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Coulomb drag between helical Luttinger liquids
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We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such
as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag
is particularly interesting because it specifically probes the inelastic interactions that break the conductance
quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find
that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T , ρD

vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast
to Coulomb drag in conventional quantum wires, where ρD diverges at T → 0 irrespective of the strength of
repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for
which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated
drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp
scattering only available in the presence of a Dirac point in the electron spectrum.
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I. INTRODUCTION

The helical Luttinger liquid (HLL) emerges at the edge
of a two-dimensional quantum spin Hall (QSH) insulator
[1–6] and consists, in its most conventional form protected by
time-reversal symmetry, of two counterpropagating Kramers
conjugate modes. In an “ideal” helical edge, the electron spin is
conserved for each of the chiral modes (“Sz-conserving mod-
els”). Electron-electron backscattering between the modes,
as well as backscattering by nonmagnetic inhomogeneities,
is then prohibited by the combination of the spin-axial and
time-reversal symmetries. As a consequence, charge transport
through the ideal helical edge is characterized by a quantized
conductance G0 = 2e2/h, independent of the temperature T ,
also in the presence of nonmagnetic disorder. Experimentally,
the conductance quantization has been observed at the edges
of HgTe/CdTe [7,8] and InAs/GaSb [9–11] quantum wells.

In a more realistic description of topological insulator
materials, spin-rotational invariance is not preserved in the
helical edge. One perturbation that violates the invariance
is Rashba-type spin-orbit coupling induced by broken in-
version symmetry about the plane of the semiconductor
heterostructure. In the presence of nonmagnetic disorder,
elastic backscattering between Kramers partners remains
exactly forbidden by time-reversal symmetry, irrespective of
the presence or absence of spin-rotational invariance. As a
result, the T = 0 conductance is given by G0 independently
of the strength of disorder (as long as the two-dimensional bulk
is insulating). However, at nonzero T , inelastic backscattering
is generically triggered beyond the Sz-conserving models
[12] and gives rise to dissipation, even in the absence of
disorder, modifying significantly the transport properties of
both a clean and disordered helical liquid.1 In the limit of low

1Reference [12], while studying inelastic backscattering in a helical
edge with broken spin-axial symmetry, admits the existence of

T , inelastic backscattering leads to T -dependent corrections
to the quantized edge conductance [12–16]. These behave,
generically, as power laws of T , similar to the conventional
Tomonaga-Luttinger liquid (TLL). In the thermodynamic
limit, the corrections to the conductance convert into a finite
conductivity [17–20] that is a power-law function of T .2 Strong
repulsive interactions are expected to block zero-T transport
through the edge by spontaneously breaking time-reversal
symmetry and gapping the edge modes [21]. Experimental
evidence pointing towards the importance of the TLL effects
in transport through a strongly interacting HLL has recently
been reported [22].

In this paper, we investigate Coulomb drag between parallel
clean (no disorder) edges of two identical QSH insulators,
brought in proximity to each other, in the case of broken
spin-rotational invariance. We assume that each of the edges
consists of a single pair of Kramers partners with a linear
dispersion relation. In a Coulomb drag measurement, current
is driven in an “active” conductor (active edge in our setup),
inducing an electrical field or current in a “passive” conductor
(passive edge), with the frictional force being due to electron-
electron interactions, without transfer of electrons between
the subsystems. As such, Coulomb drag is a sensitive probe
of inelastic electron-electron scattering. For helical edges,
Coulomb drag is particularly worthy of study because, as
already mentioned above, inelastic electron-electron scattering
is the only source of dissipation inside a single edge.

inelastic backscattering also in models that preserve this symmetry.
We believe, however, that inelastic backscattering in a helical edge
is only possible if the spin-locking axis changes its orientation with
varying k. In particular, the earlier works [2,21] cited in Ref. [12]
also tacitly rely on broken spin-axial symmetry in the context of a
nonzero backscattering rate.

2The emergence of a nonzero resistivity in a helical liquid at finite
T , because of umklapp scattering, was mentioned in Ref. [2].
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The key quantity characterizing friction is the drag resistiv-
ity,

ρD = −E2/j1, (1)

where j1 is the current density driven in the active con-
ductor and E2 is the electric field applied to the passive
conductor to compensate for the friction force and main-
tain zero current therein. In conventional one-dimensional
(1D) systems (single-channel quantum wires), Coulomb drag
has been intensively studied both theoretically [23–37] and
experimentally [38–44]. In general, Coulomb drag in one
dimension, independently of the particular form of the electron
dispersion relation, can only occur in the presence of scattering
that changes the chirality of electrons [36]. Therefore, there
is no Coulomb drag between clean ideal HLLs, in which
scattering between left- and right movers is strictly prohibited.
Conversely, Coulomb drag between HLLs is only possible if
there is a perturbation that breaks spin-rotational invariance of
the edge modes.

One possibility to break the axial spin symmetry and lift the
restriction on backscattering interactions between two helical
liquids is to apply an external magnetic (Zeeman) field (the
magnetic field also breaks time reversal symmetry and gener-
ically gaps the edge modes). Coulomb drag between helical
liquids in the presence of a magnetic field h perpendicular
to the spin-locking axis was studied in Ref. [45]. Above
the temperature at which a zigzag-ordered charge density
wave is formed (and for sufficiently small h, so that the
electron spectrum can be approximated as linear), Ref. [45]
found ρD ∝ h4T 4K−−3, where K− is the Luttinger constant for
the relative charge mode. The power-law exponent of the T

dependence is here the same as for Coulomb drag between
spinless TLLs, but ρD is strongly suppressed, compared to the
TLL case, in the limit of small h.

Another possibility to destroy the spin-rotational invariance
originates from spin-orbit coupling in the bulk of the spin Hall
insulator. This is the model that we study in this paper, within
the framework introduced in Ref. [12] for a single helical edge.
Of central importance to us is that, in contrast to the magnetic
field-induced drag [45], time-reversal symmetry is preserved
in this model, so that the topological nature of the edge states
as Kramers partners remains intact. The significance of this
distinction is that Coulomb drag between helical liquids, if it
is facilitated by spin-orbit coupling, differs in an essential way
both from Coulomb drag induced by the Zeeman field and
from Coulomb drag between TLLs.

Regarding this distinction, two most important points to
emphasize are the following. First, the strong suppression of
electron-electron backscattering in the limit of low T makes
the formation of a strong-coupling ground state, which is a
hallmark of the TLL with repulsive interactions (where a
zigzag-ordered charge density wave is inevitably formed in
the low-T limit), only possible if the strength of interactions
exceeds a critical value. Below the critical value, ρD vanishes
with decreasing T , in contrast to the TLL case. Second,
time-reversal symmetry necessitates the existence of a Dirac
point in the HLL spectrum. In the vicinity of the Dirac point,
umklapp scattering contributes to Coulomb drag in addition
to backscattering. This results in the emergence of a peculiar
regime of plasmon-mediated Coulomb drag at higher T .

To make a systematic treatment of the peculiarities of
Coulomb drag between helical liquids, we formalize our
approach from two complementary perspectives. We first study
the kinetic equation for weakly interacting helical fermions.
Having established—for the case of weak interactions—the
vanishing of ρD in the limit of low T and the dominance of
plasmon-mediated drag for higher T , we proceed to bosonize
the model and include the TLL renormalization effects using
the Kubo formula.

The paper is organized as follows. In Sec. II, we formulate
the model of two capacitively coupled helical edges with
broken spin-rotational symmetry. Section III is devoted to
the study of Coulomb drag between weakly-interacting edges
within the kinetic equation approach. We write down the
kinetic equation for two-particle scattering in the helical edges
in Sec. III A. The high- and low-frequency regimes of Coulomb
drag are considered in Secs. III B and III F, respectively. In
Sec. III C, we discuss dynamically screened interaction in the
helical edges. In Secs. III D and III E, we obtain, respectively,
the electron-hole and plasmon contributions to the drag
rate. In Sec. IV, we address the effects of strong intraedge
interaction on the drag resistivity within the bosonization
framework. The renormalization of the first- and second-order
backscattering amplitudes is analyzed in Secs. IV A and IV B,
respectively. Section IV C deals with the renormalization of
the drag resistivity. The strong coupling regime is discussed in
Sec. IV D. Section V concludes with a summary. Some of the
technical details are moved to the Appendices. Throughout,
we use the abbreviation

∫
k

= ∫
dk
2π

.

II. THE MODEL

We start by formulating our model for two helical liquids
with broken spin-rotational invariance coupled by a screened
Coulomb interaction. In substance, we employ the model
proposed—for a single helical edge—in Ref. [12] and extend
it to the case of two edges. We consider two identical QSH
systems at the same chemical potential μ, each with one
Kramers pair at the edge, as shown in Fig. 1. Tunneling
between the two QSH systems is neglected. The transverse
size of the edge channels is assumed to be much smaller than
the interedge distance d. We focus on Coulomb drag between
infinitely long edges, i.e., the wave vector of the external
perturbation in the response functions is sent to zero before

V2

QSHS

I1

QSHS

d

FIG. 1. Schematics of a Coulomb drag measurement between
helical edges of two QSH systems. Current I1 is driven through the
active edge and, as a result of electron-electron interactions, voltage
V2 is induced in the passive edge.
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taking the dc limit: this is the order of limits that defines
the dc resistivity in general, and the dc drag resistivity ρD in
particular.

The kinetic part H0 of the Hamiltonian is given by

H0 =
∑
ση

∫
k

(vηk − μ) ψ
†
kσηψkση, (2)

where ψkση is the electron operator at the momentum k in
edge σ = 1,2 with the chirality η = ±, and v is the velocity
in the linear dispersion relation. The sum over k for each of
the chiralities runs from −∞ to ∞ (the bandwidth of the edge
states is assumed to be larger than all other relevant energy
scales), with the chiral spectral branches crossing at k = 0
(“Dirac point”).

In the ideal helical edge, the spin-locking axis is inde-
pendent of k, so that the electron state ψ̃kσs with a given
spin projection s = ↑,↓ coincides with ψkση. As already
discussed in Sec. I, we specialize to the model in which the
spin-rotational invariance of the helical edges is broken by
Rashba-type spin-orbit coupling in the bulk. In the absence of
spin-axial symmetry, ψ̃kσs is generically a mixture of the chiral
states ψkση with both chiralities η. By time-reversal symmetry,
the unitary transformation between the two basis sets (“spin”
versus “chiral”) in the vicinity of the Dirac point has a universal
form, as far as the dependence on k is concerned, to order
O(k2). Specifically [12],

ψ̃kσ↑ � ψkσ+ − k2

k2
0

ψkσ−, ψ̃kσ↓ � ψkσ− + k2

k2
0

ψkσ+, (3)

where k0 is a model-dependent momentum scale which
characterizes the strength of spin-orbit coupling (taken to be
identical in the two edges). We assume that the spin-orbit
interaction is a weak symmetry-breaking perturbation with
vk0 � max{|μ|,T }, so that the quadratic-in-k expansion (3) is
sufficient for our purposes (here and below, we count μ from
the Dirac point).

The density-density interaction term in the Hamiltonian is
then written in the chiral basis, rotated with respect to the spin
basis according to Eq. (3), as

Hint = 1

2

∑
σσ ′η1η2η3η4

∫
kk′q

bη1η4 (k + q,k)bη2η3 (k′ − q,k′)

×Vσσ ′(q) ψ
†
k+q,ση1

ψ
†
k′−q,σ ′η2

ψk′σ ′η3ψkση4, (4)

where Vσσ ′(q) is the Fourier component of the interaction
potential inside (σ = σ ′ equal to 1 or 2) and between (σ 
= σ ′)
the edges and

bη1η2 (k1,k2) = δη1η2 − η1δη1,−η2

k2
1 − k2

2

k2
0

. (5)

We assume that the interactions in the double-edge system are
screened by a nearby metallic gate. Note that—irrespective
of the relation between the distance to the gate and the
distance between the wires d—the interwire potential V12(q)
starts to decay exponentially with increasing |q| at |q| ∼ 1/d

(see, e.g., Appendix A of Ref. [36]). For simplicity, we take
V11(q) = V22(q) to be given by a constant V0‖ and V12(q) by
a simple exponential V0⊥e−|q|d . Throughout Sec. III, we also
assume that V0‖ = V0⊥.

The presence of the factors (5) in the interacting part of the
Hamiltonian for the helical liquid constitutes the key differ-
ence between the helical and conventional Luttinger models.
Another difference to notice is related to the population of the
eigenstates at thermal equilibrium. The conventional Luttinger
model is formulated for T � |μ|, where the chemical potential
μ is counted from the energy at which the chiral spectral
branches meet [either at the bottom of the electron spectrum,
linearized in the vicinity of the Fermi energy, or at the crossing
point of two chiral branches with a linear dispersion relation,
similarly to Eq. (2)]. In the helical Luttinger model, we assume
that T can be larger than the energy difference between the
Fermi level and the Dirac point, so that the real scattering
processes that involve the electron states at and around the
Dirac point are not necessarily thermally suppressed.

III. COULOMB DRAG BETWEEN HELICAL EDGES:
KINETIC THEORY

As mentioned in Sec. I, we first consider Coulomb drag
between helical edges within the kinetic equation framework
in the limit of weak interactions, by neglecting the TLL
renormalization of the parameters of the system. This is the
same limit that was studied in Ref. [12] for a single edge. As
will be seen below, the double-edge system for the case of
weak interactions exhibits an essentially richer behavior—as
far as the transport mechanisms are concerned—than the
single edge, primarily because of an important subtlety in the
plasmon-mediated coupling between the edges.

A. Kinetic equation

The kinetic equation for fσ , the distribution function in
edge σ , reads

∂tfσ (1) − eEσ ∂k1fσ (1) = Stσ (1), (6)

where Eσ is the electric field (e > 0) in edge σ and the
argument of fσ (1) includes both the momentum and chirality,
with 1 being a shorthand notation for k1 and η1, etc. As a
starting point, we neglect intraedge collisions (these will be
included in Sec. III F) and write the collision integral Stσ (1)
for pair collisions as (for σ = 1)

St1(1) = (2π )2
∑

η2η1′η2′

∫
k2k1′ k2′

|V12(k1′ − k1,ε1′ − ε1)|2

× ∣∣bη1′η1 (k1′ ,k1)
∣∣2∣∣bη2′η2 (k2′ ,k2)

∣∣2
δ(k1 + k2

− k1′ − k2′)δ(ε1 + ε2 − ε1′ − ε2′ )

×{f1(1′)f2(2′)[1 − f1(1)][1 − f2(2)]

− f1(1)f2(2)[1 − f1(1′)][1 − f2(2′)]}, (7)

where ε1 = vη1k1, etc. The collision integral St2(1) for
electrons in edge 2 is obtained by exchanging the edge
indices 1 ↔ 2 of the distribution functions. The dynamically
screened RPA interaction V12(q,
), whose derivation is given
in Appendix A, is specified in Eq. (23) below. As will be
shown in Sec. III E, screening plays a crucial role in the
present problem for not too low T as it opens up a peculiar
plasmon-mediated scattering channel for Coulomb drag.
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It is convenient to represent fσ (1) in terms of the function gσ (1) as

fσ (1) = nF (ε1) − gσ (1)nF (ε1)[1 − nF (ε1)], (8)

where nF (ε1) = [1 + exp(ε1 − μ)/T ]−1 is the thermal distribution function. Linearizing Eq. (6) in gσ , we obtain (in the ω

representation)

−iωgσ (1) − η1
eEσ v

T
= stσ (1), (9)

where (for σ = 1)

st1(1) = 4

ζ 2(1)
(2π )2

∑
η2η1′η2′

∫
k2k1′ k2′

|V12(k1′ − k1,ε1′ − ε1)|2∣∣bη2′η2 (k2′,k2)
∣∣2∣∣bη1′η1 (k1′ ,k1)

∣∣2
δ(ε1+ε2 − ε1′ − ε2′)

× δ(k1 + k2 − k1′ − k2′ ) nF (ε1)nF (ε2)[1 − nF (ε1′)][1 − nF (ε2′)][g1(1′) + g2(2′) − g1(1) − g2(2)] (10)

and

ζ (1) = 1

cosh[(ε1 − μ)/2T ]
. (11)

The electric current in edge σ , as a linear response to the fields Eσ , is related to the solution of Eq. (9) by

jσ = ev

4

∑
η1

η1

∫
k1

ζ 2(1) gσ (1). (12)

The dc drag resistivity ρD is conventionally defined in terms of jσ and Eσ as in Eq. (1). For the discussion in Sec. III B, we
introduce also the ω-dependent drag conductivity defined as

σ12 = j1/E2 (13)

under the condition that E1 = 0.

B. High-frequency Coulomb drag: Scattering rate

In the limit of large ω, Eq. (9) can be solved for gσ (k,η) iteratively by expanding the solution in powers of 1/ω. Neglecting
collisions between particles (stσ → 0) gives

g(0)
σ (k,η) = 1

−iω + 0
η

eEσv

T
. (14)

By substituting Eq. (14) in stσ , the dissipative part of σ12 [Eq. (13)] for large ω is then obtained, to order 1/ω2, as

Re σ12 � − e2v

πω2τ∞
D

, ωτ∞
D � 1, (15)

where

1

τ∞
D

= − (2π )3

T

∑
η1η2η1′

∫
k1k2k1′ k2′

η1η2 |V12(k1′ − k1,ε1′ − ε1)|2∣∣b−η2,η2 (k2′ ,k2)
∣∣2∣∣bη1′η1 (k1′,k1)

∣∣2

× δ[η1k1 + η2(k2 + k2′) − η1′k1′]δ(k1 + k2 − k1′ − k2′) nF (ε1)nF (ε2)[1 − nF (ε1′)][1 − nF (−vη2k2′)]. (16)

The symbol ∞ here is used to emphasize that the “drag rate” 1/τ∞
D is calculated in the high-frequency limit. Importantly, since

g(0)
σ is independent of k, backscattering of at least one particle involved in the collision process is required to produce a nonzero

drag rate. Specifically, the 1/τ∞
D is a sum of contributions of four scattering channels:

(ai) η1 = η1′ and η2 = η1, (bi) η1 =−η1′ and η2 = −η1,

(aii) η1 = η1′ and η2 = −η1, (bii) η1 =−η1′ and η2 = η1. (17)

The different scattering channels are depicted in Fig. 2 (together with their g-ology classification).
The scattering processes (ai) and (aii) correspond to g5⊥ scattering in the g-ology classification, with one of the scattering

states being tied to the Dirac point. Denoting k1 − k1′ = q, we have for the two contributions to 1/τ∞
D :

Rai = − π

T

∑
η1

∫
k1q

|V12(q,vq)|2
(

q

k0

)4

nF (ε1)nF (vη1q){1 − nF [vη1(k1 + q)]}[1 − nF (0)], (18)

Raii = π

T

∑
η1

∫
k1k1′

|V12(q,vq)|2
(

q

k0

)4

nF (ε1)nF (0){1 − nF [vη1(k1 + q)]}[1 − nF (−vη1q)]. (19)
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FIG. 2. Momentum configurations for two-particle scattering in channels (a) and (b) [defined in Eq. (17)] and the corresponding g-ology
classification. The first row depicts the electron spectrum in edges 1 and 2. Initial and final states are shown as filled and empty circles,
respectively. Blue (red) circles denote left (right) movers. The second row shows the diagrams that correspond to the scattering mechanisms
above them. Here, the solid (dotted) lines refer to the quasiparticle Green’s functions of right (left) movers in edge 1 or 2 and the thick dots
denote the offdiagonal elements of the vertex function bη1η2 (kin,kout) defined in Eq. (5). For the g5⊥ processes (channel a), the left mover is at
zero energy, while the right movers are close to the Fermi surface. As explained in the text, the contributions to the drag rate of processes (ai)
and (aii) cancel each other. The drag rate is determined by the g1⊥ and g3⊥ processes.

These are seen to cancel out, Rai = −Raii. This is because the initial states for one of the two channels of g5⊥ scattering are the
final states for the other (Fig. 2), so that the product of the thermal factors is the same for both channels, namely,

nF (ε1)nF (vη1q){1 − nF [vη1(k1 + q)]}[1 − nF (0)] = nF (ε1)nF (0){1 − nF [vη1(k1 + q)]}[1 − nF (−vη1q)], (20)

whereas the transferred momenta are of opposite sign.
The high-frequency drag rate is thus determined by the remaining sum of the contributions of the (bi) and (bii) processes,

which correspond to g1⊥ backscattering and g3⊥ umklapp scattering, respectively:

1

τ∞
D

= 4π

T k8
0

∫
qQ

Q4q4|V12(q,2vQ)|2 W (q,Q), (21)

where

W (q,Q) = 1

cosh vq−2μ

2T
+ cosh vQ

T

[
1

cosh vq−2μ

2T
+ cosh vQ

T

− 1

cosh vq+2μ

2T
+ cosh vQ

T

]
+ (q → −q) (22)

and 2Q = k1 + k1′ is the total momentum of the incoming (k1)
and outgoing (k1′) particles in edge 1. The energy-momentum
conservation fixes the transferred frequency in the RPA
interaction at ε1 − ε1′ = 2vQ.

The g1⊥ and g3⊥ contributions to 1/τ∞
D [which are given by

the first and second terms in the square brackets in Eq. (21),
respectively] are of opposite sign, but—in contrast to the g5⊥
processes, whose contribution to the drag rate vanishes exactly
for arbitrary μ—they generically do not cancel each other
exactly. Note that they do so, however, at the particle-hole
symmetric point μ = 0.

C. Dynamically screened interaction

Before proceeding with the calculation of the drag rate, let
us elaborate on the importance of the dynamical part of the
screened RPA interaction V12(q,2vF Q) in Eq. (21). Derived

in Appendix A, V12(q,
) reads

V12(q,
) = V0e
−|q|d [(vq)2 − 
2]2

[(
 + i�+)2 − 
2+][(
 + i�−)2 − 
2−]
, (23)

where the dispersion relation for the symmetric (+) and
antisymmetric (−), in the edge index, plasmon modes is given
by


±(q) = v±(q)|q| (24)

with the velocities

v±(q) =
√

1 + α±(q) v (25)

[see also Eq. (77) for the excitation spectrum of the bosonized
Hamiltonian] and

α±(q) = α(1 ± e−|q|d ), (26)

with α = V0/πv being the dimensionless strength of intrawire
interactions. It is assumed here that the Fourier components of
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the intraedge and interedge bare potentials at zero momentum
[V0‖ and V0⊥ below Eq. (5), respectively] are the same, so
that the velocity of the antisymmetric plasmon at q = 0 is not
renormalized by interactions; this makes the calculation less
cumbersome without changing the result qualitatively. The
plasmon damping rate �±(q) is induced by chirality-changing
electron scattering and, at the lowest (second) order in α±, is
written (see Appendix A) as

�±(q) = 1

16
α2

±(q)

(
q

k0

)4 vq sinh vq

T

cosh vq−μ

2T
cosh vq+μ

2T

. (27)

Dynamical screening in the HLL is unusual in two key
aspects. First, the very appearance of the plasmon poles
in the screened backscattering interaction [Eq. (23)] is a
rather special feature of the HLL, which distinguishes it—
quite apart from the topological protection against elastic
backscattering—from the conventional TLL model. The pri-
mary property of the HLL that is behind this distinction is
that the plasmon excitations (chiral polarization bubbles in
the fermionic diagrammatic language) are only coupled to the
backscattering interaction, i.e., participate in its screening, by
g5 scattering (see Appendix A) which, in turn, relies on the
existence of a Dirac point. That is, while the g5⊥ processes
do not, as shown in Sec. III B, contribute to Coulomb drag
directly, they influence it by triggering the additional, plasmon-
mediated mechanism of electron-electron backscattering.

Second, the plasmon contribution to Coulomb drag is
suppressed by the topological nature of the edge states much
more weakly than the electron-hole contribution. This can
already be inferred from the observation that 1/τ∞

D in Eq. (21),
being taken with the static interaction potential V12(q,0), scales
with the ultraviolet momentum scale k0 as 1/k8

0, whereas �±
from Eq. (27) scales as 1/k4

0. A consequence of this is that
the plasmon-mediated Coulomb drag, which is entirely due
to dynamical screening, plays a much more prominent role in
the HLL compared to more conventional higher-dimensional
conductors (for more detail, see Sec. III E).

When integrating over Q, the drag rate in Eq. (21) is
represented as a sum of two terms, one coming from the
sum over the “thermal poles” at Q = ±q/2 + μ/v + iπ (2n −
1)T/v, where n is an integer, the other coming from the
“plasmon poles” of |V12(q,2vQ)|2. In the limit of �±(q) � T ,
with �±(q) taken at the characteristic q that give the main
contribution to 1/τ∞

D , the two terms can be cleanly separated
as, respectively, the electron-hole (1/τeh) and plasmon (1/τp)
contributions to the drag rate:

1

τ∞
D

→ 1

τeh
+ 1

τp
. (28)

These two will be calculated in Secs. III D and III E.

D. Electron-hole contribution to the drag rate

We first calculate 1/τeh, the electron-hole contribution to the
drag rate, defined above Eq. (28) and obtainable by neglecting
the dynamical part of the screened potential in Eq. (21). To
find 1/τeh for |α| � 1, we substitute the bare potential V12(q)
for the static potential V12(q,0). The result depends on the
relation between three energy scales, T , |μ|, and v/d, all being

FIG. 3. Electron-hole contribution 1/τeh to the drag rate, with
different regimes in the T –μ plane labeled according to the corre-
sponding equations in Sec. III D. The sequence of different types of
the T dependence of 1/τeh, depending on whether the distance d

between the edges is larger or smaller than the Fermi wavelength, is
shown at the very end of Sec. III D. In the low-T limit, 1/τeh vanishes
at T → 0 as T 5 (regime I). In the high-T limit, 1/τeh does not depend
on T (regime II). In between, 1/τeh monotonically increases with
growing T at fixed μ, with the crossover temperatures given by |μ|
and (as marked on the T axis) Td ∼ v/d . For kF d � 1, there is
a sharp change (regimes V and VI) in the T behavior of 1/τeh at
T � Tc = v/2d .

assumed to be much smaller than the ultraviolet scale of our
model vk0.

In the limit of low T , for T � min{v/d,|μ|}, we obtain

(I):
1

τeh
� 64

5
πα2

(
μ

vk0

)8(
πT

μ

)4

T e−4kF d ,

T � min{v/d,|μ|}. (29)

The main contribution to 1/τeh in this limit comes from
g1⊥ processes, with the characteristic |q ± 2kF | ∼ |Q| ∼ T/v.
The drag rate (29) vanishes for T → 0 as T 5. Here and below,
(I), (II), etc. label different transport regimes to be shown in
Fig. 3, etc.

In the opposite limit of high T , for max{v/d,|μ|} � T , we
get

(II):
1

τeh
� π

5
(3π4 − 35π2 + 60)

×πα2

(
πT

vk0

)8(
μ

πT

)2(
v

πT d

)7

T ,

max{v/d,|μ|} � T . (30)

The contributions of g1⊥ and g3⊥ processes to Eq. (30)—
which are, as already mentioned in Sec. III B, of different
sign—strongly compensate each other, with the characteristic
|q| ∼ 1/d and |Q| ∼ T/v. The structure of Eq. (30) in the
form of a product of four T dependent factors transparently
reflects the physics of Coulomb drag in the high-T limit. The
T dependence of 1/τeh that results from this product is seen
to cancel out; that is, in the limit of high T , the electron-hole
contribution to the drag rate is independent of T .
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For T between two other scales, |μ| and v/d, the result for
1/τeh reads, depending on which of the two scales is larger:

(III):
1

τeh
� 512

315

(
22

15
π2 + 13

)
πα2

(
πT

vk0

)8(
μ

πT

)2

T ,

|μ| � T � v/d, (31)

and

(IV):
1

τeh
� 18πα2

(
μ

vk0

)8(
v

T d

)4 1

(kF d)3
T e− 2|μ|

T ,

v/d � T � |μ|. (32)

In both cases, similarly to Eq. (30), there is a strong compen-
sation between the contributions of g1⊥ and g3⊥ processes.
In both cases, the main contribution to 1/τeh comes from
|q| ∼ 1/d: the difference is that the characteristic |Q| is given
by T/v in Eq. (31) and by kF in Eq. (32). Note that 1/τeh in
Eq. (32) behaves, with changing T , according to the Arrhenius
law with the activation gap 2|μ|.

The crossover between the limits T � v/d � |μ| and
v/d � T � |μ| [Eqs. (29) and (32), respectively] has the
form of a sharp singularity at T = Tc, where Tc = v/2d.
Specifically:

(V):
1

τeh
� 192πα2

(
μ

vk0

)8(
Tc

μ

)4

Tce
− 2|μ|

Tc

(
Tc

Tc − T

)6

,

v

kF d2
� Tc − T � Tc (33)

for T < Tc and

(VI):
1

τeh
� 384

5
πα2

(
μ

vk0

)8(
Tc

|μ|
)3

Tce
− 2|μ|

T

(
Tc

T − Tc

)5

,

v

kF d2
� T − Tc � Tc (34)

for T > Tc, both in the “critical region” |T − Tc| � Tc. The
broadening of the power-law “resonance” at T = Tc is of the
order of v/kF d2 � Tc.

The peculiar behavior of 1/τeh in Eqs. (33) and (34) is
related to the interplay between two exponential factors in the
integrand of Eq. (21): exp(−2|q|d) [from the static interaction
potential V12(q)] and exp(−v|q ± 2kF |/2T ) (from the thermal
occupation factors for T � |μ|) in the interval −2kF < q <

2kF . On the low-T [Eq. (33)] and high-T [Eq. (34)] sides of the
resonance, the integrand is sharply peaked at |q| = 2kF and
q = 0, respectively. Specifically, for Eq. (33), the characteristic
momenta are |q ± 2kF | ∼ |Q| ∼ T 2

c /v(Tc − T ). For Eq. (34),
they are |q| ∼ T 2

c /v(T − Tc) and |Q| ∼ kF . At the resonance,
the q dependence in the exponential factors cancels out and
1/τeh is determined by |q| ∼ |Q| ∼ kF . It is worth noting that,
despite Eqs. (33) and (34) having the spikelike power-law
factors, 1/τeh is a monotonic function of T , namely it increases
with growing T on both sides of the “spike.” This is because
the nonsingular (at T = Tc) factor exp(−2|μ|/T ) in Eq. (34)
is a faster function of T than the singular factor [Tc/(T − Tc)]5

in the tail of the resonance for T − Tc � v/kF d2.
As T increases, the sequence of different types of the

T dependence of 1/τeh—depending on whether kF d � 1 or
kF d � 1—is as follows (see also Fig. 3). For kF d � 1, 1/τeh

behaves as

T 5 (I) → sharp crossover (V)+(VI)

→ exp(−2|μ|/T )/T 3 (IV) → const(T ) (II).

For kF d � 1, 1/τeh behaves as

T 5 (I) → T 7 (III) → const(T ) (II).

In both cases, 1/τeh is a monotonic function of T , vanishing at
T → 0 and saturating in the limit of large T .

E. Plasmon-mediated Coulomb drag

We now turn to the calculation of 1/τp, the plasmon contri-
bution to the drag rate 1/τ∞

D , as defined above Eq. (28). Taking
the residue of the four plasmon poles in the lower half-plane
of Q at Q = (v±/2v)q − i�±/2v and Q = −(v±/2v)q −
i�±/2v, we represent 1/τp for |α| � 1 as

1

τp
� π3

128
α2 v5

T k8
0

∫
q

q12e−2|q|d W (q,q/2)
∑
±

(
1 − v2

±
v2

)4

× 1

�±
Re

1

[(v+ − v−)q − i�±]2 + �2∓
. (35)

In the derivation of Eq. (35), we assumed that the plasmon
modes are weakly decaying. More precisely, we used not only
the condition v±|q| � �±, which is altogether necessary to
meaningfully define the plasmon modes in the first place,
but a stronger condition |α±v±q| � �±. The latter makes
it justifiable to neglect the plasmon damping in the factor
q2 − 4Q2 in the numerator of V12(q,2Q/v) [Eq. (23)] at the
plasmon poles in Eq. (21), not requiring at the same time that
|(v+ − v−)q| is large compared to �±.

The important point here is that the energy splitting
between the symmetric and antisymmetric plasmon modes
|(v+ − v−)q| falls off sharply with increasing |q|d, namely
as exp(−2|q|d), so that the broadening of the modes �±—
even though being small in the parameter (q/k0)4 � 1 and
the additional power of α [Eq. (27)]—can become larger
than the splitting for |q| larger than a certain characteristic
momentum qp � 1/d (with qp being still much smaller than
k0). As will be shown below, this circumstance essentially
modifies the general picture of plasmon-mediated Coulomb
drag, with friction being strongly suppressed by the overlap
between the symmetric and antisymmetric plasmon modes.
For (α+ − α−)2v2q2 � |�2

+ − �2
−| (which includes |q| ∼ qp),

the second line in Eq. (35) can be further simplified to

∑
±

4α4
±

�±

1

(α+ − α−)2q2 + 16�2±
. (36)

Let us first calculate 1/τp for the case in which the main
contribution to 1/τp comes from |q| � qp, i.e., the plasmon
damping can be neglected in the “Lorentzian” (36) (recall that
�± is a strong function of q, hence the quotation marks).
Importantly, the exponential factor e−2|q|d in Eq. (35) is
then canceled by the same factor in (α+ − α−)2 from the
denominator in Eq. (36), so that the screened interaction
effectively extends beyond the scale of 1/d in q space.
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Specifically, Eq. (35) reduces to

1

τp
� π3

32
α2 v2

T k4
0

sinh μ

T

cosh3 μ

2T

∫
q

q5(1 + e−2|q|d )

× 1

cosh vq

2T

[
1

cosh vq−μ

2T

− (q → −q)

]
. (37)

The radius of the bare interaction only remains in the factor
1 + exp(−2|q|d) that originates from the sum α4

+ + α4
− and

changes between 2 and 1 with increasing |q|. Crucially, the
strength of interaction cancels out in Eq. (36), so that 1/τp in
Eq. (37) scales with α as α2, similar to 1/τeh.

In the limit of low T , for T � |μ| � v/d, we obtain

(VII):
1

τp
� π3

6
πα2

(
μ

vk0

)4(
μ

πT

)2

T e−|μ|/T ,

T � |μ| � v/d. (38)

In stark contrast to the electron-hole contribution to the drag
rate, which vanishes for T → 0 as a power-law of T , the
plasmon contribution in Eq. (38) obeys Arrhenius’ law. The
main contribution to Eq. (38) comes from all q in the interval
0 < |q| < kF .

For |μ| � T � v/d, we have

(VIII):
1

τp
� 7π3

24
πα2

(
πT

vk0

)4(
μ

πT

)2

T ,

|μ| � T � v/d, (39)

with characteristic |q| ∼ T/v. For v/d � max{T ,|μ|}, the
exponential term e−2|q|d in Eq. (37) can be neglected, so that
1/τp is obtained by multiplying Eq. (38) (for T � v/d � |μ|)
or Eq. (39) (for |μ| � v/d � T ) by a factor of 1/2.

Now, turn to the case of max{T ,|μ|} � Tp = vqp/2,
where the plasmon damping substantially modifies plasmon-
mediated Coulomb drag. In this limit, 1/τp can be represented
as

1

τp
� π3

32
α2 v2

T k4
0

sinh μ

T

cosh3 μ

2T

∫
q

q5 1

s(q)

× 1

cosh vq

2T

[
1

cosh vq−μ

2T

− (q → −q)

]
, (40)

where

s(q) = 1 + 4α2

(
2q

k0

)8

e2|q|d sinh2 vq

T

cosh2 vq−μ

2T
cosh2 vq+μ

2T

. (41)

In fact, Eq. (40) has a broader range of applicability, namely
max{T ,|μ|} � v/d. In particular, it gives, for s(q) → 1, the
result that follows from Eq. (37) for v/d � max{T ,|μ|} � Tp,
as discussed below Eq. (39). What changes for max{T ,|μ|} �
Tp is that the function s(q) can no longer be approximated by
unity for |q| ∼ max{T/v,kF }. Specifically, 1/s(q) behaves as a
step function: 1/s(q) → θ (qp − |q|), falling off sharply with
increasing |q|, as e−2|q|d , for |q| − qp � 1/d, where qp �
1/d is defined by s(qp) − 1 ∼ 1. That is, 1/τp in the limit of
strong plasmon damping is determined by all q in the interval
0 < |q| < qp, with qp � max{T/v,kF }.

We obtain, for three different regimes of plasmon-mediated
Coulomb drag in which the plasmon damping is important:

(IX):
1

τp
� 2

7π
πα2

(
πT

vk0

)4(
μ

πT

)2(
Tp

T

)7

T ,

max{|μ|,Tp} � T , (42)

where

Tp = v

2d
ln

[
(k0d)4

|α|
T d

v

]
; (43)

(X):
1

τp
� 16

3π3
πα2

(
πT

vk0

)4(
Tp

T

)6

T e−|μ|/T ,

T � Tp � |μ|, (44)

where

Tp = v

2d

{ |μ|
T

+ ln

[
(k0d)4

|α|
]}

; (45)

and

(XI):
1

τp
� 32

7π3
πα2

(
πT

vk0

)4(
Tp

T

)7

T e−|μ|/T ,

Tp � T � |μ|, (46)

where

Tp = v

2d

{ |μ|
T

+ ln

[
(k0d)4

|α|
T d

v

]}
. (47)

The term |μ|/T in Eqs. (45) and (47) for Tp appears
because, for T � |μ|, the plasmon damping rate obeys the
Arrhenius law with the activation gap |μ|. Specifically:

�±(q) � 1

4
α2

±(q) T

(
vq

T

)2(
q

k0

)4

e−|μ|/T (48)

for v|q| � T , which is the condition relevant to Eq. (46), and

�±(q) � 1

8
α2

±(q) v|q|
(

q

k0

)4

exp

(
v|q| − |μ|

T

)
(49)

for T � v|q| < |μ| (more precisely, as far as the right
condition is concerned, for |μ| − v|q| � T ), which is the
condition relevant to Eq. (44).

The plasmon damping is seen to strongly suppress plasmon-
mediated Coulomb drag when the energy splitting between
the symmetric and antisymmetric plasmon modes (for |q| ∼
max{T/v,kF }) becomes much smaller than their damping
rate. Specifically, 1/τp for |μ| � T is suppressed in Eq. (42)
compared to Eq. (39) by the additional factor (Tp/T )7 � 1.
For T � |μ|, the suppression factor, compared to Eq. (38), is
(Tp/|μ|)6 � 1 in Eq. (44) and (Tp/|μ|)6Tp/T � 1 in Eq. (46).
In all the cases, 1/τp vanishes as a power law of Tp with
increasing damping rate.

Recall that the energy Tp, being defined in terms of
the momentum scale qp above which the plasmon damping
becomes relevant, is a function of T . This means that the
crossover temperatures that separate between regimes VIII
and IX on the one hand and between regimes X and XI on the
other follow as the solution of the equation Tp(T ) = T . One
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FIG. 4. Plasmon contribution 1/τp to the drag rate, with different
regimes in the T –μ plane labeled according to the corresponding
equations in Sec. III E. The sequence of different types of the T

dependence of 1/τp, depending on the relation between |μ| and the
characteristic temperature Tp0 [Eq. (50)], is shown at the end of
Sec. III E. In contrast to the electron-hole contribution to the drag
rate (Fig. 3), 1/τp is a nonmonotonic function of T for given μ. In
the low-T limit, 1/τp vanishes at T → 0 according to Arrhenius’ law
with the activation energy |μ| (regimes VII and X). In the high-T
limit, 1/τp vanishes with increasing T as T −4 (regime IX).

of the characteristic scales of T that emerges from this is

Tp0 = v

2d
ln

(k0d)4

|α| . (50)

The other is

Tp1 = Tp0

2

(
1 +

√
1 + v

2d

|μ|
T 2

p0

)
. (51)

Depending on the relation between |μ| and Tp0, there are two
distinct sequences, with varying T , of different types of the T

dependence of 1/τp (see also Fig. 4). For |μ| � Tp0, as T is
increased, 1/τp first increases according to the Arrhenius law
(VII) and then keeps growing, as T 3 (VIII), before the growth
changes to the 1/T 4 (IX) falloff:

e−|μ|/T /T (VII) → T 3 (VIII) → T −4 (IX).

For Tp0 � |μ|, the interval of T within which there was the
T 3 behavior of 1/τp in the opposite limit shrinks to zero. The
activation growth of 1/τp with increasing T [(X) and (XI),
with different preexponential factors in the Arrhenius law] is
directly followed by the downturn to the 1/T 4 (IX) behavior:

e−|μ|/T T 6
p (T )/T (X) → e−|μ|/T T 7

p (T )/T 2 (XI) → T −4 (IX).

As can be seen from Fig. 4, the energy Tp0 also gives the
crossover scale for |μ| when it varies between regimes VII
and X. The temperature Tp1 as a function of μ [Eq. (51)] gives
the boundary between regimes X and XI.

By comparing the results for 1/τeh (I-VI) on the one hand
and 1/τp (VII-XI) on the other, the most notable differences
between the electron-hole and plasmon contributions to the

drag rate are the following. First of all, as already noted in
Sec. III C, the two are different in the way they scale with the
ultraviolet momentum cutoff of our theory, namely 1/τeh ∝
1/k8

0 and 1/τp ∝ 1/k4
0. This renders 1/τeh to be much smaller

than 1/τp when the three characteristic energy scales T , |μ|,
and v/d are of the same order. Moreover, one can see that
1/τeh � 1/τp at T ∼ |μ| for arbitrary kF d. This brings us
to the question of differences in the T dependence of 1/τeh

and 1/τp.
One of the differences is that 1/τp is a nonmonotonic

function of T , i.e., in the high-T limit, 1/τeh is independent
of T (II), whereas 1/τp decreases with increasing T (IX).
However, on the side of high T , the plasmon-mediated
mechanism of Coulomb drag can be seen to remain dominant,
with 1/τp � 1/τeh in the whole range of T up to T ∼ vk0. The
situation is different in the low-T limit. Here, the T dependence
of 1/τp is characterized by the activation gap |μ| [(VII) and
(X)], whereas 1/τp vanishes at T → 0 as a power law of T .
In fact, 1/τeh also behaves, similarly to 1/τp, according to
Arrhenius’ law for T � |μ|—even with the doubled activation
gap 2|μ|—if kF d � 1, but only within the intermediate
interval of T (IV). That is, the “electron-hole mechanism” of
Coulomb drag inevitably wins over the plasmon mechanism
in the limit of low T , leading to the universal T 5 behavior
(I) of the drag rate at T → 0 for arbitrary kF d. One of the
conclusions that follow from this comparison is that there
necessarily exists a crossover temperature T1 which separates
the electron-hole (lower T ) and plasmon-dominated (higher
T ) regimes of Coulomb drag. Specifically,

T1 = 1

4

|μ|
ln(k0/|μ|) + kF d

. (52)

Note that the saturation of the dependence of T1 with increasing
|μ| occurs at |μ| � (v/d) ln(k0d), i.e., below Tp0 [Eq. (50)].
A similar crossover of the drag resistivity between the
particle-hole dominated and plasmon-dominated regimes was
predicted in the context of two-dimensional heterostructure
bilayers of strongly correlated electron liquids, within the
Boltzmann-Langevin stochastic kinetic equation approach,
in Ref. [46].

F. DC Coulomb drag

In Secs. III D and III E, we calculated the drag rate in the
high-frequency limit 1/τ∞

D . Now we turn to Coulomb drag in
the dc limit, characterized by the dc drag rate 1/τD (related
to the dc drag resistivity ρD by ρD = π/e2vτD). Generically,
the relaxation rate need not be a constant of ω (when this
is the case, at the model level, the system is said to obey the
Drude law). In fact, the drag rate is known to be sensitive
to the rate of thermal equilibration inside each of the two
conductors—to the extent that, while being finite in the
high-ω limit, the drag rate may exactly vanish at ω → 0 if
some of the thermalization processes are quenched [36,47]
(see also Refs. [37,48,49] for other examples of a failure of the
perturbative approach to Coulomb drag). By the same token,
the Drude law is valid for Coulomb drag if the thermalization
rate inside each of the conductors is much larger than the drag
rate [36].
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In the HLL, the intraedge electron-electron scattering rate
1/τee, resulting from g5‖ interactions, reads [18]

1

τee

∼ α2

(
T

vF k0

)4

T , |μ| � T (53)

for |μ| � T and

1

τee

∼ α2

(
μ

vk0

)4

|μ| e−|μ|/T , T � |μ| (54)

for T � |μ|. This is the thermalization rate that should be
compared with 1/τ∞

D obtained in Secs. III D and III E. For
|μ| � T , the drag rate is mainly given by 1/τp, which is
smaller than 1/τee from Eq. (53) by a small factor (μ/T )2

for T � Tp [Eq. (39)] and is further suppressed by plasmon
damping [Eq. (42)]. It follows that the dc drag rate 1/τD for
|μ| � T coincides with 1/τp calculated in Sec. III E.

For T � |μ|, both 1/τp and 1/τee obey Arrhenius’ law
with the same activation gap |μ|; however, the pre-exponential
factors behave with varying T differently. If |μ| � Tp, then
1/τp � 1/τee for all T � |μ|. Otherwise, the range of T

within which 1/τp � 1/τee extends, as follows from Eq. (44),
down below |μ| to T � |μ|(Tp/μ)6, but 1/τp still becomes
larger than 1/τee for lower T . Moreover, in contrast to both
1/τee and 1/τp, the drag rate 1/τeh behaves in the low-T
limit as a power law of T [Eq. (29)]. As a result, although
1/τeh � 1/τee at T ∼ |μ| (independently of the parameter
kF d), there exists a crossover temperature—much smaller than
|μ|—below which the relation between the two scattering rates
is reversed. In fact, with logarithmic accuracy, this crossover
temperature is given by Eq. (52). Thus, irrespective of the
relation between 1/τee and 1/τp at T ∼ |μ|, the drag rate is
larger than the intraedge thermalization rate in the low T limit.
It follows that 1/τ∞

D and 1/τD need not coincide in this limit.
In fact, in one dimension, the relation between 1/τ∞

D and
1/τD is largely dictated by the relative strength of backscat-
tering compared to scattering with small momentum transfer.
If the latter is dominant, then 1/τ∞

D and 1/τD can be vastly
different from each other, as shown in Ref. [36] for the case of
one-dimensional electrons with a parabolic dispersion relation.
Otherwise, 1/τ∞

D and 1/τD are generically of the same order
of magnitude, being only different by a numerical coefficient.
Below, we demonstrate this by solving the kinetic equation for
the HLL in the low-T limit, namely T � v/d � |μ|. Recall
that umklapp (g3⊥) scattering is strongly suppressed for T �
|μ| (Sec. III D), so that the only scattering channel that remains
(and will only be present in the collision integral below) is
g1⊥ backscattering. It is also worth noting that forward (g4⊥)
scattering between chiral electrons is exactly absent in the
collision integral for the HLL model with a linear electron
spectrum. This is because of the RPA resummation that splits
the electron and plasmon velocities in the energy-momentum
conservation law and regularizes to zero the collision integral,
similarly to the spinful TLL model [50].

The collision integral (10) for g1⊥ backscattering
(η1 = −η1′ = −η2 = η2′) reads

st1(1) = 1

8vk8
0

∫
k1′

V 2
12(k1 − k1′)

(
k2

1 − k2
1′
)4

ζ 2(−η1,k1′ )

× [g1(−η1,k1′) + g2(η1,k1)

− g1(η1,k1) − g2(−η1,k1′ )] (55)

and st2(1) = −st1(1), at the lowest order in the static interac-
tion (for |α| � 1 and T � T1). The contribution of intraedge
(g5‖) scattering to st1(1) is neglected in the low-T limit
(for T � T1). By introducing the functions

g±(η,k) = 1
2 [g1(η,k) ± g2(η,k)], (56)

we define the total and relative charge components of the
distribution function

gc
±(k) = 1

2 [g±(+,k) − g±(−, − k) ]. (57)

The drag resistivity can be written as [36]

ρD = E1 − E2

j−
, (58)

where the relative current j− = (j1 − j2)/2 is expressed solely
in terms of gc

−(k):

j− = ev

2

∫
k

gc
−(k)

cosh2 vk−μ

2T

. (59)

The kinetic equation for gc
− reads

− iωgc
−(k1) −e(E1 − E2)v

2T
= stc(1),

stc �− 1

4vk8
0

∫
k1′

V 2
12(k1 − k1′)

(
k2

1 − k2
1′
)4

cosh2 vk1′+μ

2T

× [gc
−(−k1′) + gc

−(k1)]. (60)

For T � |μ|, we can replace k1 − k1′ with 2kF in the factors
(k2

1 − k2
1′)4 in the collision integral. Furthermore, for T � v/d,

the argument of the interaction potential can also be set equal
to 2kF . Note that both these conditions on temperature are
satisfied for T � T1. Taking the limit ω → 0, we cast Eq. (60)
in the form of a dimensionless integral equation

A(x)G(x) = 1 −
∫

dy
(x − y)4

cosh2 y
G(y), (61)

A(x) =
∫

dy
(x − y)4

cosh2 y
= 7π4

120
+ π2x2 + 2x4, (62)

for the function

G(x) = 27

π

(
kF

k0

)4
V 2

12(2kF )

v2

T 2

ev(E1 − E2)

×
(

T

vk0

)4

gc
−

(
2T

v
x + kF

)
. (63)

The dc drag resistivity is then obtained as

ρD = 2

e2λ

V 2
12(2kF )

v2

(
2kF

k0

)4( 2T

vk0

)4

T , (64)

with the constant

λ =
∫

dx
G(x)

cosh2 x
� 0.242. (65)

We thus conclude that, for T � T1, the drag rate that deter-
mines the dc drag resistivity is parametrically the same as
1/τ∞

D .

045150-10



COULOMB DRAG BETWEEN HELICAL LUTTINGER LIQUIDS PHYSICAL REVIEW B 95, 045150 (2017)

IV. INTRAEDGE INTERACTION:
BOSONIZATION FRAMEWORK

In Sec. III, we discussed Coulomb drag between helical
edges within the kinetic equation framework and neglected
the TLL renormalization effects. Below, we complement the
formalism of Sec. III by employing the bosonization approach.
In particular, this allows us to proceed to lower temperatures for
which the renormalization leads, as is usual in one dimension,
to anomalous power-law T dependencies of the observables.

Since the renormalization effects in Luttinger liquids
necessarily involve backscattering processes, the characteristic
temperature scale at which the renormalization starts cannot
exceed v/d. Indeed, the distance d between the edges gives
the characteristic radius of the interedge interaction potential
V12, so that on smaller spatial scales one cannot treat this
interaction as local. In fact, in addition to d, screening by
external gates introduces another spatial scale d0 for both the
intraedge and interedge interaction, so that the renormalization
is only operative for T � v/max{d,d0}. Below, for simplicity,
we assume that d ∼ d0.

In what follows, we first bosonize the model and analyze the
resulting phase diagram for two coupled helical edges. Next,
we discuss the implications of the renormalization effects for
the drag resistivity.

A. First-order backscattering

For concreteness, we concentrate on the case of kF d � 1.
Then, for T � v/d (which is, as mentioned above, the range
of T where the renormalization is effective) we have also
T � |μ|, so that the transitions resulting from umklapp
interactions of two particles in the vicinity of the Dirac
point are thermally suppressed. Neglecting them, the part of
Eq. (4) that describes chirality-changing interactions reduces
to backscattering in the vicinity of the Fermi surface. The
Hamiltonian density simplifies, then, to H = H0 + Hf + Hb,
where H0 corresponds to the free Hamiltonian in Eq. (2)
and Hf,b describes forward (f ) and backward (b) scattering.
Moreover, one can describe this type of backscattering by
momentum-independent coupling constants determined by the
Fourier transform of the interedge and intraedge interaction
potentials at the transferred momentum equal to 2kF .

To write H, it is convenient to introduce the electron
operators at a given point in real space, for the right- and
left-moving electrons, in the form

ψσ+(x) = Rσ (x)eikF x, ψσ−(x) = Lσ (x)e−ikF x, (66)

where Rσ (x) and Lσ (x) vary slowly on the scale of k−1
F .

Specifically, H0 andHf are written similar to the conventional
Luttinger model as

H0 = −iv(R†
σ ∂xRσ − L†

σ ∂xLσ ) (67)

and

Hf =
∑
σσ ′

(g2‖δσσ ′ + g2⊥δσ,−σ ′ )ρRσρLσ ′

+ 1

2

∑
σσ ′η

(g4‖δσσ ′ + g4⊥δσ,−σ ′)ρησ ρησ ′ , (68)

where the chiral densities inHf are given by ρRσ = R†
σRσ and

ρLσ = L†
σLσ , and the coupling constants read g4‖ = g2‖ =

V11(0) and g4⊥ = g2⊥ = V12(0). The backscattering part

Hb =
∑
σσ ′

(g1‖δσσ ′ + g1⊥δσ,−σ ′ )h†
σ hσ ′ (69)

is represented in terms of Rσ and Lσ differently, compared to
the conventional Luttinger model, with hσ coming from the
spatial gradient expansion:

hσ = [(∂xR
†
σ )Lσ − R†

σ (∂xLσ )]a, (70)

where a is the ultraviolet cutoff in real space. As discussed
above, the local representation of the backscattering term is
valid on spatial scales larger than d, hence a ∼ d. The coupling
constants for backscattering are given by

g1‖ = 4k2
F

k4
0a

2
V11(2kF ), g1⊥ = 4k2

F

k4
0a

2
V12(2kF ). (71)

Note that the ultraviolet scale a cancels out in Eq. (69).
The forward scattering term Hf can be treated exactly by

bosonization, with the fermionic fields represented in terms of
the bosonic field ϕσ (x) and its canonical conjugate θσ (x) as

Rσ (x) = 1√
2πa

ei
√

π[ϕσ (x)−θσ (x)], (72)

Lσ (x) = 1√
2πa

e−i
√

π[ϕσ (x)+θσ (x)]. (73)

Changing from the “wire basis” (σ = 1,2) to the basis of
symmetric (+) and antisymmetric (−) fields

ϕ± = (ϕ1 ± ϕ2)/
√

2, θ± = (θ1 ± θ2)/
√

2, (74)

the bosonized Hamiltonian density reads

H =
∑
λ=±

vλ

2

[
Kλ(∂xθλ)2 + K−1

λ (∂xϕλ)2
]

+ g1⊥
π

[(∂xθ+)2 − (∂xθ−)2] cos(2
√

2πϕ−), (75)

where

K± =
√

1 − U±
1 + U±

, (76)

v± = u±
√

1 − U 2± (77)

with

U± = 1

2πu±
(g2‖ ± g2⊥), (78)

u± = v + 1

2π
(g4‖ ± g4⊥). (79)

Note that for g2‖ ± g2⊥ = g4‖ ± g4⊥, the relation v±K± = v

holds.
In the bosonized Hamiltonian (75), we have disregarded the

terms arising due to the intraedge backscattering (g1‖ terms),
since they contain the fourth power of gradients and hence
are highly irrelevant in the infrared. This should be contrasted
with the conventional Luttinger liquid, where such terms can
be fully incorporated by shifting g2‖.
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Because of the g1⊥ scattering processes, the coupling
constants for the double-edge system described by the
Hamiltonian (75) are subject to renormalization. Under a
renormalization-group (RG) transformation that keeps the
quadratic term in Eq. (75) invariant, the scaling dimension
for the backscattering operator is obtained as 2(K− − 1) + 2,
with 2(K− − 1) describing the renormalization of the cosine
term and the second term coming from the spatial gradients.
That is, backscattering is irrelevant in the RG sense, with the
coupling constant

αb = g1⊥
2πv−

(80)

scaling with T as

αb(T ) = αb0

(
T d

v

)2K−
, (81)

where αb0 in the bare coupling.
It is worth noting that the renormalization of g1⊥ here is

governed by the forward-scattering amplitudes encoded in K−,
in contrast to the conventional spinful Luttinger liquid, where
the backscattering is renormalized by itself (more precisely,
the weak-coupling beta function for g1⊥ is proportional to the
product g1⊥g1‖) [51]. The difference stems from the inequality
g2⊥ 
= g2‖ that gives K− < 1 for spatially distant edges and
from the strong irrelevance of the g1‖ interaction.

We will return to the scaling behavior of “first-order
backscattering” in Sec. IV C, when calculating ρD . For
now, we proceed with the RG treatment of Eq. (75). The
discussion above brought up an important point that the
theory with H from Eq. (75) is weakly coupled, provided
no additional couplings that become relevant are generated by
the RG transformation. In fact, as we discuss in Sec. IV B,
second-order backscattering processes do become relevant for
sufficiently strong forward-scattering interactions.

B. Higher-order backscattering

As already mentioned in Sec. IV A, the backscattering
operator in Eq. (75), which is itself irrelevant, can generate rel-
evant operators under the RG transformation. These describe
higher-order backscattering processes. Among the additional
backscattering terms in the rescaled Hamiltonian, the rele-
vancy is the highest for the term proportional to the next-order,
compared to Eq. (75), harmonic of the field ϕ−, i.e., to
cos(4

√
2πϕ−). Importantly, the emergent additional backscat-

tering interaction is not suppressed by spatial gradient terms in
the prefactor of the cosine, in contrast to Eq. (75). Specifically,
as shown in Appendix B, the perturbative (in αb � 1) RG
yields the cos(4

√
2πϕ−) term at the second order in g1⊥. The

resulting effective action reads S = S0 + S1 + S2, where

S0 =
∑
λ=±

∫
dxdτ

×
{

− i∂xθλ∂τϕλ + vλ

2

[
Kλ(∂xθλ)2 + 1

Kλ

(∂xϕλ)2

]}
,

S1 = 2v−αb

∫
dxdτ [(∂xθ+)2 − (∂xθ−)2] cos(2

√
2πϕ−),

S2 = v−βb

∫
dxdτ

πa2
cos(4

√
2πϕ−). (82)

Here we discarded the highly irrelevant terms stemming from
g1‖ that modify S0 by introducing terms with higher gradients
(in this regard, their effect is similar to the effect of a finite cur-
vature of the electronic dispersion relation). Note that the term
S1 couples the antisymmetric (−) sector with the symmetric
(+) one, but, as discussed above, this term is irrelevant in the
RG sense (at least, in the weak-coupling regime). The structure
of the term S2 suggests its interpretation as describing the
processes of correlated four-fermion backscattering. A similar
term with doubled harmonics is generated under the RG in
disordered helical edges, see, e.g., Ref. [18], where it described
a two-particle backscattering off the random potential.

Neglecting S1, the action (82) becomes identical to that
for two coupled spinless TLLs, characterized by the Luttinger
constant KTLL

− for the antisymmetric field ϕTLL
− , if one changes

K− → KTLL
− /4 and rescales ϕ− → ϕTLL

− /4. One important
consequence of this mapping is that the system of two strongly
correlated helical liquids with K− � 1/4 behaves similarly to
weakly interacting TLLs. In particular, there is a Berezinskii-
Kosterlitz-Thouless (BKT) transition in the limit of g → 0 at
K− = 1/4 [51]. Specifically, the RG equations for the coupling
constants K− and βb = g/2πv−, which characterize the action
(82), read

dK−
d�

= −8β2
bK

2
−,

dβb

d�
= 2(1 − 4K−)βb, (83)

where � = ln(�d/�), the ultraviolet cutoff �d in energy space
is of the order of v/d, and � is the running cutoff.

The bare value of βb in Eq. (83) is always smaller than the
bare value of αb. Indeed, on the ultraviolet scales � ∼ �d ,
the coupling constant βb0 is quadratic in g1⊥ and proportional
to the function F (K−,K+) from Eq. (B10). Importantly, the
function F (K−,K+) is nonzero for K± > 0, so that the second-
order backscattering is always generated. According to the
weak-coupling RG equations (83), the sign of βb is not changed
in the course of the renormalization, while the renormalization
of K− is insensitive to the sign of βb by Eq. (83). Furthermore,
for |βb| � 1, inelastic processes mediated by second-order
backscattering (see Sec. IV C below) are also insensitive to the
sign of βb. Therefore, in what follows, when discussing the
weak-coupling regime, we will use the notation βb for |βb|.

The integral curves

βb(K−) =
[
β2

b0 + 2

(
1

4K−
− 1

4K0
− ln

K0

K−

) ]1/2

(84)

of the RG flow for different initial conditions βb0 and K0 are
shown in Fig. 5. The separatrix

β
(s)
b (K−) =

[
2

(
1

4K−
− 1 − ln

1

4K−

)]1/2

(85)

divides the phase space into the basin of attraction for the line
of weak-coupling fixed points with βb = 0 and K− > 1/4 (by
way of illustration, point A in Fig. 5) and the region in which
the flow is to strong coupling (growing βb with K− < 1/4,
point B in Fig. 5).

Note that the behavior of βb as a function of T reduces,
for βb0 � 1, to a simple power law (one can neglect the
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FIG. 5. Renormalization-group flow of the coupling constant for
interwire second-order backscattering βb vs the Luttinger constant
for the relative charge mode K−. The separatrix between the strong-
(point B at K− < 1/4) and weak-coupling (point A at K− � 1) phases
(thick black line) terminates at a strongly-interacting point with
K− = 1/4. To the left of the dashed curve the magnitude of βb grows
monotonously.

renormalization of K−):

βb(T ) = βb0

(
T d

v

)8K0−2

. (86)

For K0 < 1/4, second-order backscattering becomes stronger
as T is decreased. The characteristic temperature T ∗ at which
Eq. (83) gives βb(T ∗) ∼ 1 corresponds to the onset of the
strong-coupling regime. For the interwire potential specified
below Eq. (5), the result for this temperature scale is given by

T ∗ ∼ v

d
β

1/(2−8K−)
b0 ∝ exp

(
− kF d

1 − 4K−

)
. (87)

with K− = K0.
In the strong-coupling limit, the term S2 in the action

(second-order backscattering) tends to lock the phase ϕ− at
the minima of the cosine potential in Eq. (82), which implies
the formation of a charge-density wave in the double-wire
system. This is similar to the strong-coupling regime for
two conventional spinless Luttinger liquids with repulsive
interactions [24,26]. At the level of the action S0 + S2, the
difference is that there is a threshold value for the strength
of repulsive interactions below which the strong-coupling
regime cannot be reached in helical liquids, whereas arbitrarily
small repulsion between electrons drives the system into the
strong-coupling regime in conventional Luttinger liquids. We
will discuss Coulomb drag between helical liquids for the case
of strong coupling in Sec. IV D.

C. Luttinger-liquid renormalization of the drag resistivity

In this section, we calculate the drag resistivity by incorpo-
rating the power-law renormalization which is characteristic of
the Luttinger-liquid physics. The effect of forward scattering
(K− < 1) on Coulomb drag mediated by the first-order

backscattering (described by the term S1 in the action) can
be taken into account by using a renormalized interaction
coupling constant αb(T ) in the results obtained above by means
of solving the kinetic equation (Sec. III). This amounts to the
replacement

V12 → V12

(
T d

v

)2(K−−1)

(88)

in the results of Sec. III F. In particular, for T → 0, this
replacement yields

ρD ∼ 1

e2
α2

b(T ) T ∼ 1

e2
α2

b0

(
T d

v

)4K−
T ∝ T 4K−+1. (89)

The dependence of the prefactor of the power law on K− in
this expression is obtained in Appendix C.

As pointed out in Sec. IV B, the backscattering operator
in Eq. (75), which itself is irrelevant, can generate relevant
operators under the RG flow. These describe higher-order
backscattering processes that contribute to the drag resistivity
at order α4

b0. As we will see below, one cannot neglect these
contributions, even though they are of higher order in the bare
interedge interaction strength. This is because they may scale
with a lower power of T than the first-order backscattering
contributions and hence may overcome the lowest-order at
sufficiently low T . Moreover, for the case of sufficiently strong
interaction (low values of K−), these contributions lead to the
increase of ρD with lowering T .

The effect of second-order backscattering is not captured
by the kinetic-equation approach developed above, which
includes only pair collisions and neglects interedge correla-
tions. To obtain the drag conductivity due to the second-order
backscattering processes, we calculate the drag conductivity
using the Kubo formula,

σD(ω) = − i

ω
lim

i
n→ω+i0
lim
q→0

〈j1(q,
n)j2(−q,−
n)〉 , (90)

where jσ (x,τ ) = eKσ vσ ∂xθ (x,τ )/
√

π is the current in edge
σ = 1,2. Here, the correlation function is calculated with
respect to the action S = S0 + S2 in Eq. (82), yielding the
high-frequency drag conductivity

Re σD(ω) = e2v−
ω2

β2
b0

(
πT d

v−

)16K−−3
v−
d

ϒ(K−),

ϒ(K−) = 8

π2
cos2(4πK−)�2

(
1

2
− 4K−

)
�2(4K−), (91)

where �(x) is the Euler gamma function.
The total high-frequency drag conductivity is a sum of

the contribution due to first-order backscattering and the
contribution of Eq. (91). Following the reasoning presented
in Sec. III F, we expect that the dc drag resistivity is
determined by the high-frequency drag rate extracted from
the ac conductivity. A rigorous analysis of the renormalized
dc drag resistivity can be performed in a two-step way. First,
one renormalizes the bosonized theory down to the energy
scale given by T . Second, one refermionizes the theory and
solves the kinetic equation for the new fermionic excitations.
We relegate this program to future work. Comparing Eq. (91)
with Eq. (C9), we see that the second-order contribution scales
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with a lower power of T when the interedge correlations
are sufficiently strong, K− < 1/3. Moreover, as we have
already shown, second-order backscattering becomes relevant
for K− < 1/4. Then, the weak-coupling analysis performed
above is only valid for sufficiently high temperatures.

Summarizing, the low-T drag resistivity is dominated by
the first-order backscattering processes, Eq. (C9), as long as
K− > 1/3. For stronger repulsive intraedge interaction, 1/4 <

K− < 1/3, the low-T drag resistivity is governed by second-
order backscattering, Eq. (91). At K− < 1/4, these scattering
processes become relevant in the RG sense and lead to the
increasing drag resistivity as T is lowered.

D. Coulomb drag in the strong-coupling limit

In this section, we discuss the drag resistivity at the strong-
coupling fixed point of the RG flow derived in Sec. IV B. We
remind the reader that there is a mapping of the bosonized
theory described by the action S0 + S2 (neglecting the irrel-
evant term S1) in Eq. (82) to the theory of coupled TLLs
with the Luttinger constant K = 4K−. Thus the problem of
Coulomb drag in helical edges in the strong-coupling regime
is expected to bear similarity to the drag between spinless TLLs
discussed in Refs. [24,26] and to the problem of pinned charge
density waves [52,53]. To keep our analysis self-contained, we
will reproduce here the main results of these works, using the
notation of Sec. IV B and only keeping the terms S0 and S2 in
the bosonized action.

For definiteness, we assume that βb is positive (for negative
βb the consideration is qualitatively similar). In the strong
coupling limit, with βb � 1 and K− � 1/4, the action
S0 + S2 is minimized by the uniform mean-field configurations√

32πϕ−(x) = φm ≡ (2m + 1)π . Recall that ϕ− describes the
displacement of electrons in wire 2 with respect to electrons
in wire 1, so that the mean-field solution gives two interlocked
charge density waves. At finite T , there exist massive harmonic
fluctuations around this mean-field result. However, these
excitations do not carry the antisymmetric current.

Electron transport from one end of the active wire to the
other only occurs if the mean-field value of the field changes
from φm to φm±1. Depending on temperature, transitions
between the degenerate ground states occur due to either
quantum tunneling or thermal activation. The excitations that
carry the current are either (anti-)solitons that move along the
wire or soliton-antisoliton pairs that are formed inside the wire
and dissociate by the applied electric field. The energy Es and
width Ws of a classical soliton are [53]

Es =
√

2βb

π2K−

v−
a

, Ws = 1

4
√

K−βb

a. (92)

When Ws is much smaller than the system length, the response
in the antisymmetric sector is determined by the thermal
excitation of soliton-antisoliton pairs and reads as [52]

ρtherm = h

32πe2�s

√
EsT a2

2βK−v−
eEs/T , (93)

where �s is the soliton mean free path.
In conventional TLLs, repulsive backscattering interactions

between two (spinless) wires always become stronger as T

is decreased—for arbitrary bare strength of the interactions.
That is, there exists a characteristic temperature T ∗ at which
the coupling constant for electron-electron backscattering
becomes of the order of unity. Below T ∗, a zigzag-ordered
charge density wave is formed, as discussed above. As a
consequence, one of the primary properties of Coulomb drag
between TLLs with repulsive interwire interactions is that ρD

shows activation behavior, Eq. (93), for T � T ∗:

ln
ρD(T )

ρD(�)
� �

T
(94)

with the activation gap � ∼ T ∗ [24].
Based on the above mapping, one concludes that for

K− < 1/4 the drag resistivity has a local minimum at a
characteristic temperature T ∗, Eq. (87), at which the coupling
constant βb for the second-order backscattering becomes of the
order of unity. Below this temperature, ρD(T ) starts growing
exponentially due to thermally activated transitions between
neighboring ground states. On the other hand, if K− > 1/4,
this local minimum does not occur and the drag resistivity
vanishes as a power law as T → 0.

We emphasize that the above conclusion is based on
retaining only the terms S0 and S2 in the bosonized action (82).
If the mapping onto the conventional theory of 1D Coulomb
drag worked for the helical edges, for K− < 1/4 one would
obtain ρD = −ρ12 → ∞ at T → 0. However, from the gen-
eral structure of the resistivity tensor, it follows that the
diagonal (intraedge) resistivity should diverge simultaneously:
ρ11 → ∞. Indeed, for clean (no disorder) systems we have
ρ11 = −ρ12.3 Thus the divergence of the drag resistivity would
mean that the interedge coupling destroys the topological
protection of the (otherwise) conducting helical edge states.
Specifically, on both sides of the quantum spin-Hall transition
driven by the closing and reopening of the gap in the 2D bulk of
the system (gap inversion), we would then have nonconducting
edge states. However, at zero gap, the 2D bulk state is still
conducting; therefore, the delocalized bulk state is expected
to transform into the conducting edge state at one side of the
QSH transition.

We speculate that, within the framework of an effective
edge theory, this “topological protection” might be related
to the difference between the HLL and normal TLL: the
former contains the additional term S1 in the action (“α
term”). While in the weak-coupling regime this term is highly
irrelevant, when the “β-term” S2 enters the strong-coupling
limit, the α-term might again become important, destroying
the charge density wave. In this scenario, the topological
protection is maintained due to the competition of the α and
β terms in the action, leading to nonperturbative effects in
the strong-coupling regime. A somewhat similar situation
was encountered in Ref. [54] devoted to the 2D surface
states of a 3D topological insulator. There, the perturbative
(weak-coupling) RG suggested a localization of the sur-
face states, due to the Altshuler-Aronov-type corrections,
but the nonperturbative effect of the topological protection

3Note that the contribution of the g5-processes to ρ11 vanishes at
T → 0 [18].
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resulted in the emergence of a critical state in the strong-
coupling regime.4

To conclude this section, the behavior of ρD for sufficiently
strong intraedge interaction, namely K− < 1/4, is expected
to be governed by the interplay of the tendency to the
formation of a charge density wave because of second-order
backscattering (the term S2 in the action) on the one hand
and the topological protection (encoded in the α-term S1)
on the other. This interplay might lead to a nonmonotonic
T dependence of ρD at low T , with a local minimum around
T ∗ and a local maximum at yet lower T . The behavior of ρD at
finite T would then demonstrate an “apparent metal-insulator
transition” with decreasing K−. Based on the weak-coupling
RG formalism, we cannot make definite conclusions about the
nature of zero-T Coulomb drag for K− < 1/4. We relegate
the corresponding analysis to future work.

V. SUMMARY

We have presented a theory of Coulomb drag between clean
(no disorder) helical Luttinger liquids based on the kinetic
equation approach supplemented with bosonization to take into
account Luttinger liquid renormalization. We have assumed
that the spin-rotational invariance of the helical liquid is broken
by Rashba spin-orbit coupling in the bulk of the topological
insulator, which allows for interedge backscattering events
without breaking time-reversal symmetry. We have obtained
a richer phase diagram for Coulomb drag in helical liquids
compared to conventional 1D wires with repulsive interactions.

A peculiar feature of Coulomb drag between helical
liquids—related to the existence of the Dirac point—is
exposed in the high-T case. We have shown that Coulomb drag
between helical liquids is mediated not only by backscattering
but also by umklapp processes. In the helical liquid, umklapp
scattering is special in that the energy and momentum
conservation makes it necessary for one of the involved states
(either initial or final) of umklapp-scattered particles to be
right at the Dirac point (see Fig. 2). The umklapp processes
reveal themselves in Coulomb drag between helical liquids
in a subtle manner. Their direct contribution to the drag
resistivity ρD , actually, vanishes exactly; nonetheless, they
impact Coulomb drag profoundly by providing for coupling
to plasmon modes. In turn, Coulomb drag is dominated by the
excitation of plasmons, triggered by umklapp scattering. This
results in a nonmonotonic T dependence of ρD , characterized
by several crossovers. In particular, in the limit of high T , the
drag resistivity falls off in a universal manner as

ρD ∝ α2
b0 T −4, (95)

where αb0 describes the strength of interedge backscattering.
In helical liquids, backscattering is much weakened by

spin-momentum locking, and one important question pertinent
to the behavior of ρD in the low-T limit, where Luttinger-liquid

4In this paper, we restrict ourselves to the analysis of the RG
equations derived at the lowest order in the couplings αb and βb. The
next-order terms in the beta functions might give rise to a precursor
of the topological protection already in the weak-coupling regime
(for K− � 1).

FIG. 6. Sketch of the T dependence of the drag resistivity ρD

for two helical liquids for v/d � |μ| � Tp0, where Tp0 [Eq. (50)] is
the temperature above which the plasmon damping leads to a strong
suppression of the drag rate. For T � T1 [Eq. (52)], electron-hole
excitations in two edges couple to each other through plasmon modes
(“plasmon-mediated Coulomb drag”). For T � T1, Coulomb drag is
determined by direct backscattering of electrons close to the Fermi
surface. The exponent γ in the power-law T dependence of ρD at
T → 0 is given by γ = 4K− + 1 for K− > 1/3 and γ = 16K− − 3
for 1/4 < K− < 1/3. For K− < 1/4, as T decreases, the system
enters the strong-coupling regime at T ∼ T ∗ (Sec. IV B).

effects become important, is about the outcome of a com-
petition between strong correlations and the spin-momentum
locking. The impact of the Luttinger renormalization on the
drag resistivity is twofold. First, it renormalizes the power-law
exponents in the temperature dependence of ρD , depending
on the strength of interactions characterized by the Luttinger
parameter K− of the relative charge mode. Second, for K− <

1/4, higher-order electron-electron backscattering processes
become strong below a characteristic temperature scale T ∗
and tend to form a charge density wave. We have shown that,
if repulsive interactions are not too strong, namely, K− > 1/4,
the spin-locking wins and ρD vanishes at T → 0 as a power
law of T :

ρD ∝
{

α2
b0

(
T
Td

)4K−+1
, K− > 1/3,

α4
b0

(
T
Td

)16K−−3
, 1/3 > K− > 1/4.

(96)

For K− < 1/4, the system enters the strong-coupling regime
at T � T ∗. We expect a nonmonotonic behavior of ρD as
T is lowered further, governed by the interplay between the
formation of the charge density wave on the one hand and the
topological protection on the other, with a local minimum in
the T dependence of ρD at T ∼ T ∗ and a local maximum at
yet lower T .

Summarizing, the overall picture of the dependence of
ρD on T , as follows from the results of Secs. III D–IV D, is
illustrated in Fig. 6. Viewed from a general perspective, Fig. 6
demonstrates that Coulomb drag between helical liquids is, as
already emphasized above, peculiar in two important aspects.
One of the peculiarities, apparent in Fig. 6, is that ρD vanishes
with decreasing T as a power law if intraedge interactions
are not too strong. The other, highly unusual, property of
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helical liquids that we explored in this paper is the peculiar
umklapp-triggered plasmon-mediated mechanism of Coulomb
drag that governs the behavior of ρD for higher temperatures.
This behavior clearly distinguishes Coulomb drag in helical
liquids from drag in conventional 1D quantum liquids and
could be used to identify helical liquids in Coulomb-drag
experiments.5
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APPENDIX A: POLARIZATION OPERATOR AND RPA
INTERACTION FOR THE HELICAL EDGE STATES

In this Appendix, we derive the polarization operator and
the dynamically screened RPA interaction for a homogeneous
HLL. The density of helical fermions in edge σ is written as

ρσ (q) =
∑
η1η2

∫
k

ψ
†
k+q,η1σ

ψkη2σ bη1η2 (k + q,k), (A1)

with the matrix elements bη1η2 (k1,k2) defined in Eq. (5). The
(bare) polarization operator in the Matsubara representation,

�(q,i
m) = −〈ρ(q,i
m)ρ(−q,−i
m)〉 (A2)

5Experimentally, the study of Coulomb drag between helical
liquids can be performed either with the vertical setup consisting
of two parallel quantum wells, as shown schematically in Fig. 1,
or with the horizontal setup [C. Brüne and H. Buhmann (private
communication)], where the two quantum wells are located in the
same plane.

(given that we have identical edges and no tunneling between
them, the index σ is dropped here and below), averaged over
the noninteracting ground state, is a sum � = ∑

η1η2
�η1η2 of

the chiral components

�ηη(q,i
m) =−T
∑

n

∫
k

G0η(k + q,iωn + i
m)G0η(k,iωn)

(A3)

and the backscattering components

�η,−η(q,i
m) =−T
∑

n

∫
k

G0,−η(k + q,iωn + i
m)

×G0η(k,iωn)bη,−η(k,k + q)b−η,η(k + q,k),

(A4)

where the bare fermion propagator reads

G0η(k) = (−iωn + vηk − μ)−1. (A5)

We have, then,

�ηη(q,i
m) = 1

2πv

vηq

vηq − i
m

(A6)

and

�η,−η(q,i
m) =− 1

k4
0

∫
k

[k2 − (k + q)2]2

i
m + 2vηk + vηq

× [nF (vηk) − nF (−vηk − vηq)]. (A7)

After the analytical continuation to real frequencies i
m →

 + i0, the retarded backscattering polarization operator
�η,−η(q,
) is given by

Re �η,−η(q,
) =− 1

2πv

q2

v2k4
0

P
∫ vk0

−vk0

dε
(2ε + εq)2

2ε + εq + 


× nF (ε + μ) + (
 → −
), (A8)

Im �η,−η(q,
) = 1

4v

(vq)2
2

(vk0)4

sinh 

2T

cosh 

2T

+ cosh vηq+2μ

2T

,

(A9)

++ (R    L)

(a)

(b)

= ++

++

FIG. 7. (a) Aslamazov-Larkin diagrams describing the lowest order contribution to drag. The solid (dotted) lines refer to the quasiparticle
Green’s functions of right (left) movers and the wiggly line denotes the dynamically screened RPA interaction. (b) Diagrammatic representation
of the Dyson equation for g1⊥ type interaction. We note that the coupling to plasmons (chiral polarization bubbles) is due to g5 type interaction
lines unique to the helical Luttinger liquid. In both (a) and (b) we have set g1‖ = g3‖ and g1⊥ = g3⊥.
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where P denotes the principal value, ε = vηk, and εq = vηq + 2μ. Note that the real part of the backscattering polarization
operator diverges at the ultraviolet momentum scale k0 as k2

0 (with the dynamical part diverging logarithmically in k0) while
having k−4

0 in front of the integral, which means that the contribution of �η,−η to Re � is much smaller than that of �ηη, so that
Re � can be approximated (we do not directly use the Kramers-Kronig relation for � anywhere in the paper) as

Re �(q,
) � 1

πv

(vq)2

(vq)2 − 
2
. (A10)

For the imaginary part of �, we have

Im �(q,
) = 


2v
[δ(vq − 
) + δ(vq + 
)] + 1

4v

(vq)2
2

(vk0)4
sinh




2T

[
1

cosh 

2T

+ cosh vq+2μ

2T

+ (q → −q)

]
. (A11)

We now turn to the calculation of the dynamically screened RPA interaction. The intra- and interedge components of the
interaction, V11(q,
) and V12(q,
), respectively, obey the Dyson equation(

V11 V12

V12 V11

)
=

(
U‖ U⊥
U⊥ U‖

)
−

(
U‖ U⊥
U⊥ U‖

)(
� 0
0 �

)(
V11 V12

V12 V11

)
, (A12)

where U‖(q) and U⊥(q) are the bare interactions. A diagrammatic representation of the Dyson equation is presented in Fig. 7.
Solution to Eq. (A12) reads

V11 = U‖ + � (U 2
‖ − U 2

⊥)

1 + 2�U‖ + �2(U 2
‖ − U 2

⊥)
, (A13)

V12 = U⊥
1 + 2�U‖ + �2(U 2

‖ − U 2
⊥)

. (A14)

Within the model, as discussed below Eq. (5), we assume that U‖(q) = V0 is independent of q and U⊥(q) = V0e
−|q|d . The

interedge RPA interaction V12(q,
) can then be written as

V12(q,
) = 1

e|q|d[V −1
0 + 2�(q,
)

] + 2V0 sinh(|q|d) �2(q,
)
. (A15)

Neglecting (Im �)2 compared to (Re �)2 in the real part of the term �2 in the denominator of Eq. (A15) and using Re � from
Eq. (A10), V12(q,
) reduces to

V12(q,
) = V0e
−|q|d [(vq)2 − 
2]2

(
2 − 
2+)(
2 − 
2−) + 2i(Im �)V0[(vq)2 − 
2]2[1 + 2e−|q|d sinh(|q|d)(Re �)V0]
, (A16)

where the plasmon modes 
±(q) are obtained as the solution of the equation

[(vq)2 − 
2]2 + 2α(vq)2[(vq)2 − 
2] + 2α2e−|q|d sinh(|q|d)(vq)4 = 0 (A17)

with α = V0/πv, which gives 
±(q) in Eqs. (24)–(26).
Taking the plasmon damping into account, the denominator of Eq. (A16) with the inclusion of the term proportional to Im �

is expressible as

{[
 + i�(q,
)]2 − 
2
+(q)}{[
 + i�(q,
)]2 − 
2

−(q)}. (A18)

In the limit of weak damping, |�+ − �−| � |
+(q) − 
−(q)|, where

�± = �(q,
±), (A19)

this reduces to

[(
 + i�+)2 − 
2
+][(
 + i�−)2 − 
2

−], (A20)

as in Eq. (23).

APPENDIX B: SECOND-ORDER BACKSCATTERING

In this Appendix, we perform a real-space RG procedure
using the operator product expansion [55] (OPE) to derive the
most relevant operator generated by the backscattering term in
Eq. (75):

S1 = g1⊥
π

∫
dxdτ cos(

√
8πϕ−)[(∂xθ+)2 − (∂xθ−)2 ]. (B1)

The general form for an OPE for two operators Oi and Oj is

:Oi(rλ,1) :: Oj (rλ,2):

=
∑

k

cijk

|rλ,1 − rλ,2|�i+�j −�k
:Ok

(
rλ,1 + rλ,2

2

)
: (B2)

where :O : denotes normal ordering, �i is the scaling
dimension of Oi , and rλ = (x,vλτ )T denotes coordinates in
space-time. The above equality does not hold on the level
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of operators, but it is valid when used within the correlation
functions, i.e., when the averaging is performed with another
set of operators, at a distance much larger than |r1 − r2| from
r1 or r2.

It is convenient to introduce the complex coordinates (z̄λ)
and (zλ) as

zλ = vλτ + ix, z̄λ = vλτ − ix, (B3)

where τ = −it is the imaginary time variable. We further
introduce the short-hand notations 1λ ≡ (zλ,1,z̄λ,1) and zλ,12 ≡
zλ,1 − zλ,2. By expanding the partition function of the model
defined in Eq. (75) in powers of g1⊥, followed by the
reexponentiation, we find the effective action [55] to the second
order in the coupling constant,

S2 = 1
2

[〈S1⊥〉2 − 〈
S2

1⊥
〉 ]

, (B4)

where 〈. . .〉 denotes the averaging with respect to the fixed-
point action. Within the RG procedure, we increase the
short-distance cutoff a at each step by an infinitesimal
amount, a → a′ = (1 + �)a, which reproduces the action, but
with renormalized coupling constants, and may lead to the
emergence of new operators. To study the terms in the effective
action, we need the time-ordered ϕλϕλ correlation function of
the λ = ± fields,

〈ϕλ(zλ,z̄λ)ϕλ(0,0)〉 = −Kλ

4π
ln

[ |zλ|2 + a2

a2

]
. (B5)

The correlation function for the θλ fields can be obtained by
using the duality relations

Kλ∂zλ
θλ = ∂zλ

ϕλ, Kλ∂z̄λ
θλ = −∂z̄λ

ϕλ, (B6)

which, similarly to the OPE, hold when used for the averages
that produce the correlation functions.

The most relevant perturbation in the effective action (B4)
is obtained by contracting all ∂xθ terms for small space time
distances a < |z−,12| < a′. Using the correlation function of
the bosonic fields and the duality relations (B6), we find the
OPEs

[(∂xθ+)2ei
√

8πϕ−]1[(∂xθ+)2ei
√

8πϕ− ]2

→ 1

4(πK+)2

(
z2
+,12 + z̄2

+,12

)2

(a2 + |z+,12|2)4

( |z−,12|2 + a2

a2

)2K−

× ei
√

8π [ϕ−(1−)+ϕ−(2−)] (B7)

and

[(∂xθ−)2ei
√

8πϕ− ]1[(∂xθ−)2ei
√

8πϕ− ]2

→ 1

(4π )2

[
2

K2−

(
z2
−,12 + z̄2

−,12

)2

(a2 + |z−,12|2)4
+ 4

(z−,12 + z̄−,12)4

(a2 + |z−,12|2)4

− 8

K−

(z−,12 + z̄−,12)2

(a2 + |z−,12|2)2

z2
−,12 + z̄2

−,12

(a2 + |z−,12|2)2

]

×
( |z−,12|2 + a2

a2

)2K−

ei
√

8π [ϕ−(1−)+ϕ−(2−)]. (B8)

Here, we neglected less relevant terms in the OPE. We perform
the integration over the relative coordinates by introducing the
polar coordinates z−,12 = re−iφ and z+,12 = re−iφ + rṽ cos φ

with the parameter ṽ = v+/v− − 1 = K−/K+ − 1. The radial
and angular integrations decouple and we perform the radial
integration over an infinitesimal shell r ∈ (a,a′) by setting
r = a. After integrating out the relative coordinates, we obtain
the following contribution to the effective action:

δS2 = g2
1,⊥F (K−,K+)�

(2π )2v−

∫
dxdτ

πa2
cos[

√
32πϕ−(x,τ )], (B9)

with the dimensionless function

F (K−,K+) = 22K− [f1(K−,K+) + f2(K−)], (B10)

where

f1(x,y) = 4y2
∫ 2π

0

dφ

2π

[(x2 + y2) cos2 φ − y2]2

[2y2 + (x2 − y2) cos2 φ]4

= 5x6 + 45x4y2 + 7x2y4 + 7y6

32
√

2(x2 + y2)7/2
(B11)

and

f2(x) = 1

(4x)2

∫ 2π

0

dφ

2π
[1 − 4x + 6x2

−8x(1 − x) cos 2φ + (1 − 4x + 2x2) cos 4φ]

= 1 − 4x + 6x2

16x2
. (B12)

Importantly, the function F (K−,K+) is nonzero for K± > 0.
We thus see that, upon renormalization, the new coupling
constant is always generated in the effective action, even if
it is absent at the ultraviolet scale. The effect of the term (B9)
on the phase diagram of capacitively coupled helical edge
modes is discussed in Sec. IV B.

APPENDIX C: RENORMALIZATION
OF THE DRAG RESISTIVITY

In this Appendix, we derive the asymptotics of the drag
resistivity at T → 0 for K− > 1/3. We assume for simplicity
that the interedge interaction is weak. To the lowest order in the
interwire interaction, the dc drag resistivity can be expressed
as [29,34]

ρD = 1

e2

∫ ∞

0
dq

∫ ∞

0
dω

q2V 2
12(q)

2K2k2
F T

Im�1(q,ω)Im�2(q,ω)

sinh2
(

ω
2T

) ,

(C1)

where Im�σ (q,ω) is the imaginary part of the retarded
density-density correlation function of wire σ = 1,2. Here,
we restrict the discussion to equal edges with the Luttinger
parameter K1 = K2 ≡ K (or, equivalently, K− = K+ = K)
and the plasmon velocity v1 = v2 ≡ v. The drag resistivity
obtained by this conventional formula is equivalent to that
obtained from the high-frequency drag conductivity using the
kinetic equation approach [36].
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We write the density operator of helical fermions by employing the expansion in Eq. (3). This yields

ρσ (x) = ψ
†
σ,↑ψσ,↑ + ψ

†
σ,↓ψσ,↓ � R†

σRσ + L†
σLσ + 2kF

k2
0

{i[(∂xR
†
σ )Lσ − R†

σ ∂xLσ ]e−i2kF x + H.c.}. (C2)

The polarization operators entering Eq. (C1) are calculated in the presence of the intrawire interaction which would lead to the
Luttinger-liquid renormalization of the drag resistivity, but neglecting correlations between the edges. This amounts to setting
g2⊥ = 0 and g4⊥ = 0. Then the quadratic part of the total Hamiltonian separates into two independent sectors in the edge basis.
In the bosonic language, the 2kF part of the density-density correlation function, which determines the behavior of the drag
resistivity at low temperatures, can be cast in the form

�2kF (x,τ ) = 4k2
F

πa2k4
0

e−i2kF x 〈∂xθ (x,τ )∂xθ (0,0)ei
√

4π [ϕ(x,τ )−ϕ(0,0)]〉 + H.c.. (C3)

The analytic continuation to real time and the Fourier transform to the frequency-momentum space is standard [51] and yields

�2kF (q,ω) = �̃2kF (q + 2kF ,ω) + �̃2kF (q − 2kF ,ω) (C4)

with �̃2kF (q,ω) given by

�̃2kF (q,ω) = −
(

kF

k0

)2 1

(k0a)2

(
πaT

v

)2K 1

π4T 2
KK

(
qv

4πT
,

ω

4πT

)
. (C5)

Here,

KK (x,y) =
(

1

K
+ 1

)
IK+2,2(x,y) − 2IK,0(x,y) + JK+1(x,y) (C6)

and we have defined the functions

Iγ,δ(x,y) = sin(πγ )22γ−δ−2B

(
−i(x + y) + γ − δ

2
,−γ + δ + 1

)
B

(
−i(y − x) + γ

2
,−γ + 1

)
+ (x → −x) (C7)

and

Jγ (x,y) = v

(πT )2
22γ−4 sin(πγ )

{[
B

(
−i(x + y) + γ

2
− 1

2
,−γ + 1

)

+B

(
−i(x + y) + γ

2
+ 1

2
,−γ + 1

)][
B

(
−i(y − x) + γ

2
− 1

2
,−γ + 1

)
+ B

(
−i(y − x) + γ

2
+ 1

2
,−γ + 1

)]}
,

(C8)

where B(x,y) is the Euler beta function. When deriving this result, we used∫ ∞

0
dX e−μX sinhν(γX) = 1

2ν+1γ
B(μ/2γ − ν/2,ν + 1),

where the identity holds as long as Reγ > 0, Reν > −1 and Reμ > Re(γ ν). In our problem, there exist integrals for which the
condition Reν > −1, which ensures the infrared convergence, is not fulfilled. In that case, the integrals over time t are cut off at
small t by a/v and, consequently, the integrals over X are cut off by πT a/v.

For T → 0, the function Im K([q − 2kF ]/4πT,ω/4πT ) is strongly peaked around q = 2kF with a width of the peak of
the order of T/v. Therefore we can neglect the term Im KK ([q + 2kF ]/4πT,ω/4πT ) in the integral over positive momenta in
Eq. (C1). Then, we find

ρD ∼ IK

[V12(2kF )]2

v2

(
kF

k0

)4
T

(k0a)4

(
πaT

u

)4K

, (C9)

where

IK =
∫ ∞

0
d


[ImKK (0,
/4π )]2

sinh2(
/2)

with 
 = ω/T . As discussed in the main text, the natural ultraviolet cutoff here is provided by the distance between the edges,
a ∼ d. The parametric dependence of the drag resistivity obtained by means of bosonization reproduces in the limit K → 1 the
result (64) of the kinetic-equation analysis.
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[15] F. Crépin, J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel,
Phys. Rev. B 86, 121106 (2012).
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