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We construct a many-body theory of magnetoelasticity in one dimension and show that the dynamical
correlation functions of the quantum magnet, connecting the spins with phonons, involve all energy scales.
Accounting for all magnetic states nonperturbatively via the exact diagonalization techniques of Bethe ansatz,
we find that the renormalization of the phonon velocity is a nonmonotonous function of the external magnetic
field and identify a new mechanism for attenuation of phonons—via hybridization with the continuum of
excitations at high energy. We conduct ultrasonic measurements on a high-quality single crystal of the frustrated
spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 in its nearly one-dimensional regime and confirm the theoretical
predictions, demonstrating that ultrasound can be used as a powerful probe of strong correlations in one dimension.
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I. INTRODUCTION

Magnetic insulators present a good example of inter-
acting quantum systems where phonons can serve as an
intrinsic probe of the strongly-correlated spins [1]. The first
microscopic theory of magnetoelasticity was developed at
finite temperatures [2,3], where the static and the dynamic
correlation functions of the spins were shown to couple to
phonons with the same strength in the perturbative regime. At
low temperature, assuming existence of a spin-liquid regime
in two- and three-dimensional Heisenberg antiferromagnets,
phonons were shown to measure the mass and lifetime of
the spin-liquid quasiparticles [4,5]. In one dimension (1D)—
where interacting magnons form a spin-Luttinger liquid at low
energy—the theory remains largely unexplored. At the same
time such 1D systems are readily accessible in experiments
on Cs2CuCl4 [6,7], CsNiCl3 [8], KCuF3 [9], and a metal
organic coordination polymer Cu(II)-2,5-bis(pyrazol-1-yl)-
1,4-dihydroxybenzene [10].

In this paper we construct a microscopic theory of mag-
netoelasticity in 1D using the diagonalization methods of
Bethe ansatz [11]. We derive the matrix elements for the
four-point correlation function that couples the strongly-
correlated spins to phonons dynamically and show that
Luttinger liquid at low energy contributes comparably with
the high-energy excitations that we are able to account for
due to the hierarchy of modes [12–14]. The contribution of
the static correlation function to the renormalization of the
sound velocity is parametrically larger than the dynamical
correlation functions. The resonant decay of phonons in the
many-body spin continuum vanishes very fast, as the fourth
power of the length in large systems. However we identify
another mechanism, hybridization with the excitations at high
energy via the dynamical correlation function, that remains
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finite in the thermodynamic limit. This work advances the
many-body diagonalization tools in 1D [15–19] in to the field
of magnetoelasticity, which is beginning to receive attention
also in spintronics [20–23].

To test our theory we conduct ultrasonic measurements
on a high-quality single crystal of Cs2CuCl4 in its nearly
1D regime, i.e., at temperatures of 0.7–2.1 K and magnetic
fields up to 9 T [24,25]. The observed dependencies of the
sound velocity and attenuation of the sound wave on the
magnetic field agree well with all theoretical predictions. We
find that the magnetic-field dependent part of the attenuation
is governed by the hybridization mechanism. Our results
demonstrate that ultrasonic investigations, besides neutron-
scattering experiments [6,9,26], can be used as a powerful
probe of correlation functions of the many-body system in
1D in magnetic insulators, just as tunneling spectroscopy in
semiconductor heterostructures [27,28].

The paper is organized as follows. Section II contains the
definition of the magnetostrictive interactions between the
Heisenberg model and the phonon models in one dimension
and the diagonalization of the isolated Heisenberg model by
means of Bethe ansatz. In Sec. III we study renormalization of
sound velocity by evaluating microscopically the dynamical
correlation function of the spins that couples to the phonons
(Sec. III A) and by analyzing it using the hierarchy of
interacting modes (Sec. III B). In Sec. IV we consider different
mechanisms of attenuation of phonons. In Sec. V we conduct
an ultrasound experiment on Cs2CuCl4 in its nearly one-
dimensional regime and confirm the theoretical predictions.
In Appendix A we derive the quantization equation for the
pi-pairs’ solutions of Bethe equations in the XY limit. In
Appendix B we quote the normalization factor of the Bethe
states together with the algebraic Bethe ansatz method. In
Appendix C we derive the matrix element of the spin operator
needed for the magnetostrictive interaction.

II. MODEL

Theoretically, we consider phonons interacting with 1/2
spins on a 1D lattice of length L via a magnetostrictive
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interaction as [2,3]

H = Hm + Hph + V, (1)

where

Hm =
L∑

j=1

(
JSj · Sj+1 + BSz

j

)
, Hph =

∑
k

ωka
†
k
ak, (2)

V =
L∑

j=1

[J1(xj+1 − xj ) + J2(xj+1 − xj )
2]Sj · Sj+1 (3)

are the Heisenberg model of spins, the free phonon model,
and the interaction between them, respectively, Sj are the
spin-1/2 operators, J is the exchange interaction between
spins when the atoms are in equilibrium, and B is the external
magnetic field in energy units. Here ak are Bose operators of
the phonons, ωk = 2ωD| sin (k/2)| is the phonon dispersion,

ωD is Debye energy, xj = ∑
k

√
�b

mv0|k|L (ak + a
†
−k)e−ikj is the

position operator of an atom with the mass m at lattice site j ,
and v0 is the sound velocity. Phononic excitations modulate
the exchange integrals resulting in a set of magnetostrictive
constants Jn = ∂n

x J (x)|
x=b

/n! that quantify the magnetoelas-
tic interaction, where b is the lattice parameter. We assume the
periodic boundary condition: Sj+L = Sj and xj+L = xj .

The spin Hamiltonian in Eq. (2) is diagonalized by N -
magnon states parameterized with a set of N quasimomenta
q = (q1 . . . qN ) that satisfy the nonlinear Bethe equations [11]

qjL −
∑
l �=j

ϕjl = 2πIj , (4)

where the two-body scattering phases are

eiϕij = − ei(qi+qj ) + 1 − 2�eiqi

ei(qi+qj ) + 1 − 2�eiqj
, (5)

� = 1, and Ij is a set of nonequal integers. Solutions of
Bethe equations can be found via numerical deformation
from the XY point � = 0 (where ϕij = π gives the solutions
qj = 2πIj/L) to the Heisenberg point � = 1 [29]. However,
Bethe equations remain nonlinear, αL − �(α,q) = 2πIj , for
some solutions that contain at least a pair of quasimomenta
satisfying the condition qi + qj = ±π in the � = 0 limit—see
derivation in Appendix A. Here qi = ±π − α, qj = α, the
scattering phase

ei�(α,q) = −
i 2λ

L

∑N−2r
j=1

1−sin qj sin α

sin qj −sin α
+ eiα

i 2λ
L

∑N−2r
j=1

1−sin qj sin α

sin qj −sin α
− e−iα

(6)

depends on another quasimomenta, n is the number of such
pi-pairs, and λ = 1. Solutions for α can be obtained again
via deformation from the λ = 0 to the λ = 1 point. The
eigenenergy of Hm corresponding to the state q is

ε =
N∑

j=1

(J cos qj − J + B) +
(

J

2
− B

)
L

2
(7)

and the total momentum—preserved by the translational
invariance—is Q = ∑N

j=1 qj .

We consider renormalization of phonons by spins via the
magnetostrictive interaction V perturbatively. The perturba-
tion series for the eigenenergy of H is

E(k) = ε0 + ωk + 〈k|V |k〉 +
∑
{k,q}

|〈k,q|V |k〉|2
ε0 + ωk − εq − ωk

, (8)

where ε0 is the ground state energy of Hm,ωk is an eigenenergy
of Hph parameterized by M momenta k = (k1, · · · ,kM ). The
unperturbed state |k〉 = |k〉ph|0〉m is a direct product of a
single phonon |k〉ph and the spin ground state |0〉m and
|k,q〉 = |k〉ph|q〉m are the intermediate states.

III. RENORMALIZATION OF SOUND VELOCITY

Change of the sound velocity is given by a derivative of
E(k) as

δv = δv1 + δv2, (9)

where evaluation of the phononic matrix elements leaves the
spin correlation functions split into the static and the dynamic
parts,

δv1 = J2b
2
�

2mv0
〈0|S1 · S2|0〉m, (10)

δv2 = J 2
1 b2

�

mv0

∑
{q};Q=p

L|〈q|S1 · S2|0〉m|2(ε0 − εq)

(ε0 − εq)2 − (ωDp)2
. (11)

Here �p/b = 2π�/(bL) is the quantum of the momentum
and the sum over all of the many-magnon states, {q}, and
is restricted by momentum conservation to the states with
Q = p. The static correlation function in δv1 is immedi-
ately obtained from ε0 using the translational invariance

FIG. 1. The static spin correlation function from Eq. (10) as a
function of the magnetic field B, calculated using Bethe ansatz.
Inset is the dynamic correlation function from Eq. (11) calculated
using the matrix element in Eq. (13): The black line is the Luttinger
liquid contribution in Eq. (20), and the red line is the high-energy
contribution in Eq. (21).
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as [30]

〈0|S1 · S2|0〉m = ε0 − B
(
N − L

2

)
JL

. (12)

Its dependence on the magnetic field, changing from the
ferromagnetic value of 0.25 at high fields to the antiferro-
magnetic �−0.44 in zero field, is shown in Fig. 1.

A. Dynamical correlation function of spins

The dynamical part in δv2 is a fourth-order correlation
function. We evaluate the needed matrix element using
the algebraic Bethe ansatz [31] and obtain it as a sum
over determinants of N × N matrices, see Appendix C for
details,

〈q|S1 · S2|0〉 = (
√

〈0|0〉〈q|q〉)−1

⎧⎨
⎩

∏
i ch(vj + η)∏

i<j sh(vi − vj )

∑
y

(−1)y
∏

i,j ;j �=y sh(uj − vi)∏
j ch2(uj − η)

∏
l;l �=y

sh(ul − uy + 2η)

sh(ul − uy)

×
[

det K̂ (y) −
(

1 − 2 sh(2η)shη shuy

∏
j ;j �=y ch(uj + η)∏

i<j �=y sh(ui − uj )

)
det Ĝ(y)

]

−
∏

j ch(uj + η)
∏

j ch(vj + η)∏
j ch2(uj − η)

∏
i<j sh(vi − vj )

det K̂

⎫⎬
⎭, (13)

where the matrix elements are

Kab = Tab + (−1)bsh3(2η)shub

∏
l;l �=b sh(ul − ub + 2η)∏

i<j �=b sh(ui − uj )
∏

l;l �=b sh(ul − ub)

shη
∏

j,i;i �=b sh(ui − vj )
[ shub

chη
+∑

l
sh(2η)ch(ub+η)

ch(vl−η)ch(vl+η)

]
ch(ub + η)ch(ub + η)ch(va − η)ch(va + η)

, (14)

K
(y)
ab = Tab + (−1)bsh3(2η)sgn(y − b)ch(uy − η)

ch(va − η)ch(va + η)
∏

i sh(ub − vi)

ch(ub + η)
∏

l;l �=y,b sh(ul − ub + 2η)∏
i<j �=y,b sh(ui − uj )

∏
l;l �=y,b sh(ul − ub)

×
[

ch(ub − η)

ch(ub + η)
− sh(uy − ub + 2η)

sh(uy − ub − 2η)
+ sh2ηch(ub − 2η)shuy

ch(uy − η)ch(ub + η)

]
, (15)

when b �= y and

K (y)
ay = sh(2η)sh(2va)

ch2(va − η)ch2(va + η)
, (16)

G
(y)
ab = Tab when b �= y and G

(y)
ay = K

(y)
ay ,

Tab = chL(vb − η)

chL(vb + η)

sh(2η)

sh2(vb − ua)

∏
j ;j �=a

sh(vb − uj + 2η)

sh(vb − uj )
− sh(2η)

sh2(ua − vb)

∏
j ;j �=a

sh(uj − vb + 2η)

sh(uj − vb)
. (17)

The normalization factors of Bethe states [32,33] 〈0|0〉 and
〈q|q〉 are quoted in Appendix B in terms of a determinant of
an N × N matrix. Here η = (acosh1)/2,

uj = ln

⎛
⎝
√

1 − eiq0
j −2η√

1 − e−iq0
j −2η

⎞
⎠− i

q0
j

2
(18)

are the quasimomenta of the ground state q0 in Orbach
parametrization, and vj is obtained from uj by q0

j → qj where
q are the excited states [11].

B. Hierarchy of modes

The excitations in the sum over q in Eq. (11) have
the same number of quasimomenta as the ground state at
a given magnetic field. They are constructed by removing
a quasimomentum from the ground state distribution and
promoting it to an empty position, see sketch in Fig. 2. We
will label these excitations as ψψ∗ pairs.

The whole dynamical correlation function in Eq. (11)
exhibits a hierarchy of modes governed by their spectral
strength [12–14]. The excitations split into groups according
to n = 1, 2, 3, . . . ψψ∗ pairs that have progressively smaller
amplitudes of their matrix elements, |〈q|S1 · S2|0〉|2 ∼ 1/L2n.
We keep the first three levels of the hierarchy,

δv2 = J 2
1 b2

�

mv0J
(A1 + A2 + A3). (19)

The first level consists of only one pair with the minimally
possible momentum Q = p,

A1(B) = vmJL2|〈p|S1 · S2|0〉m|2
2πω2

D

, (20)

where vm = (εp − ε0)/p is the renormalized velocity of
Luttinger liquid and we have used smallness of the exchange
energy compared with Debye energy J/ωD ∼ 10−3 for general
material parameters [34]. The only matrix element in Eq. (20)
can be obtained using the bosonic modes of Luttinger
liquid [35], where the dispersion is almost linear. We, however,
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FIG. 2. Configurations of nonequal integer numbers Ij that
correspond to the solutions of the Bethe equations for the model Hm:
(a) the ground state, (b) one ψψ∗-pair excitation, (c) two ψψ∗-pair
excitations, (d) three ψψ∗-pair excitations. These eigenstates include
complex solutions at � = 1, which are obtained via numerical
deformation of Bethe equations from the � = 0 to the � = 1 point.

use a more general Bethe ansatz approach here. Solutions of
Bethe equations give vm directly that, together with the matrix
element in Eq. (13), gives the magnetic field dependence of
A1(B) shown in the inset (right axis) in Fig. 1.

There are polynomially many states in the second and in
the third levels of the hierarchy,

A2(3)(B) =
∑

{q};Q=p

L|〈q|S1 · S2|0〉m|2
εq − ε0

, (21)

where the summand in Eq. (11) was expanded in a Taylor
series in ωDp/(ε0 − εq) 	 1 since the sum over q accumulates
dominantly at high energy. Contribution of the low-energy
excitations (for which (ε0 − εq)/ωDp 	 1) has an additional
small factor J 2/ω2

D , like in Eq. (20). At intermediate energies,
(ε0 − εq) � ωDp, the perturbation theory for E(k) becomes
inapplicable since these magnetic excitations are in resonance
with the acoustic phonon. However, the width of the anti-

crossing [36] � J1

√
�bω2

D/(mJ 3L5) is much smaller than the
many-magnon level spacing J/L that is still in the Luttinger
liquid regime. The nonperturbative contribution of these levels
is of the order of the anticrossing width and vanishes in large
systems.

We obtain the magnetic field dependence of A2 numerically
as a sum over the two ψψ∗ pairs in Eq. (21), see inset in
Fig. 1. At high fields A2 is small since there are only a
few excitations, the strength of which is small as 1/L4 at
the second level of the hierarchy, and at small fields A2 is
again small since the majority of the excitations belongs to
the class of pi-pairs close to the half filling of the magnetic
band, which makes their amplitudes even weaker than 1/L4

due to Eq. (6). At the intermediate fields the 1/L4 smallness is
partially compensated by a large number of the excitations,
whose majority does not have pi-pairs yet. The position
of the maximum of |A2(B)| is identified from numerics at
Bm = 2J − 9π2J/(2L2). The value of the function at this
point is A2(Bm) = −0.0016/L for large systems, see scaling
of A2(Bm) in Fig. 3, which is small in a different parameter
compared with A1.

FIG. 3. Scaling of A2L defined in Eq. (21) with the system length
at three values of the magnetic field B = Bm, 2J − 25π 2J/L2, 1.8J .
The fitting of finite size corrections, A2L = a0 + a1/L,
gives (a0,a1) × 102 = (−0.17,1.51), (−0.15,2.04), (−0.01, − 6.95)
for the three magnetic fields, respectively.

For typical values of material parameters, A1 and A2 are
of the same order, e.g., 1/L ∼ 10−6 and (ωD/J )2 ∼ 10−6

for ultrasonic measurements in a magnetic insulator [1]. The
three ψψ∗-pairs contribution A3 is smaller than A2 due to an
additional 1/L2 in accord with the hierarchy of modes [12–14]
for the whole range of magnetic fields, see Fig. 4.

IV. ATTENUATION OF PHONONS

Next let us analyze decay of the phonons into the spin
excitations. The excitation spectrum of Heisenberg model
in Eq. (2) is continuous which always has some states in
resonance with the single phonon energy ωDp providing
a channel for the direct relaxation, unlike the previous
phenomenological approaches [37,38]. The rate of such a

FIG. 4. Contribution of the third level of the hierarchy of modes
to δv2 defined in Eq. (21); L = 40. It is small compared with A2 in
the inset of Fig. 1 for the whole range of magnetic fields.
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FIG. 5. Two mechanisms of the sound attenuation: the red line
is the relaxation rate τ−1 calculated using the Fermi golden rule in
Eq. (22), while the black line is the degree of hybridization Z of
a sound phonon with the magnetic excitations dominated by high
energies in Eq. (24). Inset is the low energy contribution to Eq. (24).

process is given by the Fermi golden rule,

τ−1 = 2π2J 2
1 b

mv0

∑
{q};Q=p

|〈q|S1 · S2|0〉m|2δ(�E), (22)

where �E = εq − ε0 − ωp and the contribution of the J2 term
in Eq. (3) is zero due to δ(�E). The principal value of the
sum in Eq. (22) is accumulated by the second level of the
hierarchy, which we evaluate numerically—see the magnetic
field dependence of τ−1 in Fig. 5. Its maximum value has the
same small prefactor 1/L4 as the matrix element in Eq. (13)
making the direct relaxation extremely slow in large systems.

However, the amplitude of the free phonons can also
be reduced via hybridization with the magnetic excitations,
similarly to the δv2 renormalization of their velocity. The first
order in perturbation theory for the wave function,

|�k〉 = |k〉 +
∑
{k,q}

〈k,q|V |k〉
ε0 + ωk − εq − ωk

|k〉ph|q〉m, (23)

gives suppression at low momenta, Z = 1 − |〈p|�p〉|2, as

Z = J 2
1 bπ�

2

mv0

∑
{q};Q=p

|〈q|S1 · S2|0〉m|2
(ε0 − εq − ωDp)2

, (24)

which we analyze using the hierarchy of modes:

Z = J 2
1 bπ�

2

J 2mv0
(C1 + C2 + C3), (25)

where

C1 = (J/ωD)2L2|〈p|S1 · S2|0〉m|2
(2π )2

(26)

and

C2(3) =
∑

{q};Q=p

|〈q|S1 · S2|0〉m|2
(ε0 − εq)2

, (27)

FIG. 6. Scaling of Z defined in Eq. (24) with the system length at
three values of the magnetic field B = Bm, 2J − 25π 2J/L2, 1.8J .
The fitting of finite size corrections, ZJ 2mv0/(J 2

1 bπ�
2) =

a0 + a1/L, gives (a0,a1) × 105 = (0.73, − 7.8), (0.40, − 6.3),
(0.012,8.4) for the three magnetic fields, respectively.

like in the analysis of Eq. (11) before. The first level
contribution C1 is small in J 2/ω2

D like A1, see inset in Fig. 5.
But C2, shown in Fig. 5, remains finite in the thermodynamic
limit (see scaling in Fig. 6) unlike A2 above, and C3 is small
in 1/L2 compared with C2, see Fig. 7. This hybridization
mechanism can be distinguished from other nonmagnetic
channels of relaxation via its magnetic field dependence and
from the exponential decay into the resonant magnetic states
described by Eq. (22) since it is constant in the temporal and
spatial domains.

V. ULTRASOUND EXPERIMENT ON Cs2CuCl4

Finally, we discuss our experimental results. High-quality
single crystals of several mm size of the frustrated spin-
1/2 antiferromagnet Cs2CuCl4 were grown from an aque-
ous solution by an evaporation technique [39]. A pair of

FIG. 7. Contribution of the third level of the hierarchy of modes
to Z defined in Eq. (27); L = 40. It is small compared with C2 in
Fig. 5 for the whole range of magnetic fields.
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FIG. 8. Experimental results (open triangles, diamonds, and
circles) of the renormalized amplitude 1 − Z of the longitudinal
ultrasound wave propagating along the [010] axis of Cs2CuCl4 at
T = (1.900 ± 0.005) K, T = (1.700 ± 0.005) K, and T = (1.300 ±
0.005) K. The red lines represent the results of Eq. (24) with J1b =
3563J/

√
Ic. The inset shows data (open circles) of the corresponding

normalized sound velocity at T = (1.300 ± 0.005) K. The green line
shows the result of Eq. (10) using J2b

2 = −24.5J . Additional data
are presented in Fig. 9.

piezoelectric polymer-foil transducers was glued to opposite
parallel surfaces perpendicular to the [010] direction for the
generation and the detection of the ultrasound waves. These
longitudinal waves propagate along the [010] direction that
corresponds to the elastic mode c22. Changes of the sound
velocity δv and the renormalized amplitude of the sound wave
1 − Z were measured as functions of magnetic field at constant
temperatures, using the experimental set up described in detail
in Ref. [40].

In Fig. 8 we compare the experimental data for the sound
velocity with the theoretical results expressed in Eqs. (10)
and (11). By fitting the static correlation function given by
Eq. (10), we extract J2b

2 = −24.5J , with the magnetic cou-
pling constant J = 0.375 meV taken from Ref. [6]—see inset
in Fig. 8. We find no signatures of the dynamical correlation
functions represented by Eq. (11)—which are parametrically
small—down to the noise level of our experiment. This
defines an upper bound to the other microscopic constant
J1b � 1.25 × 104J .

Analyzing the attenuation of the amplitude of the sound
wave Z, we find that its functional dependence on the magnetic
field is in good agreement with the dynamic hybridization
mechanism represented by Eq. (24)—see Fig. 8 and additional
data in Fig. 9. By fitting its amplitude, we extract the other
microscopic parameter as J1b = 3563J/

√
Ic, where Ic is the

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. Experimental results (open circles, triangles, and diamonds) of the renormalized amplitude 1 − Z of the longitudinal ultrasound
wave propagating along the [010] axis of Cs2CuCl4 at the temperatures of (a) T = (1.150 ± 0.005) K, (b) T = (0.850 ± 0.005) K,
(c) T = (0.720 ± 0.005) K, (d) T = (1.900 ± 0.005) K, (e) T = (1.700 ± 0.005) K, and (f) T = (1.300 ± 0.005) K. The red lines represent the
results of Eq. (24) with J1b = 7416J/

√
Ic for (a)–(c) and with J1b = 3563/

√
Ic for (d)–(f). The data in (d)–(f) were taken in a different cryostat

system using upgraded electronics and a better quality sample compared with the data in (a)–(c) leading to a decrease of the nonmagnetic losses
by a factor of Ic(a,b,c)/Ic(d,e,f ) ≈ 4.3. The insets show data of the corresponding normalized sound velocities at the same temperatures.
The green lines show the result of Eq. (10) using J2b

2 = −24.5J . The results of our ultrasound experiments are still relatively close to the 1D
regime at the temperature of T = (0.720 ± 0.005) K, at which the system is already in a transitional state between the 1D and a 2D regime.
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degree of nonmagnetic losses. A quantitative determination
of these losses is not possible since they consist of various
extrinsic (e.g., coupling and diffraction losses, nonparallel
alignment of the sample, etc.) and intrinsic attenuation
mechanisms like direct scattering at defects or dislocation
damping [41]. However, even for Ic = 1 this value of J1b is
consistent with the bound from the measurement of the sound
velocity.

The values of the microscopic constants are significantly
different from the values measured along the a axis in Ref. [42]
manifesting an anisotropy of Cs2CuCl4. Our very good fit of
the magnetic field dependencies by the purely one-dimensional
theory in Figs. 8 and 9 gives a further argument that the
interchain interactions in Cs2CuCl4 in the finite temperature
regime are negligible despite only a moderate degree of the
exchange anisotropy of ∼3 in the a-b plane [43].

VI. CONCLUSIONS

In conclusion, constructing a microscopic theory of mag-
netoelasticity in 1D we have shown that the necessary
correlation functions involve the many-body excitations at
all energy scales and have identified a new mechanism of
sound attenuation. Our theoretical predictions agree with our
ultrasound experiments in the 1D regime of Cs2CuCl4.
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APPENDIX A: DERIVATION OF THE QUANTIZATION
EQUATION FOR PI-PAIRS

The XXZ model is a generalization of Heisenberg model
that introduces the interaction strength between magnons J�

as a model parameter, which breaks the rotational symmetry
of the spin-spin interaction term Sj · Sj+1. In one dimension
the model reads

Hm =
L∑

j=1

(
J

S−
j S+

j+1 + S+
j S−

j+1

2
+ J�Sz

jS
z
j+1 + BSz

j

)
,

(A1)
where S±

j = Sx
j ± iS

y

j . For � = 1 this model becomes the
model in Eq. (2). The N -magnon eigenstates of this Hamilto-
nian can be found by solving a set of Bethe equations,

qjL −
∑
l �=j

ϕjl = 2πIj , (A2)

for N quasimomenta qj , where the two-magnon scattering
phases are given by

eiϕij = − ei(qi+qj ) + 1 − 2�eiqi

ei(qi+qj ) + 1 − 2�eiqj
(A3)

and Ij is a set of N nonequal integer numbers.
In the free magnon limit � = 0 the two-body phase shifts

ϕij become independent of quasimomenta and equal to the
shifts of free fermions or hard-core bosons, ϕij = π that is
immediately obtained by taking the � → 0 limit of Eq. (A3)
giving exp (iϕij ) = −1. This result restores the plain wave

quantization condition for each magnon independently, qj =
2π (Ij + 1/2)/L [44], from the system of nonlinear Bethe
equations in Eq. (A2). Alternatively, the free magnon result
can be obtained by setting � = 0 in the Hamiltonian in
Eq. (A1) and then by diagonalizing the resulting XY model
directly [45].

However, the noninteracting limit becomes ambiguous
when at least one pair of quasimomenta in an N magnon state
satisfies the condition qi + qj = 2π (Ii + Ij + 1)/L = ±π at
� = 0. In evaluating the � = 0 limit of Eq. (A3), the leading
order of ei(qi+qj ) + 1 is zero in the Taylor series around the � =
0 point, both in the numerator and in the denominator. Thus,
higher order coefficients have to be calculated, ei(qi+qj ) + 1 =
c1� + c2�

2 + . . . , that requires, in general, solving the whole
set of N Bethe equation in Eq. (A2) in a nonlinear fashion,
i.e., c1,c2,... depend on all ql—not just qi and qj —since � is
still finite, which requires solving all N Bethe equations for
all ql simultaneously in taking the limit. This issue was noted
in Refs. [46,47] but was never resolved. Here we start from
a finite but small �, for which all scattering phase are well
behaved, and then take the limit � → 0 systematically.

Let us consider a N -magnon solution of Bethe equations
that contains 2r quasimomenta that satisfy the q2j + q2j+1 =
±π condition (we will call these pairs of quasimomenta pi-
pairs below) and N − 2r quasimomenta that do not have a
pi-pair. For a finite but small � 	 1 the quasimomenta of a
pi-pair can be parameterized as

q2j = ±π − αj + δj

2
, j � r, (A4)

q2j+1 = αj + δj

2
, (A5)

where αj is an unknown parameter of the j th pi-pair that has
a nonzero value, since Bethe equations for this pair cannot be
solved due to the unknown (at the moment) phase shift ϕ2j,2j+1

at � = 0, and δj is a parameter that vanishes at � = 0. On the
other hand, the remaining quasimomenta j > 2r can be found
immediately for � = 0 since all of their scattering phases in
Eq. (A3) for these quasimomenta are well behaved, ϕij = π .
Thus at a finite � 	 1 we can write

qj = 2π
(
Ij + 1

2

)
L

+ εj , j > 2r, (A6)

where εj are small corrections due to a finite � that depend
on all other quasimomenta and vanish for � = 0. Conser-
vation of the total momentum of N magnons,

∑N
j=1 qj =

2π
∑N

j=1 Ij /L including the pi-pairs, is independent of the
interactions and imposes an additional constraint on δj and εj ,

N∑
j=2r+1

εj = −
r∑

j=1

δj . (A7)

It is obtained as a sum of all equations in Eq. (A2) after
substitution of Eqs. (A4)–(A6).

Since αj cannot be obtained directly from its own Bethe
equation due to the undefined scattering phase within the
corresponding pi-pair, we are going to obtain an equation
for αj from the other j > 2r Bethe equations that do not
have this issue. We start from expanding ϕji for j > 2r
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magnons—which are defined at the point � = 0—up to
the linear order in small �. Taking into account that εj is
proportional to � and δj is linear (or a higher order) in � we
obtain the following expansion of ϕji between the j th magnon
and a pi-pair and the j th magnon and another j ′th magnons,
which do not have a pi-pair, respectively,

ϕj,2i = π − 2�
sin qj −αi

2

cos qj +αi

2

, (A8)

ϕj,2i+1 = π − 2�
cos qj +αi

2

sin qj −αi

2

, (A9)

ϕjj ′ = π − 2�
sin

qj −qj ′
2

cos
qj +qj ′

2

. (A10)

Then we substitute these expansions in Eq. (A2) and sum all
of them with j > 2r obtaining a relation between δi and αi

that parameterizes the quasimomenta for j � 2r ,

−L

r∑
i=1

δi + 4�

r∑
i=1

N∑
j=2n+1

1 − sin qj sin αi

sin qj − sin αi

= 0, (A11)

where the sum over j is taken over the remaining quasimo-
menta that do not have a pi-pair, given by Eq. (A6) with εj = 0.
Here we used Eq. (A7) to express εj through δj and canceled all
ϕjj ′ terms for both j,j ′ > 2r due to the ϕjj ′ = −ϕj ′j symmetry
of Eq. (A10)—note that the scattering phases are defined up
to an arbitrary period 2π times an integer.

The equation in Eq. (A11) is a sum of r terms and each
term depends only on two unknown variables δi and αi . Thus
Eq. (A11) splits into r independent equations and solving them
separately we find

δi = 4

L

N∑
j=2r+1

1 − sin qj sin αi

sin qj − sin αi

�. (A12)

This result shows that the linear term in the Taylor expansion
for δi in � does not vanish. However it depends on the still
unknown parameter αi . In order to find it, we take the � → 0
limit of Eq. (A3) for the two quasimomenta within the ith
pi-pair and obtain

eiϕ2i,2i+1 =
i 2

L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
− e−iαi

i 2
L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
+ eiαi

, (A13)

where

ei(q2i+q2i+1) + 1 = 4

L

N∑
j=2r+1

1 − sin qj sin αi

sin qj − sin αi

� (A14)

was expanded up to the linear order in �, substituted in
Eq. (A3), and � was canceled from the whole expression
altogether. Substituting Eq. (A13) into each of the 2ith (or
2i + 1st) Bethe equation in Eq. (A2) in the exponential form
we obtain an equation for each αi independently in the � = 0
limit,

−eiLαi

i 2
L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
− e−iαi

i 2
L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
+ eiαi

= 1. (A15)

This result does not coincide with the free wave quanti-
zation condition exp (iαiL) = −1, being a nonlinear equation
for αi . Its solutions can be found by introducing an extra
deformation parameter λ,

−eiLα
i 2λ

L

∑N
j=2r+1

1−sin qj sin α

sin qj −sin α
− e−iα

i 2λ
L

∑N
j=2r+1

1−sin qj sin α

sin qj −sin α
+ eiα

= 1, (A16)

where the subscript was omitted, αi → α, since the equation
is the same for all indices i. The solutions can be classified in
the limit λ = 0, like the Bethe equations, where Eq. (A16)
is solved by α = 2π (Ij + 1/2)/(L − 2). Then a smooth
deformation of the equation from λ = 0 to λ = 1 gives all
solutions of of the nonlinear Eq. (A15). The quantization
equation of pi-pairs in the � = 0 limit before Eq. (6) is
Eq. (A16) in the logarithmic form.

The two-magnon solutions of Bethe equations that we
identified as pi-pairs in Eq. (A16) at � = 0 can account for
the missing complex solutions, which instead remain real, of
the XXX model at � = 1 found in Ref. [48]. For N = 2 the
parameter δ in Eq. (A12) remains zero for any � making the
scattering phase ϕ12 = −2α and Eq. (A2) independent of �

as well, in this case. Thus this two-magnon solution remains
real at � = 1 and has to be removed from the class of complex
conjugated quasimomenta. We also note that pi-pairs are still
solutions of Bethe equations at any finite � in full accord with
the arguments of Ref. [49]. It is only the limit � → 0 of these
solutions that does not recover the single particle quantization
rule qj = 2π (Ij + 1/2)/L.

APPENDIX B: NORMALIZATION FACTORS OF BETHE
STATES

The eigenstates of the XXZ model in Eq. (A1) are the
Bethe states

|�〉 =
∑

P,j1<···<jN

e
i
∑

l qPl
jl+i

∑
l<l′ ϕPl ,Pl′ /2

S+
j1

. . . S+
jN

|⇓〉, (B1)

where P is a permutation of N quasimomenta qj and |⇓〉 is the
ferromagnetic ground state. In this so-called coordinate repre-
sentation the many-body states |�〉 are not factorizable making
calculations of scalar products and expectation values in this
representation almost intractable. However, a calculation of
the form factors needed in Eq. (13) becomes manageable using
the algebraic form of Bethe ansatz [31], in which Bethe states
are factorized in terms of operators with given commutation
relations.

Following Ref. [31] we write down the many-body wave
functions using operators that satisfy a Yang-Baxter algebra as

|u〉 =
N∏

j=1

C(uj )|⇓〉, (B2)

where uj are N auxiliary parameters and C(u) is one of the
four matrix elements of the transition matrix

T (u) =
(

A(u) B(u)

C(u) D(u)

)
, (B3)
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which is defined in an auxiliary 2 × 2 space. This T -matrix
satisfies the Yang-Baxter equation

R(u − v)(T (u) ⊗ T (v)) = (T (v) ⊗ T (u))R(u − v). (B4)

Here we use the following R-matrix that corresponds to the
spin Hamiltonian in Eq. (A1),

R(u) =

⎛
⎜⎝

1
b(u) c(u)
c(u) b(u)

1

⎞
⎟⎠, (B5)

where b(u) = sinh (u)/ sinh (u + 2η) and c(u) =
sinh (2η)/ sinh (u + 2η).

The entries of Eq. (B4) give commutation relations between
the matrix elements of T . Here we write down four of them
that will be used later,

[Bu,Cv] = c(u − v)

b(u − v)
(AuDv − AvDu), (B6)

AuCv = 1

b(u − v)
CvAu − c(u − v)

b(u − v)
CuAv, (B7)

DuCv = 1

b(v − u)
CvDu − c(v − u)

b(v − u)
CuDv, (B8)

[Au,Dv] = c(u − v)

b(u − v)
(CvBu − CuBv). (B9)

We have introduced the subscript u and v as a shorthand of the
argument, e.g. Au ≡ A(u), above.

The transfer matrix τ (u) = TrT (u) = A(u) + D(u) con-
tains all of the conserved quantities of the model in Eq. (A1)
including the Hamiltonian. Thus if |u〉 is a eigenstate of τ (u)
then it is an eigenstate of the Hamiltonian. The eigenvalue
equation, τ (u)|u〉 = Tu|u〉 where Tu is a scalar quantity—the
corresponding eigenvalue, can be solved using the commuta-
tion relations in Eqs. (B6)–(B9). The results of acting with the
Au and Du operators on the state |u〉 in Eq. (B2) are obtained
by commuting them from left to right through the product of
C(uj ) operators,

Au

N∏
j=1

C(uj )|0〉 = au

N∏
j=1

1

buj

C(uj )|0〉 −
N∑

j=1

aj

cuj

buj

C(u)

×
N∏

l=1�=j

1

bjl

C(ul)|⇓〉, (B10)

Du

N∏
j=1

C(uj )|0〉 = du

N∏
j=1

1

bju

C(uj )|0〉 +
N∑

j=1

dj

cuj

buj

C(u)

×
N∏

l=1�=j

1

blj

C(ul)|⇓〉, (B11)

where the vacuum eigenvalues of the operators, Au|⇓〉 =
au|⇓〉 and Du|⇓〉 = du|⇓〉, are

au = coshL (u − η)

coshL (u + η)
and du = 1. (B12)

Since the right hand side of Eqs. (B10) and (B11) contains
terms that are not proportional to the original state multiplied
by a scalar, an arbitrary Bethe state is not an eigenstate of the
transfer matrix τ for an arbitrary set of the auxiliary parameters
uj . However, the second terms in Eqs. (B10) and (B11) can be
made zero by selecting specific sets of uj that are solutions of
the following set of nonlinear equations,

aj

dj

=
N∏

l=1�=j

bjl

blj

, (B13)

where we have used the shorthand with the subscripts, i.e. aj ≡
a(uj ) and bjl ≡ b(uj − ul). Substitution of the expressions for
aj and dj from Eq. (B12) and for bjl from Eq. (B5) gives the
following Bethe equation and the eigenvalue of the transfer
matrix τ ,

cosh(uj − η)L

cosh(uj + η)L
=

N∏
l=1�=j

sinh(uj − ul − 2η)

sinh(uj − ul + 2η)
, (B14)

Tu = au

N∏
j=1

1

buj

+ du

N∏
j=1

1

bju

. (B15)

The Bethe ansatz equations—in the coordinate
representation—are obtained under substitution of

uj = ln

⎡
⎣
√

1 − eiqj −2η

1 − e−iqj −2η

⎤
⎦− iqj

2
(B16)

and

η = acosh�

2
(B17)

into Eq. (B14).
The scalar product between two Bethe states 〈v| and |u〉 can

be calculated using the commutation relations in Eqs. (B6)–
(B9). The multiplication of the bra and ket states in the form of
Eq. (B2) is evaluated by commuting each operator B(vj ) from
left to right through the product of C(uj ) operators and then
by using the vacuum eigenvalues of the generated A and D

operators from Eq. (B12). When uj is a solution of Eq. (B14)
and vj is an arbitrary set of auxiliary parameters the result can
be written in a compact form as a determinant of an N × N

matrix—the so-called Slavnov’s formula [50],

〈v|u〉 =
∏N

i,j=1 sinh(vj − ui)∏
j<i sinh(vj − vi)

∏
j<i sinh(uj − ui)

det T̂ ,

(B18)
where matrix elements are Tab = ∂ua

T (vb). Under substitution
of T (u) from Eq. (B5) these matrix elements read

Tab = coshL(vb − η)

coshL(vb + η)

sinh(2η)

sinh2(vb − ua)

N∏
j=1�=a

sinh(vb − uj + 2η)

sinh(vb − uj )
− sinh(2η)

sinh2(ua − vb)

N∏
j=1�=a

sinh(uj − vb + 2η)

sinh(uj − vb)
. (B19)
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The normalization factor of Bethe states in Eq. (B2) can be evaluated by taking the v → u limit of Eq. (B18) [32,33],

〈u|u〉 = sinhN (2η)
N∏

i �=j=1

sinh(uj − ui + 2η)

sinh(uj − ui)
det M̂, (B20)

where the matrix elements are

Mab =
{−L

sinh 2η

cosh (ua+η) cosh (ua−η) −∑
j �=a

sinh 4η

sinh (ua−uj −2η) sinh (ua−uj +2η) , a = b,

sinh 4η

sinh (ub−ua+2η) sinh (ub−ua−2η) , a �= b.
(B21)

APPENDIX C: DERIVATION OF THE DYNAMICAL
MATRIX ELEMENT FOR SPINS

In this section we will calculate the matrix element
〈q|S1 · S2|0〉—with respect to Bethe states of the spin
Hamiltonian—that is needed for evaluating Eq. (11). We start
by splitting the matrix element of the scalar product S1 · S2

into three parts,

〈q|S1 · S2|0〉m = G+− + G−+ + Gzz, (C1)

where

G+− = 1
2 〈v|S+

1 S−
2 |u〉, (C2)

G−+ = 1
2 〈v|S−

1 S+
2 |u〉, (C3)

Gzz = 〈v|Sz
1S

z
2|u〉, (C4)

uj are the quasimomenta of the ground state |0〉, and vj are the
quasimomenta of an excited state |q〉 with the same number of
particles.

The local spin operators of the model in Eq. (A1) can be
expressed in terms of the algebraic Bethe ansatz operators
from Eq. (B3) as [15,16,51]

S+
1 = Cξτ

L−1
ξ , S+

2 = τξCξτ
L−2
ξ , (C5)

S−
1 = Bξτ

L−1
ξ , S−

2 = τξBξτ
L−2
ξ , (C6)

Sz
1 = Sz

2

Aξ − Dξ

2
τL−1

ξ , Sz
2 = τξ

Aξ − Dξ

2
τL−2
ξ , (C7)

where ξ = −iπ/2 + η.
Firstly, we evaluate the +− correlation function. Under the

substitution of Eqs. ((C5), (C6)) in to Eq. (C2) it reads

G+− = 1
2 〈v|CξBξ |u〉. (C8)

Commuting of the Bξ operator from left to right through a
product of C(uj ) operators by means of the commutation
relations in Eqs. ((B6)–(B9)) gives

Bξ

N∏
j=1

Cuj
|⇓〉 =

N+1∑
x=1

axcxξ

N+1∏
i=1�=x

1

bxi

N+1∑
y=1�=x

cξy

N+1∏
j=1�=x,y

1

bjy

N+1∏
j=1�=x,y

Cuj
|⇓〉, (C9)

where uN+1 ≡ ξ . Multiplying the above expression by Cξ and evaluating the scalar product with the final state 〈v| we obtain

G+− = 1

2

N∑
x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∑
y=1�=x

cξy

bξy

N∏
j=1�=x,y

1

bjy

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉

+ 1

2

N∑
x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ

〈ux−1,ξ,ux+1|v〉. (C10)

Here the property 〈v|u〉 = 〈u|v〉 where vj satisfy the Bethe equations and uj is an arbitrary set of auxiliary parameters [15,16]
was used.

The remaining scalar product can be evaluated using the Slavnov’s formula (B18). By substituting ξ = −iπ/2 + η into
〈ux−1,ξ,ux+1|v〉 in the second line of Eq. (C10) explicitly we obtain

〈ux+1,ξ,ux−1|v〉 = i(−1)x
∏N

j cosh(vj + η)
∏N

j,i �=x sinh(ui − vj ) det T̂ (x)∏N
j �=x cosh(uj − η)

∏
i<j sinh(vi − vj )

∏
i<j �=x sinh(ui − uj )

, (C11)

where the matrix elements are

T
(x)
ab = Tab, b �= x, (C12)

T (x)
ax = sinh (2η)

cosh (va − η) cosh (va + η)
, b = x, (C13)

and Tab are given in Eq. (B19).
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Substitution of the two identical uj = uj ′ = ξ into the
scalar product 〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉 in the first line
in Eq. (C10) makes the prefactor in Eq. (B18) divergent,
i.e. the prefactor has a pole of the first order as a function
of (uj ′ − uj ). Simultaneously, the determinant in Eq. (B18)
becomes zero under the same substitution uj = uj ′ = ξ since
two lines of the matrix in Eq. (B19) becomes identical. Thus,
we will derive the explicit expression for the whole scalar
product by substituting uj = ξ first, then, by taking the limit
uj ′ = ξ̄ → ξ . Expanding the matrix elements in Eq. (B19) in
a Taylor series in (ξ̄ − ξ ) and using general matrix identities
we obtain∣∣∣∣∣∣∣∣∣∣∣

· · ·
AT

· · ·
AT + (βAT + XT )(ξ̄ − ξ )

· · ·

∣∣∣∣∣∣∣∣∣∣∣
= (ξ̄ − ξ )

∣∣∣∣∣∣∣∣∣∣∣

· · ·
AT

· · ·
XT

· · ·

∣∣∣∣∣∣∣∣∣∣∣
, (C14)

where

Aa = sinh(2η)

cosh(va − η) cosh(va + η)

N∏
j

cosh(vj + η)

cosh(vj − η)
(C15)

is the j th row of Eq. (B19) under the substitution uj = ξ ,

Xa = sinh 2η sinh 2va

cosh2(va − η) cosh2(va + η)

N∏
j

cosh(vj + η)

cosh(vj − η)
, (C16)

is the linear coefficient in the Taylor expansion of the j ′th row
of Eq. (B19) around the point uj ′ = ξ , which is not collinear
with Aa in the vector space, and β is the part of the linear
coefficient that is collinear with Aa .

Cancellation of the ξ̄ − ξ from the denominator in
Eq. (C14) with the 1/(ξ̄ − ξ ) from the prefactor in Eq. (B18)
makes the whole scalar product finite. Contributions of the
orders higher than one (in the expansion of the determinant)
vanish in the limit ξ̄ → ξ and we obtain

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉 = (−1)x+y

∏
j cosh2(vj + η)∏

j �=x,y cosh2(uj − η)

∏
j,j ′;j ′ �=x,y sinh(uj ′ − vj ) det T̂ (xy)∏

j<j ′ sinh(vi − vj )
∏

j<j ′ �=x,y sinh(ui − uj )
, (C17)

where the matrix elements are

T
(xy)
ab =

⎧⎪⎨
⎪⎩

Tab, b �= x,y,

T
(b)
ab , b = min (x,y),

sinh 2η sinh 2va

cosh2 (va−η) cosh2 (va+η)
, b = max (x,y).

(C18)

Secondly, we turn to evaluating the −+ correlation func-
tion. Under the substitution of Eqs. (C5) and (C6) into Eq. (C3)
it reads

G−+ = 1
2 〈v|BξCξ |u〉. (C19)

When Bξ is commuted through the product of Cuj
operators

using the general result in Eq. (C9), the first step of commuting
Bξ with Cξ introduces a divergent denominator through the
commutation relation in Eq. (B6). However, the operator

factor in the numerator of Eq. (B6) becomes zero at the
same time making the whole expression finite. Since the
divergence occurs at the first step of commuting Bξ through
a product of N + 1 operators C(uj ), taking the limit after
using Eq. (C9), as it is done in Ref. [16], creates an extra
and significant computation problems: the original divergence
spreads through many terms under the sum in Eq. (C9) and
cancelling them explicitly is a complicated problem.

Here we will do it in a different way by canceling this
intermediate divergence from the beginning in Eq. (C19).
Expanding the numerator and the denominator of the com-
mutation relation in Eq. (B6) up to the linear order in ξ̄ − ξ ,
where u → ξ and v → ξ auxiliary parameters were relabeled,
we cancel the ξ̄ − ξ with 1/(ξ̄ − ξ ). Then, substituting the
result of this procedure in Eq. (C19) we obtain

G−+ = 1

2
〈v|CξBξ |u〉 + sinh 2η

2
lim
ξ̄→ξ

∂ξ̄ (〈v|Aξ̄Dξ |u〉 − 〈v|AξDξ̄ |u〉), (C20)

where 〈v|CξBξ |u〉 has already been calculated in Eq. (C10).
The remaining two correlation functions under the derivative in Eq. (C20) can be calculated by successive use of the general

result of commuting Au and Dv operators through a product of C(uj ) operators in Eqs. (B10) and (B11). The scalar product of
〈v| with the result of the commutation procedure gives

〈v|Aξ̄Dξ |u〉 = aξ̄

N∏
l=1

1

blξ

N∏
j=1

1

bξ̄j

δu,v −
N∏

l=1

1

blξ

N∑
j=1

aj

cξ̄j

bξ̄j

N∏
l=1�=j

1

bjl

〈uj−1,ξ̄ ,uj+1|v〉

+
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

aξ̄

1

bξ̄ξ

N∏
l=1�=j

1

bξ̄l

〈uj−1,ξ,uj+1|v〉 −
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

N∑
j ′=1�=j

aj ′
cξ̄j ′

bξ̄j ′

1

bj ′ξ

×
N∏

l=1�=j,j ′

1

bj ′l
〈uj−1,ξ,uj+1,uj ′−1,ξ̄uj ′+1|v〉 −

N∑
j=1

cξj

bξj

N∏
l=1�=j

1

blj

aξ

cξ̄ξ

bξ̄ξ

N∏
l=1�=j

1

bξl

〈uj−1,ξ̄ ,uj+1|v〉, (C21)
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〈v|AξDξ̄ |u〉 = aξ̄

N∏
l=1

1

blξ

N∏
j=1

1

bξ̄j

δu,v −
N∏

l=1

1

blξ

N∑
j=1

aj

cξ̄j

bξ̄j

N∏
l=1�=j

1

bjl

〈uj−1,ξ̄ ,uj+1|v〉

+
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

aξ̄

1

bξ̄ξ

N∏
l=1�=j

1

bξ̄l

〈uj−1,ξ,uj+1|v〉

−
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

N∑
j ′=1�=j

aj ′
cξ̄j ′

bξ̄j ′

1

bj ′ξ

N∏
l=1�=j,j ′

1

bj ′l
〈uj−1,ξ,uj+1,uj ′−1,ξ̄uj ′+1|v〉 (C22)

for both terms in the second line of Eq. (C20), respectively. Then, after taking the derivative of Eqs. (C21) and (C22), with respect
to ξ̄ and the limit ξ̄ → ξ , we substitute the results in to Eq. (C20) and obtain

G−+ = G+− + sinh 2η

2

⎡
⎣ N∏

l=1

1

blξ

N∑
j=1

N∑
l=1

[tanh(ul + η) − tanh(vl − η)]aj

cjξ

bjξ

N∏
l=1�=j

1

bjl

〈uj−1,ξ,uj+1|v〉

+
N∑

j=1

cjξ

bjξ

N∏
l=1�=j

1

blj

N∑
j ′=1�=j

aj ′
cξj ′

bξj ′
( tanh(uj ′ + η) − tanh(uj − η))

1

bj ′ξ

N∏
l=1�=j,j ′

1

bj ′l
〈uj−1,ξ,uj+1,uj ′−1,ξuj ′+1|v〉

+
N∏

l=1

1

blξ

N∑
j=1

aj

cjξ

bjξ

N∏
l=1�=j

1

bjl

〈uj−1,ξ,uj+1|v〉′
⎤
⎦, (C23)

where the derivative of 〈uj−1,ξ̄ ,uj+1|v〉 with respect to ξ̄ results in an additional determinant,

〈ux−1,ξ,ux+1|v〉′ = i(−1)j
∏N

j ′ cosh(vj ′ + η)
∏N

j ′,i �=x sinh(ui − vj ′ ) det T̂
′(x)∏N

j ′ �=x cosh(uj ′ − η)
∏

i<j ′ sinh(vi − vj ′ )
∏

i<j ′ �=x sinh(ui − uj ′)
, (C24)

where the matrix elements are

T
′(x)
ax = 2 sinh 2η tanh(va − η)

cosh(va − η) cosh(va + η)
− sinh2 2η

cosh(va − η) cosh(va + η)

N∑
j=1�=a

1

cosh(vj − η) cosh(vj + η)
(C25)

for b = x and the remaining entries for b �= x are T
′(x)
ab ≡ Tab from Eq. (B19).

Thirdly, we evaluate the zz correlation function. Under the substitution of Eq. (C7) in Eq. (C4) it reads

Gzz = 1
4 〈v|(Aξ − Dξ )(Aξ − Dξ )|u〉. (C26)

Before proceeding with the commutation procedure as in the two previous cases we rewrite the above expression in a form
more convenient for such a calculation using the definition of the transfer matrix, Aξ − Dξ = 2Aξ − τξ , and its eigenvalue
τξ |u〉 = Tξ |u〉,

Gzz = 1
2 〈v|A2

ξ − TξAξ − DξAξ |u〉, (C27)

where Tξ = ∏
j b−1

jξ is given by Eq. (B15) and we have assumed that 〈v| and |u〉 are a pair of orthogonal eigenstates, i.e.,
〈v|u〉 = 0.

The correlation function of Aξ and A2
ξ can be calculated using Eq. (B10) once and twice, respectively. The scalar products of

〈v| with the results of the commutation procedures are

〈v|Aξ |u〉 = −
N∑

x=1

aj

cξx

bξx

N∏
l=1�=j

1

bxl

〈ux+1,ξ,ux−1|v〉, (C28)

〈v|A2
ξ |u〉 = 4

N∑
x=1

ax

cξx

bξx

N∏
l;l �=x

1

bxl

N∑
y;y �=x

ay

cξy

bξy

N∏
l;l �=x,y

1

bxl

1

byξ

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉, (C29)

where the scalar products on the right hand sides are already given in Eqs. (C11) and (C17) in explicit form.
Evaluation of the remaining DξAξ correlation function involves the same problem of taking the limit v → u = ξ in

commutation relation Eq. (B9), as in the calculation of the −+ correlation function. Here we resolve it in the same way as
we have already done in evaluating Eq. (C19). Expanding the numerator and the denominator of Eq. (B9) in v − u → 0 we
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rewrite the DξAξ correlation function as

〈v|DξAξ |u〉 = 〈v|TξAξ − A2
ξ |u〉 − sinh 2η lim

ξ̄→ξ
∂ξ̄ 〈v|CξBξ̄ − Cξ̄Bξ |u〉. (C30)

We use the general result in Eq. (C9) and write the CξBξ̄ and Cξ̄Bξ correlation functions under the derivative as

〈v|Cξ̄Bξ |u〉 =
N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∑
y=1�=x

dy

cξy

bξy

N∏
j=1�=x,y

1

bjy

〈ux−1,ξ̄ ,ux+1,uy−1,ξ,uy+1|v〉

+
N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ

〈ux−1,ξ̄ ,ux+1|v〉, (C31)

〈v|CξBξ̄ |u〉 =
N∑

x=1

ax

cxξ̄

bxξ̄

N∏
i=1�=x

1

bxi

N∑
y=1�=x

dy

cξ̄y

bξ̄y

N∏
j=1�=x,y

1

bjy

〈ux−1,ξ,ux+1,uy−1,ξ̄ ,uy+1|v〉

+
N∑

x=1

ax

cxξ̄

bxξ̄

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ̄

〈ux−1,ξ,ux+1|v〉. (C32)

Then, taking the derivative over ξ̄ , the limit ξ̄ → ξ , and substituting the pair of the expressions above in Eqs. (C27) and (C30),
together with the expressions in Eqs. (C28) and (C29), we obtain

Gzz =
N∏
j

1

bjξ

N∑
j=1

aj

cξj

bξj

N∏
l=1�=j

1

bjl

〈uj+1,ξ,uj−1|v〉 +
N∑

j=1

aj

cξj

bξj

N∏
l=1�=j

1

bjl

N∑
j ′=1�=j

aj ′
cξj ′

bξj ′

N∏
l=1�=j,j ′

1

bj ′l

× 1

bj ′ξ
〈uj−1,ξ,uj+1,uj ′−1,ξ,uj ′+1|v〉 + sinh 2η

2

⎡
⎣ N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∑
y=1�=x

cξy

bξy

× (tanh(ux − η) + tanh(uy − η))
N∏

j=1�=x,y

1

bjy

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉

+
N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ

⎡
⎣tanh(ux − η) + tanh(vx − η)

+
N∑

j ′=1�=x

[tanh(vj ′ − η) − tanh(uj ′ + η)]

⎤
⎦〈ux−1,ξ,ux+1|v〉 −

N∑
x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

∏
j=1�=x

1

bjξ

〈ux−1,ξ,ux+1|v〉′
⎤
⎦, (C33)

where all scalar products are already given in explicit form above.
Finally, we substitute Eqs. (C10), (C23), and (C33) in Eq. (C1), rewrite the result in a more compact form by collecting similar

terms, and use a general matrix identity det T̂ +∑N
x=1 det T̂ (x) = det (T̂ + X̂), where the matrix T (b) is obtained by substitution

of the xth column from the matrix X̂ and rank of X̂ is equal to one. After constructing the corresponding matrices X̂ for a single
sum over x and for a sum over only one variable in the double sum over x,y we obtain

〈q|S1 · S2|0〉 =
∏N

j cosh(vj + η)∏
i<j sinh(vi − vj )

N∑
x=1

(−1)x
∏N

i,j ;j �=x sinh(uj − vi)∏N
j cosh2(uj − η)

N∏
l=1�=x

sinh(ul − ux + 2η)

sinh(ul − ux)

×
[

det K̂ (x) −
(

1 − sinh(2η) sinh η sinh ux

∏N
j ;j �=x cosh(uj + η)∏

i<j �=x sinh(ui − uj )

)
det Ĝ(x)

]

−
∏

j cosh(uj + η)
∏

j cosh(vj + η)∏
j cosh2(uj − η)

∏
i<j sinh(vi − vj )

det K̂, (C34)
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where the matrix elements are

Kab = Tab + (−1)b
sinh3(2η) sinh η sinh ub

cosh(ub + η)

∏N
j,i �=b sinh(ui − vj )∏
i<j �=b sinh(ui − uj )

N∏
l=1�=b

sinh(ul − ub + 2η)

sinh(ul − ub)

×
sinh ub

cosh(ub+η) cosh η
+∑N

l=1[tanh(vl + η) − tanh(ul + η)]

cosh(va − η) cosh(va + η)
, (C35)

Tab = coshL(vb − η)

coshL(vb + η)

sinh(2η)

sinh2(vb − ua)

N∏
j=1�=a

sinh(vb − uj + 2η)

sinh(vb − uj )
− sinh(2η)

sinh2(ua − vb)

N∏
j=1�=a

sinh(uj − vb + 2η)

sinh(uj − vb)
, (C36)

K
(x)
ab = Tab + (−1)b sinh3(2η)sgn(x − b)

cosh(va − η) cosh(va + η)

N∏
l=1�=x,b

sinh(ul − ub + 2η)

sinh(ul − ub)

cosh(ub + η) cosh(ux − η)∏N
i sinh(ub − vi)

∏
i<j �=x,b sinh(ui − uj )

×
(

cosh(ub − η)

cosh(ub + η)
− sinh(ux − ub + 2η)

sinh(ux − ub − 2η)
+ sinh 2η cosh(ub − 2η) sinh ux

cosh(ux − η) cosh(ub + η)

)
, (C37)

when b �= x,

K (x)
ax = sinh(2η) sinh(2va)

cosh2(va − η) cosh2(va + η)
(C38)

when b = x,G
(x)
ab = Tab when b �= x, and G(x)

ax = K (x)
ax when b = x. The result in Eq. (C34) was checked numerically for N = 2,3

using the direct summation over the spacial coordinates. Equations (C34)–(C37) are Eqs. (13)–(16).
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