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In this work, a quantum dot that is defined asymmetrically by electrostatic means induced on a GaAs/AlGaAs
heterostructure is investigated to unravel the effect of geometric constraints on the formation of spin droplets under
quantized Hall conditions. The incompressibility of the excited ν = 5

2 state is explored by solving the Schrödinger
equation within spin density functional theory, where the confinement potential is obtained self-consistently
utilizing the Thomas-Fermi approximation. Our numerical investigations show that the spatial distribution of
the ν = 2 incompressible strips and electron occupation in the second lowest Landau level considerably differ
from the results of the laterally symmetric quantum dots. Our findings yield two important consequences:
first, the incompressibility of the intriguing ν = 5

2 state is strongly affected by the asymmetry, and second,
since the Aharonov-Bohm interference patterns depend on the velocity of the particles, asymmetry yields an
additional parameter to adjust the oscillation period, which imposes a boundary condition dependency in observing
quasiparticle phases.
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I. INTRODUCTION

The fractional quantum Hall states assuming an even-
denominator Landau level (LL) filling factor [1] have recently
come into the limelight both in experimental [2–6] and
theoretical investigations [7–9] due to a theoretical prediction
that they are promising candidates to be useful for topological
quantum computing [10]. The use of topological charge is
constrained by the measurements, which should be able to read
out the qubits. Hence, interferometers are indispensable for
the implementation of topological quantum computation. The
topological quantum computation proposal seeks to explore
quasiparticle statistics of a particular fractional quantum Hall
state, namely filling factor ν = 5

2 , which is believed to obey
non-Abelian statistics [11]. Theoretical investigations based on
the analysis of composite fermions suggest a p-wave paired
state, described by a Moore-Read-Pfaffian wave function, as a
trial wave function for the ground state at filling factor ν = 5

2 .
Experimental investigation of the non-Abelian statistics of
the ν = 5

2 fractional quantum Hall state can be performed
by Fabry-Perot interferometry (FPI) of quasiparticles, leaning
on the Aharonov-Bohm (AB) phase [12,13]. Recently, there
have been advances in realizing quantum Hall edge-state
based interferometers at fractional filling factors at the lowest
LL [14,15]. Much of the attention has been focused on the
filling factor ν = 5

2 state in quantum dots (QDs) which consist
of the two LLs [16–18]. For an infinite system the lowest
LL is fully occupied and is spin compensated, whereas the
second lowest LL is spin polarized. For a finite system, e.g.,
a QD, the formation of a spin droplet (SD) is expected,
due to competition between the confinement potential and
interactions. Once the spin-polarized electrons in the second
lowest LL are localized to the center of the QD emanating
from exchange-correlation effects, they are called SDs, which
are many-body phenomena of interacting electrons [16,19,20].

*huseyinatci@gmail.com

Rasanen et al. [16] showed theoretical evidence of SD
formation in large (N ≥ 30) QDs at the filling factor range
2 < ν < 3 by using numerical many-electron methods. Their
calculations indicate that the paired electron state breaks
down leading to fragmentation of spin and charge densities
in parabolic external confining potentials. They point out that
evidence of the fragmentation can be tested by investigating
the spatial dependence of the spin and charge densities in
different geometries. Our previous work [17] was a systematic
investigation of the stability of SDs at the filling factor range
2 < ν < 3 considering broken rotational symmetry. There it
was shown that the broken rotational symmetry does not
considerably affect the stability of SD formation. However,
the stability of a SD under complete breakdown of both the
axial and the rotational symmetry of the confinement is still
under debate and such an asymmetric confinement is much
more realistic in investigating experimental systems. Here, we
perform numerical investigation of the formation of SDs in a
half-side etched, half-side gated QD yielding an asymmetric
confining potential.

We should clarify that in mesoscopic (R � 10 μm, R

being the radius of quantum dot) and macroscopic (R ∼
1 mm) devices, both the integer quantum Hall effect and
fractional quantum Hall effect are essentially described by bulk
properties, i.e., by nonlocal many-body wave functions (e.g.,
Laughlin 1/3 state [21]). These fractional quantum Hall states
emerge from topological phase protection. However, once the
edge effects, namely the physical boundaries, are taken into
account and the number of particles is in the more-than-a-few
regime (N ∼ 10–100), calculating the local (spatial) electron
or composite-Fermion distribution becomes important. In our
work, we are in this regime, where R is less than 500 nm
lithographically. Moreover, due to the electrostatic repulsion
emanating from the gates/trenched-gates the particles are
trapped in an effective dot with a radius of ∼220 nm.

The outline of this paper is as follows. In Sec. II we briefly
describe the GaAs/AlGaAs heterostructure and introduce
confinement potential of the device with a self-consistent
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FIG. 1. Sketch of the layer sequence of GaAs/AlGaAs het-
erostructure, which has the dimensions of 2550 × 2550 × 784 nm3.
The heterostructure is grown on a thick GaAs substrate, where 2DEG
is formed at the interface of the GaAs/AlGaAs denoted by the
green region. Silicon donor layers (dark brown regions), distributed
homogeneously on the xy plane, provide electrons both to the surface
and to the 2DEG. The light gray and black regions on the surface are
shown as the etched and the metallic gate regions, respectively.

electronic calculation. Then we solve computationally the
many-electron problem using the spin density functional
theory (SDFT). In Sec. III, we analyze the electronic structure
of fragmented quantum Hall states and show that the incom-
pressibility of the ν = 5

2 state is affected by the asymmetry. In
Sec. IV we conclude our work with discussion of the relevance
of our findings to formation of the spin droplet at the filling
factor ν = 5

2 quantum Hall state in a confined two-dimensional
electron gas (2DEG). The paper is summarized in Sec. V.

II. THE GEOMETRY AND MODEL HAMILTONIAN

The system we study is shown in Fig. 1; a GaAs/AlGaAs
heterostructure [22,23] consists of two δ-doped silicon donor
layers (dark brown regions) which provide electrons to the
2DEG (green region) forming 284 nm below the surface at
the interface between GaAs and AlGaAs. The donor layers lie
122 nm and 248 nm above the 2DEG and have the surface
densities 2.5 × 1015 m−2 and 1.7 × 1016 m−2, respectively.
The physical dimensions of the heterostructure are taken
as Lx = Ly = 2550 nm via a matrix of 128 × 128 mesh
points. The left side of the heterostructure (light gray region)
is etched 80 nm below the surface and different voltages
are applied to a metallic gate which is deposited on the
surface of heterostructure at the right side (black region). The
metallic gate is biased with −1.8 V, −2.0 V, −2.3 V, and
−2.9 V, respectively. The realistic modeling of the 2DEG to

be located at z = 0 relies on solving the Poisson equation
in three dimensions self-consistently within the Thomas-
Fermi approximation (TFA) which describes realistically the
electronic distribution for the given boundary conditions, set
by the GaAs/AlGaAs heterostructure and surface patterns.
To calculate electron and potential profiles within the TFA
the computational effort is much simpler than other quantum
mechanical calculations and yields compatible results. The
spatial distribution of the electron density is calculated within
the TFA [24,25],

nel(x,y) =
∫

D(E)f [E + Vtot(x,y) − μ∗]dE (1)

with D(E) ≡ ∑
δ(E − En) describing the local density of

states (LDOS), f (E) = 1/[exp(E/kBT ) + 1] as the Fermi
function, μ∗ as the electrochemical potential, kB as the
Boltzmann constant, and T as the temperature. We write the
total potential energy of an electron as

Vtot(x,y) = Vext(x,y) + VH(x,y), (2)

where Vext(x,y) and VH(x,y) are the external (confining)
potential composed of gates and donors and the electron-
electron interaction (Hartree) potential, respectively. Since the
Hartree potential depends on the electron density via [26]

VH(x,y) = 2e2

ε
K(x,y,x ′,y ′)nel(x

′,y ′)dx ′dy ′, (3)

where −e is the electron charge, ε is the dielectric constant
(=12.4 for GaAs), and the kernel K(x,y,x ′,y ′) is the solu-
tion of the 2D Poisson equation with appropriate boundary
conditions, Eqs. (1) and (2) complete the self-consistent
loop [27], which can be solved by a numerical iteration.
This kernel can be found in a well-known textbook [28].
To solve the Poisson equation we use a code developed
by Weischelbaum which has successfully been applied in
earlier studies [29–32]. Overall the code provides a reliable
description of the potential landscape both in the absence and
presence of electron-electron interactions in the 2DEG. To
obtain the confining potential, we use the half-side etched and
half-side gated heterostructure depicted in Fig. 1. In Fig. 2, we
show results of the confining potential that is nearly symmetric
when −2.3 V is applied to the metallic gate; however the
spatial symmetry is lifted for gate voltages −1.8 V, −2.0 V,
and −2.9 V, respectively.

Motivated by the experiments, we investigated the above-
mentioned geometry and structure. On one hand, we are not
able to judge whether the experiments (Refs. [22,23,33–36])
can describe the full picture of the 5

2 state. However, their ex-
perimental results coincide; in contrast interpretations strongly
differ. On the other hand, the question of whether the obser-
vations stem from phase protection (Aharonov-Bohm/Berry)
or whether particle interactions (bare Coulomb, exchange,
correlation) (Coulomb blockade) dominate the transport is
still under debate. Therefore, we think that our investigation
which focuses on QDs is valuable for the community. QDs
are induced on GaAs/AlGaAs heterostructures confined to a
2D plane and most importantly the electrostatic confinement
is spatially asymmetric, under quantum Hall conditions.
We use the effective-mass approximation with considering
material parameters of a GaAs semiconductor medium, i.e.,
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FIG. 2. The confinement potential for electrons at the interface
of the GaAs/AlGaAs heterostructure obtained with self-consistent
electronic calculations. Inset graph shows the symmetric confinement
potential (when applied −2.3 V) more clearly.

the effective mass m∗ = 0.067me and the dielectric constant
ε = 12.4. The N -electron system in an external confining
potential and magnetic field is described by an effective-mass
Hamiltonian

H = 1

2m∗

N∑
i=1

[−i�∇i + eA(ri)]
2 +

N∑
i<j

e2

4πε0ε|ri − rj|

+
N∑

i=1

[Vext(ri) + g∗μBBSz,i], (4)

where N defines the total electron number inside the quantum
dot, A = B/2(−y,x,0) is the vector potential given in the
symmetric gauge for the homogeneous magnetic field B =
Bẑ perpendicular to the plane, and Vext(r) is the external
confining potential in the xy plane (see Fig. 2). The last
term is the Zeeman energy arising from the application of an
external magnetic field with electron spin. Here, g∗ = −0.44
is the effective gyro-magnetic ratio, μB = e�/2me is the Bohr
magneton, and Sz = ± 1

2 represents the up and down spins,
respectively. We solve the Schrödinger equation, H� = E�,
associated with the N -electron Hamiltonian in Eq. (4) using
numerical approaches, namely the SDFT in the self-consistent
Kohn-Sham formulation [37]. To obtain the ground state
energy depends on spin densities σ = n↑(r),n↓(r) of a system
of interacting electrons; the Kohn-Sham states are solved from
the Kohn-Sham equation [38][

T σ
0 + V σ

KS(r)
]
ϕiσ (r) = Eiσ ϕiσ (r). (5)

Here, the first term is the kinetic energy functional of
noninteracting electrons with spin densities and the second
term is the Kohn-Sham potential V σ

KS(r), defined as

V σ
KS(r) = V σ

ext(r) + V σ
H (r) + V σ

xc(r), (6)

where the sum of the external confining potential V σ
ext(r) acting

on the interacting system, the classic electrostatic or Hartree
potential V σ

H (r), and the exchange-correlation potential given

by

V σ
xc(r) = δELSDA

xc

δnσ (r)
=

∫
drn(r)exc(n(r),ζ (r)), (7)

where exc is the exchange-correlation energy per electron,
depends on the total spin density n = n↑ + n↓ and spin polar-
ization ζ = (n↑ − n↓)/n. To calculate exchange-correlation
energy Exc, we use the local spin density approximation
(LSDA) with a parametrization provided by Attaccalite
et al. [39]. The SDFT scheme together with LSDA leads
to good numerical accuracy and produces reliable results
in comparison with quantum Monte Carlo calculations in
quantum dot systems [16,20,33]. In the SDFT calculations,
we utilize the OCTOPUS [40,41] code package (published
under the General Public License) built on the real space
grid discretization method which allows realistic modeling
of two-dimensional systems. Related technical details can be
found in Refs. [40,41]. To solve the Schrödinger equation the
conjugated gradient algorithm is used.

We point out that for the ν � 1 regime the filling factor
can be defined ν = 2N/N0LL, approximately in the QDs.
Here, N0LL is the number of electrons in the lowest LL.
Theoretical investigation of many-body effects in a realistic
QD involves the self-consistent solution of the Schrödinger
equation. To address the many-body problem, we use SDFT
with LSDA [42].

III. INCOMPRESSIBILITY

Interference phenomena in the quantum Hall regime
characterized by strong electron-electron interactions is a
very prominent topic in transport [22,34,35]. To investigate
interference effects at the edge of the quantum Hall system
a type of FPI can be addressed. The novel geometry called
FPI which shows edge channels (yellow lines) is shown
Fig. 3. Interference occur when current-carrying two-edge
channels are at close proximity allowing scattering to provide
partitioning. The current-carrying edge channels in the FPI
acquire a phase determined by the AB effect and the number

FIG. 3. A FPI device. Current flows along the counterpropagating
edge states (shown by yellow lines). Tunneling occurs in the two
narrow constrictions, when the edge channels are at a sufficient
proximity.
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FIG. 4. The slopes of the confinement potential of the sample
give the electron velocity as a function of the position.

of quasiparticles. This resultant phase arises from different
velocities of the quasiparticles on different paths and can be
controlled by either changing the magnetic field or the area
of the interferometer [36]. The phase difference is strongly
affected by the electron velocity and is an important transport
parameter for interferometers. To determine the edge channel
velocity in the quantum Hall regime McClure et al. [36]
used interference to explain checkerboard patterns at a FPI
geometry. Using the gradient of the confining potential it is
straightforward to obtain electron velocities within a self-
consistent screening theory. Figure 4 shows electron velocities
that flow through edge channels which are on the order of
107 cm/s. This result is consistent with previous theoretical
calculations [43].

Self-consistent screening calculations depending on the
electron-electron interactions explained by the recent theoret-
ical works show that the 2DEG contains two different kinds of
regions: the compressible and incompressible [44,45]. In the
compressible region a partially filled LL with its high density
of states is pinned to the Fermi energy and the electronic system
behaves like a quasimetal and screens completely the confining
potential. In contrast to the compressible region, when the
Fermi level is between two consequent LLs, electrons do not
contribute to screening locally; i.e., the confining potential
could not be screened perfectly. Here, the system presents
a constant electron density and is called “incompressible,”
behaving like a quasi-insulator.

In a 2DEG the incompressibility is defined as

κ−1 = −S

(
∂P

∂S

)
N

= S

(
∂2E

∂S2

)
N

, (8)

where the pressure P = (∂E/∂S) is the change of energy
according to the area change, S is the area of the 2DEG,
N = Snel is the total number of the electrons, and the total
energy of the system is N times the ground state energy
per particle, Etot = Nε(nel). Using standard manipulations,
we may rewrite incompressibility according to changing the
chemical potential instead of changing the electron number

density as

κ−1 = n2
el

(
dμ

dnel

)
, (9)

where the chemical potential μ is related to the total energy
Etot by

μ = ∂Etot

∂N
= ∂(Etot/S)

∂nel
. (10)

From Eq. (9) we can tell that the system is incompressible
if the chemical potential increases discontinuously as a
function of density. The incompressibility of the 2DEG is
a fundamental thermodynamic quantity and proportional to
the thermodynamical density of states (TDOS), DT(μ,B) =
dnel/dμ, which is the rate of change of the chemical potential
with electron concentration. To illustrate the meaning of the
term thermodynamic density of states, we calculate

dnel

dμ
= d

dμ

∫
dED(E)f (E) =

∫
dED(E)

df (E)

dμ
. (11)

The TDOS tells us how much the ground state energy changes
when an additional particle is added to the system [21].

IV. RESULTS

Utilizing the confinement potential obtained via solving
the Poisson equation in 3D, we calculate the corresponding
electron density distribution within the QD. Figure 5 depicts
the spin densities for a QD that contains 30 electrons at the ν =
5
2 state. Our numerical investigations show that the position of
the incompressible strips and electron numbers in the second
lowest LL differ from the results of the symmetric quantum
Hall devices. Although the position of the incompressible strip
shifts to the right side while applying −1.8 V and −2.0 V to
the metallic gate, it shifts to the left side for −2.9 V. Even
so, it looks nearly symmetric when the metallic gate is biased
with −2.3 V. The electron numbers in the SD are 3, 4, 4, 5 for
−1.8 V, −2.0 V, −2.3 V, −2.9 V, respectively.
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FIG. 5. Spin-up, spin-down, and total electron density of quantum
Hall state in a QD includes 30 electrons calculated with the SDFT at
ν = 5

2 for various gate voltages.
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To check spin dependency of the spin droplet we obtain
the local density of states (LDOS) when the total electron
number is N = 30 and N = 29 inside the quantum dot for
filling factor ν = 2 and ν = 5

2 . Figure 6 shows LDOS for ν = 2
and ν = 5

2 . We see that there is a peak in both 30 electrons

and 29 electrons for ν = 5
2 and this indicates the presence

of the spin droplet, incompressible droplets of spin-polarized
second Landau level (SLL) electrons. The spin splitting of the
SLL is analogous to the Stoner criterion [46], which states the
presence of correlations between electrons with the same spin
and high density of states near the Fermi level. Now, the system
favors ferromagnetic alignment that reduces the degeneracy.

We discuss the consistency of finite-size counterparts of the
integer and fractional quantum Hall states in the quantum dot
which gives characteristic properties in the chemical potential.
The existence and the properties of these states can be defined
by chemical potential μ(N,B) = Etot(N,B) − Etot(N − 1,B),
which is the energy needed to add the N th electron in the
system of N − 1 electrons. Figures 7 and 8 show results for
chemical potentials in the comparison with various electron
numbers for symmetric and asymmetric potentials, respec-
tively. Sudden jumps in oscillations correspond to filling factor
ν = 5

2 . The observed jumps clearly indicate that the 5
2 state is

compressible, once again regardless of the symmetry of the
confinement.

V. SUMMARY

In conclusion, we have seen the electronic compressibility
of a 2DEG in the fractional quantum Hall regime. The
compressibility images show a quasi-insulating region of
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electron liquid from near-integer filling. The incompressible
strips form near the boundary of the sample due to a
smooth density gradient. A potential step accompanies the
incompressible strip. We see that the incompressibility of the
filling factor ν = 5

2 is strongly affected by the asymmetry
of the potential of the sample. These findings are similar
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2 for various gate voltages.

to previous observation, even if the confinement potential
is no longer asymmetric. Such a stable configuration of the
spin droplet state also enables us to claim that this state is
universal. Our numerical investigations also show that the
position of the incompressible strips and electron numbers
in the SLL differ from the results of the symmetric quantum
Hall devices. Our calculations indicate that the paired electron
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FIG. 11. Spin-up, spin-down, and total electron density of quan-
tum Hall state in a QD that includes 60 electrons calculated with the
SDFT at ν = 5

2 for various gate voltages.

state breaks down leading to fragmentation of spin densities.
We find evidence of fragmentation in several calculations but
point out that our results can be tested by direct measurements
of the spatial dependence of spin densities in different
geometries and experimental setups. An asymmetric slope
gives electron velocity and an electron with the order of 107

cm/s passes through interferometers. This result is consistent
with previous theoretical calculations. It is concluded that the
electron velocity is an important transport parameter for the
interferometers.

It is essential to note that we do not claim that our model
gives a complete picture of the 5

2 state for macroscopic devices.
However, given the experimentally consistent reports, we think
that experimentalists can perform detailed investigations on
such asymmetric samples not only by device imperfectness
but also controllably, utilizing electrostatic means.
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APPENDIX

In this appendix we would like to clarify a couple of issues
related to the geometry and limited number of particles. First,
as shown in Table I the parameter N we considered in the main
text is still in the thermodynamic limit. We also performed
similar calculations regarding a larger number of particles,
which we present here.

Only considering the lithographic dimensions of the QD
(R ∼ 440 nm) is rather unrealistic to calculate the number
of particles with this parameter. However, in experiments
in which the electrostatic repulsion is due to the trapping
metallic gates, electrons are depleted from the edges, reducing
the effective radius to ∼220 nm. Essentially, this can be
clearly seen from Fig. 5 of our paper. Performing back
of envelope calculations with the given experimental bulk
and dot electron densities together with the lithographic and
electrostatic confinement radii, the numbers of electrons are
shown in Table I.

Given the numbers above we can say that our calculations
considering 30 electrons are reasonably close to the experi-
mental data. However, we also performed similar calculations
considering 48, 54, and 60 electrons (cf. Figs. 9, 10, and 11,
respectively). We observe that for 48 and 54 particles, the
density distribution at 5

2 filling does not show any remarkable
difference compared to 30 particles. For 60 particles, besides
some variations at nel(x) the general behavior, i.e., formation
of the spin droplet and incompressible strips, is preserved.
This result is also consistent with our previous work [17],
where the potential is assumed to be symmetric. Hence, in
this paper we have shown that, even if the confining potential
is asymmetric (describing experiments realistically), one can
obtain spin droplets.
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