge states has rendered topological insulators of great interest
for any applications [5,6] that require long coherence times,
as are often found in spintronics [7].

On the other hand, it has been shown that if the time-reversal
symmetry in a TI is broken [19–21] for instance by using
magnetic defects [22,23], intriguing new phenomena can
occur, such as a topological magnetoelectric effect [24,25],
a quantum anomalous Hall effect [20,24,26], and image mag-
netic monopoles [21]. We recently demonstrated [27] that the
breaking of the time-reversal symmetry in 2D TIs via magnetic
defects or in magnetic heterostructures can be employed for
the creation of nearly perfectly spin-polarized currents, as well
as highly tunable spin diodes. Experimental evidence for the

existence of spin-polarized currents in three-dimensional TIs
up to room temperature was recently reported in Refs. [28–32].
It is therefore the combination of long coherence times and the
ability to create spin-polarized currents that might hold the key
for employing TIs in the next generation of spintronics devices.

As the realization of these applications will likely occur in
TIs on the sub-100-nm scale [33], several important questions
arise. First, to what extent do defects that preserve the
time-reversal symmetry of the TI, such as elastically scat-
tering nonmagnetic impurities or molecules with vibrational
(phonon) modes, change the electronic structure of the TI and
its transport properties? Second, how robust is the predicted
ability to create a large spin polarization of currents in TIs [27]
against variations in parameters of the TI often encountered in
real systems, such as a varying scattering strength of magnetic
defects, the particular locations of defects, aspect ratio and the
size of the TI, or width of the leads? In particular, to what
extent can the spin polarization be destroyed by the inclusion
of (a) dephasing induced by the interaction with phonons, or
(b) a Rashba spin-orbit interaction? Third, how does the spin
polarization of currents change under symmetry operations,
such as reversal of the bias and gate voltages, or spatial
reflections around symmetry points or lines? This question is
of particular interest for the envisioned creation of spin diodes.
Fourth, can one employ the interplay between symmetry of the
magnetic defects and the topological structure of the TI for the
creation of new quantum phenomena?

We will address all of these questions in this article. In
particular, we will show that the interaction with phonon
modes (albeit preserving the TI’s time-reversal symmetry) can
not only qualitatively change the TI’s transport properties,
but can lead to a destruction of the topological nature of its
helical edge states. Moreover, we will demonstrate that the
predicted creation of highly spin-polarized currents is robust
and does not, for example, depend on a particular size of the
TI, or specific parameters for the magnetic scattering strength.
In particular, phonon-induced dephasing effects or a Rashba
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interaction can only destroy the ability to create spin-polarized
currents to the extent that they also destroy the topological
nature of the TI itself. Finally, we will provide an example
of how the newly gained insight into the interplay between
topology and symmetry of the magnetic scattering can be
employed for the creation of a novel quantum phenomenon,
such as the formation of highly localized and tunable magnetic
fields around interior holes in the TI.

This paper is organized as follows. In Sec. II, we provide
a brief review of the nonequilibrium Keldysh formalism
employed here and in Ref. [27] to compute charge and spin
currents in two-dimensional TIs. In Sec. III, we discuss how
the local density of states and the spatial current patterns in
a clean 2D TI evolve as one transitions from the helical edge
states to the bulk states. In Sec. IV, we discuss the effects
of time-reversal symmetry-preserving defects, including non-
magnetic impurities and local phonon modes, on the electronic
structure and transport properties of the TI. In Sec. V, we
show that the creation of highly spin-polarized currents using
magnetic defects is robust against variations in the magnetic
scattering strength, the number and positions of impurities,
etc. In Sec. VI, we discuss the symmetry properties of the
spin polarization under transformations of the bias or gate
voltages, spatial transformations, and changes in the signs of
the scattering strength. In Sec. VII, we demonstrate that the
newly gained insight into the effects of magnetic impurities
can be employed to create new quantum phenomena, such
as highly localized magnetic fields. Finally, in Sec. VIII, we
summarize our results and present our conclusions.

II. THEORETICAL FORMALISM

In this section, we briefly outline the nonequilibrium
Green’s function formalism [34,35] that we employ to compute
spin-resolved currents in a two-dimensional topological insu-
lator. We also present some analytical results for the changes
in the energy of edge states due to the scattering off defects.

A. Charge and spin transport

Our starting point for the study of finite two-dimensional
topological insulators with a hexagonal (graphenelike) lattice
structure is the Kane-Mele Hamiltonian [17]

H = −t
∑

〈r,r′〉,α
c†r,αcr′,α + i�SO

∑
〈〈r,r′〉〉,α,β

νr,r′c†r,ασ z
αβcr′,β

+ i�R

∑
〈r,r′〉

c†r,α(σ × d̂rr′)zαβcr′,β

− tl
∑
r,r′,α

(d†
r,αcr′,α + H.c.) + Hlead, (1)

where the first three terms on the right-hand side represent
the conventional electronic hopping between nearest-neighbor
sites, the spin-orbit-induced hopping between next-nearest-
neighbor sites (with νr,r′ = −νr′,r = ±1, and σ z

αβ being a Pauli
matrix), and the Rashba spin-orbit interaction that results in an
electron’s spin flip when hopping between nearest-neighbor
sites (with σ being a vector of Pauli matrices and d̂rr′

being a unit vector in the direction connecting sites r and
r′). The fourth term represents the hopping between the TI

and the leads, respectively. Here, c
†
r,α,cr,α are the fermionic

creation and annihilation operators, creating or annihilating
an electron with spin α at site r. Similarly, d

†
r,α,dr,α creates

or annihilates an electron with spin α at site r in the
leads. Hlead describes the electronic structure of the leads,
which, however, is largely irrelevant for the TI’s transport
properties.

The scattering of the TI’s conduction electrons by nonmag-
netic defects is described by the Hamiltonian

Hpot = U0

∑
R,α

c
†
R,αcR,α, (2)

where U0 is the nonmagnetic (potential) scattering strength,
and the sum runs over all defect locations (we assume pointlike
scatterers). Similarly, the scattering by magnetic defects is
described by the Hamiltonian [22,23]

HM =
∑

R

JzS
z
R(c†R,↑cR,↑ − c

†
R,↓cR,↓)

+ J±(S+
R c

†
R,↓cR,↑ + S−

R c
†
R,↑cR,↓), (3)

where the sum runs over all defect locations. We assume
the magnetic defects to be static in nature, implying that
S

z,±
R simply becomes a c number with JzS

z
R = JzS, J±S+

R =
J±S(1 + i), and J±S−

R = J±S(1 − i). This assumption can be
justified by the fact that the Kondo temperature TK [36,37]
can be strongly suppressed either by the absence of edge states
near the Fermi energy [38], the use of large-spin defects, or
by applying local static magnetic fields [39]. On the other
hand, the topological nature of TIs can persist up to room
temperature [31], such that there exists a sufficiently large
temperature range above TK in which the magnetic defects
can be considered static [23].

To investigate the flow of charge and spin in a finite,
two-dimensional TI, we employ the nonequilibrium Keldysh
Green’s function formalism [34,35]. Within this formalism,
the spin-resolved current between sites r and r′ in the TI is
induced by different chemical potentials, μL,R in the left and
right leads, and given by [35]

I σ
rr′ = −2

e

h̄

∫ +∞

−∞

dω

2π
Re[trr′G<

rr′ (σ,ω)]. (4)

with σ = ↑,↓ representing the spin degrees of freedom, tσrr′
being the real (−t) or imaginary (±i�SO, ±i�R) electron
hopping elements between sites r and r′, and G<

rr′(σ,ω)
being the full, spin-resolved nonlocal lesser Green’s function,
defined via Ĝ<

rr′(t,t) = 〈c†r′ (t)cr(t)〉 in the time domain. The
charge current is then given by I c

out = I
↑
out + I

↓
out, and the

spin-σ polarization of the outgoing current is defined via
ησ = I σ

out/I
c
out.

To account for the effects of electronic hopping, the
presence of magnetic or nonmagnetic defects, the electron-
phonon interaction, and the coupling to the leads, we employ
the Dyson equations for the lesser and retarded Green’s
functions. By defining lesser and retarded Green’s function
matrices Ĝ<,r in real space whose (rr′) elements are given by
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Ĝ
<,r
rr′ , we obtain the Dyson equations in frequency space

Ĝ< = Ĝr [(ĝr )−1ĝ<(ĝa)−1 + 
̂<
ph]Ĝa, (5a)

Ĝr = ĝr + ĝr
[
t̂ + 
̂r

ph

]
Ĝr , (5b)

where t̂ is the hopping matrix which includes both the real and
imaginary hopping elements of Eq. (1), as well as the scattering
strength U0 from Eq. (2) and Jz,±S from Eq. (3). Moreover,

̂

r,<
ph are the retarded and lesser fermionic self-energy matrices

arising from the electron-phonon interaction, and ĝr,a,< are
the retarded, advanced, and lesser fermionic Green’s function
matrices of the TI and the leads in the absence of any electronic
hopping, defect scattering, or electron-phonon interaction.
These Green’s functions are given by (x = r,a, <)

ĝx =
(

ĝx
leads 0
0 ĝx

TI

)
, (6)

where ĝx
TI and ĝx

leads are the Green’s function matrices describ-
ing the TI and the right and left leads, respectively. Moreover,
ĝx

TI are diagonal matrices with elements

gr
0(ω) = 1

ω + iδ − eVg

, (7a)

g<
0 (ω) = −2inF (ω)Imgr

0(ω), (7b)

where nF (ω) is the Fermi distribution function, e is the electron
charge, and Vg is the gate voltage. Note that to move a state
from energy Ei > 0 to the Fermi energy, one has to apply the
gate voltage Vg = Ei/e. Moreover, ĝx

leads are diagonal matrices
with elements

gr
leads(ω) = −iπ, (8a)

g<
leads(ω) = −2i nF (ω − μL,R) Imgr

0(ω), (8b)

implying that the leads’ density of states is equal to unity and
that we consider the wide-band limit for the leads. Moreover,
μL,R is the chemical potential in the left and right leads, giving
rise to a potential difference �V = (μL − μR)/e across the TI.
The spin-resolved local density of states Nσ (r,E) at site r and
energy E is obtained from Eq. (5b) via

Nσ (r,E = h̄ω) = − 1

π
Im Ĝr

rr(ω). (9)

To study how the electronic structure of the TI and the
spatial current patterns are affected by the interaction of
individual sites with molecules containing phonon modes, or
by dephasing arising from the coupling of all TI sites to local
phonon modes, we consider the electron-phonon interaction

He-ph = g
∑
r,σ

c†r,σ cr,σ (a†
r + ar) +

∑
r

ω0a
†
rar, (10)

where g is the electron-phonon coupling, a
†
r,ar creates or

annihilates a phonon at site r, respectively, and ω0 is the phonon
frequency. The sum only runs over those sites of the TI that
are connected to a local phonon mode. Note that the electron-
phonon interaction does not flip the spin of the scattered
electrons. To evaluate the fermionic self-energy 
̂ph arising
from such an electron-phonon interaction, we consider a limit
in which temperature is much larger than the phonon frequency
ω0 (i.e., the high-temperature approximation introduced in
Ref. [40]). In this case, one retains only those terms in 
̂ph

that contain the Bose distribution function since in this limit
nB(ω0) � 1. The local fermionic self-energy at a site r in the
TI is computed self-consistently using the full Green’s function
of Eqs. (5a) and (5b), and given by


r,<
rr (ω) = ig2

∫
dν

2π
D<(ν)Gr,<

rr (ω − ν), (11)

where

D<
0 (ω) = 2inB(ω)ImDr

0(ω), (12a)

Dr
0(ω) = 1

ω − ω0 + iδ
− 1

ω + ω0 + iδ
(12b)

are the lesser and retarded phonon Green’s functions of the
phonon modes, which we assume to remain unchanged in the
presence of an applied bias.

To obtain an analytical expression for the lesser self-energy
in Eq. (11), we consider the limit ω0 → 0 in which the self-
energy, to leading order in kBT /h̄ω0, becomes


r,<
rr (ω) = 2g2 kBT

h̄ω0
Gr,<

rr (ω) ≡ γGr,<
rr (ω). (13)

We next introduce the superoperator [40] D̃ which, when
operating on a Green’s function matrix, returns the same matrix
with all elements set to zero except for those diagonal elements
that represent sites at which an electron-phonon interaction
exists, e.g.,

[D̃Ĝr,<]rr′ =
{
G

r,<
rr′ δr,r′ if an electron-phonon interaction exists at r,

0 otherwise, (14)

and thus


r,<(ω) = γ D̃Ĝr,<. (15)

We next define the operator Û that acts on a matrix X̂ via

ÛX̂ = ĜrX̂Ĝa. (16)

The solutions of the Dyson equations (5a) and (5b) are then
given by

Ĝ< = Û [1 − γ D̃Û ]−1�̂, (17a)

Ĝr = [1 − ĝr (t̂ + γ D̃Ĝr )]−1ĝr , (17b)

where we defined the diagonal matrix �̂ = ĝ−1
r ĝ<ĝ−1

a . Note
that the only nonzero elements of �̂rr are those where r is a
lead site. These elements also contain the chemical potentials
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of the left and right leads. By expanding the right-hand side of
Eq. (17a), we obtain

Ĝ<
rr′ =

∑
l

Ĝr
rl

[
�̂ll + γ

∑
m

Q̂lm�̂mm

+ γ 2
∑
m,p

Q̂lmQ̂mp�̂pp + . . .

]
Ĝa

lr′ , (18)

where

Q̂lm =
{∣∣Gr

lm

∣∣2
if an electron-phonon interaction exists at l,

0 otherwise.
(19)

Defining next the vector λ with λm = �̂mm, we finally obtain

Ĝ<
rr′ =

∑
l

Ĝr
rl[(1 − γ Q̂)−1λ]lĜ

a
lr′ (20)

or Ĝ< = Ĝr
̃Ĝa where the diagonal matrix 
̃ is defined via


̃ll = [(1 − γ Q̂)−1λ]l. (21)

B. Effect of defects on the excitation spectrum of edge states

1. Nonmagnetic, elastically scattering defect

To understand the effects of a nonmagnetic elastically
scattering defect on the electronic spectrum of the edge states,
we compute the full Green’s functions in the presence of
such a defect. The scattering off such a defect is described
by the Hamiltonian in Eq. (2). The full Green’s function in
Matsubara frequency space in the presence of a nonmagnetic
defect located at site R is then obtained from the perturbative
expansion

G(r,r,σ,iωn)=G0(r,r,σ,iωn) + G0(r,R,σ,iωn)U0G0(R,r,σ,iωn) + G0(r,R,σ,iωn)U0G0(R,R,σ,iωn)U0G0(R,r,σ,iωn) + . . .

= G0(r,r,σ,iωn) + G0(r,R,σ,iωn)U0G0(R,r,σ,iωn)

1 − U0G0(R,R,σ,iωn)
, (22)

where G0(r,r′,σ,iωn) is the nonlocal Matsubara Green’s
function of electrons with spin σ of the clean TI. If we set
r = R we have

G−1(R,R,σ,iωn) = G−1
0 (R,R,σ,iωn) − U0. (23)

To obtain an analytic expression for the energies of the edge
states in the presence of the defect, we consider a simplified
model in which G0 reflects the existence of only one set of a
Kramers doublet of edge states, and is thus given by

G0(R,R,σ,iωn) = ZR

iωn − E0
+ ZR

iωn + E0
= 2iZRωn

(iωn)2 − E2
0

,

(24)

where ZR is the spectral weight of the edge states at R. We
then obtain from Eq. (23)

G(R,R,σ,iωn) =
[

Z+
R

iωn − E+
+ Z−

R

iωn − E−

]
(25)

with spectral weight

Z±
R = 1 ± ZRU0√

(ZRU0)2 + E2
0

(26)

and energies

E± = ±
√

(ZRU0)2 + E2
0 + ZRU0. (27)

Thus, we find that, in the limit ZRU0 � E0, the energies to
leading order in ZRU0 are given by

E± = ±E0 + ZRU0 (28)

reflecting a uniform, spin-independent shift of the edge states’
energies.

2. Magnetic defect with Ising symmetry

From Eq. (3), we have that the scattering Hamiltonian of
a single magnetic defect with Ising symmetry located at R is
given by

HIsing = JzS(c†R,↑cR,↑ − c
†
R,↓cR,↓) ≡

∑
σ

J̄ σ
z c

†
R,σ cR,σ , (29)

where J̄ σ
z = JzS sgnσ . We can again compute the full Green’s

function in Matsubara frequency space from the perturbative
expansion

G(r,r,σ,iωn) = G0(r,r,σ,iωn) + G0(r,R,σ,iωn)J̄ σ
z G0(R,r,σ,iωn) + G0(r,R,σ,iωn)J̄ σ

z G0(R,R,σ,iωn)J̄ σ
z G0(R,r,σ,iωn) + . . .

= G0(r,r,σ,iωn) + G0(r,R,σ,iωn)J̄ σ
z G0(R,r,σ,iωn)

1 − J̄ σ
z G0(R,R,σ,iωn)

, (30)

where G0(r,r′,σ,iωn) is the nonlocal Matsubara Green’s
function of electrons with spin σ of the clean TI. For r = R
we have

G−1(R,R,σ,iωn) = G−1
0 (R,R,σ,iωn) − J̄ σ

z . (31)

To obtain an analytic expression for the energies of the edge
states in the presence of the defect, we again assume that G0

reflects the existence of only one set of a Kramers doublet of

edge states [see Eq. (24)], such that we obtain from Eq. (31)

G(R,R,σ,iωn) =
[

Z+
R

iωn − E+
+ Z−

R

iωn − E−

]
(32)

with spectral weight

Z±
R = 1 ± ZRJ̄ σ

z√(
ZRJ̄ σ

z

)2 + E2
0

(33)
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and energies

E± = ±
√(

ZRJ̄ σ
z

)2 + E2
0 + ZRJ̄ σ

z . (34)

Thus, we find that, in the limit ZRJ̄ σ
z � E0, the energies to

leading order in ZRJ̄ σ
z are given by

E± = ±E0 + ZRJ̄ σ
z (35)

reflecting a uniform but spin-dependent shift of the edge states’
energies.

3. Magnetic defect with x y symmetry

From Eq. (3) we have that the scattering Hamiltonian of a
magnetic defect with xy symmetry located at site R is given
by

Hxy = J̄+c
†
R,↓cR,↑ + J̄−c

†
R,↑cR,↓, (36)

where J̄+ = J±S(1 + i) and J̄− = J±S(1 − i). The full
Green’s function is then given by

G(r,r,σ,iωn) = G0(r,r,σ,iωn) + G0(r,R,σ,iωn)J̄±G0(R,R, − σ,iωn)J̄∓G0(R,r,σ,iωn) + . . .

= G0(r,r,σ,iωn) + G0(r,R,σ,iωn)J̄±G0(R,R, − σ,iωn)J̄∓G0(R,r,σ,iωn)

1 − J̄+J̄−G0(R,R,σ,iωn)G0(R,R, − σ,iωn)
(37)

where as above G0 is the Matsubara Green’s function of the
unperturbed TI. Note that J̄+J̄− = |J̄+|2. If we set r = R, we
have

G−1(R,R,σ,iωn) = G−1
0 (R,R,σ,iωn)

− |J̄+|2G0(R,R, − σ,iωn). (38)

To obtain an analytic expression for the energies of the edge
states in the presence of the defect, we again use the simplified
model for G0 as above [see Eq. (24)] which yields

G−1(R,R,σ,iωn) = (iωn)2 − E2
0

2iZRωn

− |J̄+|2 2iZRωn

(iωn)2 − E2
0

(39)

and thus

G(R,R,σ,iωn) = Z+
R

iωn − E++
+ Z−

R

iωn − E+−

+ Z−
R

iωn − E−+
+ Z+

R

iωn − E−−
. (40)

Here, the energies of the edge states are given by

E+± =
√

E2
0 + Z2

R|J̄+|2 ± ZR|J̄+|, (41a)

E−± = −
√

E2
0 + Z2

R|J̄+|2 ± ZR|J̄+|, (41b)

and one has for the spectral weight

Z±
R = ZR

2

[
1 ± ZR|J̄+|√

E2
0 + Z2

R|J̄+|2

]
. (42)

In the limit ZR|J̄+| � E0 we obtain to leading order

E+± = E0 ± ZR|J̄+|, (43a)

E−± = −E0 ± ZR|J̄+|. (43b)

Thus, the coupling of the Kramers doublet edge states by
a spin-flip scattering defect leads to an energy splitting of
2ZR|J̄+|.

III. EVOLUTION OF SPATIAL CURRENT PATTERNS
FROM EDGE TO BULK STATES

The spatial patterns of the local density of states and the
spin-resolved charge currents associated with the edge states
are qualitatively different from those of bulk states, and exhibit
a characteristic evolution with increasing energy. To demon-
strate this, we consider a two-dimensional TI with Na = 9 and
Nz = 15 [27] (see Fig. 1) and present in Fig. 2(a) its energy-
dependent local density of states Nσ at L for weak coupling
to the leads tl = 0.1t (unless otherwise noted, all results
shown in the following were obtained with �V = 0.01t/e,
kBT = 10−7t , and �R = 0). The finite size of the TI results in
a set of discrete edge and bulk states located below and above
the spin orbit gap �SO = 3

√
3�SO, respectively [41].

In general, the TI lead coupling gives rise to an energy
broadening of both the edge and bulk states. However, the
energy width of the edge states located below the spin-orbit
gap �SO = 3

√
3�SO, i.e., at |E| < �SO (purple shaded back-

ground) is in general larger than that of the bulk states located at
|E| > �SO (green shaded background). This difference arises
from the fact that the edge states (due to their localized nature)
possess a larger spectral weight ZL at L than the bulk states,

FIG. 1. Schematic representation of the spin-resolved spatial
current patterns in a two-dimensional TI with weak coupling to the
leads.
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FIG. 2. (a) Nσ (E) at L (see Fig. 1) for a clean TI with tl = 0.1t .
(b)–(d) Spatial patterns of I

↑
rr′ (upper panels) and spatially resolved

Nσ (lower panels) for the edge states at E1 − E3 [see arrows 1–3
in (a)] and Vg = Ei/e. (e)–(g) I

↑
rr′ , (upper panels) and Nσ (lower

panels) for the bulk states at E4, E5 [see arrows 4 and 5 in (a)], and
E6, respectively. Color (see legends) and thickness of the arrows and
dots represent the magnitude of the normalized current I σ

rr′/I σ
max and

the normalized local density of states Nσ /Nmax, respectively (unless
otherwise noted, normalization occurs for each panel separately in all
figures).

as follows from a comparison of the local densities of states
for an edge state shown in Fig. 2(b) and for a bulk state shown
in Fig. 2(e). This in turn leads to a larger effective coupling of
the edge states to the leads, and hence to a larger dephasing
and energy width.

In Figs. 2(b)–2(g) we present the evolution of the spatial
patterns of the spin-↑ current I↑

rr′ and the local density of states
Nσ , with increasing gate voltage Vg and hence energy E = eVg

of the states that carry the current, respectively. The spatial
current patterns (upper panels) and local densities of states
(lower panels) for the edge states located below the spin-orbit
gap shown in Figs. 2(b), 2(c), and 2(d), corresponding to
peaks 1, 2, and 3 in Fig. 2(a), respectively, are confined to
the edges of the TI, and show an anisotropic spatial evolution
into the bulk with increasing energy. This evolution reflects
the anisotropy of the decay length of the edge states which
increases with energy along the zigzag edge but remains
constant along the armchair edge [42,43]. As a result, the

FIG. 3. I
↑
rr′ for the edge state at E1 = 0.0342t [Fig. 2(b)] with

increasing tl : (a) tl = 0.2t , (b) tl = 0.3t , (c) tl = 0.4t , and (d) tl =
0.5t .

edge-state wave functions and hence the corresponding local
density of states, as well as the spatial current patterns, extend
further into the bulk from the zigzag edges as the states’
energy approaches the spin-orbit gap. In contrast, for energies
above the spin-orbit gap, the spatial current patterns (upper
panels) and local densities of states (lower panels) shown in
Figs. 2(e)–2(g) [with Figs. 2(e) and 2(f) corresponding to peaks
4 and 5 in Fig. 2(a)] reflect the nature of delocalized bulk states.
Note the qualitative change in the current pattern and the local
density of states between the highest-energy edge state shown
in Fig. 2(d) and the lowest-energy bulk state in Fig. 2(e).

In Fig. 3, we present the evolution of the current pattern of
the lowest-energy mode at E1 = 0.034t [see Fig. 2(b)] with
increasing coupling tl to the leads. While for weak coupling
[Fig. 2(b)], there is a substantial backflow of the spin-↑ current
along the lower side of the TI, this contribution decreases with
increasing tl [Figs. 3(a)–3(c)], until it is nearly completely
suppressed for tl = 0.5t [Fig. 3(d)]. This also implies that
while for small tl , the net current flowing through the TI is
substantially smaller than the largest current flowing inside the
TI (the ratio is approximately 0.08), the net current becomes
comparable to the largest current inside the TI for larger tl (for
tl = 0.5t , the ratio is approximately 0.68).

IV. EFFECT OF TIME-REVERSAL
SYMMETRY-PRESERVING DEFECTS ON THE
ELECTRONIC STRUCTURE AND TRANSPORT

PROPERTIES OF TOPOLOGICAL INSULATORS

We begin by considering the effects of defects that do
not break the time-reversal symmetry of the TI, such as
nonmagnetic scatterers or molecules with phonon modes.
As we will show below, such defects, while not giving rise
to backscattering or localization, nevertheless change the
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FIG. 4. (a) Nσ (L,E) for TIs with no, one, and two nonmagnetic defects with scattering potential U0 = 10t and tl = 0.1t . (b) Spatial pattern
of I

↑
rr′ for a TI with a single defect (the location is indicated by a filled red circle) carried by the edge state at E1 = 0.0582t [arrow 1 in (a)].

(c) I
↑
rr′ with two defects carried by the edge state at E1 = 0.0312t [arrow 2 in (a)]. (d) Nσ (L,E) for a TI coupled to two molecules with phonon

modes (filled red circles) for different values of γ [see Eq. (13)]. Corresponding spatial patterns of I
↑
rr′ for (e) γ = 10t2 and (f) γ = 100t2

carried by the lowest-energy edge state at E1 = 0.034t [see arrow 1 in (d)].

electronic spectrum of the TI and alter the flow of currents
in their vicinity.

In Fig. 4(a), we present the local density of states for a
TI with one and two nonmagnetic defects; their locations
are indicated by filled red circles in Figs. 4(b) and 4(c),
respectively. The density of states shows that, as expected, the
particle-hole symmetry of the TI is broken by such defects,

leading to a spin-independent shift of the excitation spectrum,
as analytically shown in Sec. II B 1. We note that while the
defect shifts the energy of the edge states, the differential
conductance associated with charge transport through the edge
states remains unaffected by the defects and is still given
by the quantum of conductance G0 = 2e2/h̄. Interestingly
enough, the addition of a second defect can nearly reverse
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the effect of a single defect on the excitation spectrum, such
that the excitation spectra of a clean system and that containing
two defects are nearly identical, as shown in Fig. 4(a). This
effect, of course, depends on the relative positions of the two
defects. In Figs. 4(b) and 4(c), we present the corresponding
spatial patterns of the spin-↑ currents. While in the presence
of a single defect, the current still flows through the defect
site [Fig. 4(b)], the current is nearly entirely expelled from
the defect sites in the presence of two defects [Fig. 4(c)].
The latter result also explains our earlier observation: the
combined scattering strength of the two defects is sufficient
to essentially remove these two sites from the TI, thus (nearly)
restoring the excitation spectrum of the clean TI. Similar
effects of nonmagnetic defects were recently also discussed
in the context of the BHZ model of HgTe/CdTe quantum
wells [44]. Finally, we note that backscattering in the case
of nonmagnetic defects can only occur if it is accompanied by
simultaneous tunneling between opposite edges of the TI [45].

In contrast, the coupling of two TI sites to molecules with
phonon modes leads to an energy broadening of edge states,
as seen in Nσ at L shown in Fig. 4(d). This broadening first
increases with increasing γ , but begins to decrease again
around γ = 10t2. At this point, the energy width of the local
TI states that are directly coupled to the phonon modes is so
large that the effective coupling to other TI sites (that contain
no phonon mode) becomes weak, leading to a decreased
dephasing, and hence narrower peaks in the local density of
states at L, as shown in Fig. 4(d). In contrast, the energy
width of the states at the TI sites that are directly coupled to
the phonons increases further with increasing γ . Concomitant
with this evolution of the electronic structure, we find that
the current flowing through the two sites that interact with
the phonon modes decreases [Fig. 4(e)], until it is nearly
completely suppressed for γ = 100t2 [Fig. 4(f)]. We note that
the coupling to the phonon mode does not shift the energy of
the edge states, but broadens their energy width.

While the interaction with phonon modes preserves the
time-reversal symmetry of the TI, the induced broadening of
the edge-mode states leads to their hybridization with the bulk
states, and hence starts to destroy the topological nature of the

FIG. 5. Differential conductance of the lowest-energy edge state
at E1 = 0.034t [see Fig. 4(d)] in the presence of two molecules with
phonon modes as a function of γ .

edge modes. We therefore expect that in contrast to elastically
scattering nonmagnetic defects which leave the differential
conductance of the edge states unchanged, the presence of
phonon modes (which scatter electrons inelastically), while
not breaking the time-reversal symmetry of the TI, suppresses
the conductance. To demonstrate this, we plot in Fig. 5 the
differential conductance of the TI in the presence of two
molecules with phonon modes [see Fig. 4(d)] as a function
of γ . Similar to normal metals [46], we find that the presence
of inelastically scattering phonon modes rapidly suppresses
the conductance even of topologically protected edge states.

V. CREATION OF SPIN-POLARIZED CURRENTS
USING MAGNETIC DEFECTS

As we discussed in Ref. [27], there are two different mech-
anisms by which highly spin-polarized currents can be created
in 2D TI. The first mechanism is highly efficient in the limit
where the energy width of the edge states is much smaller than
their separation in energy [for example, due to a weak coupling
to the leads, as shown in Fig. 2(a), or a weak electron-phonon
interaction]. In this case, one can employ magnetic defects
with Ising symmetry to lift the degeneracy of the Kramers
pair of spin-↑ and spin-↓ bands by shifting their energies in
opposite directions (see Sec. II B 2). The lifted degeneracy then
allows one to select a nondegenerate spin-polarized state for
current transport via gating, achieving high-spin polarizations
of the charge current up to 99%. As one lifts the degeneracy of
the Kramers pair of edge states, the differential conductance
associated with charge transport through either of the states is
now half the quantum of conductance.

In contrast, when the edge states overlap in energy, for
example due to a large coupling to the leads, magnetic (spin-
flip) defects of xy symmetry provide a qualitatively different,
but equally efficient, mechanism for the creation of spin-
polarized currents. These defects scatter electrons between
the spin-↑ and spin-↓ bands, leading to their hybridization
(see Sec. II B 3). In particular, for large couplings to the leads,
the paths for the spin-↑ and spin-↓ currents are spatially well
separated, as shown for the case of tl = 0.5t in Fig. 3(d),
such that when a spin-flip scattering defect is placed into
the path of the spin-↑ current [as shown in Fig. 6(b)], it
scatters nearly all of the current into the spin-↓ band [as
shown in Fig. 6(c)]. This effectively blocks the spin-↑ current
and creates an additional contribution to the spin-↓ current
besides the one directly entering from the lead (a similar effect
can occur in the chiral edge states of graphene [47]). As this
scattering process blocks the current path for one of the two
spin channels, it reduces the differential conductance of the TI
to half of a quantum of conductance. In Fig. 6(a), we present
the resulting spin polarization of the current η↓ as a function of
the scattering strength of the magnetic (spin-flip) defect J±S.
A maximum in the value of the spin polarization η↓ = 0.965
is achieved for J±S = 3t with the resulting spatial current
patterns of the spin-↑ and spin-↓ currents shown in Figs. 6(b)
and 6(c), respectively. With increasing scattering strength, the
spin polarization decreases from its maximum value as the
defect shifts the energy of the local site to higher energies,
and the site of the defect becomes effectively decoupled from
the rest of the TI. This weakens the scattering process between
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FIG. 6. (a) η↓ as a function of the scattering strength of a single
magnetic (spin-flip) defect J±S [see filled red circle in (b)]. (b) I

↑
rr′

and (c) I
↓
rr′ at J±S = 3t where η↓ is maximal. (d) I

↑
rr′ and (e) I

↓
rr′ for

J±S = 20t with η↓ = 0.52.

the two bands, hence reduces the spin polarization and leads to
changes in the current patterns from the ones at maximum spin
polarization. In particular, for J±S = 20t , the spin polarization
has been reduced to η↓ = 0.52, and the spin-↑ current flows
around the defect site [Fig. 6(d)], implying that this site has
been effectively decoupled from the TI, and that only a small
part of the spin-↑ current is scattered into the spin-↓ band
[Fig. 6(e)].

However, even in the case where the scattering strength of
the magnetic defect exceeds the optimal value (i.e., the value
where η↓ is largest), a high-spin polarization can be achieved
by adding additional defects. This is shown in Fig. 7 where we
compare how different locations of two magnetic defects with
J±S = 5t affect the spin polarization. When the two defects
are located at positions 1 and 4 [see Fig. 7(a)] [giving rise to
the current patterns shown in Figs. 7(b) and 7(c)] or 2 and 3
(this case is considered in Figs. 2(d)–2(f) of Ref. [27]), the
resulting spin polarizations are quite similar, with η↓ = 0.95
for the former case and η↓ = 0.965 for the latter. Note that in
both cases, the defects are located in the same sublattice of
the TI, and that the resulting spin polarization exceeds that of

FIG. 7. (a) TI lattice and defect sites. Spatial current patterns for
two defects with J±S = 5t and tl = 0.5t : (b) I

↑
rr′ and (c) I

↓
rr′ for two

defects located at sites 1 and 4 in (a). (d) I
↑
rr′ and (e) I

↓
rr′ for two

defects located at sites 2 and 5 in (a).

a single defect with the same scattering strength, which when
located at position 2 yields η↓ = 0.79 [see Fig. 6(a)]. However,
there are combination of sites for the two defects where the
spin polarization is smaller than that of a single defect. The first

FIG. 8. Spatial current patterns for two defects whose magnetic
moments are perpendicular to each other, pointing along the spin x

and y axis, respectively. Here, JxS = JyS = 5t , tl = 0.5t , and the
two defects are located at sites 2 and 3 in Fig. 7(a). (a) I

↑
rr′ , and

(b) I
↓
rr′ .

045151-9



JOHN S. VAN DYKE AND DIRK K. MORR PHYSICAL REVIEW B 95, 045151 (2017)

FIG. 9. (a) TI lattice and defect sites. Spatial current patterns for
two defects with J±S = 5t and tl = 0.5t : (b) I

↑
rr′ , and (c) I

↓
rr′ for two

defects located at sites 3 and 4 in (a). (d) I
↑
rr′ , and (e) I

↓
rr′ for two

defects located at sites 2 and 5 in (a). (f) I
↑
rr′ , and (g) I

↓
rr′ for two

defects located at sites 1 and 6 in (a).

case is that in which the two defects are located at symmetric
positions, such as 2 and 5, with the resulting current patterns
shown in Figs. 7(d) and 7(e). Due to the symmetry of the
positions, the current cannot be spin polarized and, hence,
η↓ = η↑ = 0.5. The same finding also holds when the defects
are placed at the symmetric positions 2 and 6.

Highly spin-polarized currents persist even when the spins
of multiple magnetic defects are not ferromagnetically aligned,
as we assumed in Fig. 7. To demonstrate this, we consider the
case of two magnetic defects located at positions 2 and 3 [see
Fig. 7(a)], whose moments are perpendicular to each other,

pointing along the spin x and y axis, respectively. Their scatter-
ing strength is equal to the one considered in Fig. 7 with JxS =
JyS = 5t . However, even for this case, shown in Fig. 8, the spin
polarization η↓ = 0.954 remains very close to the one obtained
for ferromagnetically aligned spins where η↓ = 0.965. This
result suggests that even in the presence of more complicated
magnetic interactions between the magnetic moments that do
not necessarily lead to a ferromagnetic alignment, the high
degree of the currents’ spin polarization remains unchanged.

We next consider the case of ferromagnetically aligned
magnetic moments that are located in close proximity, but
in different sublattices, as shown in Fig. 9. When the two
defects are located on neighboring sites [sites 3 and 4 in
Fig. 9(a)], the combined scattering strength is sufficiently
large such that the sites become effectively decoupled from
the TI [similar to the case considered in Figs. 6(d) and 6(e)]
and the spin-↑ current [Fig. 9(b)] flows around these two
defect sites, with only minimal scattering into the spin-↓ band
[Fig. 9(c)]. As a result, the spin polarization is negligible
η↓ ≈ 0.5. When the two defects are located further apart
[sites 2 and 5 in Fig. 9(a)], the spin polarization increases
to η↓ = 0.8, concomitant with a significant scattering of the
spin-↑ current [Fig. 9(d)] into the spin-↓ band [Fig. 9(e)].
Finally, when the two defects are located at the corner sites of
the TI [sites 1 and 6 in Fig. 9(a)], the spin polarization increases
to η↓ = 0.9. Interestingly enough, there is now a significant
current in the spin-↑ and spin-↓ bands that is scattered back
and forth between the two defect sites, as shown in Figs. 9(f)
and 9(g), respectively.

When the scattering strength of defects is smaller than the
optimal value, a high-spin polarization can be achieved by
adding additional defects. Consider, for example, the spin

FIG. 10. (a) η↓ as a function of J±S for multiple defects and
tl = 0.5t . (b) I

↑
rr′ and (c) I

↓
rr′ for J±S = 0.5t , Vg = 0.025t/e and

seven magnetic defects [see red arrow in (a)].
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polarization η↓ for two defects located at positions 2 and 3
[of Fig. 7(a)] as a function of scattering strength J±S, with
tl = 0.5t , shown in Fig. 10(a). We find that η↓ only begins
to decrease from its value of η↓ = 0.965 once J±S becomes
smaller than approximately 1.5t (note in the limit J± → 0,
one has η↓ → 0.5). However, even for a rather small value
of J±S = 0.5t , where in the presence of two defects one
has η↓ = 0.625, we find that η↓ can be rapidly increased by
increasing the number of defects in the TI. In this case, a
spin polarization of 90% is already reached for five defects,
and a value of η↓ = 0.962 (corresponding to the large J±S

limit for two defects) is obtained for seven defects. For the
latter case (seven defects with J±S = 0.5t and η↓ = 0.962),
we plot in Figs. 10(b) and 10(c) the spatial spin-↑ current
and spin-↓ current patterns, respectively. These patterns are
qualitatively similar to those in Figs. 2(e) and 2(f) of Ref. [27]
(with nearly identical values of η↓), the only difference being
that the scattering of the spin-↑ electrons into the spin-↓ band
in Figs. 10(b) and 10(c) occurs over a larger spatial range.

Similarly, for magnetic defects with Ising symmetry, the
spin polarization remains unaffected as long as the splitting
between the spin-↑ and spin-↓ states (which decreases with
decreasing JzS) is larger than e�V with �V being the applied
voltage. For the case considered in Figs. 2(a) and 2(b) of

Ref. [27] with a single defect of Ising symmetry, we find that
even for JzS = t , the current is still highly spin polarized
with η↓ = 0.951. Only for smaller values of JzS does the
spin polarization significantly decrease. However, even for a
weakly scattering defect with JzS = 0.5t , one still obtains
η↓ = 0.788. We can therefore conclude that the creation of
highly spin-polarized currents in finite two-dimensional TIs is
a universal phenomenon that is not tied to particular values of
the magnetic scattering strength, but can be achieved over a
wide range of Jz,±S.

In what follows, we will demonstrate that the creation of
highly spin-polarized currents is robust against changes in
the strength of the spin-orbit coupling (Sec. V A), changes in
the size of the TI (Sec. V B), the width of the attached leads
(Sec. V C), the inclusion of a Rashba spin-orbit interaction
(Sec. V D), and the inclusion of dephasing arising from an
electron-phonon interaction (Sec. V E).

A. Strength of the spin-orbit coupling

One of the crucial elements in the creation of a topological
insulator is the existence of the spin-orbit coupling with
strength �SO. As the topological edge states can only exist
at energies smaller than the spin-orbit gap �SO, the effect

FIG. 11. (a) Nσ (L,E) for two magnetic defects of xy symmetry [see filled red circles in (b)], J±S = 5t , tl = 0.5t , and �SO = 0.05t .
(b) I c

rr′ , (c) I
↑
rr′ , and (d) I

↓
rr′ for the edge state at E1 = 0.01t [see dashed blue arrow in (a)].
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of creating spin-polarized currents is expected to diminish as
�SO → 0. To investigate the effect of a reduced �SO on the
magnitude of the currents’ spin polarization, we consider in
Fig. 11 the case of two magnetic defects located at positions
2 and 3 of Fig. 7(a) with J±S = 5t and tl = 0.5t , but a
value of �SO = 0.05t which is half of that considered above.
The resulting local density of states (LDOS) Nσ (L) shows
as expected a smaller spin-orbit gap since �SO = 3

√
3�SO.

However, the spatial patterns of the spin-↑ current [Fig. 11(c)]
and the spin-↓ current [Fig. 11(d)] are qualitatively similar to
those shown above in Figs. 6(b) and 6(c); the resulting charge
current I c

rr′ is shown in Fig. 11(b). We note that the reduction
in �SO leads to a larger decay length of the edge states, such
that the currents shown in Figs. 11(b)–11(d) extend further
into the bulk than those shown in Figs. 6(b) and 11(c). This
leads to only a small reduction in the spin polarization with
η↓ = 0.946, while for the two-dimensional TI discussed in
Ref. [27] we obtained η↓ = 0.963. These findings demonstrate

that the ability to create spin-polarized currents is qualitatively
and quantitatively robust against variations in the spin-orbit
coupling. Only in the limit �SO → 0 will the decrease in the
size of the spin-orbit gap eventually lead to a vanishing of the
current’s spin polarization.

B. Size and aspect ratio of the TI

To investigate the effect of a TI’s size and aspect ratio
Na/Nz on the ability to create spin-polarized currents, we
consider charge transport in a TI with Na = 14 and Nz = 13.
In Fig. 12(a), we present the local density of states at L for a
TI containing a single magnetic defect of Ising symmetry with
JzS = 5t and tl = 0.1t [the defect’s location is denoted by a
filled red circle in Fig. 12(b)]. As expected, the degeneracy
of the Kramers doublet is lifted by the defect, such that a
single spin-polarized state can be selected for charge transport.
By accessing the state at Ei = 0.0125t [see dashed arrow

FIG. 12. (a) Nσ (L,E) in the presence of a magnetic defect [see filled red circle in (b)] with Ising symmetry JzS = 5t, J±S = 0, and
tl = 0.1t . (b) I c

rr′ carried by the lowest-energy edge state at E1 = 0.0142t [see dashed blue arrow in (a)]. (c) Nσ (L,E) for two magnetic defects
[see filled red circles in (d)] with xy symmetry J±S = 5t, JzS = 0, and tl = 0.5t . (d) I c

rr′ , (e) I
↑
rr′ , and (f) I

↓
rr′ , carried by the edge state at

E1 = 0.0175t [see dashed blue arrow in (c)].
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FIG. 13. (a) I
↑
rr′ , (b) I

↓
rr′ , and (c) I c

rr′ in a TI attached to wide
leads with tl = 0.5t and Vg = 0.1t/e. (d) I

↑
rr′ , (e) I

↓
rr′ , and (f) I c

rr′ for
two magnetic defects (see filled red circles) with xy symmetry and
J±S = 5t .

in Fig. 12(a)], we find that the charge current is 98.9%
spin-↓ polarized (η↓ = 0.989), which is similar to the spin
polarization η↓ = 0.99 obtained in Ref. [27] for a TI with
Na = 9 and Nz = 15. Moreover, in the limit of large coupling
to the leads with tl = 0.5t and two defects with xy symmetry
and J±S = 5t [see Figs. 12(c)–12(f)], the spin polarization of
the charge current [Fig. 12(d)] is η↓ = 0.962, and thus again
similar to the value obtained for the cases shown in Fig. 7
and discussed in Ref. [27]. These results demonstrate that the
ability to create spin-polarized currents is thus independent of
the particular size or aspect ratio of the nanoscopic TI.

C. Width of the attached leads

The ability to create highly spin-polarized currents also
remains unaffected by the width of the leads attached to
the TI, as shown in Fig. 13 where we consider the spatial
current patterns in a TI attached to two wide leads. In
Figs. 13(a)–13(c), we present the spin-↑, spin-↓, and charge
currents through a clean TI (without any magnetic defects),
respectively. It is interesting to note that there are only two
sites on each side of the TI (for each spin degree) where an
appreciable current enters or exits the TI. In the presence of
two magnetic defects with xy symmetry and J±S = 5t , the
spin-↑ current [see Fig. 13(d)] is nearly completely scattered
into a spin-↓ current [Fig. 13(e)], resulting in η↓ = 0.996 and
a charge current that flows nearly entirely along the lower edge
of the TI [Fig. 13(f)]. In the presence of the defect, no spin-↓

FIG. 14. Topological insulator with �R = 0.2t = 2�SO and tl =
0.5t . Nσ (L,E) for (a) �R = 0 and (b) �R = 0.2t . (c) I

↑
rr′ and (d) I

↓
rr′

for Vg = +0.074t/e. (e) I
↑
rr′ and (f) I

↓
rr′ for Vg = −0.074t/e.

current enters the TI directly from the lead, being created
instead by the scattering of the spin-↑ current by the magnetic
defects. This robustness of creating spin-polarized current in
the presence of wide leads is encouraging for spintronics
applications since it obviates the need for atomically sharp
electrical contacts in circuit design.

D. Rashba spin-orbit interaction

The inclusion of a Rashba spin-orbit interaction leads to a
spin-flip process when an electron hops between two nearest-
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neighbor sites. As first shown by Kane and Mele [17], this can
lead to the destruction of the topological insulator when the
Rashba spin-orbit interaction becomes sufficiently large (i.e.,
for λR > λc

R = 2
√

3λSO) and the bulk gap closes. The question
therefore naturally arises as to what extent the creation of
spin-polarized currents is robust against the inclusion of a
Rashba spin-orbit interaction.

In Figs. 14(a) and 14(b), we compare the density of
states Nσ (L,E) for a TI with two spin-flip defects with
J±S = 5t with zero Rashba interaction [Fig. 14(a)] and with
�R = 2�SO = 0.2t . As was shown previously for the case of
a cylinder [48], the inclusion of a Rashba spin-orbit interaction
pushes the lower edge of the spin-orbit gap to higher energies.
This is also confirmed by a comparison of Nσ (L,E) shown in
Figs. 14(a) and 14(b): the structure of Nσ (L,E) for E � 0 and
�R = 2�SO still resembles approximately that of Nσ (L,E) for
�R = 0, while the density of states is qualitatively different
for E < 0. This conclusion is supported by the form of the
spin polarization and current patterns carried by the states
at energies E = ±0.074t , indicated by the two blue arrows
in Fig. 14(b). For E = +0.074t , the spatial patterns of I

↑
r,r′

[Fig. 14(c)] and I
↓
r,r′ [Fig. 14(d)] as well as a spin polarization

of η↓ = 0.973 resemble those considered above in Fig. 7,
and hence imply that the charge transport is still carried
by the topologically protected edge modes. In contrast, for
E = −0.074t , the spatial patterns of I

↑
r,r′ [Fig. 14(e)] and I

↓
r,r′

[Fig. 14(f)] now exhibit a significant current density in the
center of the TI, implying that bulk states are involved in charge
transport. As a result, the spin polarization is significantly

diminished to η↓ = 0.668. Thus, our results demonstrate
that even for a significant Rashba spin-orbit coupling of
�R = 2�SO, it is still possible to create highly spin-polarized
currents. In general, the ability to create spin-polarized currents
should only be lost once λR exceeds λc

R since, in this case, the
bulk gap is closed, and hence topologically protected edge
states no longer exist.

E. Dephasing arising from an electron-phonon interaction

To investigate the effects of dephasing on the ability to
create spin-polarized currents in TIs, we introduce a local
electron-phonon interaction [see Eq. (10)] at each site of the
TI, and compute the spin-resolved charge currents using the
high-temperature approximation outlined in Sec. II A.

We begin by investigating the effect of dephasing on the
currents’ spin polarization in a TI with a magnetic defect
of Ising symmetry (i.e., JzS �= 0, J±S = 0). In Fig. 15(a),
we present the current’s spin polarization ησ as a function
of τ/τ0, where τ is the electronic lifetime extracted from
the energy width of the peaks in the LDOS, and τ0 = h̄/t is
the hopping time between nearest-neighbor sites. In general,
τ ∼ 1/

√
γ with γ = 2g2kBT /h̄ω0 reflecting the strength of

the electron-phonon coupling [see Eq. (13)]. The current’s
spin polarization remains unaffected by dephasing as long
as the corresponding energy width of the spin-split edge
states, � = h̄/τ , is smaller than their energy splitting �E

[see Fig. 15(b)], corresponding to a value of τ/τ0 denoted by
arrow 1 in Fig. 15(a). Once the lifetime of the spin-split edge
states becomes sufficiently short such that they start to overlap

FIG. 15. TI with magnetic defects of Ising symmetry with JzS = 5t , J±S = 0, and tl = 0.1t . (a) ησ as a function of τ/τ0 (see text) obtained
for Vg = 0.014t/e. (b), (c) Nσ (L,E) for values of τ/τ0 indicated by arrows 1 and 2 in (a), respectively.
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FIG. 16. TI containing two magnetic defects of xy symmetry
[see filled red circles in (b)] with J±S = 5t , JzS = 0, and tl = 0.5t .
(a) ησ as a function of τ/τ0 (see text) for Vg = 0.0175t/e. (b)–(e) I c

rr′
for the same Vg and the values of τ/τ0 indicated by arrows 1–4 in (a),
respectively.

in energy [see Fig. 15(c)], corresponding to a value of τ/τ0

denoted by arrow 2 in Fig. 15(a), the spin polarization begins to
decrease. This is expected since dephasing reverses the effect
of the magnetic defect: the latter separates the spin-↑ and
spin-↓ states in energy, while the former increases the energy
width of these states and thus leads to an overlap in energy.

We next investigate the effects of dephasing in a TI
containing two magnetic defects of xy symmetry (i.e., J±S �=
0, JzS = 0). In Fig. 16(a), we present the spin polarization ησ

as a function of τ/τ0. In such a system, the spin polarization
begins to decrease when γ becomes sufficiently large such that
the edge states start to overlap in energy, and vanishes when
the edge states begin to hybridize with the bulk states, which
implies that the topological nature of the system is destroyed.
This is evidenced by the spatial patterns of the charge current
shown in Figs. 16(b)–16(e). At large values of the lifetime τ

[see arrow 1 in Fig. 16(a)], the spatial pattern is similar to that
obtained for γ = 0 (see Fig. 2(d) of Ref. [27]). Concomitant
with a decrease in the spin polarization, one finds that the
current carried by the edge states extends further into the bulk
of the TI [see Figs. 16(c) and 16(d), corresponding to arrows
2 and 3 in Fig. 16(a), respectively], circumventing the effect

of the magnetic defect. This indicates the onset of overlap in
energy between the edge states since higher-energy edge states
possess a larger decay length along the zigzag edge, implying
a penetration of the edge currents into the bulk of the system,
as discussed in Sec. III. Upon further decreasing τ , the spin
polarization eventually vanishes (i.e., η↑ = η↓ = 0.5), while at
the same time, a substantial portion of the current flows through
the center of the TI, as shown in Fig. 16(e), corresponding to
arrow 4 in Fig. 16(a). This indicates a significant hybridization
between bulk and edge states via the electron-phonon coupling
and, consequently, a destruction of the topological nature of
the system arising from dephasing [3]. Note, however, that the
spin polarization is significantly more robust against dephasing
in the case of magnetic defects with xy symmetry than in the
presence of magnetic defects with Ising symmetry.

VI. SYMMETRIES OF THE SPIN CURRENT

Using the spin-polarized currents in finite two-dimensional
TIs for applications in quantum computation or spin electron-
ics will require us to identify the symmetry properties of a
current’s spin polarization or, equivalently, of the spin current
is = η↑ − η↓, under various transformations such as a reversal
of the bias or gate voltages, spatial reflections, or rotations
around points or lines, and sign changes of the magnetic
defect’s scattering potential or of the spin-orbit coupling.
We will discuss these symmetry properties, which differ for
magnetic defects with Ising and xy symmetry, in the following.

A. Symmetries of the spin current in the presence of magnetic
defects with Ising symmetry

For defects with Ising symmetry (JzS �= 0, J±S = 0), the
transformation properties of the spin current under various
symmetry operations are shown in Fig. 17. As discussed above,
such defects lift the degeneracy of the Kramers doublet of
edge states, allowing one to select a spin-polarized state for
charge transport via gating. In Fig. 17(a), we consider charge
transport through a spin-↑ state, and schematically depict the
spatial spin-↑ current patterns for a given set of Jz, �V ,
Vg , giving rise to a spin current is = η↑ − η↓ = i0 > 0. This
current pattern is similar to that shown in Figs. 1(c) and 2(b)
of Ref. [27], with the backflow branch indicated by a narrower
dashed line. The magnetic defect (denoted by a blue arrow)
is located at R = (Rx,Ry), with the origin being at the center
of the TI. The spin current is invariant under Rx → −Rx [see
Fig. 17(b)], Ry → −Ry [see Fig. 17(c)], and point reflection
(of the entire system, including the leads) at the center point of
the TI [see Fig. 17(d)] since the electronic structure of the TI
and, in particular, the splitting of the Kramers doublet of edge
states, remains unchanged. Similarly, the spin current remains
invariant under bias reversal �V → −�V [see Fig. 17(e)]
since the same spin-↑ state is still utilized for charge transport,
albeit the direction of charge flow has been reversed. On the
other hand, a sign change of the scattering potential Jz → −Jz

[see Fig. 17(f)] exchanges the energy shifts of the spin-↑
and spin-↓ states, such that for fixed Vg , one now utilizes
a spin-↓ polarized state for charge transport, thus leading
to a change in the sign of the spin current. Similarly, since
the energy shifts for the spin-↑ and spin-↓ bands arising
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FIG. 17. TI with a magnetic defect of Ising symmetry (JzS �= 0) located at R = (Rx,Ry). The spatial patterns of I↑ and I↓ are schematically
represented by red and green lines, respectively, and μL,R = ±μ0. (a) I↑ obtained for a given set of Jz, �V , Vg with spin current is = i0 > 0.
(b) I↑ obtained from (a) under Rx → −Rx , with is = i0. (c) I↑ obtained from (a) under Ry → −Ry , with is = i0. (d) I↑ obtained from (a)
under reflection at the TI’s center point, with is = i0. (e) I↑ obtained from (a) under �V → −�V , with is = i0. (f) I↓ obtained from (a) under
Jz → −Jz, with is = −i0. (g) I↓ obtained from (a) under Vg → −Vg , with is = −i0. (h) I↑ obtained from (e) under rotation around a vertical
axis through the TI’s center, with is = i0. (i) I↑ obtained from (h) under νr,r′ → −νr,r′ , with is = i0. (j) I↓ obtained from (h) under ↑↔↓, with
is = −i0. (k) I↓ obtained from (h) under rotation around a horizontal axis through the TI’s center, with is = i0.

from Ising-type magnetic defects are just opposite in sign,
a reversal of the gate voltage Vg → −Vg [see Fig. 17(g)]
implies that one now accesses a spin-↓ polarized state for
charge transport, leading to a reversal in the sign of the spin
current is .

To demonstrate how all of these different transformations
and the resulting symmetries of the spin current are related,
we start from the case shown in Fig. 17(e). When the system is
rotated around the center axis [indicated by a vertical dashed

line in Fig. 17(h)], one arrives at a TI [Fig. 17(h)] in which
the spin current remains unchanged. However, this rotation
changes the overall sign of νr,r′ [see Eq. (1)], such that this
TI’s spin-orbit coupling has a sign opposite to that of the
original system [Fig. 17(e)]. To restore the sign of the original
model, one can proceed in three different ways, as shown in
Figs. 17(i)–17(k). First, one can change the sign of νr,r′ , i.e.,
νr,r′ → −νr,r′ which changes the direction of current flows,
as shown in Fig. 17(i), but leaves the spin current invariant.
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This TI is identical to the one shown in Fig. 17(b). Second,
one can exchange the spin degrees of freedom, i.e., ↑↔↓,
for the conduction electrons in the TI as well as for the
magnetic defect, which changes the sign of the spin current.
The resulting TI shown in Fig. 17(j) is related to the one
shown in Fig. 17(f) via Rx → −Rx , which leaves the spin
current unchanged. Finally, one can rotate the system around
the horizontal axis [dashed line in Fig. 17(k)], which leaves
the spin current unchanged, but moves the defect to the lower
side of the TI as shown in Fig. 17(k). This TI is related to
those shown in Figs. 17(b) and 17(c) via Ry → −Ry and
Rx → −Rx , respectively.

B. Symmetries of the spin current in the presence of
magnetic defects with x y symmetry

The transformation properties of the spin current for a TI
in the presence of a magnetic defect with xy symmetry are
shown in Fig. 18. In Fig. 18(a), we schematically depict the
spatial spin-↑ (red) and spin-↓ (green) current patterns for a
given set of J±, �V , Vg , giving rise to the spin current is =
−i0 < 0. These current patterns are similar to those shown in
Figs. 6(b) and 6(c) (or in Figs. 2(e) and 2(f) of Ref. [27]),
where the backflow branch is absent due to a larger coupling tl
to the leads. The magnetic defect is located at R = (Rx,Ry) (as

FIG. 18. TI with a magnetic defect of xy symmetry (J±S �= 0) at R = (Rx,Ry), and μL,R = ±μ0. The spin-↑ and spin-↓ current patterns
are schematically presented by red and green lines, respectively. (a) I σ for a given set of J±, �V , Vg , yielding a spin current is = −i0 < 0.
(b) I σ obtained from (a) under Rx → −Rx with is = −i0. (c) I σ obtained from (a) under Ry → −Ry with is = i0. (d) I σ obtained from (a)
under reflection at the center point of the TI, with is = −i0. (e) I σ obtained from (a) under �V → −�V , with is = i0. (f) I σ obtained from
(a) under J± → −J±, with is = −i0. (g) I σ obtained from (a) under Vg → −Vg , with is = −i0. (h) I σ obtained from (e) under rotation around
a vertical axis through the center of the TI, with is = i0. (i) I σ obtained from (h) under νr,r′ → −νr,r′ , with is = −i0. (j) I σ obtained from (h)
under ↑↔↓, with is = −i0. (k) I σ obtained from (h) under rotation around a horizontal axis through the center of the TI, with is = i0.
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FIG. 19. TI with a hole in its center [rendered as a shaded gray
area in (b) and (c)] with tl = 0.1t and a magnetic defect of Ising
symmetry (JzS = 5t) [see filled red circle in (c)]. (a) Nσ (E) at L
(for the outer edge states) and at the site denoted by a white star [see
(b)] for the inner edge states. (b) I

↓
rr′ for Vg = E1/e = 0.1153t/e [see

(a)]. The induced magnetic field B points into the plane. (c) I
↑
rr′ for

Vg = E2/e = 0.1898t/e. The induced magnetic field B points out of
the plane.

indicated by a blue arrow), with the origin being at the center of
the TI. Under the transformation Rx → −Rx [Fig. 18(b)], the
spin current remains invariant since the defect is still located
in the path of the spin-↑ current and the electronic structure of
the TI remains unchanged. However, under the transformation
Ry → −Ry [Fig. 18(c)], the sign of the spin current changes
since the defect is now located in the path of the spin-↓ current,
and hence scatters predominantly spin-↓ electrons into the
spin-↑ band, with a concomitant change in the spatial spin-↑
and spin-↓ current patterns schematically shown in Fig. 18(c).
On the other hand, under point reflection (of the entire system,
including the leads) at the center point of the TI [Fig. 18(d)],
the spin current remains unchanged since the defect is still
located in the path of the spin-↑ current. In contrast, under
bias reversal �V → −�V [Fig. 18(e)], the defect is located
in the path of the spin-↓ current, leading to a sign change of is .
Moreover, a sign change of the scattering potential J± → −J±
[Fig. 18(f)] leaves the spin current unchanged since corrections
to the spin-↑ and spin-↓ electronic structure arising from the
defect scattering contain only even powers of the scattering
potential. Similarly, the spin current remains unchanged under
reversal of the gate voltage Vg → −Vg [Fig. 18(g)] since the
scattering potential does not break the particle-hole symmetry
of the spin-↑ and spin-↓ bands.

To exemplify the relation between all of these different
transformations and the resulting symmetries of the spin
current, we start from the case shown in Fig. 18(e). When the
system is rotated around the center axis [indicated by a vertical
dashed line in Fig. 18(h)], one arrives at a TI [Fig. 18(h)] in
which the spin current is unchanged. However, this rotation
changes the overall sign of νr,r′ [see Eq. (1)], such that this
TI’s spin-orbit coupling has a sign opposite to that of the
original system [Fig. 18(e)]. To restore the sign of the original
model, one can proceed in three different ways, shown in
Figs. 18(i)–18(k). First, one can change the sign of νr,r′ , i.e.,
νr,r′ → −νr,r′ [Fig. 18(i)], which reverses the direction of
charge flow. As a result, the sign of the spin current is changed
since the defect is now located in the path of the spin-↑ current.
This TI is identical to the one shown in Fig. 18(b). Second,
exchanging the spin degrees of freedom, i.e., ↑↔↓, for the
conduction electrons in the TI as well as for the magnetic
defect leads to a sign change of the spin current since the
defect is now located in the path of the spin-↑ current, as
shown in Fig. 18(j). This TI is related to the one shown in
Fig. 18(b) via J± → −J± and to the one shown in Fig. 18(f)
via Rx → −Rx . Finally, one can rotate the system around the
horizontal axis [dashed line in Fig. 18(k)], which leaves the
spin current unchanged, but moves the defect to the lower side
of the TI as shown in Fig. 18(k). This TI is related to the one
shown in Fig. 18(c) via Rx → −Rx .

VII. CREATION OF LOCALIZED MAGNETIC FIELDS:
INTERPLAY OF TOPOLOGY AND SYMMETRY

OF THE MAGNETIC DEFECTS

The insight into the question of how the interplay between
the topology and symmetry of the magnetic defects allows us
to create spin-polarized current, also enables us to propose
intriguing quantum phenomena that are based on this insight.
An example is the ability to design spatially highly localized
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magnetic fields using holes created in the interior of a TI, as
shown in Fig. 19. A magnetic defect of Ising symmetry placed
near such a hole leads to a much larger splitting of the (inner)
spin-↑ and spin-↓ edge states surrounding the hole than of the
outer perimeter edge states [Fig. 19(a)], due to a much weaker
coupling of the magnetic defect to the latter. Conversely,
the inner edge states are much more weakly coupled to
the leads, resulting in their much narrower width in energy.
By gating the TI to the energy of one of the spin-resolved
inner edge states, one creates either clockwise [Fig. 19(b)]
or counterclockwise [Fig. 19(c)] circulating currents, leading
to magnetic fields of opposite direction in the center of the
hole. Such spatially highly localized magnetic fields, whose
magnitude is controlled by the hole size, are of great interest
for the realization of nanoscale nuclear magnetic resonance
[49]. Note that the weak hybridization between the inner and
outer edge states implies that these interior magnetic fields can
be created with only a negligible net charge current flowing
through the TI [Figs. 19(b) and 19(c)].

VIII. CONCLUSIONS

In this paper we have investigated the effects of defects
of various natures and dephasing arising from an electron-
phonon interaction on the electronic structure and transport
properties of two-dimensional topological insulators. We have
demonstrated how the spatial current patterns evolve between
the topologically protected edge states and the bulk states.
Moreover, we have shown that elastically and inelastically
scattering defects that do not break the time-reversal symmetry
of the TI have qualitatively different effects on the TI’s
electronic structure and transport properties. In particular, we
found that an inelastically scattering defect (for example, a
phonon mode inside a molecule) suppresses the conductance
of the TI even when it preserves the TI’s time-reversal
symmetry, as it leads to a hybridization of edge and bulk
states. We also showed that the recently predicted ability to
create highly spin-polarized currents in a TI by breaking its
time-reversal symmetry via magnetic defects or in magnetic
heterostructures is robust under changes over a wide range of
material parameters including the magnetic scattering strength,

size and aspect ratio of the TI, width of the leads, or the
strength �SO of spin-orbit coupling strength. This effect is
also robust against dephasing induced by the interaction with
phonons or the inclusion of a Rashba spin-orbit interaction,
as long as these two interactions do not destroy the global
topological nature of the TI. The ability to create spin-polarized
currents is therefore solely based on the existence of helical
edge states with well-defined spin quantum numbers, and the
possibility to scatter electrons between them via magnetic
defects. We therefore expect that our conclusions also hold
in more complex topological insulators, where the charge
carriers possess higher effective spins [50]. Moreover, we
explored the symmetry properties of the spin polarization
under various spatial transformations of the system, as well
as reversal of the bias and gate voltages, which is of great
importance for the manipulation of spin-polarized currents in
future devices. We note in this regard that the spin polarization
of the currents arises from the interplay of the applied bias,
the resulting current patterns, and the position of the magnetic
defects. As such, equilibrium approaches to the calculation
of the currents (such as ones using the expectation value of
the current operator [51]), would not be able to capture the
results presented above. Finally, we proposed that the interplay
between topology and the symmetry of the magnetic defects
can be employed to create intriguing quantum phenomena,
such as the creation of highly localized magnetic fields around
interior holes in a TI, whose direction can be tuned through
the gate voltage. This prediction adds another example to the
growing list of applications for topological insulators.

Note added. We note that recently effects of potential and
magnetic defects on the spatial form of current patterns in 2D
TIs, similar to the ones reported in Ref. [27] and above, were
subsequently also discussed in Refs. [52,53].
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