
PHYSICAL REVIEW B 95, 045125 (2017)

Spinon and bound-state excitation light cones in Heisenberg XXZ chains
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We investigate the out-of-equilibrium dynamics after a local quench that connects two spin-1/2 XXZ chains
prepared in the ground state of the Hamiltonian in different phases, one in the ferromagnetic phase and the other in
the critical phase. We analyze the time evolution of the on-site magnetization and bipartite entanglement entropy
via adaptive time-dependent density matrix renormalization group. In systems with short-range interactions, such
as the one we consider, the velocity of information transfer is expected to be bounded, giving rise to a light-cone
effect. Interestingly, our results show that, when the anisotropy parameter of the critical chain is sufficiently
close to that of the isotropic ferromagnet, the light cone is determined by the velocity of spin-wave bound states
that propagate faster than single-particle (“spinon”) excitations. Furthermore, we investigate how the system
approaches equilibrium in the inhomogeneous ground state of the connected system, in which the ferromagnetic
chain induces a nonzero magnetization in the critical chain in the vicinity of the interface.
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I. INTRODUCTION

Nonequilibrium dynamics in strongly interacting systems
has recently received considerable attention due to advances in
numerical techniques [1–4] and the possibility of simulating
such systems in experiments with ultracold atoms in optical
lattices [5–9]. In these kind of experiments, the system inter-
acts rather weakly with the environment, thereby providing
a unitary and coherent dynamics for long times. Due to high
parameter control, such experiments enable one to drive the
system to an out-of-equilibrium situation by means of quantum
quenches [10,11], which can be either global or local. In both
cases, a typical protocol is to initially prepare the system in an
eigenstate of a given Hamiltonian H0, then suddenly change
some parameter, like magnetic field or interaction strength,
and let the system evolve with the new Hamiltonian H . In a
global quench, a global parameter of the Hamiltonian, such as
the magnetic field acting on the whole system, is changed. This
kind of quench is usually used to investigate questions about
relaxation and thermalization [12–18]. In the second case, the
Hamiltonian is changed only locally—for example, a magnetic
field can be switched on in part of the system. In this scenario,
the nonequilibrium situation has been used to study the spread
of energy, information, and correlations [19–26], as well as
transport properties [27], the emergence of nonequilibrium
steady states [28], and the thermal equilibration after the
connection between two chains initially prepared at different
temperatures [29,30].

In this context, the seminal work of Lieb and Robinson [31]
is of relevance: although a nonrelativistic Schrödinger’s
equation imposes no limit on the speed, they showed that in
many-body systems with short-range interactions the velocity
of information propagation is bounded, leading to an effective
light cone. This effect has been confirmed in numerical
studies [22,32–41] and in experiments with ultracold atomic
gases [42] and trapped ions [43]. The dependence of the
light-cone effect on system parameters, however, is still an
open question. In this context, it has been shown that, in
a global quench, the spreading velocities strongly depend

on the temperature of the system through the initial density
matrix [44]. Within a semiclassical picture [45,46], supported
by conformal field theory results [47,48], the light cone is
defined by the velocity of the fastest moving quasiparticles.
It has also been shown that different types of excitations,
including complex bound states, can be identified in the time
evolution after a local quench [49].

Here we investigate the nonequilibrium dynamics in a
spin-1/2 XXZ chain after a local quench. More specifically, we
connect two chains in different phases—one in the ferromagnet
phase and the other in the critical phase—and investigate the
dynamics via a time-dependent density matrix renormalization
group [3]. As usual for local quenches, we expect that, in
the thermodynamic limit and after sufficiently long times,
the system will equilibrate to the ground state of the final
Hamiltonian [50]. In this case, the final state has nonzero
magnetization inside the critical chain due to the proximity
with the ferromagnetic chain. Therefore, this can be viewed as
a local quench to investigate how fast the order parameter of
the ordered subsystem penetrates into the disordered one. We
are particularly interested in the regime where the anisotropy
parameter of the critical chain is close to the transition to the
ferromagnetic phase. In addition to the on-site magnetization,
we investigate the propagation of the bipartite entanglement
entropy. We find that the propagation of information in the
critical chain shows a light cone with the velocity of the fastest
“spinon” excitations, which is known exactly from the Bethe
ansatz solution of the XXZ model [51,52]. More interestingly,
when the anisotropy parameter approaches the ferromagnetic
isotropic point, there are bound state excitations [51] which
propagate faster than the spinons and create a second light cone
with a greater velocity. The bound states we observe arise in the
subspace of zero magnetization and as such are different from
those investigated in Ref. [49], which had smaller velocity
than the spinons. For both spinon and bound state light cones,
we find an agreement between the velocities calculated from
our numerics and those given by Bethe ansatz, demonstrating
that this property of the dispersion of low-lying excitations
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manifests itself in the out-of-equilibrium dynamics. Regarding
the equilibration, we find that the relative distance of the
local magnetization from its equilibrium value decays faster
with time and has smaller finite size effects for sites near the
interface than in the bulk of the critical chain.

This paper is organized in the following way. In Sec. II
we present the XXZ model and its elementary excitations.
In Sec. III we discuss the quench protocol. The results are
presented in Sec. IV; Sec. IV A is devoted to our main results
concerning the propagation velocities of entanglement entropy
and magnetization, from which we observe the spinon and
bound state light cones; in Sec. IV B we discuss the asymptotic
long-time behavior. Finally, Sec. V presents the conclusions.

II. MODEL

We consider the spin-1/2 XXZ chain with N sites and open
boundary conditions

H = J
∑
i∈I

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)
, (1)

where Sα
i , α = x,y,z, are spin operators acting on site i and I

denotes the set of sites that compose each chain (see Sec. III
for more details). Here J is the exchange coupling constant
and � is the anisotropy parameter. Throughout this paper we
use J = 1 as the unity of energy and set � = 1.

This model has exact solution by means of the Bethe
ansatz [51,52]. The ground state phase diagram contains three
phases: a gapless, critical phase for −1 < � � 1 and two
long-range-ordered phases, a gapped Néel phase for � > 1
and a ferromagnetic phase for � � −1.

The XXZ model can be mapped, by a Jordan-Wigner
transformation, into the spinless fermion model described by
the Hamiltonian [53]

H =
∑

i

[
− T (c†i+1ci + c

†
i ci+1)

+ V

(
c
†
i ci − 1

2

)(
c
†
i+1ci+1 − 1

2

)]
, (2)

where ci are local fermionic operators, which satisfy the
anticommutation relation {cl ,c

†
m} = δl,m, T = J/2 is the

hopping amplitude, and V = J� is the nearest-neighbor
interaction strength. From these relations, � < 0 corresponds
to an attractive interaction regime and � > 0 represents a
repulsive interaction. For � = 0, we obtain the XX model,
which is equivalent to free spinless fermions. When analyzing
our results, it may be helpful to think about spinless fermions
instead of spins.

The Bethe ansatz solution of the XXZ model provides
not only the ground state phase diagram, but also the full
excitation spectrum. For � � −1 the elementary excitations
are called magnons and are gapless at the isotropic point
� = −1 but have a gap given by |�| − 1 for � < −1. The
magnon dispersion relation is

Em(k) = −J (� + cos k), (3)

from which we obtain the maximum magnon velocity vm =
max{| dEm

dk
|} = J .

In the critical phase, the elementary excitations, known as
spinons, correspond to single holes in the ground state root
density [51,52]. Their exact dispersion relation is given by

εs(k) = vs sin k (0 < k < π ), (4)

where

vs = π
√

1 − �2

2 arccos �
(5)

can be identified with the maximum value of the spinon
velocity:

max

{
dεs

dk

}
= vs. (6)

The Bethe ansatz also allows for low-lying excited states
with complex rapidities, called strings [51], which can be
interpreted as bound states of the elementary particles. In
the subspace of zero magnetization, bound states form above
the two-spinon continuum for −1 < � < 0. The dispersion
relation for the length-n string is given by [51]

En(k) = π
√

1 − �2

arccos �

∣∣∣∣sin

(
k

2

)∣∣∣∣
×

√
1 + cot2

[nπ

2

( π

arccos �
− 1

)]
sin2

(
k

2

)
,

(7)

where n = 1,2, . . . ,� arccos �
π−arccos �

� and �x� is the floor function.
Note that the number of bound state branches depends on �,
but the n = 1 branch exists for any � < 0. In the fermionic
picture, this simplest bound state can be viewed as being
composed by a particle and a hole that interact with each
other and bind for arbitrarily weak attractive interactions [54],
in close analogy with the formation of Wannier excitons in
one dimension; in the corresponding spin scenario (particle
represents ↑ spin and hole, ↓ spin), this bound state is an
excitation with zero magnetization. For � → −1, the n = 1
bound state approaches the dispersion of magnons at the
ferromagnetic isotropic point:

lim
�→−1

E1(k) = 1 − cos k. (8)

The spinon and bound state dispersion relations for � =
−0.75 are illustrated in Fig. 1.

Equation (7) predicts that the maximum velocity of bound
state excitations is obtained for n = 1 and is given by

vb = max{v(k)}, (9)

where v(k) = dE1(k)/dk. One can check that k = 0 is a
stationary point of v(k) for −1 < � < 0. For small |�|, v(k)
is a concave function; in this case, the maximum bound state
velocity occurs at k = 0 and coincides with vs . On the other
hand, k = 0 is a local minimum if � is close to −1. Therefore,
there is a �∗ such that k = 0 is an inflection point for v(k):

d3E1

dk3

∣∣∣∣
k=0,�=�∗

= 0. (10)
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k

FIG. 1. Exact dispersion relation for spinons εs(k) and for the
three bound state branches En(k) for � = −0.75. The bound state
velocity vb ≈ 0.866 is given by the slope of E1(k) at the inflection
point k0 ≈ 1.533.

The solution is

�∗ = cos

(
3π

5

)
= 1 − √

5

4
≈ −0.309. (11)

For −1 < � < �∗, the maximum bound state velocity occurs
at k = k0 > 0 given by the inflection point of the bound state
dispersion (see Fig. 1 for an example). As a result, we obtain
vb > vs , which means that n = 1 bound states can propagate
faster than spinons. Note that in these cases vb is not a low-
energy property, but depends on the bound state dispersion at
finite energies.

III. LOCAL QUENCH

We consider the following quench protocol (see Fig. 2):
two finite chains with different � are initially separated and
prepared in the ground state of their respective Hamiltonians,
|GL〉 and |GR〉 for the left and right chains. At time t = 0,
the chains are connected and we let the system evolve. The
Hamiltonian of the whole system is given by

H (t) = HL + �(t)
(
Sx

k Sx
k+1 + S

y

k S
y

k+1 + δSz
kS

z
k+1

) + HR,

(12)

FIG. 2. Representation of our quench protocol: for t < 0 the
chains are prepared in their respective ground states; at t = 0 they are
connected. The left chain is in the ferromagnetic phase and the right
one is in critical phase.

where �(t) is the Heaviside step function, and HL and HR

are the Hamiltonians of the left and right chains, respectively.
These are described by Eq. (1), with I = {1,2, . . . ,k − 1} for
the former and I = {k + 1,k + 2, . . . ,N − 1} for the latter.
The index k thus labels the last site of the left chain. After the
quench, the exchange coupling at the junction between chains
is set to J = 1, while the anisotropy parameter δ can assume
any constant value. In this case, we have three free parameters:
�L(R), which defines the phase of the left (right) chain, and
δ, which sets the coupling strength between the chains. Note
that the simple fact of connecting the two chains is sufficient
to create the nonequilibrium dynamics, since the initial state,
which is the product of the ground states of the separate chains,
is not an eigenstate of the new Hamiltonian.

Works in the literature [55–58] have analyzed the growth of
entanglement across the junction after connecting chains in the
same phase. Here we connect chains in different phases, with
the goal of investigating how one chain affects the properties
of the other. More specifically, we study the changes produced
by the quench over the magnetization per site〈

Sz
i (t)

〉 = 〈�(t)|Sz
i |�(t)〉 (13)

and the bipartite entanglement entropy

S(x,t) = −
∑

i

λi(x,t) ln λi(x,t), (14)

where λi(x,t) is the eigenvalue of the reduced density matrix
ρ(x,t) associated with the partition 1 � j � x at time t .

In particular, we maintain the left chain in the ferromagnetic
phase �L � −1, and the right chain in the critical phase −1 <

�R � 1. In addition, in the left chain, we apply a very small
magnetic field in the first site, which breaks the degenerescence
in the spin orientation and selects the ↑ spin state. In this
way, the ground state of the left chain presents a well defined
magnetization, with all spins aligned in the same direction,
while the ground state of the right chain |GR(�R)〉 shows no
magnetic order. The initial state of the system, for this choice
of parameters, can be written as

|�(0)〉 = |↑↑↑↑ · · · ↑↑〉 ⊗ |GR(�R)〉. (15)

As mentioned in the previous section, the XXZ Hamiltonian
without external magnetic field is mapped, through Jordan-
Wigner transformation, into a spinless fermion model with
chemical potential μ = −V/2 [see Eq. (2)], which ensures
particle-hole symmetry. As particles correspond to ↑ spins and
holes represent ↓ spins, particle-hole symmetry is equivalent
to zero magnetization in the spin scenario. This is the case
for the initial state of the right chain. After the quench, only
the total magnetization of the system (i.e., of the connected
chains) is conserved. Nonetheless, we observe that, far from
the junction, the right chain relaxes to a state in which the
local magnetization is close to zero. Moreover, the relaxation
dynamics can be approximately described by elementary
excitations on top of the ground state with Sz = 0 (see next
section).

Figure 2 shows the quench protocol, as well as the real
configuration of the ground state of the left chain before the
quench. In most part of our results, the entire connected chain
has N = 80 sites. We choose k = N/4, namely, the left chain
has NL = 20 sites and the right one has NR = 60 sites.
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IV. RESULTS

In this section we discuss the effects of the quench on
the magnetization and the entanglement entropy dynamics of
the chains. All the results for the post-quench dynamics were
obtained via time-dependent DMRG calculation with a second
order Suzuki-Trotter decomposition. We use a time steep dt =
0.05, which keeps the error of the order of 10−8 for the time
interval we consider.

A. Light-cone effect

Connecting the two chains drives the system away from
equilibrium, in such a way that the information about the
change in the Hamiltonian starts propagating from the interface
between the chains. After the quench, as the system evolves,
changes in magnetization and entanglement entropy flow over
the chains, forming effective light cones, as we explore in this
subsection. An example can be seen in Fig. 3, which shows
the on-site magnetization profile for the connected chain as a
function of time and site for fixed �R = 0.5 and three different
values of �L = {−1.1,−1.5,−2.0}; we can see the formation
of light cones in both left and right chains, with corresponding
different velocities.

When we decrease �L of the left chain (left column of
the figure, from top to bottom), we see that the amplitude of
the on-site magnetization decreases, while the velocity that
bounds the light cone remains the same and is given by the
maximum magnon velocity vm = J = 1. These results indi-
cate that, for �L close to the isotropic ferromagnet point, the
quench produces a perturbation in the on-site magnetization
that propagates with vm = J independent of the value of

FIG. 3. Color map of the on-site magnetization as a function of
time t and site x in both left and right chains (left and right columns,
respectively). We decrease the value of the anisotropy parameter at
the left chain �L = {−1.1,−1.5,−2.0} from top to bottom, while fix
the value of �R = 0.5 and δ = �R . One can see the formation of
light cones on the left and right chains, bounded by the maximum
magnon and spinon velocities, respectively.

�L, in accordance with expected for the velocity obtained
from Eq. (3). For the parameters considered in the figure,
the difference �S(x,t) = S(x,t) − S(x,0) of entanglement
entropy in the left chain also defines a light cone bounded by
v ≈ J , with amplitude that becomes smaller as we decrease
�L (not shown).

The perturbation observed in the left chain is small, since
it is in a gapped phase. As we decrease �L, the ferromagnetic
gap increases and the state of the left chain becomes more
insensitive to the quench; for �L � −1 the perturbation
created by the local quench does not penetrate far into
the ferromagnet. In fact, in the ground state of the final
Hamiltonian [Eq. (12)], to which the system equilibrates after
long times, the spins on the left chain are close to being
fully polarized. In the fermionic picture, this regime of large
negative �L corresponds to a strong attractive interaction. As a
result, the occupation of each site of the left chain by a fermion
prevents a significant change in its fermionic density.

The velocity corresponding to the light cone seen in the right
chain (right column of Fig. 3) depends only on the parameters
of this chain being independent of �L. Our results indicate that
for �∗ � �R < 1 the light cone is defined by the maximum
spinon velocity vs (hereafter called the spinon light cone).
On the other hand, for −1 < �R � �∗, a second wavefront
appears in front of that corresponding to spinons, meaning
that changes in magnetization and entanglement can propagate
faster than vs due to the presence of bound state excitations.
In this parameter regime, we observe, for both magnetization
and entanglement, a second light cone (called the bound state
light cone) outside the spinon one.

Our main results are summarized in Fig. 4. Circles and
squares are, respectively, magnetization and entanglement
wavefront velocities obtained from the light cones seen in the
right chain in our simulations. The dotted curve corresponds
to the maximum spinon velocity, as predicted by Bethe ansatz
[Eq. (5)], while the solid line gives the maximum bound state
velocity, calculated from Eqs. (7) and (9). We can see that
for �R < �∗ the maximum bound state velocity becomes
larger than the spinon velocity. The velocities obtained from
our numerics agree well with either the spinon or the bound

FIG. 4. Wavefront propagation velocity of magnetization
(circles) and entropy (squares). The dashed line is the maximum
spinon excitation velocity, given by Eq. (5), and the solid curve is the
maximum velocity in the case of bound state excitations, which can
be obtained from Eqs. (7) and (9).
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state excitation velocity. This demonstrates that the velocity
of excitations can be detected in the dynamics after the local
quench. Both observables, on-site magnetization and bipartite
entanglement entropy, can be used to detect the velocities,
giving very similar results.

The rich dynamics observed in the right chain do not depend
on the size of the left chain or on the value of �L. In the
following, for simplicity, we fix the left chain deeply in the
ferromagnetic phase, with �L = −20, and analyze in detail
the light cones seen in the right chain.

1. Spinon light cone

Figure 5 shows the dynamics of the on-site magnetization in
the right chain for �R = 0.5. At time t = 0, the magnetization
vanishes, as expected for the ground state of the critical
phase. After the chains are connected, the left chain induces
some magnetization in the right chain. Effectively, the left
chain plays the role of a boundary magnetic field along the
z direction acting on the first site of the right chain, whereas
δ defines the coupling to this field. The amplitude of δ does
not interfere in the wavefront velocity, which is a property
of the bulk excitations; for simplicity we set δ = �R . The

FIG. 5. (a) Color map of magnetization in the right chain when
�R = 0.5, �L = −20, and δ = �R . The dotted lines indicate cuts in
time, while the solid curve corresponds to a linear fit to the wavefront.
(b) Spin profile in the right chain for the times indicated in (a). The
last plot corresponds to the equilibrium state.

sign of δ determines a small polarization of the first spin of
the right chain: if δ > 0 the interaction is antiferromagnetic,
making the site to antialign with the last site of the left chain;
instead, if δ < 0 the coupling is ferromagnetic, forcing them
to align. Once the first site of the right chain defines its
magnetization, it induces some magnetization in the next site
and this effect continues throughout the chain. This change
in magnetization propagates like a wave, with a well-defined
velocity that depends only on the parameters of the right chain.
The same behavior is observed for other values of �R > 0 in
the critical phase.

Figure 5(a) shows a color map of the magnetization as a
function of time and position. From this we clearly see that
the magnetization flow is bounded, defining an effective light
cone. The solid black line corresponds to a linear fit to the
wavefront, which is defined at the time at which the mag-
netization reaches 0.01〈Sz

max〉, where 〈Sz
max〉 is the maximum

amplitude of the magnetization assumed by the spins in the
right chain; circles in Fig. 4 correspond to the inverse of this
line slope. According to the comparison shown in Fig. 4, the
propagation velocity corresponds to the maximum spinon
velocity.

The wavefront has a positive magnetization. However,
inside the light cone the chain shows some staggered mag-
netization. This effect is expected since at long times the
system must approach the equilibrium state, in which the
response of the critical chain to a boundary magnetic field
shows Friedel-type oscillations [59–61].

In Fig. 5(b) we show constant-time cuts of the spin profile in
the right chain [corresponding to the dotted lines in Fig. 5(a)].
Note that inside the light cone the spins stay permanently
polarized. The last plot illustrates the spin profile for the chain
in the equilibrium state, which corresponds to the ground
state of H (t > 0) in Eq. (12). We discuss the approach to
this equilibrium state in the next subsection.

Now, let us investigate the behavior of the entropy [defined
in Eq. (14)] for the same parameter regime � > �∗. Since the
ground state of the critical phase has a finite entropy [62], we
analyze the difference �S(x,t) = S(x,t) − S(x,0) of entropy
created by the quench, which we present in Fig. 6.

Figure 6(a) shows the color map of �S(x,t). Again we
observe a light cone as in the case for the magnetization.
Indeed, it can be demonstrated analytically that the entropy
dynamics must obey a light-cone effect [63]. Interestingly,
magnetization and entropy wavefronts travel with the spinon
excitation velocity, as can be concluded from Fig. 4 (squares in
this figure correspond to linear fits to the entropy wavefronts,
as the one seen in Fig. 6).

Figure 6(b) presents �S(x,t) profiles at certain instants of
time, corresponding to the dotted lines in the color map, from
which we can follow the propagation of the disturbance caused
by the quench along the right chain. Close to the wavefront
there is an increase in the entropy; after the disturbance
passes, the difference in entropy becomes negative. Note that
the amplitude of the difference of entropy is rather small,
of the order of 10−1. Inside the light cone, the difference
of entropy presents site dependent oscillations, similarly to
those in the magnetization data. However, in contrast with the
Friedel oscillations in the magnetization, the oscillations in the
entanglement entropy are present already in the initial state of
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FIG. 6. (a) Color map of the difference of entropy in the right
chain when �R = 0.5, �L = −20, and δ = �R . The dotted lines
indicate cuts at the times considered in (b), while the solid line is a
linear fit to the wavefront. (b) �S profile in the right chain at t = 0,
t = 20, t = 30, and t = 40.

the open chain [64]. The effect of the quench is to decrease the
amplitude of these oscillations (not shown).

We have observed the spinon light cone for other values
of � in the critical phase, from which we have obtained the
circles and squares shown in Fig. 4. Interestingly, for � < �∗,
we can define a second light cone, which we analyze in detail
below.

2. Bound state excitation light cone

Figure 7(a) shows the magnetization in the right chain as
a function of time and site index for �R = −0.75; Fig. 7(b)
of the figure shows cuts at fixed times. There are two main
distinctive features: first, the wavefront followed by a region
with oscillating magnetization; second, a large pulse with
negative magnetization lagging behind the first region. The
front of the large pulse propagates approximately with the
maximum spinon velocity vs . The positions of this front as a
function of time thus define the spinon light cone, indicated
by the solid line in Fig. 7(a). To obtain the propagation
velocity presented in Fig. 4 we consider only long times; this
way we ensure that the large pulse is formed. Furthermore,
by analyzing the front of the oscillations that form before
the negative large pulse, we conclude that its positions as a

FIG. 7. (a) Time evolution of the magnetization in the right chain
when �R = −0.75, �L = −20, and δ = �R . The horizontal dotted
lines indicate cuts at certain times, while the solid and the dashed
curves delimit the spinon and bound state excitation light cones. (b)
Spin profiles in the right chain at the times indicated by dotted lines
in (a).

function of time can also be fitted to a straight line, defining
a second light cone (see the dashed line in the color map of
Fig. 7). Interestingly, the associated velocity (illustrated by a
circle in Fig. 4) corresponds to the maximum velocity vb of
bound state excitations, suggesting that these oscillations are
signatures of bound states. Note that, although we can only
measure the length-1 string velocity [which is related to n = 1
in Eq. (7)], since it corresponds to the maximum velocity and
as such is the one that defines the light cone, other bound states
can be present in the system.

Figure 8 shows the difference in entropy with respect to
the initial state �S(x,t). In Fig. 8(a) we present the color
map and in Fig. 8(b) we show cuts at the times indicated
by dotted lines in Fig. 8(a). Similarly to the propagation of
the magnetization, one can recognize two different regions: at
intermediate x there is a large increase in the entropy, while
at larger x there is only a small increase in it. According to
our analysis, the front of the former region propagates with the
velocity vs , whereas that of the latter propagates with velocity
vb. In fact, in Fig. 8(a), one can clearly identify two light cones,
one related to spinons (solid curve) and the other to bound
states (dashed line). As observed for the magnetization, the
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FIG. 8. (a) Time evolution of �S(x,t) in the right chain when
�R = −0.75, �L = −20, and δ = �R . The horizontal dotted lines
indicate cuts at times considered in (b). The solid curve signals the
spinon light cone while the dashed one indicates the bound state light
cone. (b) �S(x,t) profiles in the right chain at different times.

propagation velocities obtained from the entropy difference,
represented by square points in Fig. 4, are in good agreement
with the analytical results.

To strengthen the idea that the two light cones can be related
to spinon and bound state excitations, we show in Fig. 9 color
maps of the magnetization for different values of �R < 0. For
�R > �∗ the maximum bound state velocity is equal to the
spinon velocity, so we only see one light cone, as shown in
Fig. 9(a), for �R = −0.25. As we decrease �R , the bound
state velocity becomes larger than the spinon one and we see
oscillations outside the spinon light cone, which form a second
light cone [dashed lines in Figs. 9(b), 9(c), and 9(d)] with a
velocity that agrees well with the one obtained by Eqs. (7)
and (9).

B. Asymptotic behavior

Let us now analyze the asymptotic long-time state of the
system in comparison with the ground state of the Hamiltonian
after the quench H (t > 0) in Eq. (12), which we refer to as the
equilibrium state.

The spin profile in the equilibrium state for the right chain
with �R = 0.5 is illustrated in the last plot of Fig. 5. Clearly

FIG. 9. Color map of magnetization in the right chain when (a)
�R = −0.25, (b) �R = −0.50, (c) �R = −0.85, and (d) �R =
−0.95 (�L = −20 and δ = �R in all panels). The solid lines
represent the spinon light cones, and the dashed ones correspond
to those associated with the bound state excitations.

there are Friedel-type oscillations induced by the effective
magnetic field at the boundary with the ferromagnetic chain.
The amplitude of these oscillations decay as a power law with
the distance from the interface [59–61]. The same qualitative
behavior is observed in the nonequilibrium case deep inside
the light cone, i.e., for NL + i � NL + vst � NL + NR .

For a quantitative analysis, we define the distance to
equilibrium as the difference of magnetization with respect
to the equilibrium state

DSz(i,t) = |Sz(i,t) − Szeq(i)|
|Szeq(i)| , (16)

where Szeq(i) is the magnetization of ith site in the equilibrium
state.

Figure 10(a) shows the color map of DSz(i,t). The solid
straight line corresponds to the magnetization light cone
as defined in Fig. 5. Note that initially the system was in
an equilibrium state with respect to the initial Hamiltonian
H (t < 0), in which DSz(i,0) = 1 for all sites in the critical
chain. After the quench, we expect the local magnetization to
equilibrate at the values corresponding to the ground state of
H (t > 0), in which case DSz(i,t → ∞) → 0 for any fixed i.

Figure 10(b) shows the distance function DSz(i,t) versus
time for different sites in a chain with N = 120 sites (NL = 20
and NR = 100) for �R = δ = 0.5. For all fixed positions,
the distance function shows time oscillations inside the light
cone. However, like the equilibrium state itself, the decay of
the amplitude of the time oscillations is inhomogeneous. In
fact, the oscillations decay faster with time for sites near the
interface than in the bulk of the chain. A similar boundary
effect has been observed in equilibrium time-dependent
correlation functions of open spin chains [65]. Moreover, the
asymptotic value of DSz(i,t) at long times (after averaging
out the oscillations) appears to approach a nonzero value that
increases with the distance from the interface. We interpret
this as a finite size effect. To confirm this, we analyze the
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FIG. 10. (a) Color map of DSz. The dotted lines indicate the cuts
shown in (b); the solid curve corresponds to the spinon excitation light
cone boundary defined in Fig. 5. (b) Distance to the equilibrium state
(see definition in the text) for sites i = 21, i = 25, i = 31, i = 45,
and i = 113 when the right chain has NR = 100 sites and �R = 0.5.
Other parameters used were �L = −20 and δ = �R .

distance to the equilibrium state for specific sites of the chain
as function of the (right) chain length, as shown in Fig. 11.
This asymptotic distance was obtained through a time average
over long times.

As we increase NR , the distance to equilibrium decreases,
suggesting that the whole system converges to the equilibrium
state at long times only in the limit of a semi-infinite chain.

V. CONCLUSION

We have investigated the time evolution of magnetization
and entanglement entropy after a local quench that connects

L
R
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i=31

FIG. 11. Asymptotic distance to the equilibrium state for sites
i = 21, i = 25, and i = 31 as a function of the right chain length.
Other parameters as in Fig. 10.

two XXZ chains and have observed that the nonequilibrium
dynamics is governed by equilibrium excitations. More specif-
ically, we have connected a ferromagnetic chain to another
chain in the critical phase and have seen that the quench creates
excitations that propagate from the interface between them.
When the left chain is close to the anisotropic ferromagnetic
point, we see small variations in its on-site magnetization and
entanglement entropy, which propagate with the maximum
magnon velocity. These excitations, however, are suppressed
when the chain is deep in the ferromagnetic phase, due to
the strong magnon gap. More interesting is the dynamics in
the right chain. When it is in the critical phase with positive
anisotropy parameter, the information propagates with the
maximum spinon velocity, defining a spinon light cone. When
the anisotropy parameter is negative, we have observed a
second light cone related to other type of excitations, the
spin-wave bound states or strings, which arise in the zero
magnetization subspace.

As our local quench protocol gives a small amount of
energy to the system, we expect the chain to asymptotically
go to the equilibrium state. In a finite system, we observe that
this happens in a nonhomogeneous way: the sites close to the
interface are more influenced by the quench than the ones far
away from it, even for long times.
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