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Dual-fermion approach to the Anderson-Hubbard model
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We apply the recently developed dual-fermion algorithm for disordered interacting systems to the Anderson-
Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-
dimensional system to establish the quality of the approximation in comparison with an established cluster
method. We continue with a three-dimensional (3D) system and look at the antiferromagnetic, Mott, and Anderson
localization transitions. The dual-fermion approach leads to quantitative as well as qualitative improvement of
the dynamical mean-field results, and it allows one to calculate the hysteresis in the double occupancy in 3D,
taking into account nonlocal correlations.
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I. INTRODUCTION

Electron-electron interactions have a strong impact on real
materials, and the same holds true for disorder. Both disorder
and interaction can lead to localization, albeit the mechanism
is quite different for both cases. In correlated systems at half-
filling, strong local Coulomb repulsion leads to localization
as the double occupancy of lattice sites becomes energetically
too costly [1]. In the strongly disordered systems, coherent
backscattering leads to the localization of particles [2]. Thus,
it is not surprising that disordered interacting systems are an
interesting topic to study [3,4].

Both purely interacting and purely disordered systems pose
challenges for theoretical treatment, especially in more than
one and less than infinite dimensions. In one dimension, the
Bethe ansatz [5] often allows for an analytic solution. In infinite
dimensions, dynamical mean-field theory [6–10] (DMFT)
and the coherent potential approximation [11–14] (CPA)
provide exact solutions for interacting and disordered systems,
respectively. Janiš and Vollhardt [15] extended DMFT to
include both disorder and interaction.

The DMFT and CPA rely on a mapping of the lat-
tice problem to an impurity problem that is solved self-
consistently. As a consequence of the local nature of the
impurity problem, DMFT and CPA neglect nonlocal quantum
fluctuations altogether. Thus, these approaches are unreliable
when it comes to systems with important nonlocal physics.
To address this problem, a number of nonlocal extensions
of DMFT have been devised. These include the dynamical
cluster approximation (DCA) [16–18], the traveling cluster
approximation (TCA) [19,20], the molecular coherent poten-
tial approximation (MCPA) [21–23], and the cluster coherent
potential approximation (CCPA) [24–28]. Whereas DMFT
uses a single impurity problem, the aforementioned methods
use a finite cluster, which allows one to take into account
short-range correlations.

A common roadblock of cluster methods for interacting
systems is the solution of the interacting electron problem
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on the cluster. For weak interactions, perturbation theory can
be applied, which is numerically feasible for relatively large
system sizes. For strong interactions, however, more elaborate
cluster solvers like quantum Monte Carlo (QMC) [29–36]
are needed. The infamous sign problem limits the range of
applicability of QMC to relatively small clusters and high
temperatures. Even without the sign problem, it is difficult
to solve large enough clusters with the precision needed for
self-consistent methods like DCA.

A way out are diagrammatic extensions of DMFT [37],
these include the dual-fermion approach (DF) [38], the dy-
namical vertex approximation (D�A) [39], and the multiscale
many-body method [40]. Originally developed for interacting
systems, Terletska et al. [41] extended the dual-fermion ap-
proach to treat disordered systems. We extended the approach
to disordered interacting systems [42] and applied it to the
Anderson-Falicov-Kimball model. The DF method relies on
the introduction of new degrees of freedom which allow for an
efficient perturbative treatment. The perturbative expansion is
done around an impurity problem which serves as a reference
system. The hybridization function, and thus the somewhat
optimal impurity problem, is determined self-consistently,
analogous to DMFT.

The DF method becomes particularly efficient in the context
of disordered systems as the number of disorder realizations
can be kept small. This becomes obvious for a discrete
disorder distribution like binary disorder. There are only two
realizations for an impurity problem but 2Nc for a cluster with
Nc sites. Even if only a random sample of configurations
is picked, it will generally be much larger than 2. In our
experience the cost for solving a small cluster is comparable
to solving an impurity problem, including the full impurity
vertex. The reduced number of configurations makes DF more
cost-efficient than DCA or other cluster methods.

The paper is organized as follows: In Sec. II we briefly
introduce the dual-fermion formalism for the Anderson-
Hubbard model. We explain the essentials of the dual-fermion
mapping and name the contributions to the dual potential. The
discussion of the formalism is concluded by providing the
formulas for the second order and the fluctuation exchange
(FLEX) approximations for the dual self-energy. In Sec. III
we show results for the one- and three-dimensional Anderson-

2469-9950/2017/95(4)/045130(15) 045130-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.045130


HAASE, YANG, PRUSCHKE, MORENO, AND JARRELL PHYSICAL REVIEW B 95, 045130 (2017)

Hubbard model. We start with the one-dimensional (1D)
system, where our goal is not the comparison with exact results
but rather a comparison with DCA to see how DF compares
to established cluster methods. We continue with the three-
dimensional (3D) system and explore the antiferromagnetic
and Mott transitions. Finally, we calculate a phase diagram on
the UV plane, where U parameterizes the Hubbard interaction
and V the disorder.

II. FORMALISM

A. Dual-fermion mapping

We will apply the dual-fermion formalism for disordered
interacting systems to the Anderson-Hubbard model, which
has the Hamiltonian

HAH = −
∑

ij,σ
(tij + μδij )(c†iσ cjσ + H.c.) −

∑
i,σ

viniσ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (1)

Here, tij is the hopping matrix element between sites i and j ,
μ is the chemical potential, c

(†)
iσ destroys (creates) an electron

of spin σ at site i, niσ = c
†
iσ ciσ measures the occupation of

site i with an electron of spin σ , and ni = ni↑ + ni↓ measures
the total occupancy at site i. The two interaction terms in the
Hamiltonian are the Hubbard term, which is parameterized
by U , and the disorder term with a random potential vi that
is distributed according to a probability distribution P (vi). In
this paper we use a binary distribution

PBin(vi) = 1

2

[
δ

(
vi − V

2

)
+ δ

(
vi + V

2

)]
, (2)

and a box distribution

PBox(vi) = 1

V
�

(
V

2
− |vi |

)
. (3)

� is the Heaviside function

�(x) =
{

0 if x < 0
1 if x � 0 (4)

and V parameterizes the disorder strength.
The introduction of the dual degrees of freedom works

very much the same as for the Anderson-Falicov-Kimball
model as discussed in Yang et al. [42]. The difference is
that here we have to deal with two types of charge carriers,
spin-up and spin-down electrons, that can interact with each
other. Unlike for the Anderson-Falicov-Kimball model, this
interaction leads to an impurity vertex function that fully
depends on three frequencies as the Hubbard interaction leads
to dynamic electron-electron scattering.

Assuming spin symmetry, the “Formalism” section of
Yang et al. [42] remains valid for the Anderson-Hubbard
model, except that the dual potential becomes spin dependent.
The dual-fermion mapping is done in the usual way (cf.
Appendix A) and leads to the dual action

Sd [f,f ∗] = −
∑
ω,k,σ

G−1
d0,σ (ω,k)f ∗

ω,k,σ fω,k,σ +
∑

i

Vd,i (5)

FIG. 1. Two second-order diagrams for the self-energy in the
particle-particle channel that contains closed loops (red lines). The
diagram on the right contains the “crossed” disorder vertex.

with the bare dual Green function

Gd0,σ (w,k) ≡ Glat,σ (w,k) − Gσ (w). (6)

Glat is the lattice Green function and G the impurity Green
function. The dual potential in the particle-particle channel
reads

V
pp

d,i = 1

2

∑
w,w′,σ1,σ2

V p,0
σ1,σ2

(w,w′)

× f ∗
i,w,σ1

f ∗
i,w′,σ2

fi,w′,σ2
fi,w,σ1

+ 1

4

∑
w,w′,ν

∑
σ1,σ2,σ3,σ4

V p,1
σ1,σ2,σ3,σ4

(ν)w,w′

× f ∗
i,w+ν,σ1

f ∗
i,−w,σ2

fi,−w′,σ3fi,w′+ν,σ4 . (7)

V p,0 is given by the purely disordered contributions to the full
impurity vertex, and V p,1 is given by all other contributions to
the full impurity vertex. The prefactor 1

2 is due to the lack of
crossing symmetry of V p,0. The dual potential is discussed in
more detail in part B of this section.

In the derivation of the formalism we use the replica trick
as in Terleska et al. [41]. It leads to the same restrictions
for the diagrams as for the Anderson-Falicov-Kimball model
[42], namely, diagrams with closed Fermi loops that are only
connected via disorder scattering are removed. Two examples
of what we call closed Fermi loops are given in Fig. 1. A
detailed discussion of how to obtain the final diagrams for the
formalism from the replica trick is given in Appendix B.

B. Dual potential

The two-particle vertex has two very different contri-
butions: one is crossing-symmetric, the other is crossing-
asymmetric. The crossing-asymmetric terms are given by
the purely disordered contributions to the two-particle level.
In terms of two-particle diagrams this means that the two
single-particle Green function lines are connected by disorder
scattering only. Since the dual potential has the full spin
dependence as for the Hubbard model [38], we use an SU(2)
symmetric representation in terms of the density and magnetic
channels

Vd/m0 = V
ph

↑↑;↑↑ ± V
ph

↑↑;↓↓ (8)

for the particle-hole channel, and the singlet and triplet
channels

Vs/t0 = V
pp

↑↓;↑↓ ∓ V
pp

↑↓;↓↑ (9)

for the particle-particle channel.
The spin-dependent contributions V

ph(pp)
σ1σ2;σ3σ4 (ω,ω′,ν) to the

dual potential are calculated from the disorder-averaged two-
particle Green function, which is shown in Appendix C. These

045130-2



DUAL-FERMION APPROACH TO THE ANDERSON-HUBBARD . . . PHYSICAL REVIEW B 95, 045130 (2017)

=

ω + ν

ω

ω′ + ν

ω′

ω + ν

ω

δω,ω′ +
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FIG. 2. Decomposition of the full vertex V into two purely
disordered contributions and all the rest for the particle-hole (top)
and particle-particle channel (bottom). Along the green lines inside
the boxes spin and energy are conserved. The vertical (crossed)
contribution for the particle-hole (particle) channel (second diagram
in each case) is unphysical, but it is part of the vertex as defined in
Appendix C.

quantities are illustrated in Fig. 2, and some lower-order
diagrams are shown in Figs. 3–5. With the measurement
formulas (C1) and (C2) there are three different contributions
that we have to distinguish. The purely disordered vertical
(cross) channel is unphysical, but we find it convenient to keep
it, as it allows one to restrict oneself to Hartree-like diagrams,
which is illustrated in Fig. 6. This is based on the fact that
for a crossing-symmetric interaction Hartree- and Fock-like
diagrams are equivalent. The purely disordered vertex function
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FIG. 3. Lower-order contributions to the purely disordered vertex
functions γ = and γ p .
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FIG. 4. Lower-order contributions to the purely disordered vertex
functions γ || and γ ×.
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FIG. 5. Lower-order contributions to the full vertex function as
defined in Appendix C. The two diagrams at the bottom would be
unphysical without the Coulomb interaction lines. With the Coulomb
lines the diagrams are physical, which can be seen as follows:
before the disorder average, only Coulomb lines connect the two
Green function lines. Additionally, the Green function lines include
scattering from an arbitrary number of impurities, in this case one
scattering event for each Green function line. Before the disorder
average these scattering events are unconnected. After the disorder
average, the scattering events become connected and the above
diagrams are created.

045130-3



HAASE, YANG, PRUSCHKE, MORENO, AND JARRELL PHYSICAL REVIEW B 95, 045130 (2017)

++ =

+

++

FIG. 6. Summing γ p and γ × yields a crossing-symmetric vertex
function. This gives four different diagrams. The two diagrams in the
middle are removed by the replica limit as there are closed loops.
The two diagrams with γ p and γ × are equivalent to the Fock-like
diagram. In Eq. (7) the purely disordered part of the dual potential is
crossing-asymmetric and carries a factor of 1

2 . If we replace it with
the crossing symmetric disorder vertex, a factor of 1

4 is needed to
avoid double counting.

becomes crossing-symmetric if one adds the vertical (cross)
channel to the horizontal channel. Let us stress that it is not
recommended to combine them into one symbol (numerically
and diagrammatically), as these contributions and the resulting
diagrams behave very differently in the replica limit.

The purely disordered contributions to the full vertex will
generally lead to unphysical diagrams, and it is shown in
Sec. II C how to remove them. To this end we introduce

V 0
d = V

ph,0
↑↑;↑↑ + V

ph,0
↑↑;↓↓ = γ = + 2γ ||, (10)

V 0
m0 = V

ph,0
↑↑;↑↑ − V

ph,0
↑↑;↓↓ = γ =, (11)

and

V 0
s = V

pp,0
↑↓;↑↓ − V

pp,0
↑↓;↓↑ = γ p − γ ×, (12)

V 0
t0 = V

pp,0
↑↓;↑↓ + V

pp,0
↑↓;↓↑ = γ p + γ ×, (13)

for the purely disordered contributions, where γ c is the
disorder vertex functions for the channel c. The different γ c

are illustrated in terms of lower-order diagrams in Figs. 3
and 4. All γ c are independent of the spin configuration, as is
indicated in Eqs. (10)–(13). Note that γ || appears only in V 0

d ,
but with a factor of 2. Taking together the definition of V 0

d and
Figs. 2, 3, and 4, it becomes clear that this is because V

ph(,0)
↑↑;↑↑

has a horizontal and a vertical contribution, whereas V
ph(,0)
↑↑;↓↓

only has a vertical one.
The purely disordered contributions depend only on two

frequencies, either two fermionic frequencies or one fermionic
and the other bosonic. For the first case, γ =(ω,ω′) is obtained

according to

γ =(ω,ω′) = 1

T

{gσ (ω)gσ ′(ω′)} − Gσ (ω)Gσ ′(ω′)
Gσ (ω)Gσ ′(ω′)Gσ (ω)Gσ ′(ω′)

. (14)

Alternatively, we can calculate γ = using one fermionic and
one bosonic frequency according to

γ =(ν)ω = 1

T

{gσ (ω)gσ ′(ω + ν)} − Gσ (ω)Gσ ′(ω + ν)

Gσ (ω)Gσ ′(ω + ν)Gσ (ω)Gσ ′(ω + ν)
. (15)

It is convenient to have both representations at one’s disposal.
The disorder two-particle Green function for the particle-
particle channel can be calculated according to

γ p(ν)ω = 1

T

{gσ (−ω)gσ ′(ω + ν)} − Gσ (−ω)Gσ ′(ω + ν)

Gσ (−ω)Gσ ′(ω + ν)Gσ (−ω)Gσ ′(ω + ν)
.

(16)

On the right-hand side of Eqs. (14)–(16) the spin labels σ

and σ ′ appear. As noted above, the γ are independent of the
spin, but in a Monte Carlo calculation the spin still has to
be considered. In practice, we average over all possible spin
configurations to improve the Monte Carlo estimate.

The three frequency representations of the crossing-
asymmetric vertex functions are obtained according to

V 0
d (ν)ω,ω′ = γ =(ν)ωδω,ω′ + 2γ ||(ν)ω,ω′ , (17)

V 0
m(ν)ω,ω′ = γ =(ν)ωδω,ω′ , (18)

V 0
s (ν)ω,ω′ = γ p(ν)ωδω,ω′ − γ ×(ν)ω,ω′ , (19)

V 0
t (ν)ω,ω′ = γ p(ν)ωδω,ω′ + γ ×(ν)ω,ω′ , (20)

where

γ ||(ν)ω,ω′ = −γ =(ω − ω′)ω′δν,0, (21)

γ ×(ν)ω = −γ p(ν)−ω−νδω+ω′+ν,0. (22)

This follows from exchanging two corners of the box for the
vertex function to obtain γ ||(γ ×) from γ =(γ p).

C. Dual self-energy

The dual self-energy is obtained using perturbation theory
and can in general be calculated according to

	(ω,k) = − T

Nc

∑
v;q

G(w + v,k + q)
(v,q)w,w

+ T

Nc

∑
v;q

G(−w + v, − k + q)
p(v,q)w,w

+ T

Nc

∑
q

G(w,k + q)
0(w,w; q)

+ T

Nc

∑
q

G(w, − k + q)
0,p(w,w; q), (23)

where 
(p) is the effective interaction for the particle-hole
(particle) channel with the purely disordered contributions
removed. 
0(,p) contains the purely disordered contributions
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V ph
↑↑;↑↑ V ph

↑↑;↑↑ V ph
↑↓;↑↓ V ph

↑↓;↑↓ V ph
↑↑;↓↓ V ph

↑↑;↓↓

FIG. 7. Second-order diagrams for the particle-hole channel. The
second and third diagram are topologically equivalent, and therefore
a symmetry factor of 1

2 is associated with these diagrams.

from the particle-hole (particle) channel. The exact form of

(p) and 
0(,p) depends on the approximation that is used to
calculate the self-energy.

In Eq. (23) one has to avoid double counting. In the first and
second order the particle-hole and particle-particle diagrams
are equivalent and hence only one channel must be used, e.g.,
this implies that the second-order contribution of either the
particle-hole or particle-particle channel has to be removed
explicitly from the vertex ladder 
 for the fluctuation ex-
change approximation (FLEX). The self-consistency condition
removes all first-order contributions; thus we will not consider
them here.

To second order, the effective interaction for the particle-
hole channel reads


 = 1
4

[
Vdχ̄

ph

0 Vd + 3Vmχ̄
ph

0 Vm

] − 1
4

[
V 0

d χ̄
ph

0 V 0
d

+ 3V 0
mχ̄

ph

0 V 0
m

]
, (24)

which has been calculated from the diagrams in Fig. 7. This is
discussed in more detail in Appendix D. Matrix multiplication
is implied. The corresponding disorder contribution is


0(w,w; q) = γ =(w,w)χ̄ph

0 (ν = 0; q)ωγ =(w,w) (25)

and

χ̄
ph

0 (ν,q)ω = T

N

∑
k

Gd (ω + ν,k + q)Gd (ω,k). (26)

Alternatively, the second-order self-energy can be cal-
culated from the particle-particle channel. Figure 8 shows
the corresponding diagrams. The effective interaction for the
interacting disordered part reads


pp = 1
2

[
Vsχ̄

p

0 Vs + 3Vt χ̄
p

0 Vt

] − 1
2

[
V 0

s χ̄
p

0 V 0
s + 3V 0

t χ̄
p

0 V 0
t

]
(27)

and


0,p(w,w; q) = γ p(w,w)χ̄p

0 (ν = 0,q)ωγ p(w,w) (28)

V pp
↑↑;↑↑ V pp

↑↑;↑↑ V pp
↑↓;↑↓ V pp

↑↓;↑↓ V pp
↑↓;↓↑ V pp

↑↓;↓↑

FIG. 8. Second-order diagrams for the particle-particle channel.
For the first diagram, the two internal Green function lines are
equivalent, and therefore the diagram comes with a symmetry factor
of 1

2 .

for the purely disordered part, with

χ̄
p

0 (ν,q)ω = − T

2N

∑
k

Gd (ω + ν,k + q)Gd (−ω, − k).

(29)

It is also possible to sum ladder diagrams up to infinite order.
This is done using FLEX for the dual degrees of freedom.
To this end, we need the vertex ladders for the particle-hole
channel

Fd/m = Vd/m

1 − Vd/mχ̄
ph

0

(30)

and for the particle-particle channel

Fs/t = Vs/t

1 − Vs/t χ̄
p

0

. (31)

For the particle-hole channel we obtain


ph∗ = 1
2

[
Vdχ̄

ph

0 (Fd − Vd ) + 3Vmχ̄
ph

0 (Fm − Vm)
]
. (32)

In the above, the second-order contribution has been removed.
We can add it back and we obtain the right prefactor [cf.
Eq. (24)] by using


ph = 1
4

[
Vdχ̄

ph

0 (2Fd − Vd ) + 3Vmχ̄
ph

0 (2Fm − Vm)
]
. (33)

Subtracting the purely disordered contributions we obtain


 = 1
4

[
Vdχ̄

ph

0 (2Fd − Vd ) + 3Vmχ̄
ph

0 (2Fm − Vm)
]

− 1
4

[
V 0

d χ̄
ph

0

(
2F 0

d − V 0
d

) + 3V 0
mχ̄

ph

0

(
2F 0

m − V 0
m

)]
. (34)

The physical disorder contributions for the particle-hole
channel are given by


0(w,w; q) = γ =(
1 − γ =χ̄

ph

0

)−2 − γ =(
1 + γ =χ̄

ph

0

)
.

(35)

In FLEX, both the particle-hole and particle-particle chan-
nel are used. The interacting and disordered contributions are
calculated according to


pp = 1
2

[
Vsχ̄

p

0 (Fs − Vs) + 3Vt χ̄
p

0 (Ft − Vt )
]

− 1
2

[
V 0

s χ̄
p

0

(
F 0

s − V 0
s

) + 3V 0
t χ̄

p

0

(
F 0

t − V 0
t

)]
(36)

for the particle-particle channel. The corresponding disorder
contribution is


0,p(w,w; q) = γ p
(
1 − γ pχ̄

pp

0

)−1 − γ p
(
1 + γ pχ̄

pp

0

)
.

(37)

III. RESULTS

In this section we present results for the Anderson-Hubbard
model. We start with the 1D system where we compare DF with
DCA to see how the dual fermions compare to an established
cluster method. Next, we take a look at the 3D system. First,
we study the influence of disorder on the antiferromagnetic
transition and how nonlocal correlations change the result.
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Second, we take a look at the Mott transition. To this end,
we take a look at the hysteresis of the double occupancy D

as a function of the Hubbard coupling U and temperature T

and have a look at the effect of disorder. Third, we calculate
a phase diagram on the Hubbard and disorder strength (UV )
plane.

All results are at half-filling and, if not otherwise stated, for
binary disorder. We employ nearest-neighbor hopping with
t = 0.25. This leads to a bandwidth of W = 1 for the 1D
system and W = 3 for the 3D case.

A. Relative corrections for the 1D system

For one dimension it is possible to obtain DCA results for
disordered interacting systems at reasonable computational
cost. The DCA results serve as a benchmark for the dual-
fermion results. We take a look at the relative correction to the
local Green function Gloc,

σ (Gloc) = ImGnloc
loc (iπT ) − ImGDMFT

loc (iπT )∣∣ImGDMFT
loc (iπT )

∣∣ , (38)

where nloc refers to the result from the nonlocal method, either
dual fermion or DCA. We use a self-consistent second-order
approximation as well as a FLEX approximation for the
solution of the dual-fermion problem. In the following, the
former is referred to as DF-2nd, while the latter as DF-FLEX.

Results are shown in Fig. 9. We observe that the dual-
fermion results qualitatively agree with the DCA results for
a 12-site cluster, which is a converged DCA solution. For the
clean system, i.e., V = 0, the maximum corrections are around
1.5 W , where W is the bandwidth. The maximum corrections
appear around the Mott transition, because the DF method
gives a smaller critical U than DMFT. With increasing disorder
strength the maximum corrections are moved to larger values
of U and the magnitudes of the corrections are reduced. This
is true for the DCA, DF-2nd, and DF-FLEX. For V = W and
small U DF-FLEX becomes unreliable and does not converge
for U → 0. We conclude that the DF-FLEX agrees very well
with the DCA below the U of the maximum corrections (if
applicable). For larger values of U the DF-2nd method shows
better agreement with the DCA.

In Fig. 10 we take a look at the special case U = V . We
find for both binary and box disorder remarkable agreement
between the DF-FLEX and DCA. DF-2nd agrees qualitatively,
but there is a substantial quantitative deviation, especially for
box disorder. For both types of disorder, the sign problem limits
the parameter range for which we can obtain DCA results.
Also, the DCA results for binary disorder are quite noisy.
These results show the power of the DF method. When cluster
methods become inefficient or not applicable at all, the DF
method can often still be applied.

B. Antiferromagnetic transition in the 3D system

The 3D Hubbard model has an antiferromagnetic phase at
finite temperatures. We investigate how the antiferromagnetic
region changes when disorder is introduced and what happens
if nonlocal correlations are taken into account.

The antiferromagnetic phase transition is characterized
by a divergence of the antiferromagnetic susceptibility. This
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FIG. 9. Relative correction from the dual-fermion approach to
the local Green function at the lowest Matsubara frequency (iw =
iπT ) for various parameters of the 1D lattice. The corrections are
minimized for both weak- and large-U limits and maximized for
values of U around the bandwidth. The peak position shifts to larger
U with increasing disorder strength. This behavior is consistent with
DCA results.

is equivalent to a leading eigenvalue (LEV) for the Bethe-
Salpeter equation that is equal to 1. Therefore, we use the LEV
to determine the antiferromagnetic phase boundary. Results are
shown in Fig. 11. DMFT, DF-2nd, and DF-FLEX give the same
general solution. Disorder suppresses antiferromagnetism for
small U . For large U weak disorder enhances antiferromag-
netism. This agrees with the findings of Ulmke et al. [43]
for the infinite-dimensional Anderson-Hubbard model on the
Bethe lattice.
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FIG. 10. Relative correction from the dual-fermion approach to
the local Green function at the lowest Matsubara frequency (iw =
iπT ) for U = V . In this case, the nonlocal corrections are strongly
reduced by the disorder. In the first figure the dual-fermion corrections
agree quite well with the DCA correction. This is true for DF-2nd and
DF-FLEX. For the second figure, the DF-2nd corrections qualitatively
reproduce DCA results, and the matching of DF-FLEX to DCA results
is nearly perfect.

The reduction of the antiferromagnetic transition tem-
perature for small U agrees with the general expectation
that disorder obstructs long-range order. Ulmke et al. [43]
give an explanation for the increase of TN with disorder
for large values of U . The argument is that virtual hopping
processes between sites A and B leads to an energy gain
J1 = −t2/[U − (εA − εB)] if B is occupied by an electron of
opposite spin and an energy gain J2 = −t2/[U + (εA − εB)]
for hopping from B to A. The relative change of TN is
given as

TN (U,V )

TN (U,0)
=

∫
dVA

∫
dVBJ (VA − VB)p(VA)p(VB)

= 1 + λ

(
V

U

)2

, (39)

with a disorder-distribution-dependent parameter λ.
The main difference after introducing nonlocal correlations

is a reduction of TN , i.e., fluctuations beyond the mean field
reduce the transition temperature. This effect is visible for
DF-2nd results and even more pronounced for DF-FLEX.
This comes as no surprise, as Hafermann [44] found the same
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FIG. 11. The UT phase diagram of the 3D Anderson-Hubbard
model for various V calculated with the DMFT+CPA, DF-2nd, and
DF-FLEX approaches. For small values of U , the antiferromagnetic
phase is suppressed by disorder. For large values of U the disorder
increases TN . The effect of DF is to decrease the transition tempera-
ture, especially for the DF-FLEX. We mark TN (U = 0,V = 0) = 0
with a blue quarter-circle. We did not obtain values for TN in the gray
shaded region for U/W < 1/3.

behavior for the clean system and, at least for the clean system,
this is in accordance with DCA and QMC [45] calculations.

The DMFT solution for large U approximately fulfills
Eq. (39), but the DF solutions deviate. We suspect that this
is due to the noise in our data.

C. Mott transition in the 3D system

The following calculations are done for the paramagnetic
Hubbard model below Néel. This leads to a divergence for the
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FIG. 12. The double occupancy D of the impurity problem for
DMFT and second-order dual fermions. The double occupancy
displays a hysteresis which stems from the Mott transition. The effect
of disorder is to move the hysteresis to larger values of U and to
reduce the area of the hysteresis. The hysteresis from the dual-fermion
calculation is moved to smaller values of U and the area is increased
compared with DMFT+CPA.

FLEX approximation; therefore we have to restrict ourselves
to the second-order approximation for the dual fermions.

We investigate the influence of disorder on the Mott
transition by looking at the double occupancy D of the
impurity. The double occupancy is calculated in the impurity
reference system instead of on the lattice. This is due to the
missing equation of motion, which is present in real fermion
systems. Thus we cannot use the trace of the single-particle
Green function times the self-energy to estimate the double
occupancy. However, the double occupancy measured on
the impurity reference system is enough for our purpose to
monitor the hysteresis caused by the first-order metal-insulator
transition. We show this at βW = 120 in Fig. 12 for different
values of the disorder strength. Figure 12 shows that disorder
moves the hysteresis to larger values of U and shrinks the
area of the hysteresis. This behavior is captured by DMFT
as well, but the critical interaction strength is larger for all
values of the disorder. One can see from the DMFT results
that for V = 2/3 W the hysteresis is almost gone, indicating
that strong disorder changes the nature of the Mott transition.
This behavior shows that disorder and interactions compete
when it comes to localizing the electrons.

Next, we take a look at the temperature dependence
of the hysteresis. In Fig. 13 the hysteresis obtained from
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FIG. 13. Hysteresis at V = 0, at βW = 120, and βW = 180.
DMFT predicts that Uc1 and Uc2 increase with decreasing temper-
ature. The DF-2nd result shows that Uc1 decreases when nonlocal
correlations are taken into account.

DMFT and DF-2nd for the clean system are compared at
different temperatures. DMFT shows mean-field behavior,
i.e., the upper and lower critical values Uc1 and Uc2 increase
with decreasing temperature. The DF result is qualitatively
different. Besides moving the whole hysteresis to smaller
values of U and increasing the area enclosed by the hysteresis,
we observe that the DF result shows a decreasing Uc1 for
decreasing temperature. Our data is too noisy for the V = 0
case at large values of U to determine whether Uc2 increases
or decreases with decreasing temperature. However, Fig. 14
shows DF results for V = W

3 and V = W
6 . For both cases, it

is clear that Uc2 increases with decreasing temperature. Uc1

decreases with decreasing temperature, just like for the clean
system.

D. Phase diagram for the 3D Anderson-Hubbard model

We calculate the phase diagram on the UV plane for the
3D Anderson-Hubbard model at finite temperature. We explore
two different quantities.

The first quantity is the difference ImδGloc =
ImGloc(3iπT ) − ImGloc(iπT ). It is only precise for the
limit T → 0, but nevertheless it allows us to detect a
qualitative difference in the local Green function, namely,
the presence or lack of a minimum for the imaginary part.
ImδGloc = 0 is used as the criterion for the phase boundary.
Figure 15 shows results for binary and box disorder.
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FIG. 14. DF-2nd results for the hysteresis as a function of
temperature at V = W

6 and V = W

3 .

ImδGloc becomes zero around U = 0.76 W . With increas-
ing disorder the Mott transition is moved to large values of
U for both binary and box disorder. The details of the phase
boundary in this region depend on the disorder distribution,
but the general behavior is the same. This picture changes
for small U and large V . Binary disorder can open a gap and
does so around Vc = 0.45 W , giving rise to an insulating phase
for strong disorder. Box disorder, on the other hand, does not
open a gap, which means ImδGloc < 0 is not possible. Thus,
we cannot get an estimate for the insulating phase.

To overcome this problem the second quantity we explore
is the dc conductivity σdc, which we calculate according
to [46]

σdc = β2

π
χxx

(
q = 0,τ = β

2

)
, (40)

where χxx(q,τ ) = 〈jx(q,τ )jx(−q,0)〉 is the current-current
correlation function. χxx is approximated with the bubble
diagram and vertex corrections taken into account only involve
the pure disorder contributions. The conductivity is shown
in Fig. 16. We find that the vertex corrections including
interactions become very noisy around the transition, and we
observe a possible lack of thermodynamic consistency.

We use σdc(U = 0.76) = 0.035 for βW = 60 to delineate
the boundary of the metallic phase. For both binary and box
disorder, the phase boundary for large U looks similar to
the one obtained from ImδGloc. In the case of small U the
situation for binary disorder does not change, except for a
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FIG. 15. ImδGloc as a function of U and V at fixed temperature
βW = 60 for binary disorder (top panel) and box disorder (bottom
panel). We take ImδGloc = 0 as an estimate for the phase boundary.
For binary disorder we find an insulating phase for large values of U

and for large values of V . For continuous box disorder we still find
the insulating phase for large values of U but not for large values
of V .

small reduction of the critical disorder strength for U = 0 to
about 0.4 W . For box disorder, on the other hand, we are now
able to determine a phase boundary, which was not possible
before, with Vc ≈ 1.0 W . For comparison we want to give the
typical medium DCA estimates for T = 0 by Ekuma et al. [47].
They found Vc = 0.46 W for binary disorder and Vc = 1.4 W

for box disorder.
We conclude that the DF method at finite temperatures

allows one to obtain a reasonable estimate for the Anderson
transition, but DF with the criteria presented here is not suited
to obtain the precise value of Vc.

IV. CONCLUSION

We discussed the changes needed to apply the dual-fermion
formalism for disordered interacting systems presented in
Ref. [42] to the Anderson-Hubbard model. The modifications
are straightforward; the main difference is the inclusion of the
spin degrees of freedom for the two-particle vertex functions
and dual potential.

First, we applied the formalism to the 1D system, which al-
lows for a comparison with DCA calculations for a reasonably
large cluster size. We found very good agreement with DCA
for the relative correction σ (Gloc) to the local Green function,
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FIG. 16. Conductivity on the UV plane. For both binary (top
panel) and box disorder (bottom panel) the conductivity gives a phase
transition for large U and large V .

confirming that DF is indeed able to treat disordered interacting
systems and take into account nonlocal correlations.

Second, we looked at the 3D system. We started with the
antiferromagnetic transition. The phase diagram on the UT

plane is in general agreement with the DMFT result on the in-
finite dimensional Bethe lattice [43]. We compare results from
DMFT, DF-2nd, and DF-FLEX methods. All three approaches
showed a suppression of antiferromagnetism for small values
of U and disorder. For large values of U the approaches
agree that weak disorder enhances antiferromagnetism. The
effect of nonlocal correlations from DF was to reduce the
transition temperature and the reduction was strongest for
DF-FLEX. The effect of the nonlocal correlations agreed with
Hafermann [44].

We continued with the Mott transition. To this end we
took a look at the hysteresis of the double occupancy. Both
DMFT and DF show that disorder shifts the transition to
larger values of U . The effect of nonlocal correlations was
shown to be an overall reduction of the critical U . For the
temperature dependence of the hysteresis we found that the
DF method gives a qualitatively different result than DMFT.
DMFT predicts that the lower and upper critical values Uc1

and Uc2 of the interaction strength increase with decreasing
temperature. The DF result is different in that it predicts a
decreasing Uc1 for decreasing temperature. This did not change
with the introduction of disorder.

Finally, we attempted to calculate a phase diagram on
the UV plane. Using the single-particle Green function we
were able to get a good guess for the overall shape of the
metallic phase, but this method failed for box disorder. Thus,
we calculated the conductivity. The phase diagram for binary
disorder remained mostly unchanged. For box disorder, the
conductivity allows one to determine the boundary of the
metallic phase, which was not possible from the single-
particle Green function. For both binary disorder as well as
box disorder, the critical disorder strength Vc for Anderson
localization comes out too small compared to Ref. [47].

We conclude that the dual-fermion approach for disordered
interacting system performs very well, as long as one stays
away from the disorder-induced metal-insulator transition.
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APPENDIX A: DUAL-FERMION MAPPING

The derivation of the dual-fermion mapping was done
for the Anderson-Falicov-Kimball model previously [42].
Noting the added complexity of the Anderson-Hubbard model
described by Eq. (1) due to spin indices, in this section we
will rederive the dual-fermion formalism using the replica
technique.

The disorder-averaged lattice Green function is given by

Gσ (w,k) = − δ

δηwkσ

{ln Zv[ηωkσ ]}|ηwkσ =0, (A1)

with {(...)} = ∫
dvp(v)(...) indicating a disorder-averaged

quantity, Xv representing the quantity X in disorder config-
uration v, and ηwkσ being a source field. The partition function
for a given disorder configuration {vi} is defined as

Zv[ηwkσ ] =
∫

Dc̄Dce−Sv [ηwkσ ], (A2)

where Dc ≡ ∏
wkσ dcwkσ , and the action is itself defined as

Sv[ηwkσ ] =
∑
wkσ

c̄wkσ (−iw + εk − μ + ηwkσ )cwkσ

+
∑
iσ

vi

∫ β

0
dτniσ (τ )

+U
∑

i

∫ β

0
dτni↑(τ )ni↓(τ ), (A3)

where iw = i(2n + 1)πT are the Matsubara frequencies, εk
is the lattice bare dispersion, μ is the chemical potential,
and U the Coulomb interaction. In the following, the explicit
functional dependence on the source term ηwkσ for the action
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will be hidden to simplify the expressions. Using the replica
trick

ln Z = lim
m→0

Zm − 1

m
, (A4)

where m replicas are introduced, we can express the disorder-
averaged Green function as

Gσ (w,k) = − lim
m→0

1

m

δ

δηwkσ

{ ∫
Dc̄Dce−Svi [cα,c̄α ]

}∣∣∣∣
ηwkσ =0

,

(A5)

where Dc ≡ ∏
wkσα dcα

wkσ , and α is the replica index. The
replicated lattice action is

Svi [cα,c̄α] =
∑
wkσα

c̄α
wkσ (−iw + εk − μ + ηwkσ )cα

wkσ

+
∑
iασ

vi

∫ β

0
dτnα

iσ (τ )

+U
∑
iα

∫ β

0
dτnα

i↑(τ )nα
i↓(τ ). (A6)

The disorder averaging can be formally done, and thus we
obtain

S[cα,c̄α] =
∑
wkσα

c̄α
wkσ (−iw + εk − μ + ηwkσ )cα

wkσ

+
∑

i

W (ñi) + U
∑
iα

∫ β

0
dτnα

i↑(τ )nα
i↓(τ ). (A7)

Note that the Coulomb interaction term remains the same,
and a new elastic, effective interaction between electrons of
different replicas W (ñi) appears due to the disorder scattering.
The latter is local in space and nonlocal in time, and could be

expressed through local cumulants 〈vl
i〉c as [18]

e−W (ñi ) =
∫

dvip(vi)e
−vi

∑
ασ

∫
dτnα

iσ (τ )

= e− ∑∞
l=2

1
l! 〈vl

i 〉c(
∑

ασ

∫
dτnα

iσ (τ ))l . (A8)

Similarly to the noninteracting disorder fermionic systems
[41], we follow four steps to derive the DF formalism for the
interacting disorder models. First, we introduce an effective
single-site impurity reference problem by formally rewriting
the original action as

S =
∑

i

Simp
[
c̄α
i ,cα

i

] −
∑
wkσα

c̄α
wkσ (�w − εk − ηwkσ )cα

wkσ ,

(A9)

with an effective impurity action [containing both the Coulomb
and disorder interactions, W (ñi)]

Simp =
∑
wσα

c̄α
wiσ (−iw − μ + �w)cα

wiσ + W (ñi)

+U
∑

α

∫ β

0
dτnα

i↑(τ )nα
i↓(τ ). (A10)

Here �w is a local, and yet unknown, hybridization function
describing the interaction of the impurity with the effective
medium. As in the original DF formalism, it is assumed that
all the properties of the impurity problem, i.e., the one-particle
Green function,

Gimp,σ (w) = − lim
m→0

1

m

m∑
α=1

∫
Dc̄Dc cα

wσ c̄α
wσ e−Simp , (A11)

and the two-particle Green functions which contain effects
from both Coulomb interaction and disorder

χp
σ1σ2σ3σ4

(ν)w,w′ = lim
m→0

1

m

m∑
α,β,γ,δ=1

∫
Dc̄Dc cα

w+ν,σ1
c
β
−w,σ2

c̄
γ

−w′,σ4
c̄δ
w′+ν,σ3

e−Simp (A12)

can be calculated. These Green functions are local quantities. Our task is to express the original lattice Green function and other
properties via quantities of the DMFT+CPA impurity problem. What has been accomplished so far in Eq. (A9) is that the local
part of the lattice action has been moved to the effective impurity.

At the second step of the DF procedure we introduce auxiliary (“dual” fermions) degrees of freedom. In doing so, we transfer
the nonlocal part of the action in Eq. (A9) to the dual variables. As a result, the original real fermions carry information about
the local part only. The transformation to dual fermions is done via a Gaussian transformation of the nonlocal part of Eq. (A9),

ec̄α
wkσ A2

wkσ cα
wkσ = A2

wkσ

λ2
wσ

∫
Df̄Df e

−λwσ (c̄α
wkσ f α

wkσ +f̄ α
wkσ cα

wkσ )− λ2
w

A2
wkσ

f̄ α
wkσ f α

wkσ
, (A13)

with A2
wkσ = (�w − εk − ηwkσ ), and λwσ yet to be specified.

With such a transformation, the lattice Green function of Eq. (A5) can be rewritten as

Gσ (w,k) = − lim
m→0

1

m

δ

δηwkσ

(�w − εkσ − ηwkσ )

λ2
wσ

∫
Df̄Df e− ∑

wkσα λ2
wσ f̄ α

wkσ (�w−εkσ −ηwkσ )−1f α
wkσ

×
∫

Dc̄Dc e− ∑
i Si

site[c̄α
i ,cα

i ;f̄ α
i ,f α

i ]

∣∣∣∣
ηwkσ =0

, (A14)

in which the replicated action for site i is of the form

Si
site = Simp +

∑
αwσ

λwσ

(
c̄α
iwσ f α

iwσ + f̄ α
iwσ cα

iwσ

)
. (A15)
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In Eq. (A14) the intersite hopping is transferred to a coupling between dual fermions.
At the third step of the DF mapping, we integrate out the real fermions from the local site action Si

site separately for each site
i, i.e., ∫ ∏

αwσ

dc̄α
iσ dcα

iσ e−Ssite[c̄α
iσ ,cα

iσ ;f̄ α
iσ ,f α

iσ ] = Zimpe
− ∑

wασ λ2
wσ Gimp,σ (w)f̄ α

iwσ f α
iwσ −V

d,i
α,β [f̄ α

i ,f α
i ;f̄ β

i ,f
β

i ], (A16)

in which Zimp is the partition function for the replicated impurity system

Zimp =
∫ ∏

αwσ

dc̄α
iσ dcα

iσ e−Simp[c̄α
i ,cα

i ]. (A17)

As in the clean case, formally this can be done up to infinite order, which makes the mapping to the DF variables exact. Choosing
for convenience λw = G−1

imp(w), the lowest order of the replicated DF potential V
d,i
α,β[f̄ α

i ,f α
i ; f̄ β

i ,f
β

i ] reads as

V
d,i
α,β

[
f̄ α

i ,f α
i ; f̄ β

i ,f
β

i

] = 1
2V

p,0
α,β (w,w′)f̄ α

iwf̄
β

iw′f
β

iw′f
α
iw + 1

4V p,1
α (ν)w,w′ f̄ α

i,w+ν f̄
α
i,−wf α

i,−w′f
α
i,w′+ν . (A18)

In the derivation of the dual potential of the clean system a
term of the form 〈c̄c̄cc〉 appears. Here, additional sums over
replica indices appear and one obtains∑

αβγ δ

〈c̄αc̄βcγ cδ〉imp =
∑
αβ

〈c̄αc̄βcβcα〉imp, (A19)

where we reduce the number of replica indices by using
that only terms with duplicated replica indices are finite.
〈c̄αc̄βcβcα〉imp has two distinct contributions: terms that
only contain the effective interaction from disorder (or no
interaction) and terms that additionally contain the Hubbard
interaction. This is illustrated in Fig. 17.

The former interaction acts between different replica; thus
these contributions depend on two replica indices and enter the
dual potential in the form of V

p,0
α,β . The latter interaction acts

only within one replica, thus these contributions only depend
on one replica index. They enter the dual potential in the form
of V

p,1
α .

In general, the DF vertex V
d,i
α,β [f̄ α

i ,f
β

i ] contains n-body
correlation terms introduced by disorder and interaction, but
in the following discussion we limit ourselves to the leading
quartic term with four external DF fields only.

After taking the derivative with respect to the source field
ηwk, the Green function of Eq. (A14) reads as

Gσ (w,k) = (�w − εk)−1 + Gd,σ (w,k)

(�w − εk)2Gimp,σ (w)2
,

(A20)

where we define the averaged DF Green function as

Gd,σ (w,k)

= − lim
m→0

1

m

m∑
α′=1

×
∫

Df̄Df e− ∑
wkσα Sd0e− ∑

iαβw V
d,i
α,β [f̄ α

iσ ,f α
iσ ;f̄ β

iσ ,f
β

iσ ]f α′
wkf̄

α′
wk,

(A21)

and Sd0 = f̄ α
wkσ [ (�w−εk)−1+Gimp,σ (w)

G2
imp,σ (w) ]f α

wkσ is the noninteracting

DF action.
Notice that for the case of noninteracting dual fermions

when the dual potential is zero, Eq. (A20) reduces to the

DMFT+CPA solution for the lattice Green function with
Gσ (w,k) = 1

G−1
imp,σ +�w−εk

. Hence, the DMFT+CPA is the

zeroth-order approximation within our framework.

APPENDIX B: REPLICA LIMIT

The replica trick is used to integrate out the disorder in
favor of an effective interaction between different replicas. It
is possible to perform the replica limit for the dual-fermion
diagrams such that the formalism itself does not depend on
replica indices. In this work, the replica trick is used for the
purpose of bookkeeping so that we can derive the dual-fermion
formalism in a convenient way and nonphysical Feynman
diagrams can be eliminated automatically when taking the
replica limit. We would like to emphasize that this does not
result in any approximation.

In Fig. 18 the construction of a second-order dual-fermion
diagram from the vertex ladder is shown. There are two ways
to fix replica indices. First, dual fermions travel only within
one replica, i.e.,

f̄ αf β ∝ Gα
dδαβ. (B1)

Furthermore, connecting a dual Green function to the potential
fixes the involved replica indices, i.e.,

Vα,βG
γ

d = Vα,βGα
dδαγ (B2)

if the Green function line connects to the bottom of the box
representing the dual potential, or

Vα,βG
γ

d = Vα,βG
β

d δβγ (B3)

if the Green function line connects to the top of the box. This
implies that replica indices in diagram (b) are fixed by the
Green function lines alone: α is fixed to κ by a Green function
line, γ is fixed to α, β to γ , and δ to β. Hence, only one
free replica index κ survives. Second, the dual potential V

p,1
α

has only one replica index. Thus, in diagram (a) in Fig. 18
all replica indices are fixed to the outer replica index κ if
at least one V

p,1
α is used to evaluate the diagram, e.g., if

the vertex ladder reads V
p,1
α χ̄

pp,αβ

0 V
p,0
γ δ we have β = α and

all the remaining indices are fixed by Green function lines
as described above. Due to the crossing symmetry of V

p,1
α ,

diagrams (a) and (b) are equivalent if they contain at least
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(a)

(b)

(c)

...

...

...

β

αα

β β

αα

β β α

α β

β α

α β

β

αα

β

α

α

α

α

α

α

α

α

α

α

α α

α α

α

α

α

α

α

α

α

α

α

α

α

α α

αα

α

α

α

α

α α

α

α

α

α

α

σ′

σ

σ̄

σ′ σ′
σ′ σ′
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σ̄ σ̄ σ̄
σ̄ σ̄

σ σ σ
σ σ
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σ σ

FIG. 17. The real fermion impurity diagrams in (a) contribute to V
p,0
αβ , while the diagrams in (b) and (c) contribute to V p,1

α . For these
diagrams all replica labels are fixed to α because of the Hubbard interaction, whereas for diagrams in (a) two replica labels α and β remain.
σ,σ ′ are independent spin labels, whereas σ̄ = −σ .

one V
p,1
α . In that case, we find it most convenient to use

diagram (a). As one has to sum over κ , these diagrams are of
order m.

Two more diagrams remain, (a) and (b) containing V
p,0
αβ

only. In combination with the connection in diagram (a) the
replica indices at the bottom are fixed to κ and one free
replica index β remains at the top. Thus, the diagram is of
order m2. Diagram (b), as always, is of order m as we saw
above.

As a result, four diagrams survive the replica limit for
the second-order contribution in the particle-particle channel.
These diagrams are shown in Fig. 19.

For the replica limit we have to multiply the diagrams by
1
m

. Thus, diagrams that were of order m are now of order 1
and survive the replica limit m → 0. Diagrams that were of
order m2 or higher do not survive the replica limit m → 0. As
a result, after the replica limit only the four diagrams displayed
in Fig. 19 remain for the second order, three of type (a) and
one of type (b).

With the rules given above, the replica limit can be
readily applied to higher-order diagrams. The removal of
Hartree-like diagrams can be understood by considering
topologically equivalent diagrams for the real degrees of

β

α

β

α

κκ

↓
β

α

β

α γ

δ

δ δ

γ γ

γ

δ

β

α

β

α γ

δ δ

γκ κ

κ

κ

(a) (b)

Vdual Vdual Vdual Vdual

Vdual Vdual

FIG. 18. Two possible connections for the second-order particle-
particle channel diagram for the dual Green function.

freedom. Figure 20 shows the first-order Hartree diagram
and its creation from a disconnected diagram. For quenched
disorder, all unconnected diagrams are removed by the factor
1
Z

before the disorder average; hence such a diagram does not
appear.

APPENDIX C: DEFINITION OF VERTEX FUNCTIONS

In the main text V
ph(pp)
σ1σ2;σ3σ4 was introduced. We need the im-

purity Green function gσ (ω) for a single disorder configuration
and the disorder-averaged impurity Green function Gσ (ω) to
calculate it. We obtain

V ph
σ1σ2;σ3σ4

(ν)ω,ω′ = 1

T

[ {〈
cω+ν,σ1 c̄ω,σ2cω′,σ3 c̄ω′+ν,σ4

〉
imp

}
Gσ1 (ω+ν)Gσ2 (ω)Gσ3 (ω′)Gσ4 (ω′+ν)

+ Gσ3 (ω)Gσ1 (ω′ + ν)

Gσ1 (ω + ν)Gσ2 (ω)Gσ3 (ω′)Gσ4 (ω′ + ν)

× (
δσ1σ4δσ2σ3δω,ω′ − δσ1σ2δσ3σ4δν,0

)]
(C1)

κ

κ

κ

κ κ

κ κ

κ

κ

κ

κ

κ κ

κ κ

κ

κ κ

κ

κ

κ

κ

κ

κ κ

κ κ

κκ κ

κ

κ

κ

κ κ

κ κ

κκ κ

FIG. 19. Four diagrams for the second-order particle-particle
channel are of order m, i.e., they have only one free replica index
κ . These four diagrams survive the replica limit m → 0. The crossed
wiggly lines represent the crossing-symmetric contributions, whereas
the cross with the curved lines represents the crossing-asymmetric
contributions from disorder scattering only.
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=

FIG. 20. Hartree-like diagrams are created from disorder by
disorder averaging disconnected diagrams. For quenched disorder all
disconnected diagrams are removed before the disorder average, and
hence such diagrams do not exist. This property of the real fermion
diagrams translates to the dual degrees of freedom. The black dashed
line denotes elastic scattering from an impurity.

for the particle-hole channel and

V pp
σ1σ2;σ3σ4

(ν)ω,ω′

= 1

T

[ {〈
cω+ν,σ1c−ω,σ2 c̄−ω′,σ3 c̄ω′+ν,σ4

〉
imp

}
Gσ1 (ω + ν)Gσ2 (−ω)Gσ3 (−ω′)Gσ4 (ω′ + ν)

+ Gσ1 (ω)Gσ2 (ω′ + ν)

Gσ1 (ω + ν)Gσ2 (−ω)Gσ3 (−ω′)Gσ4 (ω′ + ν)

× (
δσ1σ3δσ2σ4δω+ω′+ν,0 − δσ1σ4δσ2σ3δω,ω′

)]
(C2)

for the particle-particle channel. For convenience we choose
a form of V ph(pp) that contains both crossing-symmetric as
well as crossing-asymmetric contributions. It is possible to
remove all crossing-asymmetric contributions from V ph(pp).
As a consequence, the equations for the dual self-energy in
Sec. II C would be modified.

APPENDIX D: SECOND-ORDER DUAL SELF-ENERGY

For the particle-hole channel there are three possible spin
configurations for the second-order diagram. These diagrams
are shown in Fig. 7. The first diagram contains two equivalent
Green function lines; thus a factor 1

2 is associated with it. The
second and third diagram are topologically equivalent. As we
want to include both we have to multiply both diagrams with
a factor 1

2 as well.
We want to express the self-energy in terms of Vd/m0 ; thus

we use the following relations:

V↑↑;↑↑ = 1
2 (Vd + Vm), (D1)

V↑↑;↓↓ = 1
2 (Vd − Vm), (D2)

V↑↓;↑↓ = Vm0 . (D3)

FIG. 21. Physical second-order diagrams for the purely disor-
dered contributions to the particle-hole channel. Both diagrams
are equivalent. The diagram on the left shows that complicated
connections are necessary to create skeleton diagrams for the particle-
hole channel. On the right, the artificially introduced vertical disorder
vertex is used. It is more convenient as it allows one to restrict oneself
to Hartree-like diagrams. This is particularly helpful for higher-order
diagrams.

The last equality is true because V↑↓;↑↓ is part of the triplet
channel.

Combining all this together we obtain


∗ = 1
2

[
1
2 (Vd + Vm)χ̄ph

0
1
2 (Vd + Vm) + Vmχ̄

ph

0 Vm

+ 1
2 (Vd − Vm)χ̄ph

0
1
2 (Vd − Vm)

]
= 1

4

(
Vdχ̄

ph

0 Vd + 3Vmχ̄
ph

0 Vm

)
.

(D4)


∗ contains unphysical contributions from the purely disor-
dered contributions. To remove all purely disordered contribu-
tions, we replace Vd/m in the above by their purely disordered
counterparts V 0

d/m, which are defined in Eqs. (10) and (11),
and subtract the result from 
∗. We obtain


 = 1
4

[
Vdχ̄

ph

0 Vd + 3Vmχ̄
ph

0 Vm

]
− 1

4

[
V 0

d χ̄
ph

0 V 0
d + 3V 0

mχ̄
ph

0 V 0
m

]
. (D5)

Finally, we have to determine 
0. The corresponding
diagram is shown in Fig. 21. Note that there is only one spin
configuration, as there is only one dual particle that cannot
change its spin. The result is


0(w,w; q) = γ =(w,w)χ̄ph

0 (ν = 0; q)ωγ =(w,w). (D6)

Similarly, the self-energy for the particle-particle channel
can be calculated, as well as for general higher-order diagrams.
Note that the symmetry factors required here for the particle-
hole channel are an idiosyncrasy of the second-order diagrams
and do not appear in higher-order ladder diagrams. For the
particle-particle channel these factors appear at all orders for
ladder diagrams.
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