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Robust multiscale field-only formulation of electromagnetic scattering
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We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are
characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components
of the electric E and magnetic H fields and with the scalar functions (r · E) and (r · H) where r is a position
vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components
that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a
direct solution for the surface values of E and H rather than having to work with surface currents or surface
charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the
well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface
integral solutions of Maxwell’s equations and our numerical results converge uniformly to the static results in the
long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as
classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge
of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to
improve numerical precision for the same number of degrees of freedom. In addition, near and far field values
can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic
length scales that are both large and small relative to the wavelength can be easily accommodated. From this
we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are
valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar
Fresnel formula and Snell’s law, valid at planar dielectric boundaries, for the scattering and transmission of
electromagnetic waves at surfaces of arbitrary curvature. Implementation details are illustrated with scattering
by multiple perfect electric conductors as well as dielectric bodies with complex geometries and composition.
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I. INTRODUCTION

Accurate numerical solutions of Maxwell’s partial differen-
tial equations that describe the propagation of electromagnetic
waves [1] are vital to a diverse range of applications ranging
from radar telemetry, biomedical imaging, and wireless com-
munications to nanophotonics that collectively span length
scales of around 12 orders of magnitude. At present there
are two main approaches to solving Maxwell’s equations
that are distinguished by working either in the time domain
or in the frequency domain. The first of these is the finite-
difference time domain (FDTD) method of Yee [2] that solves
the Maxwell’s partial differential equations in space and
time variables for the electric and magnetic fields. Spatial
derivatives of field values at discrete locations in the 3D
domain are approximated by finite difference and their time
evolution is tracked by time stepping. The other approach
is to work in the frequency domain where solutions of the
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partial differential equations in the spatial coordinates are
expressed as surface integral equations based on the Stratton-
Chu potential theory formulation [3]. The unknowns in the
surface integral equations are the surface current densities.
After these are found, the relevant field quantities are then
obtained by postprocessing [4]. A related approach formulates
the problem in terms of surface charges and currents from
which the electromagnetic vector and scalar potentials can
be found and field quantities are then obtained by further
differentiation [5,6].

Each of the time domain or frequency domain methods
has its own advantages and challenges. With the time domain
approach, one solves directly for the electric and magnetic
fields. However, if working in an infinite spatial domain,
it is necessary to account for the conditions at infinity
numerically, such as the Sommerfeld radiation condition.
For problems having material boundaries with multiple
characteristic length scales, special considerations have to
be paid to constructing the 3D grid geometry to ensure
sufficient accuracy when derivatives are approximated by finite
differences. For materials that exhibit frequency dispersion,
the material constitutive equations appear in time convo-
lution form [7,8] whereas experimental data for dielectric
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permittivities are generally measured and characterized in the
frequency domain.

On the other hand, working in the frequency domain
for problems involving linear dielectrics, the constitutive
equations only involve material properties as constants of
proportionality. The spatial solution can then be written as
surface integrals [4] whereby conditions at infinity can be
accounted for analytically. The use of a surface integral
formulation means the reduction of spatial dimensionality by
1 and geometric features of interfaces can be accommodated
more readily. Here, the unknowns to be determined are
surface currents so that field quantities need to be found by
subsequent postprocessing. However, due to the use of the
Green’s function in the formulation, the surface integrals are
divergent in the classical sense and need to be interpreted
as principal value integrals [9], thus requiring extra effort
in numerical implementations. A rather serious limiting
feature of the surface integral approach is the so-called
“zero-frequency catastrophe” [10,11] in which the surface
integrals become numerically ill conditioned in the limit when
the wavelength becomes much larger than the characteristic
dimension of the problem. Numerically, this arises because
this formulation couples the electric and magnetic fields that
become independent in the long-wavelength or electrostatic
limit.

In this paper, we develop a boundary integral formulation
of the solution of Maxwell’s equations for linear homogeneous
dielectrics in the frequency domain using a conceptually
simpler and numerically more robust approach. We seek to
retain the advantages of the time domain method by working
directly with the electric and magnetic fields, but without
the need to solve for intermediate quantities such as surface
currents and charges. We retain the surface integral formulation
that has the advantage of reduction of spatial dimension and
the analytical account of conditions at infinity. By working
with Cartesian components of the electric and magnetic fields,
we use a recently developed boundary integral formulation
of the solution of the scalar Helmholtz equation that is free
of singularities in the integrands [12]. Such an approach
reflects correctly the reality that the physical problem has
no singularities at material boundaries and there is complete
symmetry in finding the electric or magnetic fields. We can
work separately with the electric and magnetic fields so that in
the long-wavelength limit, our formulation reduces naturally
to the electrostatic and magnetostatic limits without numerical
instabilities. In this way, our approach retains the advantages
of the current time and frequency domain methods of solving
the Maxwell’s equations.

To put our formulation into context, we first provide in
Sec. II a brief summary of the current state of the boundary
integral equation solution of Maxwell’s equations based on
the Stratton-Chu formalism and to make explicit currently
known challenges of this approach. In Sec. III we show how
the solution of Maxwell’s equations can be cast only in terms
of the Cartesian components of the electric E and magnetic
H fields, and that these can be found from the solution of
distinct sets of scalar Helmholtz equations. In Sec. IV we
develop boundary integral solutions of the scalar Helmholtz
equations for which the surface integrals do not have divergent
integrands. To bring out the key features of our approach, we

consider implementation of our formulation for the simpler
case of scattering by perfect electrical conductors in Sec. V.
As expected, scattering by dielectric bodies considered in
Sec. VI is more complex in technical details but the basic
framework is the same. The key result in this case is a
generalized Fresnel condition and Snell’s law at a curved
dielectric boundary that reduces naturally to the familiar results
in the limit of a planar boundary. Finally in Sec. VII we
show that our field-only formulation does not suffer from the
well-documented numerical instability at the zero-frequency
or long-wavelength limit that is inherent in all current boundary
integral formulation of electromagnetic scattering [10,11], so
that our results will reduce uniformly to the correct static
limit. Thus our boundary integral formulation provides a
theoretically and numerically robust resolution to the so-called
zero-frequency catastrophe. We illustrate our approach by
benchmarking against known problems that have analytic
solutions and also consider examples with multiple scatterers
and scatterers with layered geometries or with very different
characteristic length scales.

II. STRATTON-CHU BOUNDARY INTEGRAL
FORMULATION

For propagation in homogeneous media, with linear con-
stitutive equations for the displacement field D and magnetic
induction B [13],

D(r,ω) = ε E(r,ω), (1a)

B(r,ω) = μ H(r,ω), (1b)

where ε = ε0 εr (ω) and μ = μ0 μr (ω) are the frequency-
dependent permittivity and permeability of the material,
Maxwell’s equations in the frequency domain with harmonic
time dependence exp(−iωt) read [1]

∇ × E = iω μ H, (2a)

∇ × H = −iω ε E + j , (2b)

∇ · D = ρ, (2c)

∇ · B = 0. (2d)

In scattering problems, the imposed incident fields
(Einc, H inc) are specified instead of the sources represented
by the real volume current density j (r,ω) and charge density
ρ(r,ω) in (2).

The Stratton-Chu formulation [3] uses potential theory and
the vector Green’s theorem to express a formally exact solution
of the Maxwell’s equations in a volume domain in terms of
integrals over values of the electric and magnetic fields on
the boundaries enclosing the domain. The electric field E(r0)
and magnetic field H(r0) at an observation point r0 in the 3D
domain V are expressed in terms of the following integrals
over the surface S enclosing V , with implicit frequency ω

dependence:

E(r0) = Einc(r0) − 1

c0

∫
S

[iωμ(n × H)G

+ (n × E) × ∇G + (n · E)∇G] dS(r), (3a)

045137-2



ROBUST MULTISCALE FIELD-ONLY FORMULATION OF . . . PHYSICAL REVIEW B 95, 045137 (2017)

H(r0) = H inc(r0) + 1

c0

∫
S

[iωε(n × E)G

− (n × H) × ∇G − (n · H)∇G] dS(r), (3b)

where the Green’s function

G(r,r0) = exp(ik|r − r0|)
|r − r0| (4)

satisfies [∇2 + k2]G(r,r0) = −4πδ(r − r0), k2 ≡ ω2εμ; and
unit vector n on S points out of the domain V .

When r0 lies wholly within V and not on the surface
S, the constant c0 is 4π and the surface integrals are well
defined in the classical sense. The incident fields Einc and
H inc in (3) can either be prescribed as an incident wave or be
determined from volume integrals over the given sources that
are the real current density j and charge density ρ in Maxwell’s
equations (2) [3]:

Einc(r0) = 1

c0

∫
V

[iωμ jG + (ρ/ε)∇G] dV (r), (5a)

H inc(r0) = 1

c0

∫
V

[ j × ∇G] dV (r). (5b)

The above formalism of Stratton-Chu was used originally
to calculate far-field diffraction patterns using analytical
approximations of the surface integrals in (3). However, by
putting the observation point r0 onto the surface S in (3), one
can obtain surface integral equations involving only values
of E and H on the surface [4] and the numerical solutions
of such equations became feasible with the availability of
computational capabilities some two decades later [14,15].
However, because both r and r0 are now on S, the nature of the
singularity of ∇G in the integrands when r → r0 means that
the surface integrals are divergent in the classical sense and so
they must be interpreted as principal value integrals (denoted
by PV ) as in the treatment of generalized functions. Assuming
the surface at r0 has a well-defined tangent plane, the constant
c0 becomes 2π , and we obtain the following principal value
(PV) surface integral equations [4],

E(r0) = Einc(r0) − 1

c0

∫
S,PV

[iωμ(n × H)G

+ (n × E) × ∇G + (n · E)∇G] dS(r), (6a)

H(r0) = H inc(r0) + 1

c0

∫
S,PV

[iωε(n × E)G

− (n × H) × ∇G − (n · H)∇G] dS(r). (6b)

Although (6) involves only E and H on the surface,
their (numerical) solution is cast in terms of induced surface
currents and surface charge densities from which E and H are
determined by postprocessing. To illustrate this, consider the
simpler example of scattering by a perfect electrical conductor
(PEC).

On the surface of a PEC, we have the condition that the
tangential components of E and the normal component of
H all vanish, that is, n × E = 0 and n · H = 0 on S in the
integrands of (6). Furthermore, the induced surface current
density is [3] J = H × n and is related to the induced surface

charge density σ = −ε(n · E) by the continuity equation ∇ ·
J = iωσ . Thus the tangential components of (6) have the form

n × Einc(r0)

= − 1

c0
n ×

∫
S,PV

[
iωμJG + 1

iωε
(∇ · J)∇G

]

× dS(r), (7a)

J(r0) = −n × H inc(r0) − 1

c0
n ×

∫
S,PV

J × ∇GdS(r).

(7b)

For given incident fields Einc and H inc, the induced surface
current density J can now be found by solving either of (7) or
their linear combination and then E and H can be obtained, for
example, from the Stratton-Chu formula (3) by postprocessing.

In practical applications, the surface S is almost always
represented by a tessellation of planar triangular elements and
the unknowns are taken to be constants within each element
so that the value of c0 can be taken to be 2π . The use of higher
order elements will generally require the calculation of c0 that
varies with the local surface geometry. At the element that
contains both r and r0 additional steps are needed to evaluate
the principal value integral.

A troubling feature of (7a) is that in the zero-frequency
limit, ω → 0 (or k → 0), the second integrand becomes nu-
merically unstable since ∇ · J also vanishes in this limit [11].
Thus this formulation is not robust in the multiscale sense
if the characteristic length scale of the problem becomes
much smaller than the wavelength. This is an unsurprising
result because in the long-wavelength or electrostatic limit,
the electric and magnetic fields decouple and the electric field
should be described in terms of the charge density rather than
the current density [11]. Furthermore, if the geometry of the
problem has surfaces that are close together relative to the
wavelength, the nearly singular behavior on one surface can
have an adverse impact on the numerical precision of integrals
over proximal surfaces.

The result in (7a) has also been cast into a more compact
form using the dyadic Green’s function [16]

n × Einc(r0)

= − 1

c0
n ×

∫
S,PV

iωμJ [I + (1/k2)∇∇]GdS(r) (8)

that now results in a stronger hypersingularity in the in-
tegrand at r = r0. This is due to interchanging the order
of differentiation and integration of an integral that is not
absolutely convergent [17] although there are established
methods to regularize the hypersingularity [18] and to address
the zero-frequency limit [19].

In spite of all the above reservations, the boundary integral
method of solving Maxwell’s equations has clear advantages.
The numerical problem of having to find unknowns on bound-
aries reduces a 3D problem to 2D, and if the boundary has axial
symmetry, it can be simplified further to line integrals after
Fourier decomposition. Thus apart from the obvious savings
in the reduction of dimension, for problems with complex
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surface geometries or those with multiple characteristic length
scales, the problem of having to construct multiscale 3D grids
can be avoided. The dense linear systems that arise from
boundary integral equations can be handled using O(N log N )
fast solvers [20].

Nonetheless, from a physical perspective, there are some
fundamental theoretical issues with the above boundary
integral formulation of solutions of Maxwell’s equations in
terms of surface currents:

(1) The mathematical singularities in the boundary integral
equations arise from the application of the vector Green’s
theorem in the Stratton-Chu formulation that uses the free-
space Green’s function (4). In actual physical problems, the
field quantities are perfectly well behaved on boundaries so a
mathematical description that injects inherent singularities that
are not present in the physical problem suggests that a more
optimal representation of the physics of the problem should be
sought.

(2) The singular nature of the surface integral equations
makes it difficult to obtain field values at or close to boundaries
with high accuracy. For applications that require precise
determination of the surface field such as in quantifying
geometric field enhancement effects in microphotonics or in
determining the radiation pressure by integrating the Maxwell
stress tensor, such limitations in numerical precision are
undesirable.

(3) In problems where different parts of surfaces can be
close together, for example, in an array of scatterers that are
nearly in contact, the nearly singular behavior of proximal
points on different surfaces will adversely affect or limit the
achievable numerical precision. This is related directly to the
numerical instability of the formulation in the zero-frequency
(ω → 0) or the long-wavelength electrostatic (k → 0) limit.

(4) In applying the Stratton-Chu formulation, there is the
need to first solve for the induced surface currents from which
the E and H fields are then obtained by postprocessing.
It may be more efficient if one can solve for the fields
directly.

Here, motivated by the desire to circumvent the above
inherent and somewhat limiting characteristics of existing
approaches of solving Maxwell’s equations by the boundary
integral equation method, we develop a boundary integral
formulation for the solution of Maxwell’s equations that does
not use surface charge or current densities as intermediate
quantities.

III. FIELD-ONLY FORMULATION

Our objective is to derive surface integral equations for
the Cartesian components of the fields E and H that are
the solution of scalar Helmholtz equations. The equations for
E and H are not coupled. Furthermore, we use a recently
developed boundary integral formulation in which all surface
integrals have singularity-free integrands [12,21] and the term
involving the solid angle has been eliminated. The points of
difference and consequent advantages of the method are as
follows:

(1) Components of E and H are computed directly at
boundaries without the need for postprocessing or hav-
ing to handle singular or hypersingular integral equations.

This imparts high precision in calculating, for example,
surface field enhancement effects and the Maxwell stress
tensor.

(2) The elimination of the solid angle term facilitates the
use of quadratic surface elements to represent the surface
S more accurately and the use of appropriate interpolation
to represent variations of functions within each element to
a consistent level of precision. This enables the bound-
ary integrals to be evaluated using standard quadrature
to confer high numerical accuracy with fewer degrees of
freedom.

(3) The absence of singular integrands means that geomet-
ric configurations in which different parts of the boundary are
very close together will not cause numerical instabilities; thus
fields and forces between surfaces can be found accurately
even at small separations when surfaces are in near contact.

(4) The simplicity of the formulation in not requiring
complex algorithms to handle singularities and principal
value integrals means significant savings in coding effort and
reduction of opportunities for coding errors.

(5) Multiple domains connected by boundary conditions
can be implemented with relative ease.

(6) The accuracy of the numerical implementation means
that the effects of any resonant solutions of the Helmholtz
equation are small unless the wave number is extremely close
to one of the resonant values, so that the resonant solution is not
likely to affect practical applications if the present approach is
used.

The motivation for our field-only formulation is drawn from
the celebrated [22] exact analytical solution of the Maxwell’s
equations for the Mie [23] problem of the scattering of an
incident plane wave by a sphere. A more familiar exposition
of this solution due to Debye [24] has since been reproduced
in more accessible forms [25,26].

In a source-free region, the electric and magnetic fields E
and H are divergence free,

∇ · E = 0, (9a)

∇ · H = 0, (9b)

and satisfy the wave equation

∇2 E + k2 E = 0, (10a)

∇2 H + k2 H = 0. (10b)

In curvilinear coordinate systems, the Laplacian of a vector
function A, ∇2 A ≡ [∇(∇ · A) − ∇ × (∇ × A)], couples dif-
ferent orthogonal components where A can be E or H in (10).
Only in the Cartesian coordinate system does (10) separate into
scalar Helmholtz equations for the individual components.

The key feature of the Debye solution is to represent the
solution of the vector wave equations for E and H , in terms
of a pair of scalar functions ψE and ψM known as Debye
potentials [13] that satisfy the scalar Helmholtz wave equation

∇2ψE,M (r) + k2ψE,M (r) = 0. (11)

The electric and magnetic fields can then be expressed
in terms of the Debye potentials using the differential
operator L ≡ i(r × ∇) where r = (x,y,z) is the position
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vector [27]

E = LψM − i

k
∇ × LψE, (12a)

H = − i

k
∇ × LψM − LψE. (12b)

Although analytic solutions for the Debye potentials ψE

and ψM can be expressed as infinite series in spherical
harmonics and spherical Bessel functions with unknown
expansion coefficients, their relationship to the fields in (12)
means that the equations that determine the coefficients by
imposing boundary conditions on E and H are tractable only
if the boundary surfaces are spheres. For systems of multiple
spheres, multicenter expansions and addition theorems for the
spherical harmonics and spherical Bessel functions need to be
used to construct a solution [28].

Since the fields E and H satisfy the wave equation (10),
we use the identity ∇2(r · V ) ≡ 2(∇ · V ) + r · (∇2V ) for a
differentiable vector field V to replace the divergence-free
conditions of E and H in (9) in a source-free region by
Helmholtz equations for the scalar functions (r · E) and
(r · H) as

2(∇ · E) ≡ ∇2(r · E) + k2(r · E) = 0, (13a)

2(∇ · H) ≡ ∇2(r · H) + k2(r · H) = 0. (13b)

It is easy to verify with the addition of a constant vector to r
that this identity is independent of the choice of the origin of
the coordinate system.

The results (10) and (13) appear to be first demonstrated
explicitly by Lamb [29] for elastic vibrations, but the signifi-
cance here is that the Cartesian components of E and H and
the scalar functions (r · E) and (r · H) all satisfy the scalar
Helmholtz equation and are coupled by the continuity of the
tangential components of E and H across material boundaries.

Therefore, the solution for E or for H can each be
represented as a coupled set of 4 scalar equations:

∇2pi(r) + k2pi(r) = 0, i = 1 . . . 4, (14)

where the scalar function pi(r), i = 1 . . . 4, denotes (r · E) or
one of the 3 Cartesian components of E for the electric field
or (r · H) and H for the magnetic field. Thus the equations
for E and for H can be solved separately.

In general, the boundary integral representation of the
solution of (14) expresses the solution for pi(r0) in the 3D
solution domain in terms of an integral involving pi(r) and
its normal derivative ∂pi(r)/∂n ≡ n · ∇pi(r) on the surface S

that encloses the solution domain with outward unit normal
n. By putting r0 onto the surface and using a given boundary
condition on pi(r) or on ∂pi(r)/∂n, we obtain a surface integral
equation to be solved [12].

Consider first the equations involving the electric field
quantities E and (r · E) on the surface S. The vector wave
equation (10a) furnishes 3 relations between 6 unknowns,
namely, Eα and ∂Eα/∂n (α = x,y,z), and the relation (13a)
between (r · E) and ∂(r · E)/∂n gives one more relation
between Eα and ∂Eα/∂n by using the identity ∂(r · E)/∂n =
n · E + r · ∂ E/∂n. The electromagnetic boundary conditions
on the continuity of the tangential components of E provide

the remaining 2 equations that then allows E and ∂ E/∂n on
the surface to be determined.

A similar consideration also applies to the magnetic field
quantities H and (r · H).

With the present field-only formulation, the Cartesian
components of the electric field E and the magnetic field H
are determined separately by a similar set of coupled scalar
Helmholtz equations. In fact, the governing equations (10)
and (13) are identical with the interchange of E and H and
the permittivity ε and permeability μ. In the zero-frequency
(ω → 0) or long-wavelength electrostatic limit (k → 0), the
two sets of Helmholtz equations simply reduce to Laplace
equations and no numerical instability arises. Consequently,
in multiscale problems with different characteristic lengths,
ai , this formulation will be stable against any variation in the
range of the nondimensional scaling parameters, kai , unlike
the traditional formulation involving surface currents such as
in (7) or (8).

Before we discuss the solution of (10) and (13) for scattering
by perfect electrical conductors and dielectric bodies in Secs.V
and VI, respectively, we first consider the solution of the scalar
Helmholtz equation (14) using a boundary integral formulation
that does not contain any singularities in the surface integrals.

IV. NONSINGULAR BOUNDARY INTEGRAL SOLUTION
OF HELMHOLTZ EQUATION

The conventional boundary integral solution of the scalar
Helmholtz equation (14) is constructed from Green’s second
identity that gives an integral relation between p(r) and its
normal derivative ∂p/∂n (suppressing the subscript i) at points
r and r0, both located on the boundary, S. Such a solution
of (14) involves integrals of the Green’s function G(r,r0) in (4)
and its normal derivative ∂G/∂n [30],

c0p(r0) +
∫

S

p(r)
∂G

∂n
dS(r) =

∫
S

∂p(r)

∂n
GdS(r), (15)

where c0 is the solid angle at r0. The use of the Green’s function
G means that the radiation condition for the scattered field at
infinity can be satisfied exactly. Although both G and ∂G/∂n

are divergent at r0 = r , the integrals are in fact integrable in
the classical sense although extra effort is required to handle
such integrable singularities in numerical solutions of (15).

It turns out that it is possible to remove analytically all such
integrable singular behavior associated with G and ∂G/∂n.
This is accomplished by first constructing the conventional
boundary integral equation as in (15) for a related problem.
Then subtracting this from the original boundary integral
equation gives an integral equation that does not contain
any singularities in the integrands. In the process, the term
involving the solid angle c0 has also been eliminated. This
approach is called the boundary regularized integral equation
formulation (BRIEF) [12] and has been applied to problems
in fluid mechanics and elasticity [21,31,32], colloidal and
molecular electrostatics [33], and in solving the Laplace
equation [34]. Not having to handle such singularities confers
simplifications in implementing numerical solutions with the
additional flexibility to use higher order surface elements
that can represent the surface geometry more accurately. The
absence of singular integrands and the solid angle also means
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that it is easy to use accurate quadrature and interpolation
methods to evaluate the surface integrals that will result in
an increase in precision for the same number of degrees of
freedom [12].

We start by considering the corresponding boundary inte-
gral equation for a function φ(r) that is constructed to depend
on the value of p and ∂p/∂n at r0 as follows [12,21]:

φ(r) ≡ p(r0)g(r) + ∂p(r0)

∂n
f (r). (16)

The functions f (r) and g(r) are chosen to satisfy the
Helmholtz equation. Without loss of generality, we can also
require f (r) and g(r) to satisfy the following conditions at
r = r0:

f (r0) = 0, n(r0) · ∇f (r0) = 1, (17a)

g(r0) = 1, n(r0) · ∇g(r0) = 0. (17b)

There are many possible and convenient choices of f (r) and
g(r) that satisfy (17) [12,21].

The singularities and the solid angle c0 in (15) can now be
removed by subtracting (15) from the corresponding boundary
integral equation for φ(r) that is defined in (16), to give

∫
S

[
p(r) − p(r0)g(r) − ∂p(r0)

∂n
f (r)

]
∂G

∂n
dS(r)

=
∫

S

G

[
∂p(r)

∂n
− p(r0)

∂g(r)

∂n
− ∂p(r0)

∂n

∂f (r)

∂n

]
dS(r).

(18)

This is the key result of the BRIEF [12] for the scalar
Helmholtz equation. For example, if p (Dirichlet) or ∂p/∂n

(Neumann) is known, then (18) can be solved for ∂p/∂n or p,
respectively.

With the properties of f (r) and g(r) given in (17), the terms
that multiply G and ∂G/∂n vanish at the same rate as the rate of
divergence of G or ∂G/∂n as r → r0 [12,21] and consequently
both integrals in (18) have nonsingular integrands. The absence
of the solid angle c0 in (18) means that the surface S can
be represented to higher precision using quadratic elements
with nodes at the vertices and boundaries of such elements at
which we compute values of p and ∂p/∂n without having to
calculate the solid angle at each node. Since the integrands are
nonsingular, we can represent variations in p or ∂p/∂n within
each surface element by interpolation between the node values
and thus we can evaluate the surface integral more accurately
by simple quadrature for all elements, including the one that
contains both r and r0.

In contrast, with the conventional boundary integral for-
mulation in (15), special treatment is necessary to perform
the numerical integration over the element that contains the
observation point r0 due to the divergence in the integrand. It
is also common in the conventional approach to use only planar
elements to represent the boundary S and to assume that the
functions p and ∂p/∂n are constant over each element so that
one is able to use c0 = 2π as the solid angle. Otherwise, if node
values at the vertices of such triangles are used as unknowns,
the solid angle c0 will no longer be 2π , but its value at each
node has to be computed from the local geometry.

Once the surface field values have been obtained, E
and H at position r0 anywhere in the solution domain or
on the surface can be obtained by a numerically robust
method [12].

V. PERFECT ELECTRICAL CONDUCTOR SCATTERERS

A. PEC formulation

We now give details of implementing our field-only formu-
lation of electromagnetic scattering given by (10) and (13) for
the simpler case of scattering by a perfect electrical conductor
(PEC) for which only the scattered field needs to be found [35].
The objective is to show explicitly how the solutions of the
scalar Helmholtz equations for the Cartesian components
of E and (r · E) or of H and (r · H) are determined by
the electromagnetic boundary condition on the tangential
components of E and the normal component of H at the PEC
surface. This problem is simpler than scattering by dielectric
bodies that will be considered in the section that follows,
where both the scattered and transmitted fields need to be
found.

We first consider the solution for the electric field. On the
surface of a PEC, the tangential components of the total electric
field E vanish so it is convenient to work in terms of the normal
component, En = n · E, of the electric field at the surface.
Physically, En is proportional to the induced surface charge
density on the PEC.

For scattering by a PEC, the solution for the electric field is
determined by the value of 4 scalar functions on the surface,
namely, ∂Ex/∂n,∂Ey/∂n,∂Ez/∂n, and En. We decompose E
into a sum of the incident field Einc and the scattered field
Escat and solve for the above quantities for the scattered field
using the boundary conditions that on the surface of the PEC,
the tangential components of the scattered field cancel those
of the incident field. The number of unknowns to be found is
the same as for the classic solution of the scattering problem
by a PEC sphere using a pair of scalar Debye potentials, ψE

and ψM , in which the 2 functions and their normal derivatives
have to be found [25,26].

The formulation for the magnetic field H is similar, but at
PEC boundaries, (13b) is equivalent to the boundary condition
that the normal component of the total magnetic field H
vanishes on the PEC:

n · H = 0 on S, (19)

so the tangential components of H are the unknowns to be
found. They can be determined from the boundary condition
on the tangential component of E as follows. For a chosen
unit tangent t1 on the surface, the orthogonal unit tangent
is t2 ≡ t1 × n on S. Then using Ampere’s law, we express
the component of E parallel to t2, namely, Et2 ≡ E · t2 =
E · (t1 × n) = t1 · (n × E), in terms of H :

Et2 = t1 · (n × E) = i

ωε
{t1 · (n × ∇ × H)} (20a)

= i

ωε
{n · (t1 · ∇)H − t1 · (n · ∇)H} = 0. (20b)

The second equality in (20b) follows from the condition that
the tangential component of the electric field vanishes on the
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PEC surface, S. By choosing two independent units tangents
t1 and t2 we can construct equations for the two tangential
components of H along these two directions: Ht1 and Ht2 .
See (25) below for details.

We see that our formulation for PEC problems for H is
slightly more complex than our formulation for E because of
the need to use the boundary condition for E to find boundary
conditions for H in (20b).

So for solving practical PEC problems, (10a) and (13a)
should be used to solve for E, and H can be found
subsequently from E via Maxwell’s equations. However, it is
also possible to solve directly for H using (10b), (13b), (19),
and (20b). We will provide illustrations of these points in the
results section.

B. PEC results

The scalar Helmholtz equations (10a) and (13a) for the
three Cartesian components of E and the scalar function (r ·
E) can be formulated as a system of linear equations that is
the discretized representation of four nonsingular boundary
integral equations of the Helmholtz equations using (18). The
total field E can be written as the sum of the incident and
scattered fields: E = Einc + Escat. Since the known incident
field Einc, such as a plane wave, satisfies (10a) and (13a), we
can solve for the unknown scattered field Escat that satisfies
the Sommerfeld radiation condition at infinity.

On the surface of a PEC object, we work in terms of
the normal and tangential components of the scattered field:
Escat = Escat

n + Escat
t . Since the tangential component of the

total field E must vanish on the surface of a PEC, then the
tangential components of the scattered and incident fields
must cancel. Thus the Cartesian components of the scattered
field Escat on the surface of a PEC can be expressed in
terms of the known tangential components of the incident
field, Einc

t = (Einc
t,x ,E

inc
t,y ,E

inc
t,z ), the components of the surface

normal, n = (nx,ny,nz), and the unknown normal component
of the scattered field, Escat

n = Escat
n n, as follows:

Escat
α = Escat

n nα + Escat
t,α

= Escat
n nα − Einc

t,α, (α = x,y,z). (21)

We discretize the surface S using quadratic triangular
area elements where each element is bounded by 3 nodes
on the vertices and 3 nodes on the edges for a total of N

nodes on the surface. The coordinates of a point within each
element and the function values at that point are obtained by
quadratic interpolation from the values at the nodes on the
element [33,35].

The solution of (10a) and (13a) for components of the
scattered field Escat and (r · Escat) on the surface are expressed
in terms of the field values at the N surface nodes. The
surface integrals in (18) can be expressed as a system of
linear equations in which the elements of the matrices H
and G are the results of integrals over the surface elements
involving the unknown 4N -vector (Escat

x ,Escat
y ,Escat

z ,r · Escat).
The integral over each surface element can be calculated
accurately and efficiently using standard Gauss quadrature
since the integrands have no singularities. The resulting linear

system can be written as

H · Escat
α = G · (

∂Escat
α /∂n

)
(α = x,y,z), (22a)

H · (r · Escat) = G · [∂(r · Escat)/∂n]. (22b)

For the left-hand side of (22a), we use (21) to eliminate
the Cartesian components: Escat

α (α = x,y,z) in favor of the
normal component (Escat

n n) and the tangential component of
the known incident field, Einc

t . For (22b), we use (21) to write

r · Escat = (r · n)Escat
n + (

r · Escat
t

)
= (r · n)Escat

n − (
r · Einc

t

)
, (23a)

∂(r · Escat)

∂n
= Escat

n + r · ∂ Escat

∂n
. (23b)

Thus using (21) and (23), (22a) can be expressed in terms of
the 3 components of the normal derivative ∂ Escat/∂n of the
scattered field and the normal component of the scattered field,
Escat

n . Applying these results at the N nodes of the surface, we
obtain a 4N × 4N system of linear equations for the 4N -
vector: (∂Escat

x /∂n,∂Escat
y /∂n,∂Escat

z /∂n,Escat
n ) of unknowns

on the surface to be determined⎡
⎢⎢⎢⎣

−G 0 0 Hnx

0 −G 0 Hny

0 0 −G Hnz

−Gx −Gy −Gz Y

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

∂nE
scat
x

∂nE
scat
y

∂nE
scat
z

Escat
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

HEinc
t,x

HEinc
t,y

HEinc
t,z

ZE

⎤
⎥⎥⎥⎦,

(24)

where Y ≡ −G + H(r · n),ZE ≡ H(r · Einc
t ), and ∂nE

scat
α ≡

n · ∇Escat
α (α = x,y,z). This linear system gives the scattered

field Escat from the PEC surface in terms of the incident field
Einc.

The linear system for the H field can be obtained
from (10b), (19), and (20). However, unlike the linear system
for E, the tangential boundary condition (20) for H on the
surface gives rise to two unknowns, being the components of
the H along the directions of two orthogonal unit tangents t1

and t2 that are related to the unit normal n by t2 ≡ t1 × n.
In this case, there are 5N unknowns comprising the 2N

unknowns for the tangential components of the scattered field
H scat and 3N unknowns for the components of (∂ H scat/∂n) to
be determined by the following 5N × 5N linear system:⎡
⎢⎢⎢⎢⎢⎢⎣

−G 0 0 Ht1x Ht2x

0 −G 0 Ht1y Ht2y

0 0 −GHt1z Ht2z

−t1x −t1y −t1z−K1 0

−t2x −t2y −t2z 0 −K2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∂nH
scat
x

∂nH
scat
y

∂nH
scat
z

H scat
t1

H scat
t2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

HH inc
n,x

HH inc
n,y

HH inc
n,z

ZH
1

ZH
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(25)

where ZH
j ≡ tj · ∂n H inc + κj n · H inc, with κj being the local

curvature of the surface, S along the tangential direction tj with
j = 1,2. As in (24), we use the notation ∂n(· · · ) ≡ n · ∇(· · · ).
The submatrixKj is diagonal with the nonzero diagonal entries
populated by the local curvature κj . The entries involving the
local curvature κj andZH

j originate from the n · (t · ∇)H term
in (20) that involves tangential derivatives of H . They can be
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derived with some algebraic manipulation using the following
relations from differential geometry between the surface
normal n, surface tangent tj , and local curvature κj : ∂n/∂ tj =
κj tj , ∂ tj /∂ tj = −κj n, ∂ t1/∂ t2 = 0, and ∂ t2/∂ t1 = 0. This
linear system (25) then gives the scattered magnetic field H scat

in terms of the incident field H inc at a PEC surface.
Apart from obtaining the surface fields on a PEC scatterer

by solving (24) or (25), we also use the nonsingular boundary
integral formalism to calculate field values anywhere in
the 3D domain and field gradients at the surface [12] that
are often sought in quantifying surface field enhancement
effects in microphotonics applications. As mentioned earlier,
we discretize the surface S using quadratic triangular area
elements where each element is bounded by 3 nodes on the
vertices and 3 nodes on the edges for a total of N nodes on the
surface. In evaluating the surface integrals over each element,
the coordinates of a point within each element and the function
values at that point are obtained by quadratic interpolation from
the values at the nodes on the element that are the unknowns
to be solved.

To facilitate discussion of sample results to follow, we
denote our two methods of solving scattering problems by
PEC objects as follows:

PEC-E based on (10a), (13a), and Et = 0 on S, which gives
the 4N × 4N linear system (24) to solve for the E field.

PEC-H based on (10b), (13b), (19), and (20), which gives
the 5N × 5N linear system (25) to solve for the H field.

In the next two subsections we first benchmark our approach
against the analytic Mie solution of the scattering of a plane
wave by a PEC sphere and then we present results for scattering
by more complex objects such as multiple PEC spheres and
a high geometric aspect ratio PEC scatterer, with particular
focus on the behavior of E and H on or near the surface of the
scatterers. In all examples, the incident field is plane polarized
in the x direction, Einc = (1,0,0) exp(ikz), and it travels in the
positive z direction with k = (0,0,k).

1. Perfect electrical conducting sphere vs Mie

In Figs. 1(a) and 1(b) we show variations of components of
the scattered electric field Escat and magnetic field H scat along
meridians in the planes y = 0 and z = 0 on the surface of a
PEC sphere of radius a resulting from an incident plane wave.
We compare our present field-only formulation using the PEC-
E and PEC-H approaches with the analytic Mie theory [25,26]
at ka = 3. The tangential components of H scat are given
along the unit vectors: t2 = (ny − nz,nz − nx,nx − ny) and
t1 = n × t2. For an incident field Einc = (1,0,0) exp(ikz) the
absolute difference between the two methods is less than 0.01
with 720 quadratic elements and N = 1442 nodes.

In Fig. 1(c), we show vector plots of the total fields E, H ,
and the induced surface current density J = H × n on the
surface of the same PEC sphere. The induced surface charge
density that is proportional to the normal component of the
total field En at the surface is shown on the color scale.

2. Near field around complex PEC objects

In Fig. 2 we show the field in the plane y = 0 around
three collinear PEC spheres that are oriented at 45◦ to
the propagation direction of the incident plane wave. The

FIG. 1. Scattering of a plane wave by a perfect electrical
conducting (PEC) sphere: the normal component of the scattered
electric field, Escat

n , and the tangential components of the scattered
magnetic field, H scat

t1
and H scat

t2
, on the sphere at (a) y = 0 and (b)

z = 0 obtained from the PEC-E and PEC-H methods of the field-only
formulation (symbols) and Mie theory (lines). (c) The total surface
fields E and H and the induced electric current density J obtained
using the PEC-E approach. The magnitude of the normal component
of the total field, En, is given on a color scale. (See Supplemental
Material [39] for animation.)
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FIG. 2. (a) The scattered electric field Escat and (b) the total field
E in the plane y = 0 around 3 perfect conducting spheres due to
an incident electric field Einc = (1,0,0) exp(ikz) with ka1 = ka3 =
4 and ka2 = 4.8. Results are obtained using 1442 nodes and 720
quadratic elements on each sphere. (See Supplemental Material [39]
for animation.)

centers of the spheres are located at (−2a,0,−2a), (0,0,0),
and (2a,0,2a). These fields are obtained by postprocessing
the surface field values obtained from solving the PEC-E
equations. Interference between the scattered field shown in
Fig. 2(a) and the incident field gives the complex total field
structure on the downstream side of the scatterers in Fig. 2(b).
The magnitudes of the scattered and total field strength,
illustrated on a color scale, quantify the shielding effect of
this 3-sphere structure.

To illustrate the ability of our field-only formulation
to handle scatterers that have widely varying characteristic
dimensions, we show the surface field on a PEC needle that
has a large length 2a to width 2b ratio in Fig. 3 at ka = 5 and
kb = 0.5.

FIG. 3. The total field on the surface of a perfect conducting
needle with length 2a and width 2b due to an incident electric field
Einc = (1,0,0) exp(ikz) with ka = 5 and kb = 0.5. The magnitude of
the field, En, is given by the color scale. The results are obtained using
the present field-only formulation with N = 1002 nodes and 500
quadratic elements. An analytic equation [36] is used for the surface
of the needle. (See Supplemental Material [39] for animation.)

Since we have assumed harmonic time dependence, anima-
tions that illustrate the phase behavior of results in Fig. 1(c),
Fig. 2, and Fig. 3 are given in the Supplemental Material [39].

VI. DIELECTRIC SCATTERERS

A. Dielectric formulation

For scattering by a dielectric object we denote the domain
containing the incident fields Einc and H inc and scattered
fields Escat and H scat as the outside with material constants
εout and μout and corresponding wave number kout in the
Helmholtz equations. A boundary surface S separates this
from the inside with the transmitted fields Etran and H tran

with material constants εin and μin, and wave number kin.
For a given incident field, we solve (10) and (13) for wave

numbers corresponding to the outside and inside domains
(assuming they are both source free) and use the continuity
of tangential components of E and H at the boundary S. The
continuity of the normal components of D and B follows from
Maxwell’s equations [3].

Since in our formulation both E and H satisfy the same
equations (10) and (13) and similar boundary conditions, it is
only necessary to formulate the solution for E, as the solution
for H can be found by replacing H with E and interchanging
ε and μ.

The boundary integral equations for the electric field will
involve 9 unknown functions on the surface, 6 of which
are normal derivatives of the Cartesian components of the
scattered and transmitted fields: ∂n Escat ≡ n · ∇Escat and
∂n Etran ≡ n · ∇Etran. For the remaining 3 unknowns, we can
either choose to solve for the 3 components of the scattered
field (Escat

n ,Escat
t1

,Escat
t2

) along the normal n and tangential t1

and t2 directions for which the linear system is given in part
(a) of Table I, or choose to solve for the 3 components the
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TABLE I. The linear systems.

(a) The linear system for ∂ Escat/∂n, ∂ Etran/∂n and the scattered field, Escat:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G 0 0 Hnx 0 0 0 Ht1x Ht2x

0 −G 0 Hny 0 0 0 Ht1y Ht2y

0 0 −G Hnz 0 0 0 Ht1z Ht2z

−Gx −Gy −Gz −G + H(r · n) 0 0 0 H(r · t1) H(r · t2)

0 0 0 εoiHinnx −Gin 0 0 Hint1x Hint2x

0 0 0 εoiHinny 0 −Gin 0 Hint1y Hint2y

0 0 0 εoiHinnz 0 0 −Gin Hint1z Hint2z

−μiot1x −μiot1y −μiot1z (μio − εoi)∂t1 t1x t1y t1z (1 − μio)K1 0

−μiot2x −μiot2y −μiot2z (μio − εoi)∂t2 t2x t2y t2z 0 (1 − μio)K2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂nE
scat
x

∂nE
scat
y

∂nE
scat
z

Escat
n

∂nE
tran
x

∂nE
tran
y

∂nE
tran
z

Escat
t1

Escat
t2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

Ax

Ay

Az

B1

B2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) The linear system for ∂ Escat/∂n, ∂ Etran/∂n and the transmitted field, Etran:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G 0 0 εioHnx 0 0 0 Ht1x Ht2x

0 −G 0 εioHny 0 0 0 Ht1y Ht2y

0 0 −G εioHnz 0 0 0 Ht1z Ht2z

0 0 0 Hin(r · n) − Gin −Ginx −Giny −Ginz Hin(r · t1) Hin(r · t2)

0 0 0 Hinnx −Gin 0 0 Hint1x Hint2x

0 0 0 Hinny 0 −Gin 0 Hint1y Hint2y

0 0 0 Hinnz 0 0 −Gin Hint1z Hint2z

−μiot1x −μiot1y −μiot1z (εioμio − 1)∂t1 t1x t1y t1z (1 − μio)K1 0

−μiot2x −μiot2y −μiot2z (εioμio − 1)∂t2 t2x t2y t2z 0 (1 − μio)K2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂nE
scat
x

∂nE
scat
y

∂nE
scat
z

Etran
n

∂nE
tran
x

∂nE
tran
y

∂nE
tran
z

Etran
t1

Etran
t2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cx

Cy

Cz

0

0

0

0

D1

D2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) The linear system for ∂ H scat/∂n, ∂ H tran/∂n and the scattered field, H scat:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G 0 0 Hnx 0 0 0 Ht1x Ht2x

0 −G 0 Hny 0 0 0 Ht1y Ht2y

0 0 −G Hnz 0 0 0 Ht1z Ht2z

−Gx −Gy −Gz −G + H(r · n) 0 0 0 H(r · t1) H(r · t2)

0 0 0 μoiHinnx −Gin 0 0 Hint1x Hint2x

0 0 0 μoiHinny 0 −Gin 0 Hint1y Hint2y

0 0 0 μoiHinnz 0 0 −Gin Hint1z Hint2z

−εiot1x −εiot1y −εiot1z (εio − μoi)∂t1 t1x t1y t1z (1 − εio)K1 0

−εiot2x −εiot2y −εiot2z (εio − μoi)∂t2 t2x t2y t2z 0 (1 − εio)K2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂nH
scat
x

∂nH
scat
y

∂nH
scat
z

H scat
n

∂nH
tran
x

∂nH
tran
y

∂nH
tran
z

H scat
t1

H scat
t2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

A′
x

A′
y

A′
z

B′
1

B′
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d) εoi ≡ εout/εin ≡ 1/εio, μio ≡ μin/μout, ∂n(·) ≡ ∂(·)/∂n ≡ n · ∇(·), ∂tj (·) ≡ ∂(·)/∂tj ≡ tj · ∇(·) for j = 1,2,

Aα ≡ −Hin

{
Einc

t1
t1α + Einc

t2
t2α + εoiE

inc
n nα

}
(α = x,y,z),

Bj ≡ μio tj · ∂ Einc

∂n
− (1 − εoi)

∂Einc
n

∂tj
+ (1 − μio)n · ∂ Einc

∂tj
(j = 1,2),

Cα ≡ HEinc
α (α = x,y,z), Dj ≡ μio tj · ∂ Einc

∂n
(j = 1,2),

A′
α ≡ −Hin

{
H inc

t1
t1α + H inc

t2
t2α + μoiH

inc
n nα

}
(α = x,y,z),

B′
j ≡ εio tj · ∂ H inc

∂n
− (1 − μoi)

∂H inc
n

∂tj
+ (1 − εio)n · ∂ H inc

∂tj
(j = 1,2).

transmitted field (Escat
n ,Escat

t1
,Escat

t2
), for which the linear system

is given in part (b) of Table I.
The surface integral matrices G and H in parts (a) and (b)

of Table I are calculated using the Green’s function G(r,r0)
in (4) with k = kout and the surface integral matrices Gin and
Hin are calculated using G(r,r0) with k = kin.

The corresponding equations for the scattered and trans-
mitted H fields can obtained from parts (a) and (b) of Table I
by replacing the components of E by the corresponding
components of H and interchanging ε and μ. For example,
in part (c) of Table I, we give the linear system that determines

∂ H scat/∂n, ∂ H tran/∂n, and the scattered field H scat. These
results, together with (24) and (25) for perfect electrical
conducting scatterers, are applicable for any form of incident
field that appears in the vectors on the right-hand side.

The matrix equations are presented in a way that best
reflects the algebraic structure of our field-only formulation
in terms of Helmholtz equations in (10) and (13). The first
three lines of the linear system in part (a) of Table I are,
respectively, the discretized version of Helmholtz equation for
the x, y, and z components of Escat. The 5th to 7th lines are,
respectively, the discretized version of Helmholtz equation for
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the x, y, and z components of Etran after using the continuity
of the tangential components of E and the normal component
of D. The 4th line originates from ∇ · Escat = 0, see (13), and
finally lines 8 and 9 express the continuity of the tangential
components of H across the boundary in terms of E.

Similar remarks apply to the linear system in part (b) of
Table I except line 4 now represents instead the condition
∇ · Etran = 0. Since the combination of Maxwell’s equations
and the continuity condition of the tangential components of
E and H imply the continuity of the normal components
of D and B, only the divergence-free condition in the field
on one side of the boundary appears in the linear system
in Table I [3].

Indeed, the systems of equations in parts (a) and (b) of
Table I can be regarded as the generalized Fresnel equations
and Snell’s law relating the scattered and transmitted electric
fields to the incident electric field at a dielectric interface with
prescribed curvature, without any limitation on the magnitude
of the curvature relative to the wave number. In contrast, the
familiar Fresnel results are applicable only to a planar interface
with zero curvature. In the next subsection we will show
how these results simplify for scattering by perfect electrical
conductors of general shape as given in (24) and (25) and how
our results reduce to the familiar Fresnel equations and Snell’s
law at planar dielectric interfaces.

The presence of numerous zeros in the matrices in (24)
and (25) and in the linear systems in parts (a), (b), and (c) of
Table I suggests that the number of equations can be reduced
at the expense of more complex matrix coefficients and the
unknowns. However, we shall not pursue this simplification
here as we focus on our field-only formulation of scattering
and transmission.

B. Reduction to special cases

1. Perfect electrical conductor

The result for perfect electrical conductors (PECs) in (24)
for the scattered E field follows from part (a) of Table I by
noting that the transmitted field Etran = 0 in this case and
the tangential components of the scattered and incident fields

cancel: Escat
t = −Einc

t . Consequently, the first 4 lines of part
(a) of Table I reduce to (24) and the remaining lines are trivial.

To recover the equation for the scattered H field by a PEC
given in (25) we can start with the 9N × 9N linear system
given in part (c) of Table I. The PEC equation for H in (25)
can now be obtained by taking the limit εio ≡ εin/εout → ∞,
for finite μoi . In this limit, the transmitted field H tran vanishes,
and (13b), namely, ∇ · H = 0, is satisfied on the PEC surface.
This means that the 4th line of part (c) of Table I is satisfied
automatically. We saw earlier that this is also equivalent to (19);
that is, the normal component of the scattered field cancels that
of the incident field, so we can replace the unknown H scat

n in
part (c) of Table I with (−H inc

n ) that is known, and thus we are
left with only 5 equations from lines 1 to 3 and lines 8 and 9
in part (c) of Table I. And finally, to obtain the same equations
as in the PEC result (25), the terms B′

j in part (d) of Table I
reduce to Zj in (25) when we use the following relations from
differential geometry between the surface normal n, surface
tangents tj , and local curvature κj : ∂n/∂ tj = κj tj , ∂ tj /∂ tj =
−κj n (j = 1,2), and ∂ t1/∂ t2 = 0.

2. Planar dielectric: Fresnel equations and Snell’s law

We now show how to recover from our field-only formula-
tion in parts (a) and (b) of Table I the Fresnel equations and
Snell’s law that describe scattering and transmission of the E
field across a planar interface located at z = 0.

Consider the scattering of an incident s-polarized or
transverse-electric (TE) plane wave given by the incident
electric field and incident wave vector:

Einc = Einc
0 (0, exp[ikout(−x sin θi + z cos θi)],0), (26a)

kout = kout(− sin θi,0, cos θi). (26b)

The outward surface normal is n = (0,0,1) and the angle of
incidence θi measured relative to n is given by kout cos θi =
kout · n. We take as the two tangential unit vectors t1 = ty =
(0,1,0) and t2 = tx = (1,0,0), and note that the curvatures κj

are zero for a planar interface. For this geometric configuration,
part (b) of Table I for the transmitted electric field can now
be simplified using the above definitions of the surface normal
and tangents and the explicit form for Einc to give

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G 0 0 0 0 0 0 H 0

0 −G 0 0 0 0 0 0 H
0 0 −G εioH 0 0 0 0 0

0 0 0 −Gin −Ginx −Giny 0 Hinx Hiny

0 0 0 0 −Gin 0 0 Hin 0

0 0 0 0 0 −Gin 0 0 Hin

0 0 0 Hin 0 0 −Gin 0 0

−μio 0 0 (εoiμio − 1)∂x 1 0 0 0 0

0 −μio 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂zE
scat
x

∂zE
scat
y

∂zE
scat
z

Etran
z

∂zE
tran
x

∂zE
tran
y

∂zE
tran
z

Etran
x

Etran
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

HEinc
y

0

0

0

0

0

0

μio(∂Einc
y /∂z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

From (27), it follows that the quantities
∂Escat

x /∂z, ∂Escat
z /∂z, Etran

z , ∂Etran
x /∂z, ∂Etran

z /∂z, and Etran
x

all vanish and the remaining three unknowns,
∂Escat

y /∂z, ∂Etran
y /∂z, and Etran

y , satisfy the
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equations

− G
∂Escat

y

∂z
+ HEtran

y = HEinc
y , (28a)

−Gin
∂Etran

y

∂z
+ HinE

tran
y = 0, (28b)

−μio

∂Escat
y

∂z
+ ∂Etran

y

∂z
= μio

∂Einc
y

∂z
. (28c)

The continuity of the tangential component of E implies at
the interface z = 0

Einc
y + Escat

y = Etran
y , (29)

so on combining this with (28a) and (28b) we find

G
∂Escat

y

∂z
= HEscat

y , (30a)

G
∂Etran

y

∂z
= HEtran

y . (30b)

At a planar interface, the surface integrals G,H,Gin,Hin

are independent of r0 so the solution can be represented as

Einc
y = Einc

0 exp[ikout(−x sin θi + z cos θi)], (31a)

Escat
y = Escat

0 exp[ikout(−x sin θi − z cos θi)], (31b)

Etran
y = Etran

0 exp[ikin(−x sin θt + z cos θt )], (31c)

with θt given by kin cos θt = kin · n. Snell’s law then follows
from matching of the phase factor at z = 0:

kout sin θi = kin sin θt . (32)

By combining (28c), (31), and (32) we obtain the well-
known Fresnel formula relating the scattered field amplitude
to the incident field amplitude [37]:

Escat
0

Einc
0

= μin tan θt − μout tan θi

μin tan θt + μout tan θi

(33a)

= sin(θt − θi)

sin(θt + θi)
, if μin = μout. (33b)

For the scattering of an incident p-polarized or transverse-
magnetic (TM) plane wave given by the incident electric field,

Einc = Einc
0

⎡
⎣cos θi

0
sin θi

⎤
⎦ exp[ikout(−x sin θi + z cos θi)]. (34)

The matrix for the linear system is the same as that in (27) for
the s-polarized TE incident wave. Thus after some algebra, we
obtain Snell’s law and the known Fresnel result [37]

Escat
0

Einc
0

= μin sin θt cos θt − μout sin θi cos θi

μin sin θt cos θt + μout sin θi cos θi

(35a)

= tan(θt − θi)

tan(θt + θi)
, if μin = μout. (35b)

It can be concluded that the linear systems in Table I embody
the boundary integral generalizations of the Fresnel equations
and Snell’s law at a curved interface for the scattering and
transmission of E and H .

FIG. 4. Variation of the scattered field: the real part of the normal
component, Escat

n , and its magnitude, |Escat|, on the surface of a
dielectric sphere in an incident field Einc = (1,0,0) exp(ikoutz) at
kouta = 3, kin/kout = 1.5048 + 1.8321i along the meridian at y = 0.
Using N = 2562 nodes and 1280 quadratic elements, the absolute
difference between the present field-only approach (symbols) and the
analytical Mie theory (lines) is less than 0.02.

C. Dielectric results

1. Dielectric sphere: Mie

In Fig. 4 we show numerical results for the scattered
field on the surface of a dielectric sphere (radius a) sub-
ject to an incident plane wave Einc = (1,0,0) exp(ikoutz) at
kouta = 3. The dielectric sphere has a constant but complex
relative permittivity that corresponds to a 200 nm radius gold
nanosphere at wavelength of 418.9 nm [38] in air, whereby
kin/kout = (εin/εout)1/2 = 1.5048 + 1.8321i.

We compare results from our field-only PEC-E approach
with the analytic results from the Mie theory. Since the
dielectric permittivity of the sphere is complex, we show
results for the magnitude of the scattered field |Escat| and
the real part of the normal component of the scattered field
Re(Escat

n ). This example demonstrates the flexibility of the
present formulation in being able to handle propagation in
media with complex dielectric permittivities.

In Fig. 5, we show vector plots of the total field E in the
plane y = 0 around a dielectric sphere subject to the same
plane wave at (a) kouta = 2.0 and kina = 5.0 and (b) kouta =
5.0 and kina = 2.0. The very different diffraction effects for
the two cases are evident.

In the case of Fig. 5(a) for kouta = 2.0 and kina = 5.0, the
incoming wave generates a vortex-like structure in the internal
field located on the downstream half of the sphere. This is
even more apparent in the accompanying movie file; see the
Supplemental Material [39]. In the upstream portion of the
sphere, the internal electric field is aligned more or less along
the x direction. In between these two regions, around the center
of the sphere, the absolute value of the electric field exhibits
three separate minima, and the electric field has the largest
magnitude on the downstream exterior surface. A few local
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FIG. 5. The total field E in the plane y = 0 around and inside a di-
electric sphere due to an incident electric field Einc = (1,0,0) exp(ikz)
with (a) kouta = 2, kina = 5 and (b) kouta = 5, kina = 2. Results are
obtained using 1442 nodes and 720 quadratic elements sphere. (See
Supplemental Material [39] for animation.)

minima can also be observed on the upstream exterior of the
sphere.

In contrast, the field structure is quite different in Fig. 5(b),
where we have interchanged the ka values from kouta =
5.0 and kina = 2.0 to kouta = 2.0 and kina = 5.0. Now, the
magnitude of the electric field assumes a maximum in the
upstream part of the sphere. The incoming wave is being
scattered to the sides by the dielectric sphere. Again, this effect
is most clearly visible in the movie file of the Supplemental
Material [39]. The result then is a large shadow region on the
downstream side of the sphere with a small field magnitude.
This is accompanied by an envelope of higher field intensity

(“yellow” color) that is due to the constructive interference
between the incident and reflected wave.

2. Layered dielectric spheres

Based on these observations, it would be interesting to see
what happens if a small PEC sphere is placed inside the dielec-
tric sphere shown in Fig. 5(a) with kouta = 2.0 and kina = 5.0.
First, we embed a concentric PEC sphere, with radius 0.6 of
that of the dielectric sphere, and the resulting vector plot of the
total field E in the plane y = 0 is shown in Fig. 6(a). When

FIG. 6. The total field E in the plane y = 0 around a dielectric
sphere with a PEC sphere inside it due to an incident electric
field Einc = (1,0,0) exp(ikz) with kouta = 2 and kina = 5 for (a) a
concentric PEC sphere of radius apec = 0.6a and (b) a PEC sphere
of radius apec = 0.3a whose center is at a/2 from the center of the
dielectric sphere. Results are obtained using 1442 nodes and 720
quadratic elements on each sphere. (See Supplemental Material [39]
for animation.)
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FIG. 7. The radial component of electric fields Er at r = a and
at r = apec for a dielectric sphere (radius, a) with a concentric perfect
electrical conducting core (radius, apec = 0.6a) in an incident field
Einc = (1,0,0) exp(ikoutz) at kouta = 0.0001. Using 1442 nodes and
720 quadratic elements the absolute difference from the analytical
(lines) and numerical (symbols) solutions is less than 0.01.

compared to Fig. 5(a), we see that both the spatial structure
and magnitudes of the electric field have changed drastically.
Regions that previously had low electric field strengths now
have large field strengths. The largest values of the electric
field occur at the downstream surface of the PEC sphere, but
its absolute value, |E| ∼ 2.4, is smaller than the maximum
value observed in Fig. 5(a), |E| ∼ 3.4. The observed effects
are mainly caused by the fact that the electric field is forced
to be perpendicular to the surface of the embedded PEC
sphere.

In order to investigate further the influence of the presence
of an embedded PEC object, we place a smaller PEC sphere,
0.3 times the radius of the dielectric sphere, midway between
the center and surface of the dielectric sphere; see Fig. 6(b)
where the interior field of the dielectric sphere has a maximum
adjacent to a vortical structure [see Fig. 5(a)]. The result in
Fig. 6(b) clearly shows that the presence of a relatively small
PEC sphere can have a large influence on the behavior of the
electric field both inside and outside the dielectric sphere. The
vortical field structure in the internal field is still present, but
is clearly modified by the presence of the small PEC inclusion
(see also the movie file in the Supplemental Material [39]).
The maximum total electric field magnitude has been reduced
to |E| ∼ 2.2.

VII. LOW-FREQUENCY BEHAVIOR

To demonstrate that our field-only formulation is numeri-
cally robust in the long-wavelength limit we solve the PEC-E
equations for spheres with ka 	 1 and compare with known
analytical results for ka ≡ 0. We consider a dielectric sphere
(radius a) of permittivity εin in an external medium εout with
a concentric spherical cavity inclusion of radius acav < a and

permittivity εcav. When this layered sphere is placed in an
electrostatic incident field Einc = (E0,0,0), the potential V

has the solution

V = −E0 r cos θ + A(a3/r2) cos θ, r > a, (36a)

= B r cos θ + C(a3/r2) cos θ, acav < r < a, (36b)

= −Ecav r cos θ = −Ecav x, r < acav. (36c)

The constants A,B,C and the constant cavity field magnitude
Ecav [7] can be found from the continuity conditions of V

and ε(∂V/∂r) at r = a and acav and the field is then given by
E = −∇V .

In Fig. 7, we show results for the radial component of
the electric field Er at kouta = 0.0001, kin/kout = 3 for a
concentric spherical PEC inclusion (εcav → ∞) and acav ≡
apec = 0.6a. The absolute difference between our field-only
approach and the analytic result (36) is less than 0.01.
This therefore demonstrates that our field-only formulation is
numerically robust at all frequencies or wavelengths and thus
provides a simple solution for the zero-frequency catastrophe.

VIII. CONCLUSIONS

We have developed a formulation for the numerical solution
of the Maxwell’s equations in the frequency domain in
piecewise homogeneous materials characterized by linear
constitutive equations. The key feature of the approach is
that one can obtain the electric field directly by solving
scalar Helmholtz equations for the Cartesian components of
E and the scalar function (r · E). The magnetic field can
be obtained independently by solving the analogous scalar
Helmholtz equations for the Cartesian components of H and
the scalar function (r · H). As such, conventional boundary
integral methods for solving the scalar Helmholtz equation
can be used.

The implementation of this formalism is made more robust
numerically by removing analytically all singularities that
arise from the Green’s function and the term involving the
solid angle that appear in the conventional boundary integral
method. Such a formulation facilitates the use of higher order
surface elements that can represent the surface geometry more
accurately as well as the use of accurate quadrature methods
to compute the surface integrals.

At a more fundamental level, our field-only formulation has
also removed the troublesome zero-frequency catastrophe that
causes the widely adopted surface currents approach to fail
numerically in the long-wavelength limit. In practical terms,
our formulation has done away with having to handle prin-
cipal value surface integrals in which the inherent divergent
behavior precludes the accurate evaluation of field values near
boundaries and causes loss of precision in geometries where
the separation between two surfaces is small compared to the
characteristic wavelength.

It is well known that spurious resonant solutions can appear
in numerical solutions of the boundary integral formulation of
the Helmholtz equation if the wave number k is close to one
of the eigenvalues of the problem. Our initial investigations
suggest that with our nonsingular formulation of the boundary
integral equation (BRIEF), the value of k has to be within 0.1%
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of an eigenvalue before the effects of the resonant solution can
be significant [12]. However, it remains an open problem as
to how to ameliorate this issue in practice or to exploit this as
a way to find such resonant frequencies that are important in
surface plasmonics.

As mentioned at the end of Sec. VI A, it is possible to
take advantage of the large number of zero entries in the
linear system to reduce the size of matrix equations. This is a
direction that is worthy of further development.

For our examples, which are relatively simple, we use Gauss
elimination to solve the linear system. For large and complex
problems iterative solvers or faster (N log N ) algorithms can
also be adopted.
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