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Nonlocal effects, requiring wave-vector- (q-) dependent dielectric response functions, are becoming
increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic
approximation is the simplest and most often used model but with limited applicability to problems involving
surface plasmons. We show here that the d-function formalism, exact to first order in q, is a powerful
and simple-to-use alternative, which allows for exact nonlocal extensions of local calculation schemes, e.g.,
finite-difference time-domain methods, without code changes. It is also extendable to order q2, and we demonstrate
this by comparing with various earlier ab initio calculations and experiments as well as by performing our own
random-phase-approximation calculations (valid for all q) of the surface-plasmon dispersions for simple metals
with various electron-gas densities. Finally we show that this hydrodynamic-extended d-function formalism can
also be applied to arbitrary plasmonic/metamaterial structures as long as the nonflat interfaces can be modeled
as effective media films.
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I. INTRODUCTION

In many studies of plasmonic and/or metamaterial systems,
their electromagnetic behavior can be obtained from a local
dielectric response model, which assumes that the excitations
involve a vanishingly small momentum exchange, i.e., a
vanishing wave vector [1]. Although this is usually an excellent
approach, commonly used in optical studies of materials
and employed in various simulation codes [including finite-
difference time-domain (FDTD) methods], in some cases it
fails. For instance, the well-known local Drude formula for the
dielectric function of simple metals [1,2] ε(ω) = 1 − ω2

p/ω2,
where ωp is the plasma frequency, is an excellent approxima-
tion at high (e.g., visible) frequencies. However, it completely
fails at very low frequencies (far IR and below) where the
nonlocality of the response becomes explicit [3], i.e., ε(q,0) ≈
1 + q2

T F /q2. This immediately leads to the well-known, static
Thomas-Fermi screening, and its positivity also leads to BCS
superconductivity in metals [4], for instance. Clearly the
nonlocality completely controls the physics in this case.

In this paper we first discuss two simple approximate
schemes for nonlocal extensions of the local Drude model: the
well-known phenomenological hydrodynamic approximation
(HDA) and the ab initio d-function formalism of Feibelman,
exact to first order in q. We show how the d-function formalism
can be used to generalize any local calculation scheme (e.g.,
FDTD) by mapping the nonlocal effects onto an effective
coating, having a complex dielectric function. Thus, any local
calculations or simulations that include this film become
automatically nonlocal to the same order. We also show how
the d-function formalism can be extended to order q2 (in
the spirit of the HDA) and demonstrate the validity of this
extension by comparing to ab initio calculations and experi-
mental data of the surface-plasmon (SP) dispersion on simple
metallic surfaces as reported in the literature. Additionally, we
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compare to our own ab initio random-phase-approximation
(RPA) calculations (valid for all q) of the surface-plasmon
dispersions in thick metallic slabs for various electron-gas
densities. Finally, we demonstrate that the HDA can be used to
estimate the parameters of our d-function formalism extension
and show that this HDA-extended d-function formalism can
also be applied to arbitrary plasmonic/metamaterial structures
as long as the nonflat interfaces can be modeled as effective
media films.

II. SIMPLE NONLOCAL EXTENSIONS

The simplest nonlocal model is the HDA, which extends
the local Drude model as follows [5,6]:

ε(q,ω) = εb − ω2
p

ω(ω + iγ ) − βq2
, (1)

with β = 3
5v2

F , where vF is the Fermi velocity, εb is the
bound electron contribution, and γ is the loss parameter
(rate of electron scattering with phonons and defects). This
equation reduces both to the Drude model for high frequency
as well as to the Thomas-Fermi model for vanishing fre-
quency, showing that the Thomas-Fermi wave vector is given
by qT F = ωp/

√
β.

Despite many successful applications, the HDA has been
known to be inadequate at describing the dispersion of
SPs [7,8]. An alternative successful approach has been
proposed by Feibelman, who in his seminal papers of the
late 1970s not only pioneered ab initio computer simulations
of the electromagnetic effects of metallic interfaces, but also
developed a simple nonlocal parametrization of the surface
problem with his ab initio d-function formalism [9,10]. He
showed that the nonlocal electromagnetic response of a simple
(alkali-) metal surface is fully described (to first order in
q) by the standard Fresnel formulas with a small adjust-
ment involving a complex surface response function called
the d function [11], given by d(ω) = ∫

dz z δρ(z,q = 0,ω)/∫
dz δρ(z,q = 0,ω). Here, δρ is the in-plane charge density
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induced by a long-wavelength field at frequency ω with z

perpendicular to the surface—thus, the d function physically
represents the centroid of the induced charge density, which,
for alkali metals, is located outside of the surface. We explicitly
write the formula for the modified reflection coefficient of
Feibelman in the following section for a particular geometry
but first report a salient result.

Using this formalism, a very simple nonlocal expression
for the SP dispersion of metals can be obtained by requiring
divergence of the reflection coefficient [12], which yields the
well-known result [10],

ω(q) = ωsp

[
1 − 1

2d(ω)q
]
, (2)

where ωsp = ωp/
√

εb + ε0. Since d(ω) > 0 for all alkali met-
als [8], (2) demonstrates that the initial slope of the dispersion
for small q is negative for these metals. It is important to note
that the d functions are obtained using nonretarded formalisms
without any loss of accuracy and have been calculated for
various simple (alkali) and complex (noble) metals [7,13–16].
The d-function formalism has thoroughly been confirmed by
electron energy loss spectroscopy experiments [17,18] and
provides deep insight into the SP dynamics at small q. Thus,
any first-order calculation of nonlocal surface physics should
incorporate the d function.

III. GEOMETRIC MAPPING

We first consider the lowest-order extension of the nonlocal
response of a metallic surface using the d function. Since
the d function is a surface response function, the nonlocal
physics that it encapsulates may be conveniently mapped
onto the local surface dielectric function of a thin fictitious
film (of thickness �d) placed on top of this metal surface.
Then conventional Fresnel optics can be used to calculate the
reflection coefficient for this system, whose geometry consists
of an outside dielectric [ε0], a surface layer [εs(ω)], and a metal
[ε(ω)] in the configuration depicted in Fig. 1.

We derive rp for a monochromatic transverse wave (p po-
larized) incident upon the system described above. The electric

FIG. 1. Reflection geometry for p-polarized monochromatic
light incident on a layered system from the positive z direction. A
slab of thickness �d and permittivity εs(ω) acts as an intermediate
layer (index s), confined by a dielectric half-space with permittivity
ε0 (index 1) and a metallic half-space with Drude permittivity ε(ω)
(index 2). The plane of incidence is the xz plane.

field in the three regions can be written as

�E1(�r,t) = �E1+ei(ωt−qx+k1z) + �E1−ei(ωt−qx−k1z), (3)

�Es(�r,t) = �Es+ei(ωt−qx+ksz) + �Es−ei(ωt−qx−ksz), (4)

�E2(�r,t) = �E2+ei(ωt−qx+k2z), (5)

where �Ej± is the electric-field vector of the incoming (+) or
outgoing (−) wave in the outside dielectric (j = 1), surface
layer (j = s), or metal (j = 2). The respective wave vectors
are �kj± = (q, ∓ kj ), where kj = √

(ω/c)2εj − q2 is the z

component and q is the in-plane component. Using the
standard boundary conditions across an interface (Dz and Ex

continuous), the reflection coefficient is

rp ≈
ε(ω) − ε0

k2
k1

+ i ε(ω)ε0
εs (ω)k1

q2�d − iα−(ω)�d

ε(ω) + ε0
k2
k1

− i ε(ω)ε0
εs (ω)k1

q2�d + iα+(ω)�d
, (6)

where α±(ω) = [ ε(ω)ε0
k1

(ω
c

)2 ± εs(ω)k2] and an overall phase
has been neglected.

Now, the nonlocal reflection coefficient for this geometry
but without the presence of a film was shown by Feibelman [10]
to be

rp = ε(ω) − ε0
k2
k1

+ i [ε(ω)−ε0]
k1

q2d(ω)

ε(ω) + ε0
k2
k1

− i [ε(ω)−ε0]
k1

q2d(ω)
, (7)

where positive d(ω) lies above the metal surface and, as
in (6), index 1 corresponds to the outer dielectric and index 2
corresponds to the metal. In order to identify the mapping
we require that (6) is identical to (7), which, with the natural
assumption that εs(ω) ∼ �d and for sufficiently small �d,
requires

εs(ω) = ε(ω)ε0�d

[ε(ω) − ε0]d(ω)
. (8)

Thus, one has a simple prescription for extending any local
calculation or simulation, such as FDTD, into the small-q
nonlocal domain: Before performing a simulation, one must
first add a fictitious dielectric film of finite thickness �d to
any metallic surface of the structure. This film must have
the complex frequency-dependent (but local and nonretarded)
dielectric function εs(ω) given by (8). The simulations now
include nonlocal effects, accurate to lowest order in q.

The HDA version of this mapping of nonlocal effects
into structural extensions (local films) was first proposed and
studied in Ref. [6] and recently in Ref. [19]. This paper
provides justification and extension of these studies based
on the d-function formalism. In fact, (8) reduces to the
corresponding equation in Ref. [19] after a formula for the
d function, appropriate for the HDA, is used [6,10]

dHDA(ω) = i

qpl

=
√

β/
[
ω2

p

/
εb − ω(ω + iγ )

]
, (9)

where qpl is the plasmon normal wave vector, obtained from
the condition ε(q,ω) = 0 with ε(q,ω) given by (1).
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IV. HDA-EXTENDED d-FUNCTION FORMALISM

A higher-order nonlocal expression for the SP dispersion
of metals, approximately valid for all q, can be obtained by
quadratically extending (2), which yields

ω(q) = ωsp

[
1 − 1

2d(ω)q + bq2]. (10)

This ansatz follows from the Taylor expansion of ω(q) with
the next term expected to be of O(q2). We refer to this as the
hydrodynamic term because of how it has been defined in the
literature, e.g., in (1). Ultimately, we show that the coefficient
b has the same physical characteristics as the relevant term in
the HDA.

Figure 2 shows that one can nearly perfectly fit ab initio
calculations, such as the local density approximation (LDA)
[17], using (10) with b as a free parameter. In obtaining the
fit represented by the red-dotted line in Fig. 2, we calculated
Re[ω] in (10) using the complex d function for potassium as
given in Ref. [7]. Our fit is very good for the monopole SP
mode (lower branch). In addition, it qualitatively describes
the multipole SP mode (upper branch), which is related to
a pole structure of the d function [1,7]. Due to finite losses
incorporated in the d function, the two branches of the SP
modes are connected in a characteristic s-shaped way, similar
to how the two monopole SP branches are connected in the
retarded limit [1]. The fit represented in Fig. 2 by the red-solid
line employs the same procedure as for the red-dotted line but
models the pole structure in the d function with a Lorentzian
form with zero damping, thus, capturing the entire behavior
of the undamped multipole branch, starting from q = 0. Note,
that the experimental and simulation data for the upper branch
for small q are closer to the red-solid line, which shows that
the d function overestimates losses for this branch when using

FIG. 2. Surface-plasmon dispersion for potassium: experimental
results (open squares, from Ref. [17]); LDA calculation (black-solid
lines, from Ref. [17]); calculation employing the extended model (10)
in conjunction with the full complex d function (red-dotted line);
calculation employing the extended model in conjunction with the
losslessd function (red-solid lines). The black dashed-dotted lines
represent the dispersion for b = 0. The pure HDA result is shown as
a blue-dotted line. Data for the d function are obtained from Ref. [7].

our HDA-extended d-function formalism. The SP dispersion
for b = 0 also is shown in Fig. 2 for comparison (black
dashed-dotted lines). Finally, the pure HDA SP dispersion,
given by (10) with a vanishing d function and b = β/2ω2

sp, is
shown as a blue-dotted line. Note that the HDA alone fails to
describe the SP dispersion, in particular, its negative slope for
small q.

Equation (10), our HDA-extended d-function formalism,
is the main result of this paper. In the next section, we
provide evidence that b has scaling properties identical to the
appropriate hydrodynamic term by studying its behavior as a
function of the electron-gas density.

V. FULL AB INITIO NONLOCAL RESPONSE
OF METALLIC SLABS

The nonlocal effects for arbitrary q can be calculated ex-
actly in the RPA for varying electron density. Specifically, we
have performed RPA calculations based on the formalism of
Ref. [20] applied to a metallic slab of finite thickness [17,21],
which employs the known self-consistently calculated ground
states (for various electron densities) of Lang and Kohn [22].
Then the electron-density δρ(z; ω), induced by an external
perturbation Vext, is calculated using the following integral
equation:

δρ(z; ω) =
∫

dz′χ0(z,z′; ω)

×
[
Vext +

∫
dz′′Vc(z′,z′′)δρ(z′′; ω)

]
, (11)

where χ0(z,z′; ω) is the single electron susceptibility and
Vc(z,z′) = e2/|z − z′|. We have solved (11) for four differ-
ent electron densities, parametrized by Wigner-Seitz radii
rs = 2, 3, 4, 5. Subsequently, the induced density is used
to calculate the complex reflection coefficient via r(q,ω) =∫

dz eqzδρ(z; ω).
Figure 3 shows color maps of log[Im{r(q,ω)}] plotted vs

frequency ω and wave-vector q, each for different electron
densities. Maxima of Im{r(q,ω)} occur at the surface-plasmon
condition, and those maxima are marked as open circles
on these maps. Due to the finite thickness of the slab and
the resulting coupling between SPs on opposite sides, there
is a well-known split of the dispersion at small momenta

(here for q < 0.05 Å
−1

) with the upper and lower branches
representing the antisymmetric and symmetric coupled SP
modes, respectively. The maxima corresponding to these split
modes have not been marked but are visible due to color
coding.

For larger q (of interest here) a single branch exists,
representing the SP mode of a single surface. The thin-solid
lines represent the results of RPA calculations for semi-infinite
metallic systems, available in the literature [17,18], calculated
for similar electron densities. There is an excellent agreement
between our slab and the semi-infinite calculations for q >

0.1 Å
−1

[23], demonstrating the usefulness of the slab scheme.
Additionally, in Fig. 3 we also show the measured dispersion
relations for surfaces of bulk alkali metals with similar
densities when available [17,18]. These are in qualitative

agreement with our calculations in the q > 0.1 Å
−1

range, in
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FIG. 3. Color maps of log[Im{r(q,ω)}] from RPA calculations of
metallic jellium slabs for (a) rs = 2, (b) rs = 3, (c) rs = 4, and (d)
rs = 5. The circles represent maxima of r(q,ω), which occur at the
SP dispersion condition. The solid lines represent the RPA calculated
results for semi-infinite jellium [17], and squares are the experimental
results [17] for (a) rs = 2.07, (c) rs = 3.93, and (d) rs = 4.86. No
simulation or experimental data are available in literature for rs = 3.

particular, at higher electron densities. Note, that no simulation
or experimental data exist in the literature for rs = 3.

To investigate the density scaling properties in detail, we
normalize and parametrize the SP relations as suggested
by (10),

ω(q)

ωsp

= 1 − aq + bq2. (12)

This equation was employed to fit the calculated dispersions
of Fig. 3 using the least-squares method. Figure 4(a) shows
that this fit is excellent, confirming that our HDA-extended
d-function formalism is well motivated.

Figure 4(b) shows the fit-extracted parameters a (black
triangles) and b (red squares) plotted as a function of rs .
Clearly, b scales linearly with rs with the red-dashed line
as a guide to the eye. This linear scaling is consistent with
the behavior of β in the HDA, implying that the HDA is a
good model for b. This can be shown by substituting (1) into
the local version of the reflection coefficient (7), searching
for the vanishing denominator of rp, and matching the result
with the functional form of (12). This procedure yields

b = β/2ω2
sp ∝ rs . (13)

Similarly, assuming the HDA form of the d function (9) and
performing the same analysis, we obtain

a =
√

β/2ωsp ∝ √
rs . (14)

The black-dashed line represents the scaling given by (14)
and shows that the HDA scaling again agrees well with the fit

FIG. 4. (a) SP dispersions for metallic jellium slabs with rs =
2, 3, 4, 5: RPA calculations (symbols), least-squares fits to these
calculations using (12) (solid lines). (b) a vs rs : RPA fits (black
triangles) and HDA model fit to points (black-dashed line); b vs rs :
RPA fits (red squares) and HDA model fit to points (red-dashed line).

obtained from (12) (black-solid triangles). This demonstrates
that the HDA can be used to estimate the electron-density
scaling of the a and b parameters of our HDA-extended
d-function formalism.

Relations (13) and (14) above also suggest that, for systems
with the effective electron mass changed (m = ηm0) rather
than the electron density, the following scaling holds:

b ∝ 1/η, (15)

and

a ∝ 1/
√

η. (16)

VI. HDA-EXTENDED d-FUNCTION FORMALISM
FOR METAMATERIALS

The analysis presented in Sec. V was for metallic systems
with flat interfaces. However, the simple scalings developed
there are expected to hold for structures with nonflat interfaces,

045149-4



NONLOCAL EXTENSIONS OF THE ELECTROMAGNETIC . . . PHYSICAL REVIEW B 95, 045149 (2017)

treated as flat effective media films. This idea is supported by
Pendry et al. [24] in their important paper, which pioneered the
metamaterial concept. They showed that the effective dielectric
function of a three-dimensional cubic metallic wire array in
the long-wavelength limit is given by the Drude form but with
the plasma frequency renormalized by the effectively reduced
density (electrons are confined to wires and thus occupy a
smaller volume of the array; rs scaling) and by an increased
effective mass (an inductive effect; η scaling). As a result of
both renormalizations, the wire medium was shown to have its
plasma frequency dramatically shifted down from the UV to
the radio range. The same phenomenon is expected for other
metamaterial structures, e.g., for those with nonflat surface
morphology.

In this context, one can rewrite the formula (7) into the
conventional local form [25]

rp = ε(q,ω) − ε0

ε(q,ω) + ε0
, (17)

but require that the SP dispersion relation is still given
by (12). This leads to an effective dielectric function of the
material, which now has the characteristic modified-Drude
form

ε(q,ω) = εb − ω2
p

ω(ω + iγ ) + �
, (18)

where

� = 2ω2
sp(aq − bq2), (19)

with a and b defined as in (12) and which can be estimated by
the HDA.

Thus, accounting for nonlocal effects amounts to the
following very simple transformation in the effective dielectric
function formula:

ω(ω + iγ ) → ω(ω + iγ ) + �. (20)

The same transformation can be used in the more
general Drude-Lorentz form of the effective dielectric

function,

ε(ω) = εb +
∑
m

ω2
pm

ω2
0m − ω(ω + iγ )

. (21)

Thus, the full procedure to implement the nonlocal exten-
sions is as follows. First, a local simulation of a metamaterial
structure should be performed, for example, by employing
FDTD. Second, the effective local dielectric function should be
extracted, for example, by using the standard procedure devel-
oped in Ref. [26], and fitted with the Drude-Lorentz form (21).
Finally, the transformation (20) provides the desired extension.
A similar procedure was applied in the recent study of the elec-
tron scattering in the presence of phonons and plasmons, which
requires nonlocal corrections [27], except in this case a simple
linear model of � was used instead of (19), and a different
method was employed to extract the dielectric function.

VII. CONCLUSIONS

In this paper, we first developed a mapping of the
ab initio Feibelman theory (d-function formalism) of nonlocal
corrections onto a thin film, having a local and complex
dielectric function. The resulting calculated response is exact
to lowest order in q, and any local calculation, including
FDTD, can be applied to such a modified structure, without
any need for code changes. Next, we proposed a simple
large-q extension of the d-function formalism in the spirit
of the HDA and demonstrated the usefulness of this scheme
in describing SP dispersions for very large q. We sup-
ported this HDA-extended d-function formalism with specific
ab initio RPA calculations for metallic films with flat surfaces
for various electron densities. We have also shown that the
HDA, even though itself incapable of describing SP disper-
sions, can be used to estimate the parameters of our extension.
Finally, we have generalized the HDA-extended d-function
formalism to arbitrary plasmonic/metamaterial structures in
which nonflat interfaces can be modeled as effective media
films.
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