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We employ density-functional theory (DFT) in the generalized gradient approximation (GGA) and its
extensions GGA+U and GGA+Gutzwiller to calculate the magnetic exchange couplings between pairs of Mn
ions substituting Cd in a CdTe crystal at very small doping. DFT(GGA) overestimates the exchange couplings
by a factor of 3 because it underestimates the charge-transfer gap in Mn-doped II-VI semiconductors. Fixing
the nearest-neighbor coupling J1 to its experimental value in GGA+U , in GGA+Gutzwiller, or by a simple
scaling of the DFT(GGA) results provides acceptable values for the exchange couplings at second-, third-,
and fourth-neighbor distances in Cd(Mn)Te, Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S. In particular, we recover
the experimentally observed relation J4 > J2,J3. The filling of the Mn 3d shell is not integer, which puts the
underlying Heisenberg description into question. However, using a few-ion toy model the picture of a slightly
extended local moment emerges so that an integer 3d-shell filling is not a prerequisite for equidistant magnetization
plateaus, as seen in experiment.
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I. INTRODUCTION

The introduction of spin degrees of freedom in semiconduc-
tors leads to a variety of new phenomena, e.g., giant Zeeman
splitting or giant Faraday rotation [1–3]; for recent studies of
spin diffusion and spin relaxation of Mn-doped semiconductor
heterostructures, see Refs. [4,5] and references therein. Over
the last decades, the field of diluted magnetic semiconductors
has attracted a lot of attention with the perspective of using
the spin degree of freedom for electronic devices (“spintron-
ics”) [6–9]. Apart from potential applications, the description
of magnetic ions in a semiconducting host material poses
an interesting but difficult problem in theoretical condensed-
matter physics.

Mn-doped II-VI semiconductors were among the first di-
luted magnetic semiconductors to be studied intensively [1,2].
For small doping in CdTe, the isovalent Mn ions replace
the Cd ions. Early on, it was pointed out that the Mn
ions possess magnetic moments the couplings of which are
mediated by the semiconductor host material. The observation
of equidistant magnetization steps confirmed the assumption
that the Mn ions carry spin s = 5/2 and their mutual
interaction can be expressed in terms of a Heisenberg model
with antiferromagnetic pair couplings Jn > 0 at nth-neighbor
distance [10–14].

Not only the exchange couplings between nearest neighbors
but also those between Mn ions at second-, third-, and fourth-
neighbor distances were experimentally determined; all other
couplings are negligibly small, Jn�5 � J4. A modeling of the
magnetization curves at very low temperatures leads to the
surprising result that J4 > J2,J3 [12,13], i.e., the exchange
couplings do not decay monotonously as a function of the
geometrical distance.

The unexpected nonmonotonous decay of Jn as a
function of the Mn-Mn separation, and also the overall
size of the exchange couplings, are unexplained. Only
the nearest-neighbor exchange couplings J1 for Mn-doped

II-VI semiconductors were calculated using the superex-
change approach [15–18], or density-functional theory (DFT)
in the local-density approximation, DFT (LSDA), and in
DFT(LSDA)+U [19,20].

In this work, we calculate the exchange couplings Jn�4

using three itinerant-electron approaches: (i) the generalized-
gradient approximation (GGA) to DFT with the functional of
Perdew, Burke, and Ernzerhof [21]; (ii) GGA+U as imple-
mented in the FLEUR package [22]; and (iii) GGA+Gutzwiller
for a suitable two-ion Hubbard model. We confirm that
J4 > J2,J3 and find a reasonable agreement with measured
values for Cd(Mn)Te, Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S.
Furthermore, our analysis shows that the filling of the Mn
3d shell is not integer, which challenges the notion of
Mn ions carrying a spin s = 5/2. We study a few-ion toy
model to show that the noninteger filling remains consistent
with equidistant magnetization plateaus. The picture of a
spatially distributed spin s = 5/2 emerges which includes the
neighboring Wannier orbitals that hybridize with the Mn 3d

states. We therefore conclude that the concept of interacting
Heisenberg spins remains applicable for Mn ions diluted in
II-VI semiconductors.

Our paper is organized as follows. In Sec. II we specify
the setup for our DFT(GGA) and GGA+U calculations.
Moreover, we derive the two-ion Hubbard model for our
GGA+Gutzwiller approach, and define the exchange cou-
plings in terms of ground-state energy differences of the
itinerant electron description. In Sec. III we provide the
exchange couplings for up to fourth neighbors in Cd(Mn)Te,
Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S, and compare them to
experiment. As an example, we discuss the magnetization as
a function of magnetic field for Cd1−xMnxTe for very low
doping, x = 0.005. In Sec. IV we discuss the magnetization
curve for a few-ion toy model and show that equidistant
magnetization plateaus can be observed even though the filling
of the Mn 3d shell is not integer. Short conclusions, Sec. V,
close our presentation.

2469-9950/2017/95(4)/045134(10) 045134-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.045134
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II. ION PAIRS IN A SEMICONDUCTOR HOST

We are interested in the properties of manganese atoms
diluted in a II-VI host semiconductor at low temperatures and
in sizable magnetic fields. To be definite, we shall focus on
CdTe. For very small Mn concentrations x in Cd1−xMnxTe, we
may safely assume that the Mn2+ ions substitute the isovalent
Cd2+ ions. We tested that it is a reasonable approximation to
neglect lattice distortions in the theoretical analysis because
structural relaxations turned out to be small within the
DFT(GGA) calculations.

CdTe crystallizes in the zinc-blende (β − ZnS) structure
where the fcc lattice of the Te ions is shifted against the fcc
lattice of the Cd ions by a/4 along the diagonal of the cubic
cell of length a = 6.482 Å [23]. Figure 1(a) shows a fcc unit
cell with one Mn atom replacing one out of four Cd atoms
(x = 0.25).

The spin of an isolated Mn ion aligns with any finite
magnetic field. The nontrivial magnetization curves (deviating
from a Brillouin function) seen in experiment [13] are due
to the exchange interaction between different Mn ions. Test
calculations confirmed that the interaction of three or more
Mn ions is given by the sum of pair interactions so that we can
concentrate on the interaction between pairs of Mn ions as a
function of their distance. We found in numerically expensive
Gutzwiller calculations with L = 512 atoms in the unit cell that
the interaction between two Mn ions beyond fourth-neighbor
distance is negligibly small. In Fig. 1(b) we show the first,
second, third, and fourth neighbors on the fcc sublattice in
CdTe.

A. GGA and GGA+U calculations

Ideally, we should study a single pair of Mn ions with
Cd ions on all other sites of the cation fcc lattice. However,
practical band-structure calculations require translational sym-
metry. Therefore, we start from large but finite cells with L

atoms that contain two Mn ions, and link them together so
that periodic boundary conditions apply in all three spatial
directions. Modern band-structure program packages permit
the investigation of large cells (“supercells”). In this paper,
we use supercells with L = 128 atoms, which are obtained by
transforming the eight-atomic unit cell shown in Fig. 1 by the
matrix (022/202/220). This supercell is sufficient to study Mn
pairs that are maximally fourth-nearest neighbors.

FIG. 1. (a) Zn-blende structure for Cd0.75Mn0.25Te where one out
of four Cd atoms is replaced by a Mn atom. (b) Positions of first,
second, third, and fourth neighbors on the Cd fcc sublattice from the
Cd atom in the lower left corner.

For our investigations we use the FLEUR package [22], a
high-precision implementation of the full potential linearized
augmented plane-wave (FLAPW) approach to DFT in the
GGA. The program package FLEUR also offers the option to
include the effect of the correlations between the electrons in
the partly filled 3d shell of the Mn ions on a mean-field level
(GGA+U ). In Sec. III, we compile results for the Mn-Mn
interaction from both band-structure approaches.

We run the FLEUR code using the following settings. We use
the GGA functional of Perdew, Burke, and Ernzerhof [21] for
the exchange-correlation energy. Since we are investigating a
band insulator with a sizable gap, it is sufficient to use only ten
inequivalent k points in the irreducible part of the Brillouin
zone; depending on the impurity positions, this corresponds to
20 or 40 k points in the full Brillouin zone. The basis functions
inside the muffin tins are expanded in spherical harmonic
functions with a cutoff of Lmax = 10. The muffin tin radii are
RCd = RMn = 2.64 a.u. and RTe = 2.58 a.u. (1 atomic unit =
aB = 0.529 Å). We use RTeKmax = 8.26, where Kmax is the
plane-wave cutoff. For the GGA+U calculations we use
the standard double-counting correction [24]. Due to the
computational cost of the DFT calculations a rigourous
analysis of the error in the coupling constants (see Sec. II C) is
not feasible. However, for testing purposes, we also calculated
J1 and J4 for CdTe with (i) 20 inequivalent k points and (ii)
a larger plane-wave cutoff of RTeKmax = 9.29. The results for
J1 and J4 in these calculations change by less than 1%.

B. GGA+Gutzwiller approach

The electrons in the Mn ions’ 3d shell are strongly corre-
lated. Therefore, more sophisticated many-particle techniques
should be employed. For example, it would be desirable
to use the fully self-consistent Gutzwiller-DFT [25–27]. At
present, however, the required large unit cells prevent us from
doing such a calculation and we restrict ourselves to a less
costly method that is based on the evaluation of a Gutzwiller
wave function for a tight-binding model with Hubbard-type
interactions on the two Mn sites.

1. Derivation of the two-ion Hubbard model

The code WANNIER90 permits a downfolding of the band
structure to a tight-binding Hamiltonian in position space [28].
We project onto a basis of s orbitals and p orbitals for each
of the semiconductor atoms and s, p, and d orbitals for the
Mn impurity. However, the downfolding procedure is limited
to L = 16 atoms in the unit cell so that we cannot derive the
tight-binding model for a pair of Mn ions directly.

To overcome this limitation, we assume that the combined
influence of two Mn ions on the electron transfer between two
lattice sites can be approximated by the linear superposition of
the influence of two individual Mn ions. Under this linearity
assumption, we are left with the investigation of a single
Mn ion in a CdTe supercell of L = 16 atoms, obtained by
transforming the eight-atomic unit cell shown in Fig. 1 by the
matrix (011/101/110). For our GGA calculations we use 120 k
points in the irreducible part of the Brillouin zone (1/24 of the
full Brillouin zone) and RTeKmax = 9.80.
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First, we calculate the band structure for pure CdTe. The
downfolding provides the tight-binding Hamiltonian for CdTe,

Ĥ CdTe =
∑

i,j,b1,b2,σ

t
j,b2,σ

i,b1,σ
ĉ
†
i,b1σ

ĉj,b2σ
, (1)

where ĉ
†
i,bσ (ĉi,bσ ) creates (annihilates) an electron in the orbital

b with spin σ = ↑,↓. Due to the symmetry of our crystal, there
are no local hybridization terms, and we may write

Ĥ CdTe = T̂ CdTe + V̂ CdTe,

T̂ CdTe =
∑

i�=j,b1,b2,σ

t
j,b2,σ

i,b1,σ
ĉ
†
i,b1σ

ĉj,b2σ
, (2)

V̂ CdTe =
∑
i,b,σ

t
i,b,σ
i,b,σ n̂i,bσ ,

where n̂i,bσ = ĉ
†
i,bσ ĉi,bσ counts the number of electrons with

spin σ in orbital b on site i.
Next, we repeat the paramagnetic calculation with a single

Mn ion at position f which leads to a new set of electron
transfer matrix elements (t j,b2,σ2

i,b1,σ1
)f

Ĥ CdTe,f =
∑

i�=j,b1,b2,σ

(
t

j,b2,σ

i,b1,σ

)f
ĉ
†
i,b1σ

ĉj,b2σ
+ V̂ CdTe. (3)

Due to periodic boundary conditions and the translational
invariance of the crystal, the bands for CdTe with a single Mn
ion do not depend on f. The corresponding bands for pure
CdTe and with a single Mn ion in the L = 16 supercell are
shown in Fig. 2.

The upper part of the figure shows that the direct gap at the
� point is Esp = 0.76 eV, in agreement with previous calcu-
lations [29]. However, DFT(LDA) and DFT(GGA) underesti-
mate the gap for the insulator CdTe. The (exciton) gap, a lower
bound on the single-particle gap, is found at Exc = 1.5 eV for
CdTe [30]. DFT(GGA) also underestimates the charge-transfer
gap in Mn-doped II-VI semiconductors between Te and Mn
levels so that the resulting exchange couplings are too large
(see Sec. III A 1). The origin of the exchange coupling can
be inferred from the lower part of Fig. 2. The Mn 3d bands
are grouped around the Fermi energy so that they push down
the CdTe bands that were below the gap, and hybridize at
the � point with a dominant Te band above the CdTe gap.
The band structure shows that the Mn-Te hybridization is
responsible for the interaction between Mn ions.

To set up our Hamiltonian in the presence of two Mn
impurities, we define the corrections to the electron transfer
amplitudes (

�
j,b2,σ

i,b1,σ

)f = (
t

j,b2,σ

i,b1,σ

)f − t
j,b2,σ

i,b1,σ
. (4)

According to our linear superposition scheme, we model
the presence of a second Mn impurity in our tight-binding
Hamiltonian by adding independently the corrections for the
first Mn ion at site f1 and the second impurity at site f2. This
defines our tight-binding Hamiltonian for the two-site problem

Ĥ tb =
∑

i�=j,b1,b2,σ

(
t

j,b2,σ

i,b1,σ

)f1,f2
ĉ
†
i,b1σ

ĉj,b2σ
+ V̂ CdTe,

(
t

j,b2,σ

i,b1,σ

)f1,f2 = (
�

j,b2,σ

i,b1,σ

)f1 + (
�

j,b2,σ

i,b1,σ

)f2 + t
j,b2,σ

i,b1,σ
. (5)

FIG. 2. Band structures of CdTe (upper part of the figure) and of
Cd0.875Mn0.125Te (lower part of the figure), calculated from a supercell
with L = 16 atoms without (with) a single Mn atom in the supercell
using the FLEUR program package.

Our approximation neglects the joint influence of the impuri-
ties on the electron transfer-matrix elements in their surround-
ing, in the spirit of standard alloy theory [31]. The supercells
for the two-ion Hubbard model can be much larger than those
used for its construction (L = 16). For our further Gutzwiller
calculations we work with cells containing L = 512 atoms.

As a last step, we add the Hubbard interaction on the two
Mn sites f1 and f2 and obtain the two-ion Hubbard model

Ĥ = Ĥ tb + Ĥ loc
f1

+ Ĥ loc
f2

+ Ĥ dc,

Ĥ loc
g =

5∑
c1,...,c4=1

∑
σ.σ ′=↑,↓

U
(c1σ ),(c2σ

′)
(c3σ ′),(c4σ )

× ĉ†g,c1σ
ĉ
†
g,c2σ ′ ĉg,c3σ ′ ĉg,c4σ

,

Ĥ dc = −Edc(n̂f1 + n̂f2 ). (6)

Here, U.,.
.,. describes the Coulomb interaction between the

electrons in the 3d shell in the ten spin-orbit level (clσl)
in either of the two Mn ions. Using some simplifying
assumptions, all interaction coefficients can be expressed
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in terms of an intraorbital Hubbard U and an interorbital
Hund’s-rule J [25] (see Sec. III).

Lastly, Ĥ dc accounts for the double counting of interaction
terms between the 3d electrons on a mean-field level, where
n̂g = ∑

c,σ n̂g,cσ counts the number of correlated electrons
on the Mn site g. We use a particularly simple form for
the double-counting term. In essence, the choice of Edc

permits us to fix the average number of electrons in the
correlated Mn 3d orbitals and we shall present our results as a
function of nd ≡ ∑

c,σ 〈nf1,c,σ 〉 = ∑
c,σ 〈nf2,c,σ 〉. Typically, we

need Edc ≈ 20 eV to adjust nd ≈ 5.

2. Gutzwiller variational state

We approximate the true ground state of our model
Hamiltonian (6) by a Gutzwiller variational state,

|�G〉 = P̂f1 P̂f2 |�0〉, (7)

where |�0〉 is the ground state of an (effective) single-
particle Hamiltonian H

qp
0 , and P̂g is the single-site Gutzwiller

correlator,

P̂g =
∑

�

λ�m̂g,�, (8)

with g = f1,f2. Here, m̂g,� = |�〉gg〈�| projects onto the atomic
eigenstate |�〉g of Ĥ loc

g = ∑
� E�m̂g,� , and λ� are real

variational parameters for each of the 210 = 1024 states in
the Mn 3d shell.

3. Gutzwiller approximation and energy minimization

To obtain the optimal values of the variational parameters
λ� and the optimal single-particle product state |�0〉, we must
minimize the energy functional

Evar({λ�,|�0〉}) = 〈�G|Ĥ |�G〉
〈�G|�G〉 . (9)

We evaluate the expectation value in Eq. (9) using the
Gutzwiller approximation [25]. This corresponds to a neglect
of correlations between the two Mn impurity sites.

Due to the presence of a second Mn impurity, the point
group on each Mn site is not exactly cubic. Hence, the local
density matrix for the correlated orbitals

Cg,cσ,c′σ = 〈�0|ĉ†g,c′σ ĉg,cσ |�0〉 (10)

is not diagonal. However, the nondiagonal elements are very
small, of the order of 10−3, and are therefore neglected in our
calculations, i.e., we set

Cg,cσ,c′σ = δc,c′nc,σ . (11)

For the same reason, we use the approximation that the matrix
for the electron transfer renormalization is diagonal, qc′σ ′

cσ =
δc,c′δσ,σ ′qc,σ . Then, the energy functional can be cast into the
form [32]

EGA({λ�,|�0〉}) = 〈�0|T̂ |�0〉 +
∑
i,b,σ

t
i,b,σ
i,b,σ 〈�0|n̂i,bσ |�0〉

+
∑

�

E�λ2
�〈�0|(m̂f1,� + m̂f2,�)|�0〉

−Edc〈�0|n̂f1 + n̂f2 |�0〉, (12)

where

T̂ =
∑

i�=j,b1,b2,σ

qb1,σ qb2,σ

(
t

j,b2,σ

i,b1,σ

)f1,f2
ĉ
†
i,b1σ

ĉj,b2σ
. (13)

The q factors depend on the variational parameters λ� and
the local densities nc,σ ; explicit expressions can be found in
Ref. [25]. We include the Lagrange parameter ESP for the
normalization of |�0〉 and ηc,σ to fulfill Eq. (11). Then, the
minimization of the energy functional (12) with respect to
〈�0| leads to the effective single-particle problem [33]

Ĥ
qp
0 |�0〉 = ESP|�0〉,

Ĥ
qp
0 = T̂ +

∑
i,b,σ

t
i,b,σ
i,b,σ n̂i,bσ

−
∑
c,σ

(Edc + ηc,σ )
(
n̂f1,cσ + n̂f2,cσ

)
. (14)

The Lagrange parameters ηc,σ are variational parameters that
control the local spin density in the 3d levels on the Mn ions,
while the double-counting energy Edc determines the average
number of Mn 3d electrons.

C. Exchange couplings

The notion of an “exchange coupling” between the two
Mn atoms hinges on the concept of a Heisenberg exchange
between the two Mn impurity spins at f1 and f2

Ĥ
f1,f2
Heis = 2Jf1−f2 Sf1 · Sf2 . (15)

Here, we tacitly assume that the average filling of the 3d shell
in the Mn atoms is close to integer filling, i.e., nd ≈ 5, and the
Hund’s-rule coupling fixes the ground-state spin to s = 5/2
on each ion. The exchange coupling is positive, Jf1−f2 > 0, for
an antiferromagnetic coupling.

Under the assumption that a Heisenberg model pro-
vides an adequate description of the ground state (and
low-energy excitations) of our two Mn impurities, we can
estimate their exchange coupling using the band-structure
and GGA+Gutzwiller approach. We orient the Mn spins into
the z direction, either parallel (“ferromagnetic alignment”)
or antiparallel (“Neél-antiferromagnetic alignment”). The
algorithm converges to the corresponding (local) minima and
provides (�E)f1−f2 = E↑↑ − E↑↓ for the energy differences.
This energy difference can also be calculated from the
Heisenberg model (15),

(�E)f1−f2 = 2Jf1−f2〈FM|Sf1 · Sf2 |FM〉
− 2Jf1−f2〈AFM|Sf1 · Sf2 |AFM〉

= 4Jf1−f2 (5/2)2 = 25Jf1−f2 , (16)

with the spin states |FM〉 = |5/2,5/2〉f1 |5/2,5/2〉f2 and
|AFM〉 = |5/2,5/2〉f1 |5/2, − 5/2〉f2 . Here we used that only
the z components contribute to the expectation values. In
this way, the values Jf1−f2 = (�Ef1−f2 )/25 are accessible from
approaches that employ itinerant electrons.

Of course, the preceding statements are only valid for
isolated Mn impurities. To calculate fourth-nearest-neighbor
couplings we use (�E)f1−f2 = 50Jf1−f2 because in the L = 128
fourth-neighbor supercell configuration described earlier, each

045134-4



EXCHANGE COUPLINGS FOR Mn IONS IN CdTe: . . . PHYSICAL REVIEW B 95, 045134 (2017)

Mn impurity is surrounded by two equally distant Mn sites due
to periodic boundary conditions.

III. RESULTS

First, we show that the experimentally observed exchange
couplings for Mn ion pairs up to fourth-neighbor distance
can be reproduced from scaled DFT(GGA), GGA+U , and
GGA+Gutzwiller. Second, we analyze the local occupancies
as obtained from GGA+Gutzwiller.

A. Exchange couplings

The values for the exchange couplings Jn in Cd(Mn)Te
are known from experiment for up to fourth neighbors on
the cation fcc lattice. The values for the couplings have been
determined from the steps in the magnetization as a function
of the externally applied field for very low temperatures,
T � 0.1 K. Their sequence, e.g., the fact that J4 > J2,J3,
has been extracted from a fit of the data to cluster spin
models. Malarenko, Jr. et al. [13] find J1 = 6.1 ± 0.3 K,
J2 = 0.06 ± 0.01 K, J3 = 0.18 ± 0.01 K, and J4 = 0.39 ±
0.02 K. In this section we derive and compare the exchange
couplings from DFT(GGA), GGA+U , and GGA+Gutzwiller
calculations, and compare the resulting magnetization curves
with experiment.

1. Coupling strengths

The DFT(GGA) calculation does not contain any specific
parameters to adjust the exchange couplings. For large super-
cells, L = 128, the influence of Mn pairs between neighboring
supercells is negligibly small.

As seen from Table I, the value for the nearest-neighbor
coupling from DFT(GGA) is too large by more than a factor
of 2, J DFT

1 = 17.1 K ≈ J1/0.36. DFT(GGA) overestimates
the size of the exchange coupling because it finds a too
small charge-transfer gap �CT between occupied Te levels
and unoccupied Mn levels in Cd(Mn)Te. In superexchange
models [18], the exchange integral J1 is inversely proportional
to �CT so that the exchange integral J1 becomes too large in
DFT(LDA) and DFT(GGA), by almost a factor of 3. GGA+U

is frequently used to tackle gap problems in correlated
insulators. When we apply a Hubbard U on the Mn sites,
we find a larger charge-transfer gap which leads to smaller
exchange couplings (see below). As mentioned in Sec. II A,
the gap in pure CdTe is too small in DFT(GGA) calculations.

TABLE I. Heisenberg exchange couplings Jn in K between
Mn ions at nth-neighbor distance on the Cd fcc lattice in CdTe
from experiment [13], and from DFT(GGA), DFT(GGA) scaled
by a factor s = 0.357, GGA+U for U = U − J = 2.65 eV, and
GGA+Gutzwiller for A = 4.4 eV, B = 0.1 eV, C = 0.4 eV, and
nd = 5.19.

J CdTe Exp. GGA s · GGA GGA+U GGA+G

J1 6.1 17.1 6.1 6.1 6.1
J2 0.06 0.30 0.11 0.10 0.10
J3 0.18 0.96 0.34 0.30 0.27
J4 0.39 1.44 0.51 0.49 0.61

FIG. 3. Heisenberg exchange coupling J1 between two Mn ions
in CdTe at nearest-neighbor distance from GGA+U as a function of
U = U − J calculated for a supercell with L = 128 atoms using
the FLEUR program package. The red horizontal line shows the
experimental value J

exp
1 = 6.1 K.

This can also be corrected using GGA+U [29]. However, the
exchange couplings between Mn ions are mediated by electron
transfer processes between Mn and Te so that the precise value
of the CdTe band gap is irrelevant for our considerations.

In Fig. 3 we show the dependence of J GGA+U
1 as a

function of U for various values of J . The exchange coupling
only depends on the combination U = U − J [34], where
U and J are a measure for the intra-atomic Coulomb and
exchange interaction, respectively. For U = 2.65 eV we obtain
J GGA+U

1 = 6.1 K. The values for other exchange interactions
for farther distances are collected in Table I. The values
for J GGA+U

2,3,4 are very similar, and even slightly closer to
experiment, than those from the scaled DFT(GGA). This
demonstrates that an adjustment of the charge-transfer gap
cures in effect the overestimation of the exchange interactions
in DFT(GGA).

Lastly, we discuss the results for Jn as obtained from
our GGA+Gutzwiller calculations. We set C = 0.4 eV, in
agreement with crystal-field theory for data from infrared
spectroscopy for isolated Mn2+ ions in CdTe [2]. Moreover, we
use C = 4B, i.e., B = 0.1 eV, as is a reasonable assumption
for transition metals [35]. A similar set of values was used in a
recent study of exchange integrals in Mn-doped II-VI semicon-
ductors [18]. The Hubbard-parameter U in transition metals is
of the order of several eV [36]. In this work we set A = 4.4 eV.
Note that we have U = A + 4B + 3C and J = (5/2)B + C

for our intraorbital Hubbard interaction and Hund’s-rule
coupling, or, for the Slater-Condon parameters, we have F (0) =
A + (7/5)C, F (2) = 49B + 7C, and F (4) = (63/5)C [37].
Therefore, our Hund’s-rule exchange on the Mn sites is
J = 0.65 eV and we employ F (0) = 4.96 eV or U = 6 eV.

In Fig. 4, we show J1 as a function of the electron number
nd in the Mn 3d shell. As seen from the figure, the curves for
4.0 � A � 4.8 eV and 0.3 � C � 0.5 eV essentially collapse
onto each other in the region of interest, J1 = 6.1 K. Therefore,
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FIG. 4. Heisenberg exchange coupling J1 between two Mn ions
in CdTe at nearest-neighbor distance from GGA+Gutzwiller as a
function of the number of electrons in the Mn 3d shell for various
values of the Racah parameters A, B, and C = 4B. The red horizontal
line shows the experimental value, J

exp
1 = 6.1 K.

the specific choice of the Racah parameters is not crucial. As
also seen from Fig. 4, the filling is not integer. Instead, we find
that nd = 5.19 reproduces the nearest-neighbor Heisenberg
exchange coupling best for A = 4.4 eV, B = 0.1 eV, C =
0.4 eV. The resulting values for the exchange couplings for
Mn ions in CdTe are compiled in Table I.

Our Gutzwiller calculations here are very close to a Hartree-
Fock calculation because the Gutzwiller wave function reduces
to a Hartree-Fock wave function near half filling and for
strong spin polarization. Correlation effects are small for the
two fully polarized Mn atoms with their (anti-)parallel spins.
We discuss this point further in Sec. III B. This agreement is
specific for Mn in II-VI semiconductors because we encounter
a fully polarized, half-filled 3d shell in a wide-gap insulator.
In other systems, correlation effects are more pronounced, as
seen in some preliminary calculations for Cr-doped CdTe or
Mn-doped GaAs.

For future reference, we compile the exchange couplings for
Zn(Mn)Se, Zn(Mn)Te, and Zn(Mn)S in Table II. Note that the
exchange couplings for n > 4 are at least an order of magnitude
smaller than J2,J3, of the order of Jn�5 = 0.01 K, or less. This
justifies our restriction to Jn�4.

As seen from the table, the GGA+Gutzwiller method
overestimates by some 20–30% the nearest-neighbor exchange
couplings J1 for Zn-VI semiconductors (VI=Te, Se, S) when
we use A = 4.4 eV, B = 0.1 eV, C = 0.4 eV, and nd = 5.19
for the Mn ions. With this parameter set, the method can
be used to provide a reasonable estimate for the nearest-
neighbor couplings for Mn ion pairs in II-VI semiconductors.
GGA+Gutzwiller provides a much better estimate for the cou-
plings Jn�2 than DFT(GGA) but they are still systematically
too large by a factor 2 to 3.

2. Magnetization for small doping and low temperatures

As an application, we calculate the magnetization M(B)
as a function of the applied external field B for Cd1−xMnxTe

TABLE II. Heisenberg exchange couplings Jn in K between Mn
ions at nth-neighbor distance on the cation fcc lattice in ZnTe,
ZnSe, and ZnS from experiment [13], from (scaled) DFT(GGA), and
from GGA+Gutzwiller for A = 4.4 eV, B = 0.1 eV, C = 0.4 eV,
and nd = 5.19.

J ZnTe Exp. GGA s · GGA GGA+G

J1 9.0 41.2 9.0 11.45
J2 0.20 0.96 0.21 0.49
J3 0.16 2.61 0.57 0.54
J4 0.51 3.97 0.87 1.13

J ZnSe Exp. GGA s · GGA GGA+G
J1 12.2 48.1 12.2 14.97
J2 0.16 0.81 0.21 0.28
J3 0.07 1.61 0.41 0.42
J4 0.43 3.26 0.82 1.16

J ZnS Exp. GGA s · GGA GGA+G
J1 16.9 60.3 16.9 19.73
J2 0.27 0.99 0.28 0.47
J3 0.04 1.14 0.32 0.40
J4 0.41 2.85 0.80 0.97

at small but finite doping x = 0.005. A Mn ion is placed in
the center of a large but finite fcc lattice with 503 sites. Then,
Cd atoms in the surrounding of the “seed site” are replaced
by Mn atoms with probability x. As a first possibility, the
central Mn ion remains isolated, i.e., with only Cd atoms on
its first-, second-, third-, and fourth-neighbor shell (“maximal
surrounding”). In the absence of spin-orbit coupling, the spin
of such an isolated Mn ion aligns with any finite magnetic field
so that its magnetic response is given by the Brillouin function.
Note that neglecting the spin-orbit coupling is justified because
of the full magnetic polarization of the Mn ions [38].

A second possibility are two-spin clusters with exactly one
Mn ion in the maximal surrounding of the seed site. Two
such clusters are equivalent when they can be mapped onto
each other by applying some space-group transformations
of the fcc lattice. Since equivalent clusters lead to the same
magnetic response we only need to store one representative
C and determine its multiplicity AC . Moreover, we need to
calculate the probability pC that a lattice point is part of cluster
C [12,39]. For example, for a nearest-neighbor cluster we have
AC = 12 and pC = x2(1 − x)72 (because in this case 72 sites
must be unoccupied). This construction principle is readily
generalized for clusters with three or more spins.

In this paper we include clusters with one to four Mn atoms
and thus find in total 1130 inequivalent clusters C. At doping
x = 0.005, clusters with up to three Mn atoms cover 98.5%
of all possible configurations, and clusters with up to four Mn
atoms cover 99.6% of all possible configurations. Therefore,
clusters with five and more Mn atoms are irrelevant at x =
0.005.

For each cluster C, the interaction between the Mn spins is
described by a Heisenberg model,

ĤC
Heis(B) =

∑
f1,f2 ∈ C$f1 �= f2)

Jf1−f2 Ŝf1 · Ŝf2 − gμBB
∑
f∈C

Ŝz
f ,

(17)
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FIG. 5. Magnetization M(B) as a function of the external field B

normalized to its value at B = 5 T for Cd1−xMnxTe at Mn doping
x = 0.005. Black line (solid), experimental curve [13]; red line
(dotted), Heisenberg model with experimental coupling parameters at
T = 0; blue line (dash-dotted), Heisenberg model with experimental
coupling parameters at Tspin = 0.1 K; green line (dashed), Heisenberg
model with GGA+Gutzwiller parameters at Tspin = 0.1 K. Clusters
with up to four Mn ions are included.

where the sums run over all lattice sites f in cluster C,
containing nC = 1 . . . 4 spins. We include the interaction with
the external field B where g = 2 is the gyromagnetic ratio
and μB is the Bohr magneton. For our comparisons with
experiment, we use the experimental values for Jn from Table I
and theoretical values from the GGA+Gutzwiller approach.
However, the differences between scaled GGA, GGA+U , and
GGA+Gutzwiller are fairly small.

For each cluster C, we determine its contribution to the
magnetization per lattice site,

MC(B) = 1

nC

Tr

(
ρ̂C

∑
f∈C

Ŝz
f

)
, ρ̂C = e−βĤC

Heis(B)

Tr
(
e−βĤC

Heis(B)
) (18)

with β = 1/(kBTspin). The trace is readily calculated using the
exact spectrum that we obtain from a complete diagonalization
of the cluster Hamiltonian ĤC

Heis(B). The magnetization per
lattice site is then given by the sum over all clusters weighted
by their multiplicity AC and probability pC :

M(B) =
∑
C

ACpCMC(B). (19)

We show the resulting magnetization in Fig. 5.
The curve for zero temperature shows the expected mag-

netization steps that occur when more and more Mn pairs (or
clusters) align with the external field [11]. When we use the
experimentally determined values for the exchange couplings
from Table I and a spin temperature Tspin = 100 mK that
is somewhat higher than the environment temperature T =
20 mK [13], we find that the agreement between theory and
experiment for M(B) is very good. The agreement becomes
slightly worse when we use the coupling parameters calculated
by GGA+Gutzwiller. Note that the experimentally accessible

FIG. 6. (a) Mn charge distribution pc(n) as a function of the
number n of 3d electrons and (b) Mn spin distribution ps(s) as a
function of the spin s of 3d electrons for A = 4.4 eV, B = 0.1 eV,
C = 0.4 eV, and nd = 5.19 in GGA+Gutzwiller (red columns), in
comparison with the Hartree–Fock result (blue columns).

magnetic fields probe mostly J2, J3, and J4 because we have
kBT ,gμBB � J1 and kBT ,gμBB � Jn�5.

B. Density and spin distributions

To gain further insight into the nature of the ground state of
the Mn ion, we present results for the local occupancies which
can be calculated from the Gutzwiller variational parameters
in the ground state [40].

We start our discussion with the probability distribution
pc(n) to find n 3d electrons on the Mn ion on site f (0 � n �
10). As seen from Fig. 6(a) the distribution peaks at n = 5,
which reflects the fact that the average particle number is
nd = 5.19 (see Sec. III A 1). Correspondingly, there also is
a sizable probability to find 3d6 configurations on the Mn
ion whereas the probability for all other occupation numbers
is negligible. Note that this distribution is not the result of
electronic correlations because the corresponding Hartree-
Fock state displays almost the same distribution function.

The probability distribution function ps(s) for finding local
spins with size 0 � s � 5/2 is very similar to the distribution
in the single-particle product state |�0〉, i.e., the correlation
enhancement of the local spin moment is also small for the
spin distribution function [see Fig. 6(b)]. The average local
spin is 〈Ŝz

f 〉loc = 2.33 because the admixture of spin s = 2 to
the dominant configurations with s = 5/2 is not negligibly
small.

The Mn ions do not show integer filling nd = 5, nor does
the spin moment correspond to the atomic spin s = 5/2. This
observation puts into question the concept of a Heisenberg-
model description that we employed in Sec. II C to derive
the exchange couplings. Even if we accept a noninteger
filling of the Mn ions’ 3d shell, we are actually far from a
local-moment regime that is implicit in the Heisenberg-model
description (15) in Sec. II C. This issue can be resolved as seen
in the next section.

IV. MAGNETIC RESPONSE OF ION PAIRS
AT NONINTEGER FILLING

In order to reconcile the finding of a noninteger Mn 3d

filling and the notion of a spin s = 5/2 effective Heisenberg
model, we study the magnetic response in a simplified toy
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FIG. 7. Toy model for the study of two Mn atoms with two
reservoir sites and an indirect Mn-Mn coupling via a charge-transfer
site.

model of two Mn atoms close to their Hund’s-rule ground states
that are coupled to three uncorrelated sites. The uncorrelated
sites serve two purposes, namely, (i) they act as a reservoir
to adjust the average particle number on the Mn sites away
from integer filling and (ii) they serve as an intermediate
charge-transfer (exchange) site to mimic the super-exchange
mechanism.

A. Model Hamiltonian

The Hamiltonian for our few-site toy model, illustrated in
Fig. 7, is readily formulated. We use the local Hamiltonian
Ĥ loc

g defined in Eq. (6) for the Mn atoms at fl and fr, and

Ĥ loc
j = εj

∑
σ

n̂j,σ , (20)

for the local Hamiltonians of the three uncorrelated orbitals.
Here, εj (j = l,e,r) are the local chemical potentials that permit
the adjustment of the average electron number in the left (l) and
right (r) bath orbitals and the exchange (e) orbital, and n̂j,σ =
ĉ
†
j,σ ĉj,σ counts the number of electrons in the uncorrelated

orbitals. The sites are coupled via the kinetic terms

T̂l/e,fl =
∑
c,σ

T
l/e,σ

fl,c,σ
ĉ
†
fl,cσ

ĉl/e,σ + H.c.,

T̂e/r,fr =
∑
c,σ

T
e/r,σ

fr,c,σ
ĉ
†
fr,cσ

ĉe/r,σ + H.c. (21)

The full model Hamiltonian reads

Ĥ = Ĥ loc
fl

+ Ĥ loc
fr

+ Ĥ loc
l + Ĥ loc

e + Ĥ loc
r

+ T̂l,fl + T̂e,fl + T̂e,fr + T̂r,fr . (22)

The maximal dimension of the corresponding Fock space is
dimH = 10242 × 43. It is too large to be handled exactly.

From our analysis in Sec. III we know that, for large U ,
J , those Mn configurations are dominantly occupied that,
in the sectors with nd = 4,5,6 electrons, have maximal spin
smax = 2,5/2,2 and maximal orbital momentum lmax = 2,0,2,
which is a good quantum number in spherical approximation.
Therefore, we restrict the Hilbert space of our two Mn atoms
to these atomic subspaces. To this end, we introduce the
projection operators PH

g,nd
onto the lowest-lying (2smax +

1)(2lmax + 1) Hund’s-rule states for fixed electron number nd

Ĥ loc
g |�n〉g = Eloc

n |�n〉g,

n̂g|�n〉g = nd |�n〉g,

Ŝ2
g|�n〉g = smax(smax + 1)|�n〉g,

L̂2
g|�n〉g = lmax(lmax + 1)|�n〉g,

PH
g,nd

=
∑
�n

|�n〉g g〈�n| . (23)

Then, we define the total projection operator

PH
4,5,6 =

⎛
⎝ 6∑

nd=4

PH
fl,nd

⎞
⎠

⎛
⎝ 6∑

nd=4

PH
fr,nd

⎞
⎠, (24)

and we limit ourselves to the investigation of our model
Hamiltonians in the projected form

H = PH
4,5,6ĤPH

4,5,6. (25)

The dimension of the partial Fock space on the Mn atoms
is (2smax + 1)(2lmax + 1) so that the maximal Fock-space
dimension is dimH = (25 + 6 + 25)2 × 43 = 200 704. This
partial Fock space is accessible using the Lanczos technique.

B. Magnetization plateaus

The magnetic field couples to the spin component of the
Mn atoms in the z direction

ĤB = −gμBB
(
Ŝz

fl
+ Ŝz

fr

)
. (26)

The magnetization is obtained from

M(B) = 〈�0|Ŝz
fl

+ Ŝz
fr
|�0〉, (27)

where |�0〉 is the ground state of our model Hamiltonian in
the presence of a magnetic field

H(B) = H + ĤB. (28)

We employ the Lanczos algorithm to find |�0(B)〉.
We fix the total number of electrons in the system to ntot =

16, and choose the local chemical potentials εl = εr to adjust
the average electron number on the Mn sites so that we have an
average number of nd = 5.30 electrons. Note that this number
marginally changes as a function of the magnetic field. We set
all electron transfer matrices equal in Eq. (21), T ..

.. = 1 eV.
In the following case (i), we set εe = 8.0 eV and εl,r =

23.1 eV so that we have ne = 1.98 electrons in the exchange
orbital and nl,r = 1.71 electrons in each bath orbital in the
ground state. The resulting magnetization steps are equidistant,
as shown in Fig. 8(a), despite the fact that the Mn filling is far
from integer.

FIG. 8. Magnetization M(B) as a function of the external field
for the toy model with (a) an almost filled exchange site, ne = 1.98,
and (b) a partly filled exchange site, ne = 1.51.
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The width of the magnetization steps become nonuniform
in case (ii) when the exchange site is not almost filled. To
illustrate this case, we choose εe = 22.6 eV and εl,r = 19.5 eV
so that we have nl,r = 1.93 electrons in each bath orbital and
ne = 1.51 electrons in the exchange orbital. Now, the lengths
of the corresponding magnetization plateaus are inequivalent,
as shown in Fig. 8(b).

The toy model shows that equidistant plateaus are possible
even though the occupation of the Mn sites is not integer.
Our numerical observations can be readily understood using
perturbative arguments. For negligible couplings to the ex-
change orbital, the ground state of each Mn ion and its attached
bath site has spin s = 5/2. Note that this spin is not solely
located on the Mn site but also partly on the corresponding
bath site. In case (i), the exchange orbital introduces only a
small coupling between the left and the right spin-5/2 systems,
and perturbation theory leads to a dominant term of the
usual antiferromagnetic Heisenberg form (15). Consequently,
the magnetization steps are equidistant [10,11]. In case (ii),
charge fluctuation contributions invalidate the simple spin-
only picture. This results in nonequidistant magnetization steps
as seen in Fig. 8(b).

When we apply the Gutzwiller approximation scheme used
in Sec. III to case (i) of our toy model, we find an exchange
coupling J1 that is very close to the exact value derived from
the width of the magnetization plateaus. This corroborates our
finding in Sec. III and further justifies the applicability of our
toy model.

Due to the large gap for charge excitations, the situation of
Mn ions in CdTe resembles scenario (i) in our toy model
and explains the experimental observation of equidistant
magnetization plateaus. The filling of the Mn 3d shell is not
integer but the total spin of the Mn ion and its surrounding
atoms still is essentially s = 5/2.

V. CONCLUSIONS

In this paper we used three band-structure methods,
DFT(GGA), GGA+U , and GGA+Gutzwiller, to derive the
exchange couplings between Mn ions diluted in II-VI semi-
conductor host materials such as CdTe. First, we calculate
the energy of the configurations with parallel and antiparallel
alignments of the Mn spins. Next, we interpret the energy
difference in terms of a two-spin Heisenberg model and
thereby deduce the exchange couplings as a function of the
Mn-Mn separation for up to fourth-neighbor distances.

For the GGA calculations we employ the FLEUR code with
the functional of Perdew, Burke, and Ernzerhof for large
supercells with L = 128 atoms where two of the Cd ions
are replaced by isovalent Mn ions. The ab initio results for
the exchange couplings are too large by a factor of 2 to 3,
which is related to the fact that DFT(GGA) underestimates
gaps in II-VI semiconductors systematically. The nearest-
neighbor couplings J1 for Mn ions in II-VI semiconductors
can be reconciled with experiment by using the GGA+U and
GGA+Gutzwiller methods. These methods employ adjustable
parameters that are used to match the experimental value for
J1 in Cd(Mn)Te. The exchange couplings J2,3,4 for second-,
third-, and fourth-neighbor distances are then predictions from
theory.

In general, the values for Jn�2 agree qualitatively with
experiment, i.e., band theory recovers J4 > J2,J3 and Jn�5 �
0.01 K. However, the values for the couplings do not agree
perfectly, i.e., we observe quantitative deviations up to a
factor of 2. About the same level of accuracy can be obtained
by a simple rescaling of the DFT(GGA) data that fits the
nearest-neighbor coupling J1 (see table II). The bare energy
scale in our itinerant-electron description is of the order of
several eV, i.e., of the order of 105 K, whereas the exchange
couplings Jn�2 are 1 K and below. Therefore, it does not
come as a surprise that the band-structure methods reach their
accuracy limits.

The notion of exchange couplings and the applicability
of the superexchange approach hinge on the mapping of
the low-energy degrees of freedom of the itinerant-electron
problem to those of a spin-5/2 Heisenberg model. This
mapping successfully explains the equidistant magnetization
plateaus as a function of applied magnetic field, as seen in
experiment. However, the analysis of the Gutzwiller ground
state for the two-ion Hubbard model shows that the filling of
the Mn 3d shell is not integer, which seemingly invalidates
the whole concept of localized spins. The analysis of an
exactly solvable few-site toy model reassures that an integer
filling is not a prerequisite for equidistant magnetization
plateaus. Due to the hybridization of the Mn 3d orbitals
with its insulating environment, a slightly delocalized spin-
5/2 magnetic moment is formed combing Mn 3d5 and 3d6

with neighboring valence-band states. Our picture of an
extended spin-5/2 magnetic moment interacting with each
other reconciles the usage of an effective spin-5/2 Heisenberg
model to explain the experimentally observed magnetization
steps and simultaneously a noninteger valence of the Mn 3d

shell.
In the case of Mn-doped II-VI semiconductors, the

Gutzwiller method and the Hartree-Fock approach to the
two-ion Hubbard model lead to essentially the same results
for an (anti-)ferromagnetic alignment of the Mn spins. Our
preliminary investigations show that this is not the case for
Cr in CdTe where the dopant electrons are more itinerant
than in the case of Mn doping. We observe the same trend
for Mn doping of GaAs and other III-V semiconductors.
This observation also indicates that the Heisenberg mapping
is less appropriate in these cases, and it is advisable to
employ a correlated-electron approach for the description of
the magnetic response in GaAs samples at low Mn doping.

In summary, we improve the understanding of exchange
couplings between Mn ions in CdTe: (i) we provide an ab initio
calculation of these parameters (beyond nearest neighbors),
and (ii) we reconcile the commonly used effective Heisenberg
spin models with microscopic calculations which indicate
noninteger fillings at the sites of the magnetic atoms.
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Gebhard, Phys. Rev. B 94, 035116 (2016).
[39] M. T. Liu, Y. Shapira, E. ter Haar, V. Bindilatti, and E. J. McNiff,

Jr., Phys. Rev. B 54, 6457 (1996).
[40] T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K.

Andersen, and W. Weber, Phys. Rev. Lett. 108, 036406 (2012).

045134-10

https://doi.org/10.1063/1.341700
https://doi.org/10.1063/1.341700
https://doi.org/10.1063/1.341700
https://doi.org/10.1063/1.341700
https://doi.org/10.1103/PhysRevB.93.195307
https://doi.org/10.1103/PhysRevB.93.195307
https://doi.org/10.1103/PhysRevB.93.195307
https://doi.org/10.1103/PhysRevB.93.195307
https://doi.org/10.1103/PhysRevB.82.035211
https://doi.org/10.1103/PhysRevB.82.035211
https://doi.org/10.1103/PhysRevB.82.035211
https://doi.org/10.1103/PhysRevB.82.035211
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/PhysRevB.33.1789
https://doi.org/10.1103/PhysRevB.33.1789
https://doi.org/10.1103/PhysRevB.33.1789
https://doi.org/10.1103/PhysRevB.33.1789
https://doi.org/10.1103/PhysRevB.39.11793
https://doi.org/10.1103/PhysRevB.39.11793
https://doi.org/10.1103/PhysRevB.39.11793
https://doi.org/10.1103/PhysRevB.39.11793
https://doi.org/10.1103/PhysRevLett.80.5425
https://doi.org/10.1103/PhysRevLett.80.5425
https://doi.org/10.1103/PhysRevLett.80.5425
https://doi.org/10.1103/PhysRevLett.80.5425
https://doi.org/10.1016/S0921-4526(99)02728-3
https://doi.org/10.1016/S0921-4526(99)02728-3
https://doi.org/10.1016/S0921-4526(99)02728-3
https://doi.org/10.1016/S0921-4526(99)02728-3
https://doi.org/10.1016/S0304-8853(02)01470-1
https://doi.org/10.1016/S0304-8853(02)01470-1
https://doi.org/10.1016/S0304-8853(02)01470-1
https://doi.org/10.1016/S0304-8853(02)01470-1
https://doi.org/10.1103/PhysRevB.33.3407
https://doi.org/10.1103/PhysRevB.33.3407
https://doi.org/10.1103/PhysRevB.33.3407
https://doi.org/10.1103/PhysRevB.33.3407
https://doi.org/10.1103/PhysRevB.37.4137
https://doi.org/10.1103/PhysRevB.37.4137
https://doi.org/10.1103/PhysRevB.37.4137
https://doi.org/10.1103/PhysRevB.37.4137
https://doi.org/10.1140/epjb/e2012-30795-4
https://doi.org/10.1140/epjb/e2012-30795-4
https://doi.org/10.1140/epjb/e2012-30795-4
https://doi.org/10.1140/epjb/e2012-30795-4
https://doi.org/10.1103/PhysRevB.90.075205
https://doi.org/10.1103/PhysRevB.90.075205
https://doi.org/10.1103/PhysRevB.90.075205
https://doi.org/10.1103/PhysRevB.90.075205
https://doi.org/10.1103/PhysRevB.79.205204
https://doi.org/10.1103/PhysRevB.79.205204
https://doi.org/10.1103/PhysRevB.79.205204
https://doi.org/10.1103/PhysRevB.79.205204
https://doi.org/10.1103/PhysRevB.83.239903
https://doi.org/10.1103/PhysRevB.83.239903
https://doi.org/10.1103/PhysRevB.83.239903
https://doi.org/10.1103/PhysRevB.83.239903
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
http://www.flapw.de/
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/1367-2630/16/9/093034
https://doi.org/10.1088/1367-2630/16/9/093034
https://doi.org/10.1088/1367-2630/16/9/093034
https://doi.org/10.1088/1367-2630/16/9/093034
https://doi.org/10.1103/PhysRevB.77.073101
https://doi.org/10.1103/PhysRevB.77.073101
https://doi.org/10.1103/PhysRevB.77.073101
https://doi.org/10.1103/PhysRevB.77.073101
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.commatsci.2014.10.051
https://doi.org/10.1016/j.commatsci.2014.10.051
https://doi.org/10.1016/j.commatsci.2014.10.051
https://doi.org/10.1016/j.commatsci.2014.10.051
https://doi.org/10.1063/1.1777063
https://doi.org/10.1063/1.1777063
https://doi.org/10.1063/1.1777063
https://doi.org/10.1063/1.1777063
https://doi.org/10.1103/RevModPhys.46.465
https://doi.org/10.1103/RevModPhys.46.465
https://doi.org/10.1103/RevModPhys.46.465
https://doi.org/10.1103/RevModPhys.46.465
https://doi.org/10.1103/PhysRevB.57.6896
https://doi.org/10.1103/PhysRevB.57.6896
https://doi.org/10.1103/PhysRevB.57.6896
https://doi.org/10.1103/PhysRevB.57.6896
https://doi.org/10.1002/pssb.201147585
https://doi.org/10.1002/pssb.201147585
https://doi.org/10.1002/pssb.201147585
https://doi.org/10.1002/pssb.201147585
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.74.125106
https://doi.org/10.1103/PhysRevB.74.125106
https://doi.org/10.1103/PhysRevB.74.125106
https://doi.org/10.1103/PhysRevB.74.125106
https://doi.org/10.1103/PhysRevB.93.205151
https://doi.org/10.1103/PhysRevB.93.205151
https://doi.org/10.1103/PhysRevB.93.205151
https://doi.org/10.1103/PhysRevB.93.205151
https://doi.org/10.1103/PhysRevB.94.035116
https://doi.org/10.1103/PhysRevB.94.035116
https://doi.org/10.1103/PhysRevB.94.035116
https://doi.org/10.1103/PhysRevB.94.035116
https://doi.org/10.1103/PhysRevB.54.6457
https://doi.org/10.1103/PhysRevB.54.6457
https://doi.org/10.1103/PhysRevB.54.6457
https://doi.org/10.1103/PhysRevB.54.6457
https://doi.org/10.1103/PhysRevLett.108.036406
https://doi.org/10.1103/PhysRevLett.108.036406
https://doi.org/10.1103/PhysRevLett.108.036406
https://doi.org/10.1103/PhysRevLett.108.036406



