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Magnetic order-disorder transitions on a one-third-depleted square lattice
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Quantum Monte Carlo simulations are used to study the magnetic and transport properties of the Hubbard
model, and its strong coupling Heisenberg limit, on a one-third-depleted square lattice. This is the geometry
occupied, after charge ordering, by the spin- 1

2 Ni1+ atoms in a single layer of the nickelate materials La4Ni3O8

and (predicted) La3Ni2O6. Our model is also a description of strained graphene, where a honeycomb lattice has
bond strengths which are inequivalent. For the Heisenberg case, we determine the location of the quantum critical
point (QCP) where there is an onset of long range antiferromagnetic order (LRAFO), and the magnitude of the
order parameter, and then compare with results of spin wave theory. An ordered phase also exists when electrons
are itinerant. In this case, the growth in the antiferromagnetic structure factor coincides with the transition from
band insulator to metal in the absence of interactions.
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I. INTRODUCTION

Over the last several decades, quantum Monte Carlo (QMC)
methods have been widely used to investigate magnetic,
charge, and pairing correlations in the Hubbard Hamiltonian
on a square lattice [1–7]. A central issue has been the
intimate interplay between these different types of order,
most fundamentally the possibility that magnetic correlations
give rise to d-wave superconductivity. The occurrence of
inhomogeneous (stripe) charge distributions upon doping the
half-filled lattice, where antiferromagnetism (AF) survives in
regions of low hole concentration but is suppressed on stripes
of high concentration, has also been shown to have profound
implications for pairing [8].

In more recent studies, the effect of depletion of the square
lattice has also been investigated. In this case, a regular
removal of sites can be regarded as an extreme limit of
the spontaneous formation of charge and spin patterns in
which the degrees of freedom on certain sites are completely
eliminated. Further types of transitions were then shown to
occur within these geometries. Two prominent examples are
the Lieb lattice [9], where 1/4 of the sites are removed,
giving rise to a flat electronic band and ferromagnetism, and
the 1/5-depleted lattice [10–15], where spin liquid phases
compete with magnetic order. This latter geometry is realized
by the vanadium atom locations in CaV4O9, and also by some
members of the iron-pnictide family [16,17]. A crucial feature
of this situation is the occurrence of two separate types of
bonds, and hence of exchange or hopping energies, in the
depleted structure.

Depleted lattices can also be formed starting from other,
nonsquare, lattices. For example, the Kagomé lattice arises
from removing one fourth of the sites of a triangular lattice.
Like the Lieb lattice, the Kagomé structure has a flat band.
However, because it is not bipartite, the band does not lie
between the dispersing ones.

In this paper we investigate the magnetic and charge
patterns within the 1/3-depleted square lattice of Fig. 1, which
is formed by the red sites remaining after the removal of
the black sites, which form stripes along one diagonal. The
bonds between red sites are of two sorts: ones which were the

near-neighbor bonds of the original, full square lattice, and
ones which connect through the diagonal rows of removed
sites, and which were next near neighbors of the original lattice.
This distinction will be modeled, in the following sections, by
allowing for different energy scales on the two types of bonds.
Notice that this lattice structure remains bipartite, a fact which
has implications for AF order without frustration and also for
the absence of a sign problem in QMC simulations.

Figure 1 is equivalent to a strained version of the hon-
eycomb geometry realized in graphene. “Artificial graphene”
lattices can be achieved by nanopatterning [18], by molecule-
by-molecule assembly [19], or by trapping ultracold atoms
on optical lattices. They offer the possibility of tunable bond
strengths, for example through application of strain, and have
recently been discussed as a means for further investigation of
Dirac particles and their associated correlated and topological
phases [20]. Graphene with a “Kekulé distortion” [19,21,22]
involves the appearance of two distinct bond hoppings, albeit
in a pattern different from that of Fig. 1.

A second motivation for investigating the geometry of
Fig. 1, which more directly connects with the notion of
“depletion” and which also fundamentally involves magnetic
order, is provided by recent experimental [23] and theoretical
[24] studies of the layered nickelates La4Ni3O8 and La3Ni2O6.
In these materials, the formal Ni valences of +1.33 and +1.5
are separated into charge ordered Ni1+ (spin 1

2 ) and Ni2+ (spin
0), so that spin- 1

2 stripes are formed at 45◦ relative to the
Ni-O bonds, as in Fig. 1 for La4Ni3O8. This charge ordering is
accompanied by structural distortions and the opening of a gap.
The Ni1+ atoms form an AF arrangement in analogy with the
magnetism of the CuO2 planes of the cuprate superconductors.
Here we will investigate AF correlations associated with this
geometry. Other layered nickelate materials [25–28] have also
been investigated with quantum simulations, especially within
the classical spin-fermion method [29].

II. STRONG COUPLING (HEISENBERG) LIMIT

We first consider the case of localized spin-
1/2 moments on the 1/3-depleted lattice with
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FIG. 1. The one-third-depleted square lattice. A regular diagonal
stripe array of black crosses is removed, leaving the red site structure.
We will assume two types of bonds exist corresponding to connections
between NN (black) and NNN (green) sites of the original square
geometry. (See text.)

Hamiltonian

H = J

⎡
⎣∑

〈ij〉
�Si · �Sj + g

∑
〈〈ij〉〉

�Si · �Sj

⎤
⎦, (1)

with exchange constants J and gJ on the two types of bonds
of Fig. 1.

This model can be treated within linear spin wave theory
(LSWT) by replacing the spin operators by bosonic ones
via the Holstein-Primakoff (HP) transformation, and then
invoking the linear approximation describing small fluctu-
ations around the broken symmetry phase. The resulting
noninteracting Hamiltonian can be diagonalized in momentum
space and through a Bogliubov rotation. The spin wave
spectrum is

ω(J ∗,k) = J ∗

√
1 − |γ (�k)|2

J ∗2
, (2)

where

γ (�k) =
∑

δ

J (δ)e−i�k·�rδ =J [e−i[(�k·�a1)+(�k·�a2)]/3 + ei[(�k·�a1)−2(�k·�a2)]/3]

gJei[2(�k·�a1)−(�k·�a2)]/3, (3)

with lattice vectors �a1 = 2x̂ − ŷ and �a2 = x̂ + ŷ. Here J ∗ =∑
δ J (δ) is the sum of exchange constants over near-neighbor

sites. The AFM staggered order parameter

ms = 1

N

(∑
i∈A

〈
Sz

i

〉 − ∑
i∈B

〈
Sz

i

〉)
(4)

is obtained in the LSWT, writing 〈Sz
i 〉 in terms of HP operators.

At T = 0 we obtain

ms = S + 1

2
− 1

N

∑
�k

(
1 − |γ (�k)|2

J ∗ 2

)
, (5)

where S is the spin.
We can also treat the Hamiltonian more accurately on

lattices of finite size using the stochastic series expansion

FIG. 2. Finite size scaling of the square of the AF order parameter
m2 for the spin-1/2 Heisenberg model. For a ratio g > 1.75 = gc of
exchange couplings, a transition to a disordered spin liquid state
occurs. LRAFO persists to small values of the interchain exchange.
Data were obtained with the SSE algorithm.

(SSE) quantum Monte Carlo method [30,31]. SSE samples
terms in the power expansion of e−βĤ in the partition
function. Operator loop (cluster) updates perform the sampling
efficiently [30,32]. The square of the staggered magnetization
〈m2

s 〉 can be evaluated to high precision, and extrapolated to
the thermodynamic limit.

Figure 2 shows the results of SSE simulations for different
values of the bond anisotropy g and inverse linear system size
1/L. The order parameter first increases with g, reaching a
maximum at the honeycomb limit g = 1, and finally begins
to decrease. LRAFO vanishes above gc = 1.75 ± 0.01. The
extrapolated order parameter from SSE (Fig. 2) and from
LSWT [Eq. (5)] is given in Fig. 3. LSWT greatly overestimates
the persistence of LRAFO at large g. It also predicts a quantum
phase transition at small, but nonzero, gc = 0.065 ± 0.005.
Similar to the case of a square lattice with anisotropic exchange
[33–35], a zero gc is expected here though a small nonzero
value is obtained in our calculations due to finite size effect.

FIG. 3. Extrapolated values of the SSE results for the AF order
parameter from Fig. 2 and the results of LSWT analysis, Eq. (5). With
LSWT (SSE), LRAFO disappears above gc = 6.20 ± 0.02 (1.75 ±
0.01). The QMC data are shown in the Supplemental Material [32].
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We emphasize the contrast of these results with those of
the Heisenberg model on 1/5-depleted lattice [12] appropriate
to modeling CaV4O9 where the lower gc = 0.60 ± 0.05. The
difference, as for the case of the anisotropic square lattice, is
that for the 1/5-depleted case the building blocks are small
clusters (either dimers or four site plaquettes) in both the g

small and g large limits. In the present case, two site clusters
are formed for large g, but the small g limit still has extended
one-dimesnional (1D) structures. These give rise to LRAFO
even for small g.

III. ITINERANT LIMIT

We next consider itinerant electrons, a single band Hubbard
Hamiltonian on the same 1/3-depleted lattice,

H =−t
∑
〈ij〉σ

(c†iσ cjσ + c
†
jσ ciσ ) − t ′

∑
〈〈ij〉〉σ

(c†iσ cjσ + c
†
jσ ciσ )

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (6)

The hoppings along and between the one-dimensional
chains are t and t ′, respectively. The properties of this model
are solved using the determinant QMC method [32,36]. In
this method the partition function is expressed as a path
integral. The discretization of inverse temperature β enables
the isolation of the quartic interaction terms which are
decoupled via a Hubbard-Stratonovich (HS) transformation.
The resulting quadratic fermionic trace is done analytically,
and the HS field is then sampled stochastically. Because the
scaling is cubic in the lattice size N we study systems only up to
N = 2 × 12 × 12 sites in contrast to the spin models described
in the previous section where SSE scales linearly in N and
systems up to N = 1600 (or more) are accessible. Equation
(6) is written in particle-hole symmetric form so that the lattice
is half-filled ρ = 〈ni↑ + ni↓〉 = 1 for all lattice sites i and any
values of t ′, U , and temperature T . At this electron density,
simulations are possible down to low T without encountering
the fermion sign problem [37].

In the noninteracting limit of Eq. (6) we have two bands
with dispersion,

E(�k) = ± {[t + t cos(�k · �a2) + t ′ cos(�k · �a1)]2

+ [t sin(�k · �a2) + t ′ sin(�k · �a1)]2}1/2. (7)

Here the noninteracting band width w is kept fixed, w = 4t +
2t ′ = 6, as t ′/t varies, setting the the energy scale w = 6
throughout the paper. As illustrated in Fig. 4(a), the band gap
� vanishes for t ′/t < 2. These bands touch at two Dirac points
for t ′/t = 1

2 in Fig. 4(b). Figure 4(c) shows the band insulating
case t/t ′ = 0.25.

To characterize the magnetic properties of Eq. (6) we
measure the AF structure factor

SAF = 1

N

∑
l,j

(−1)l〈�Sj · �Sl+j 〉, (8)

where the factor (−1)l = +1 (−1) if site l is on the same
(different) sublattice of the bipartite structure of Fig. 1.

The spin correlation in the singlet phase falls off exponen-
tially with separation l and SAF is independent of lattice size.

t'/t
0.0 0.5 1.0

Δ

0
1
2
3

t/t'
0.5 0.0

k ⋅ a2/π
→ →

k ⋅ a1/π 
→ →

k ⋅ a1/π 
→ →k ⋅ a2/π

→ →

(a)

(b) (c)

FIG. 4. (a) Band gap � as a function of the ratio of hopping. �

vanishes for t ′/t < 2. The noninteracting limit is a band insulator
(� > 0) for t ′/t > 2. (b) Semimetallic band structure at t ′/t = 0.5.
(c) Insulating band structure at t/t ′ = 0.25.

If LRAFO is present, SAF ∝ N , since spin correlations remain
nonzero out to all distances on a finite lattice.

Figure 5 shows SAF on an N = 8 × 8 lattice for different
U as a function of t/t ′. It is known that LRAFO exists at
the symmetric honeycomb lattice point t = t ′ only when U

is sufficiently large [38–41], with the most accurate value
[42] of the critical point Uc = 3.869 ± 0.013. The data of
Fig. 5 are suggestive of this result, with SAF being essentially
independent of the value of t/t ′ for U = 1,2,3, and becoming
both larger and sensitive to the anisotropy for U � 4.

t'/t
0.0 0.5 1.0

S A
F

0

4

8

12

t/t'
0.5 0.0

U=1
U=2
U=3
U=4
U=5
U=6

FIG. 5. The AF structure factor SAF is shown as a function of
hopping anisotropy for different U . The linear lattice size L = 8
so that the number of sites N = 128. (There are 64 unit cells
each with two sites.) The inverse temperature discretization �τ =
β/L = 1/2U except for U = 1 where �τ = 1/4. Data were acquired
from 25 simulations of 1000 equilibration and 4000 measurement
sweeps for each t ′/t . The QMC data is shown in the Supplemental
Material [32].
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FIG. 6. Finite size scaling of the AF structure factor SAF for t/t ′ =
0.95 (a) and t ′/t = 0.90 (b). In both cases Uc > 4.5 is well above the
critical interaction strength Uc = 3.869 for isotropic hopping [42].

Finite size scaling can be used to analyze quantitatively
the possibility of LRAFO. Such data are shown in Fig. 6. We
find that hopping anisotropy increases Uc, in agreement with
our results for the g dependence of the order parameter in the
strong coupling Heisenberg model (Fig. 3) which falls off to
either side of g = 1.

A second diagnostic of magnetic order is the near-neighbor
spin correlation between adjacent pairs of sites. This can be
evaluated for both intra- and interchain bonds, and measures
the formation of singlet correlations mt and mt ′ , respectively,
on the associated bonds. Figure 7 shows mt and mt ′ for different
values of U . For the Heisenberg limit, U → ∞, we use J ∼
t2/U to convert g = J ′/J to

√
t ′/t . In the strong coupling

limit 〈Si · Sj 〉 = − 3
4 for a singlet. Here in the Hubbard model,

the finite value of the on-site repulsion U < ∞ allows for
charge fluctuations which reduce the magnitude of the singlet
correlator. The quantities mt and mt ′ have opposite trends in
the two regimes t ′ < t and t < t ′ of Fig. 7. When t/t ′ < 1, mt

is suppressed, and mt ′ increases and saturates with decreasing
t/t ′. This supports the physical scenario in which singlets are

FIG. 7. Near-neighbor (singlet) spin correlation function across
intra- and interchain bonds mt and mt ′ , respectively. 〈Si · Sj 〉 is large
and independent of t ′/t for t ′/t � 2. This value matches the point at
which a nonzero gap � opens in the spectrum, Fig. 4(a). The limiting
value at t ′ = 0 (t = 0) is 0.4515 [42] (0.75). The QMC data are shown
in the Supplemental Material [32].

U
/(4
+U
)

0.0

0.2

0.4
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0.8
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t'/t t/t'

AF

Metal Band insulator

FIG. 8. Phase diagram. The U = ∞ Heisenberg limit is along the
top of the figure, U/(4 + U ) = 1, and is extracted from the data of
Fig. 3. The critical interaction strength diverges even prior to entry
into the band insulator phase at t/t ′ = 0.5.

formed between the stronger t ′ bonds. On the other hand, if
t ′/t < 1, mt ′ is diminished. mt approaches the short range AF
correlations of the 1D chains [43], without the formation of
singlets on the t bonds. Thus although at first glance Fig. 5
indicates similar, reduced values for SAF for both small t ′/t

and for small t/t ′, the singlet correlator of Fig. 7 suggests
these are rather distinct limits: full singlets form at t/t ′ → 0
but not t ′/t → 0. It is interesting to note that the crossing of
the two NN spin correlators is always at t = t ′ regardless of
U . This is in contrary to what was found in the 1/5-depleted
square lattice [15]. The reason is that for the lattice considered
here we get a honeycomb lattice at t = t ′ where all bonds
are equivalent. However in the 1/5-depleted case, the bonds
remain inequivalent at t = t ′, so to get the spin correlations
the same we need to shift t away from t ′.

The evaluation of these magnetic correlations allows us to
sketch the phase diagram in the plane of hopping anisotropy
and interaction strength shown in Fig. 8. The fact that gc =
1.75 in the Heisenberg limit is less than the anisotropy required
to open a nonzero gap � in the noninteracting band structure
suggests that the destruction of LRAFO involves more than
the simple RPA-like criterion of the vanishing of the density
of states at the Fermi level. That is, the competing possibility
of singlet formation also plays a role in the absence of LRAFO.

IV. CONCLUSION

In this paper we have investigated magnetic ordering on a
two-dimensional lattice formed by the regular removal of one
third of the sites from a square lattice. We analyzed the strong
coupling, Heisenberg limit using spin-wave theory and QMC
(SSE), and determined the range of the ratio J ′/J on the two
types of bonds in which an ordered AF phase exists at T = 0.
Unlike the one-fifth-depleted lattice, which breaks into small
clusters in both the J = 0 and J ′ = 0 limits, we have shown
that AF order persists to very small J ′/J as a consequence of
the fact that extended one-dimensional chains are still present
when J ′ = 0.

We also used DQMC to study the single band Hubbard
Hamiltonian on this lattice. The singlet correlator was found
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to grow rapidly for t ′/t ∼ 1.5, coinciding with a loss of AF
order and the approach to the band insulator at t ′/t > 2 in
the noninteracting limit. The critical interaction strength Uc ∼
3.87 for t = t ′ was shown to increase with inhomogeneity
t ′ �= t . The effect of random removal of sites on AF order has
been studied in both itinerant and localized models [44–48].

The one-third-depleted geometry that we investigated has
recently been shown to be realized as a result of charge stripe
ordering in the nickelates [23,24], so our simulations speak
to the conditions for AF order in those materials. The relative
strengths of first and second neighbor exchange couplings for
nickelates has not yet been addressed. Another key feature is
the presence of multiple NiO2 layers and the surprising nature
of charge equivalence between the layers [23,24]. We cannot
immediately address this phenomenon, since in our treatment
charge ordering is put in a priori through our consideration of

a one-third-depleted lattice and, in addition, our restriction to
a single layer model.

A more approximate method than DQMC, which considers
itinerant electrons interacting with classical spins [49,50], can
be employed to treat multiple bands. It may be used to explore
the spontaneous formation of charge ordering, and we leave
the details of this to future study.
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