
PHYSICAL REVIEW B 95, 045117 (2017)

Algorithms for tensor network renormalization

G. Evenbly*

Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
(Received 30 November 2015; revised manuscript received 16 December 2016; published 13 January 2017)

We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of
classical statistical and quantum many-body systems. First, we recall established techniques for how the partition
function of a 2D classical many-body system or the Euclidean path integral of a 1D quantum system can be
represented as a network of tensors, before describing how TNR can be implemented to efficiently contract
the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then
benchmarked for the 2D classical statistical and 1D quantum Ising models; in particular the ability of TNR
to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is
demonstrated.

DOI: 10.1103/PhysRevB.95.045117

I. INTRODUCTION

Tensor network renormalization [1] (TNR) is a recently
introduced approach for coarse-graining tensor networks, with
application to the efficient simulation of classical statistical
many-body systems and quantum many-body systems. A key
feature of TNR that differentiates it from previous methods
for coarse-graining tensor networks, including Levin and
Nave’s tensor renormalization group [2] (TRG) as well as
other subsequently developed approaches [3–10], is the use of
unitary disentanglers in TNR that function to allow removal
of all short-ranged correlation at each length scale. This
proper removal of short-ranged correlation allows TNR to
resolve significant computational and conceptual problems
encountered by previous methods.

Despite the success and usefulness of TRG, it is known to
suffer a computational breakdown when at or near a critical
point [2], where the cost of maintaining an accurate effective
description of the system grows quickly with coarse-graining
step, due to the accumulation of short-ranged correlation. The
use of disentanglers allows TNR to prevent this accumulation,
such that TNR can maintain a description over repeated
coarse-graining steps, or equivalently for very large system
sizes, without requiring a growth of computational cost.
Previous methods for coarse-graining tensor networks, such
as TRG, are also conceptually problematic if they are to be
interpreted as generating a renormalization group [11] (RG)
flow in the space of tensors, in that they do not reproduce
the expected structure of RG fixed points. This flaw was
partially resolved with the proposal of tensor entanglement
filtering renormalization [6] (TEFR), which reproduces the
proper structure of gapped RG fixed points. On the other
hand, TNR fully resolves this problem, reproducing the
proper structure of gapped fixed points as well as producing
scale-invariant fixed points when applied to critical systems
corresponding to discrete versions of conformal field theories
[12,13] (CFTs), thus correctly realizing Wilson’s RG ideas
[14] on tensor networks. By capturing scale invariance, and
producing a rescaling transformation for the lattice consistent
with conformal transformations of the field theory [15], TNR

*gevenbly@uci.edu

can produce an accurate description of the fixed-point RG map,
from which the critical data characterizing the CFT can then
be extracted.

The use of disentanglers in TNR, and their success in
preventing the retention and accumulation of short-ranged
degrees of freedom, is closely related to the use and success
of disentanglers in entanglement renormalization [16] (ER)
and in the multiscale entanglement renormalization ansatz
[17] (MERA). This connection was formalized in Ref. [18],
which showed that TNR, when applied to the Euclidean
path integral of a quantum Hamiltonian H , can generate a
MERA for ground, excited, and thermal states of H . Thus
TNR also provides an alternative to previous algorithms
[19] based on variational energy minimization for obtaining
optimized MERAs, and also allows methods developed for
extracting scale-invariant data from quantum critical systems
using MERAs [20–24] to be generalized to classical statistical
systems.

In this paper we introduce the numeric algorithms required
to implement TNR for the study of 2D classical or 1D

quantum many-body systems. Due to the use of disentanglers,
which are key to the TNR approach, implementation of
TNR requires more sophisticated optimization strategies than
have been necessary in previous tensor RG approaches. This
paper is organized as follows. First we discuss the standard
techniques through which the partition function of a classical
system or the Euclidean path integral of a quantum system
can be expressed as a tensor network. Then we discuss the
general principle of local approximations on which tensor RG
schemes are based, before detailing the particular projective
truncations involved in the TNR approach. Optimization
algorithms for the implementation of TNR are then presented,
and their performance benchmarked in the 2D classical and
1D quantum Ising models.

II. TENSOR NETWORK REPRESENTATIONS
OF MANY-BODY SYSTEMS

In this section we discuss approaches for which the partition
function of a 2D classical statistical system or the Euclidean
path integral of a 1D quantum system can each be expressed
as a square lattice network, which is the starting point for

2469-9950/2017/95(4)/045117(19) 045117-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.045117


G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 1. (a) A square lattice of classical spins σ ∈ {+1,−1}.
(b) The partition function of the classical system can be encoded
as a square network (tilted 45◦ with respect to the spin lattice) of
four-index tensors Aijkl , with a tensor sitting in the center of every
second plaquette of spins. Here each tensor A encodes the Boltzmann
weights associated with the interactions of spins on the edges of the
plaquette; see Eq. (3).

the TNR approach (and other tensor renormalization methods,
such as TRG, in general).

A. Classical many-body systems

Here we describe an approach for expressing the partition
function Z at temperature T of a 2D classical statistical
system,

Z =
∑
{σ }

e−H ({σ })/T , (1)

as a network of tensors. As a concrete example let us
examine the classical Ising model on the square lattice, with
Hamiltonian functional,

H ({σ }) = −
∑
〈i,j〉

σiσj , (2)

where σi ∈ {+1,−1} is an Ising spin on site i. We construct
a representation of the partition function as a square-lattice
tensor network composed of copies of a four-index tensor Aijkl ,
where a tensor sits in the center of every second plaquette of
Ising spins according to a checkerboard tiling, such that the
square lattice of A tensors is tilted 45◦ with respect to the lattice
of Ising spins; see also Fig. 1. Notice that this corresponds to
having one tensor A for every two spins. We define the tensor
A to encode the four Boltzmann weights eσiσj /T of the Ising
spin interactions on the edges of the plaquette on which it sits,

Aijkl = e(σiσj +σj σk+σkσl+σlσi )/T , (3)

such that the partition function is then given by the sum over
all indices,

Z =
∑
ijk···

AijklAmnojAkrstAopqr · · · . (4)

This construction for expressing the partition function as a
tensor network can be employed for any model with nearest-
neighbor interactions on the square lattice, and can also be
generalized to other lattice geometries and to models with
longer range interactions.

B. Quantum many-body systems

Here we describe how, given a local Hamiltonian H for
a 1D quantum system, an arbitrarily precise tensor network

representation of the Euclidean time evolution operator e−βH

can be obtained using a Suzuki-Trotter decomposition [25].
We assume, for simplicity, that Hamiltonian H is a sum of
identical nearest-neighbor terms h,

H =
∑

r

hr,r+1. (5)

We begin by expanding the time evolution operator as a product
of evolutions over some small time step τ ,

e−βH = (e−τH )(β/τ ). (6)

The evolution e−τH over small time step τ may then be
approximated,

e−τH ≈ e−τHodde−τHeven , (7)

where Hodd and Heven represent the contribution to H given
from sites r odd or r even respectively, and an error of
order O(τ ) has been introduced. (Note that one can obtain
an error O(τn), n > 1, by using a higher-order Suzuki-Trotter
decomposition [26]). Since Hodd is a sum of terms that act
on different sites and therefore commute, e−τHodd is simply a
product of two-site gates, and similarly for e−τHeven ,

e−τHodd =
∏
oddr

e−τhr,r+1 ,

e−τHeven =
∏

evenr

e−τhr,r+1 . (8)

Thus, if one regards each two-site gate e−τh as a four-index
tensor and Eqs. (8) and (7) are substituted into Eq. (6), a
representation of the Euclidean path integral e−βH as a square-
lattice tensor network is obtained; see also Fig. 2(a). Note that
this representation of e−βH has incurred an error of order
O(βτ ), which can be diminished through use of a smaller
time step τ .

While this network could potentially serve as the starting
point for the TNR approach (or other algorithm for the
renormalization of a tensor network) it is desirable to perform
some preliminary manipulations before employing TNR. This
initial manipulation involves (i) a transformation that maps to a
new square-lattice network tilted 45◦ with respect to the initial
network, followed by (ii) coarse-graining in the Euclidean
time direction. Given that the initial tensor network is highly
anisotropic for small time step τ , as the operator e−τh is very
close to the identity, step (ii) is useful to obtain a tensor network
representation of e−βH that is closer to being isotropic (and
thus more suitable as a starting point for TNR).

Step (i) is accomplished by performing a modified step of
the TRG algorithm as follows. The singular value decomposi-
tion (SVD) is taken across a vertical partition of the gate e−τh,

e−τh = (u
√

s)(
√

sv†), (9)

where the root of the singular weights s has been absorbed
into each of the unitary matrices u and v, and likewise the
eigen-decomposition is taken across a horizontal partition of
the gate e−τh,

e−τh = (w
√

d)(
√

dw†); (10)

045117-2



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 2. (a) The imaginary time-evolution operator e−βH is ex-
pressed via Suzuki-Trotter expansion as a product of two-site gates
e−τh. Red dashed lines denote how the gates are to be decomposed
at the next step. (b) The two-site gates e−τh are decomposed into a
product of ternary tensors according to either a horizontal partition
(accomplished via singular value decomposition) or a vertical
partition (accomplished via eigen-decomposition). (c) Groups of four
ternary tensors are contracted together to form four-index tensors A.
(d) Depictions of the vertical and horizontal partitions of the two-site
gates e−τh, and definition of the four index tensors A.

see Fig. 2(d). Here w is a unitary matrix, which follows from
e−τh being Hermitian, and d are the eigenvalues (which can be
argued to be strictly positive for sufficiently small time step τ ).
The SVD and eigen-decompositions are performed throughout
the network according to the pattern indicated in Fig. 2(a), and
a new square network of tensors A, tilted 45◦ with respect to
the original, is formed by contracting groups of the resulting
tensors together as indicated in Figs. 2(b) and 2(c).

In step (ii) the network of tensors A is then coarse-grained
in the Euclidean time direction using standard techniques, i.e.,
by combining pairs of rows together and then truncating the
resulting squared bond index similarly to the higher-order
tensor renormalization group (HOTRG) [8] method (see
Appendix A for details), until the network is sufficiently
isotropic in terms of its correlations. One way to examine how
close the network is to being isotropic is to compute the spectra
of the transfer matrices formed by tracing out the horizontal
or vertical indices of a single A tensor, whose decay should
match as closely as possible.

III. COARSE-GRAINING TENSOR NETWORKS

Consider a tensor network G consisting of copies of
four-index tensors Aijkl that we assume are arranged in
an L × L square-lattice network with periodic boundary

conditions. Our goal is to contract this network, or perhaps
this network with single or multiple impurity tensors, to
evaluate the scalar, denoted 〈G〉, associated with the network.
As an exact contraction of the network G is exponentially
expensive in system size L one must rely on approximations
in order to evaluate a large network. In this section we first
describe the generic concept of local approximations that
could be employed to approximate such a contraction, then
discuss the class of local approximation used in TRG, namely
the truncated singular value decomposition (SVD), before
introducing the particular class of local approximation that
the TNR algorithm is based on, which we call projective
truncations.

A. Local approximations

Let F denote a subnetwork of tensors, for example a 2 × 2
block of tensors A, from the full network G. The key idea
underlying coarse-graining methods for tensor networks is
that of the local approximation: that one can safely replace
a subnetwork F with a different network of tensors F̃ if they
differ by a small amount ε,

ε ≡ ‖F − F̃‖, (11)

where we assume for convenience that F has been normalized
such that ‖F‖ = 1. If this condition is fulfilled, then the
scalar 〈G〉 associated with the contraction of network G will
only differ by a small amount O(ε) under replacement of
subnetwork F by new subnetwork F̃ . Note that we use the
Hilbert-Schmidt norm,

‖A‖ =
√

tTr(A ⊗ A†), (12)

where “tTr” denotes the tensor trace, or equivalently the
contraction of all indices, between two tensors of equal
dimensions (or two networks with matching “open” indices);
see also Fig. 3(a). In general, renormalization schemes for
tensor networks, such as TRG or the focus of this paper, TNR,
employ a pattern of local approximations over all positions
on the tensor network, in conjunction with contractions, in
order to generate coarser networks of tensors. For example, as
illustrated in Fig. 3, local replacements of all 2 × 2 blocks of
tensors F with a new network F̃ , consisting of a four-index
core tensor surrounded by three-index tensors, can result in
a coarser, (L/2) × (L/2) network of new four-index tensors.
Assuming that sufficient accuracy could be maintained over
repeated steps, this procedure could be iterated O(log2 L)
times, resulting in a network of O(1) linear dimension which
could then be exactly contracted.

B. Truncated singular value decomposition

In principle, any form of local approximation capable
of yielding a small error ε in Eq. (11) could be viable
as part of a coarse-graining scheme. In the original TRG
algorithm proposed by Levin and Nave [2], and in many of the
generalizations and improvements to TRG [5,7,8], the local
approximations that are used are based on a truncated singular
value decomposition (SVD) of single tensors [or a generalized
form of the SVD known as the higher-order singular value
decomposition [27] (HOSVD)], which we now discuss.

045117-3



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 3. (a) Depiction of (the square of) the Hilbert-Schmidt norm
of a four-index tensor u. Note that a darker shade is used to represent
the conjugate tensor, which is also drawn with opposite vertical
orientation. (b) Given a square lattice tensor network, we wish to
replace a 2 × 2 block of tensors F from the network with a different
subnetwork of tensors F̃ . (c) The square of the difference between
F and F̃ under the Hilbert-Schmidt norm is depicted, where darker
shades are used to depict conjugate tensors, which are drawn with
opposite vertical orientation to regular tensors. The replacement in (b)
is valid if the difference ‖F − F̃‖ is sufficiently small. (d) Assuming
that the local square-lattice network is homogeneous, one can replace
F with F̃ in all 2 × 2 blocks. A coarser square-lattice network is
obtained after contraction between pairs of three-index tensors.

Consider a four-index tensor Aijkl where each index is of
dimension χ . If the tensor is viewed as a χ2 × χ2 matrix
according to the pairing of indices A[ij ][kl] then the SVD can
be performed,

Aijkl =
χ2∑
m

uijmsmmvmkl, (13)

where u and v are unitary according to grouping of indices
u[ij ][m] and v[m][kl], respectively, and s is a positive diagonal
matrix of singular values λ, i.e., snm = δnmλm, that we assume
are ordered such that λm < λm+1. If we truncate the SVD
to retain only the χ ′ < χ2 largest singular values then the
decomposition becomes approximate,

Aijkl ≈
χ ′∑
m

uijmsmmvmkl, (14)

where the truncation error ε, as defined in Eq. (11), is seen to
equal the square root of the sum of the squares of the discarded
singular values,

ε =

√√√√√
χ2∑

m=χ ′+1

(λm)2. (15)

FIG. 4. (a) In a projective truncation a subnetwork F is replaced
by a new subnetwork F̃ , which consists of a projector P applied
to the original subnetwork, i.e., F̃ = FP . (b) Here we assume
that P is decomposed as a product of an isometric tensor w and
its conjugate, P = ww†. (c) By definition, isometry w contracts to
identity with its conjugate, w†w = I. (d) The square of the error in
a projective truncation is expanded as a sum of four terms; however
given that P 2 = P , two of the terms cancel; see also Eq. (18). (e) The
environment 	w of isometry w is defined as the network that results
by removing a single instance of w from ‖Fw‖2; see also Eq. (20).
(f) By construction, the contraction of w and its environment 	w is
equal to ‖Fw‖2. (g) Environment 	w is decomposed, via singular
value decomposition (SVD), into a product of isometric tensors u, v,
and diagonal matrix s.

Here we have assumed that the tensor A was normalized,
‖A‖ = 1, or equivalently that the singular values were nor-
malized as

√∑
m(λm)2 = 1. The SVD is known to provide

the optimally accurate decomposition of a tensor A into the
product of a pair of tensors (connected by an index of some
rank χ ′); thus it has proved vitally useful as the foundation
for many previous schemes for the renormalization of tensor
networks.

C. Projective truncations

The TNR approach requires use of a broader class of
local approximation than those based on the SVD, which we
term projective truncations. In a projective truncation, a local
subnetwork F is replaced by a new local network F̃ that
consists of a projector P , which satisfies PP † = P 2 = P ,
acting on some or all of the open indices of F ,

F̃ = FP = Fww†; (16)

see Fig. 4(a) for an example. Here we have expanded the
projector P as the product of an isometric tensor w and its
conjugate, P = ww†, where the isometry satisfies w†w = I;
see also Figs. 4(b) and 4(c). [Note that, as part of the TNR
algorithm, we shall also consider cases where projector is
decomposed as a more complicated product of many different

045117-4



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

isometries; see for example Fig. 6(c)]. Projective truncations
are a particularly useful class of local approximation, as
the figure of merit to optimize projector P takes a very
simple form. To see this, we first expand the terms in
Eq. (11),

ε2 = ‖F‖ + ‖F̃‖ − tTr(F ⊗ F̃∗) − tTr(F̃ ⊗ F∗). (17)

Notice that, as PP † = P , for a projective truncation we have

‖F̃‖ = tTr(F ⊗ F̃∗) = tTr(F̃ ⊗ F∗). (18)

It follows that the expression for the replacement error ε can
be simplified,

ε =
√

‖F‖2 − ‖FP ‖2

=
√

‖F‖2 − ‖Fw‖2, (19)

where we have again made use of PP † = P in reaching the
second line of working; see also Fig. 4(d).

Let us now turn to the problem of optimizing the projector
P such that the error ε of Eq. (19) is minimized. For simplicity
we consider the case where the projector P decomposes as a
product of a single isometry w and its conjugate, P = ww†,
although a key feature of the method we discuss is that it can be
applied to the more complicated case, an in Fig. 6(c), where
P is represented as a product of several different isometric
tensors. Notice that the error ε of Eq. (19) is minimized when
‖Fw‖ is maximized, which follows as ‖Fw‖ � ‖F‖; we
now discuss an iterative strategy for optimizing isometry w

to maximize the expression ‖Fw‖.
The strategy we employ is based on linearization of

the cost function. Given that the expression ‖Fw‖2 has
quadratic dependence on isometry w (or, more specifically,
it depends on both w and w†), we simplify the problem by
temporarily holding w† fixed and then solving the resulting
linear optimization for w, and iterating these steps until w is
sufficiently converged. Note that this follows the same strategy
employed to optimize tensors in a MERA as described in
Ref. [19], to which we refer the interested reader for more
details. We begin by expressing the closed network ‖Fw‖2 in
a factorized form,

‖Fw‖2 = tTr(	w ⊗ w), (20)

where 	w, referred to as the environment of w, represents the
contraction of everything in ‖Fw‖2 excluding tensor w; see
also Figs. 4(e) and 4(f). The singular value decomposition of
the environment 	w, when considered as a matrix according
to the same partition of indices for which tensor w is isomeric,
is then taken,

	w = usv†, (21)

as shown in Fig. 4(g). The isometry w is then updated to
become

w = vu†, (22)

where it can be argued that this choice of updated isometry
maximizes Eq. (20). However, as the cost function was
linearized, such that w† in the environment 	w was held
fixed, these steps of (i) computing the environment 	w and (ii)

obtaining an updated w through the SVD of the environment
	w must be iterated many times, until the solution converges.

IV. TENSOR NETWORK RENORMALIZATION

Tensor network renormalization is a class of coarse-
graining scheme designed to be compatible with proper
removal of all short-ranged correlations at each RG step [1].
For any given lattice geometry there are many potential TNR
schemes the fulfill this requirement. In this paper we focus on
a particular implementation of TNR for a 2D square lattice
network that we call the binary TNR scheme, as introduced in
Ref. [1], which reduces the linear dimension of the network
by a factor of 2 with each RG step. In Appendix B we discuss
a ternary TNR scheme, which reduces the linear dimension
of the network by a factor of 3 with each RG step, and in
Appendix C we discuss an isotropic binary TNR scheme that
treats both dimensions of the tensor network equally while also
reducing the linear dimension of the network by a factor of 2 at
each RG step. Similarly TNR can also be implemented in other
lattice geometries besides the square lattice, including those in
higher dimensions. The majority of the algorithmic details we
present for implementation of the binary TNR scheme carry
over to other TNR schemes.

A. Coarse-graining step of the binary TNR scheme

The starting point for an iteration of the binary TNR
scheme is a square lattice tensor network G composed of
four-index tensors Aijkl , where indices are assumed to be of
some dimension χ . As discussed in Sec. II such a network
could represent the partition function of a 2D classical
statistical system or the Euclidean path integral of a 1D

quantum system. For simplicity we assume that network G
is spatially homogeneous, i.e., that all its tensors are copies
of a unique tensor Aijkl , while noting that the algorithm can
easily be extended to deal with nonhomogeneous networks
(special examples, including networks with an open boundary
or a defect line, can be handled using similar methods to
those developed in the context of MERAs [28–32], and are
discussed separately in Ref. [33]). We also assume that G
is invariant under complex conjugation plus reflection on the
horizontal axis, as discussed further in Appendix D. Again, this
assumption is not strictly necessary, but is useful in simplifying
the TNR algorithm. For the case in which G represents a
Euclidean path integral of a quantum Hamiltonian H the
presence of this symmetry follows from H being Hermitian,
while for the case in which G represents the partition function
of a classical system the symmetry is present if the underlying
2D classical statistical model has an axis with which it
is invariant under spatial reflection. We now describe the
coarse-graining steps involved in an iteration of the binary
TNR scheme, which maps network G to the coarser network
G ′ whose linear dimension has been reduced by a factor of 2,
before discussing the optimization of the tensors involved and
other algorithmic components in more detail.

The first step of the iteration is to apply a particular gauge
change on the horizontal indices on every second row of tensors
in G, as discussed in Appendix D. Here the gauge change
is chosen such that it is equivalent to flipping top-bottom

045117-5



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 5. The sequence of coarse-graining steps used in the binary
TNR scheme in order to map an initial square lattice of tensors A,
where every second row of tensors has been conjugated as described
in Appendix D, to a coarser square lattice composed of tensors A′.
(a) A projective truncation is made on all 2 × 2 blocks of tensors; see
Figs. 6(a)–6(c). (b) Conjugate pairs of disentanglers u are contracted
to identity. (c) A projective truncation is made on all B tensors; see
Figs. 6(d)–6(e). (d) A final projective truncation is made; see Figs. 6(f)
and 6(g) for details. (e) Conjugate pairs of isometries w are contracted
to identity.

indices of tensors A and taking the complex conjugation;
as such we denote the transformed tensors A†. That such
a gauge transformation exists follows from the assumed
reflection symmetry. Next, Fig. 5 depicts the remaining steps
in transforming network G into the coarser network G ′. In
Fig. 5(a), a projective truncation is enacted on 2 × 2 blocks
of tensors A (where two of the tensors have undergone the
aforementioned change of gauge as A†), the details of which
are shown in Fig. 6(a). The projector Pu used at this step is
represented as a product of two isometries vL and vR and a
unitary tensor u (and their conjugates) as shown in Fig. 6(c).
The unitary tensors u, which we call disentanglers, act on two
neighboring indices such that, if we regard each index of the
network as hosting a χ -dimensional complex vector space Vχ ,
they describe a mapping between vector spaces,

u : Vχ ⊗ Vχ → Vχ ⊗ Vχ . (23)

By virtue of being unitary, the disentanglers satisfy u†u =
I⊗2 where I is the identity operator on Vχ . Conceptually, the
role of disentanglers is to remove short-range correlations that
would otherwise be missed, as discussed in greater detail in
Ref. [1], and they constitute the key difference between TNR
and previous tensor renormalization schemes. Isometries vL

and vR each map two indices in the network, one horizontal
and one vertical, to a new index of some chosen dimension
χ ′ � χ2,

vL : Vχ ′ → Vχ ⊗ Vχ , vR : Vχ ′ → Vχ ⊗ Vχ , (24)

where the new index has been regarded as hosting a χ ′-
dimensional complex vector space Vχ ′ . By definition, isome-
tries satisfy v

†
LvL = v

†
RvR = I′, with I′ the identity operator

on Vχ ′ . After the coarse-graining step of Fig. 5(a), it is useful
to define a new four-index tensor B, which is defined from

FIG. 6. (a) Details of the projective truncation made at the first
step of the TNR iteration; here two copies of a projector Pu, which
is composed of a product isometric and unitary tensors, are applied
to a 2 × 2 block of A tensors. (b) Definition of four-index tensor B.
(c) Projector Pu is formed from isometries vL, vR and disentangler u

(and their conjugates). (d) Details of the projective truncation made
at the second step of the TNR iteration. (e) Definition of matrix D.
(f) Details of the projective truncation made at the third step of the
TNR iteration. (g) Definition of new four-index tensor A′, copies
of which comprise the coarse-grained square-lattice tensor network.
(h) Delineation of the different dimensions {χu,χv,χw,χy} of indices
on tensors {u,vL,vR,yL,yR,w}.

the block of A tensors and from u, vL, and vR , as depicted in
Fig. 6(b).

After the projective truncation implemented by projector
Pu is enacted on all 2 × 2 blocks of tensors, pairs of disen-
tanglers from neighboring blocks can annihilate to identity,
see Fig. 5(b), leaving a network of B tensors interspersed
with groups of isometries vL and vR . Next, as depicted in
Fig. 5(b) and further detailed in Fig. 6(d) and 6(e), a projective
truncation is made on B tensors. Two projectors PL and PR

are used at this step, acting on the left or right indices of the
B tensor, respectively, each formed as a product of isometries,
PL ≡ yLy

†
L and PR ≡ yRy

†
R . Isometries yL and yR , which

satisfy y
†
LyL = y

†
RyR = I′, each map two indices to a single

index also assumed to be of dimension χ ′,

yL : Vχ ′ → Vχ ′ ⊗ Vχ ′ , yR : Vχ ′ → Vχ ′ ⊗ Vχ ′ . (25)

We then define matrix D from enacting isometries yL and yR

on tensor B, as shown Fig. 6(e). It is useful, though not strictly
necessarily, to work in a gauge where matrix D is diagonal and
positive, which can always be achieved through proper choice

045117-6



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

of gauge on isometries yL and yR , such that the matrix can
easily be decomposed as D = √

D
√

D.
After projective truncations have been made on B tensors

a final projective truncation, as shown Fig. 5(d) and further
detailed in Figs. 6(f) and 6(g), is made using projector Pw ≡
ww† with isometry w mapping two χ -dimensional indices to
a single index of dimension χ ′,

w : Vχ ′ → Vχ ⊗ Vχ , (26)

where the isometry satisfies w†w = I′. After projector Pw has
been implemented throughout the network, pairs of isometries
w from neighboring cells can annihilate to identity with their
conjugates, as depicted in Fig. 5(e). This final step yields a
coarse-grained square latticeG ′ of four index tensors A′, whose
indices are of some specified dimension χ ′ � χ2. Notice that
the new four-index tensor A′ is defined from a product of
various tensors obtained throughout the coarse-graining step,
namely from {vL,vR,yL,yR,

√
D,w}, as shown Fig. 6(g).

B. Optimization of tensors

Each coarse graining iteration of the binary TNR scheme
follows from a series of projective truncations. The projectors
involved can be optimized using the iterative SVD update
strategy, described in Sec. III C, as we now discuss in more
detail.

The first step of the TNR iteration, as depicted Fig. 5(a),
requires optimization of a projector Pu composed of isometries
vL and vR and disentangler u, as shown Fig. 6(c). To update one
of these tensors one first computes its environment, where the
environments 	vL

, 	vR
, and 	u are shown in Figs. 7(a)–7(c),

then updates the tensor from the SVD of the environment as
discussed in Sec. III C. Each of the tensors vL, vR , u should
be updated in turn and the process iterated until all tensors
are sufficiently converged (which typically requires of order a
few hundred iterations). The computational cost of computing
each of the environments scales as O(χ7), assuming the indices
involved in the network are all χ -dimensional.

The second projective truncation step of the TNR iteration,
as depicted Fig. 5(c), requires the optimization of isometries
yL and yR , which again are optimized through alternating, iter-
ative SVD updates based on calculation of their environments
	yL

and 	yL
, as shown in Figs. 7(d) and 7(e). Note that, in order

to ensure that the reflection symmetry (which was assumed to
be present in the initial tensor network) is preserved, it is
necessary to symmetrize the environments before performing
the SVD, as described in Appendix D. The computational cost
of computing each of the environments is O(χ5) assuming that
the indices involved in the network are χ -dimensional.

The third and final projective truncation of the TNR itera-
tion, as depicted Fig. 5(d), requires optimization of isometry
w which can be achieved through iterative SVD updates of the
environment 	w, depicted in Fig. 7(f). The computational cost
of computing the environment 	w is O(χ6) assuming that the
indices involved in the network are χ -dimensional.

C. RG flow of tensors

The single iteration of the TNR approach described in
Sec. IV A, which mapped the initial tensor network G to the

FIG. 7. The linearized environments of tensors {vL,vR,

u,yL,yR,w} involved in an iteration of the binary TNR scheme.
(a)–(c) Environments 	vL

, 	vR
, and 	u of the isometries vL, vR and

disentangler u involved in the first projective truncation of the TNR
iteration, as detailed in Fig. 6(a). (d) and (e) Environments 	yL

and
	yR

of isometries yL and yR from the second projective truncation
of the TNR iteration, as detailed in Fig. 6(d). (f) Environment 	w of
isometry w from the third projective truncation of the TNR iteration,
as detailed in Fig. 6(f).

coarser network G ′, can be iterated many times to generate a
sequence of increasing coarse-grained networks,

G(0) → G(1) → G(2) → · · · → G(s) → · · · (27)

with G(0) ≡ G now as the initial network and network G(s)

as tensor network after s iterations of TNR, where the linear
dimension of the lattice G(s) has been reduced by a factor
of 2 compared to the previous network G(s−1). Each network
G(s) consists of copies of a four-index tensor A

(s)
ijkl , whose

indices are of dimensions χ (s), arranged in a square lattice
configuration. Here the initial dimension χ (0) is fixed from the
starting tensors A

(0)
ijkl , while the dimensions χ (s) at later steps

are user specified, and can be increased to improve the accuracy
of the calculation at the cost of increasing the computational
expense (aspects of computational efficiency will further be
discussed in Sec. IV D). Tensors A(s+1) are defined from (four
copies of) the previous tensor A(s) under coarse-graining via a
product of optimized isometric tensors,

A(s)

{
v

(s)
L ,v

(s)
R ,u(s),y

(s)
L ,y

(s)
R ,w(s)

}
−−−−−−−−−−−−−−→ A(s+1), (28)

as depicted in Fig. 6(g), such that we can consider TNR as
generating an RG flow in the space of (four-index) tensors,

A(0) → A(1) → A(2) → · · · → A(s) → · · · . (29)

Properties of the system under consideration, such as the
expectation values of local observables, can be computed
from both the coarse-grained tensors A(s) and the tensors

045117-7



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

{u(s),v
(s)
L ,v

(s)
R ,y

(s)
L ,y

(s)
R ,w(s)} involved in the coarse-graining, as

further discussed in Sec. V.

D. Algorithmic details

While the TNR algorithm discussed thus far is a viable
implementation of approach, we now detail how this basic
TNR algorithm can be improved in a number of ways.

In most calculations it is convenient to use the same bond
dimensions χ (s) for all RG steps s, i.e., such that χ (s) = χ

for s > 0 (where χ (0) is fixed by the local dimension of the
model under consideration). However, even when using the
same bond dimension throughout different coarse-graining
iterations, it can still be useful, in order to maximize the effi-
ciency of the TNR approach, to use different bond dimensions
on vertical and horizontal indices of tensors A(s), as well as
different dimensions on tensors that appear at intermediate
steps of each coarse-graining iteration. Following this idea,
four different refinement parameters {χu,χv,χw,χy} can be
defined, each denoting a dimension of an outgoing index on
different isometric tensors as indicated in Fig. 6(h). Here
χw and χy denote the dimensions of vertical and horizontal
indices on A tensors, respectively, while χu and χv denote
dimensions of indices that only appear at intermediate steps
of each TNR iteration. The ratio of dimensions should be
adjusted such that the truncation errors ε given at different
intermediate steps become roughly equal; in practice such
dimension can be determined heuristically. For several test
models it has been observed that the different optimal bond
dimensions are, to good approximation, linearly related to one
another (i.e., the ratios of different optimal bond dimensions
remain roughly constant for a given model). This implies
that the cost scaling of an algorithmic step can be specified
unambiguously, for instance as having cost O(χ7), without
detailing the dependence on the different dimensions involved
[as they are linearly related]. Note that in the benchmark results
presented in Sec. VI we label results of a TNR simulation by a
single dimension χ , by which we mean the largest of the bond
dimensions {χu,χv,χw,χy} that was used in the simulation.

The computational cost of the binary TNR can be reduced
by implementing an additional projective truncation on the
2 × 2 blocks of A tensors at the start of the TNR iteration,
as described in Appendix E. This additional step reduces the
cost of computing the environments 	vL

, 	vR
, and 	u, see

Figs. 7(a)–7(c), from O(χ7) to O(χ6), thus also reducing
the cost of optimizing tensors vL, vR , and u. When utilizing
the ideas of Appendix E the tensor contractions required
to implement TNR are all of cost O(χ6) or less; thus the
efficiency of the algorithm is greatly improved.

The accuracy of TNR, for a fixed bond dimension χ , can
be improved by taking a larger environment into account for
optimization of the tensors, using an approach similar to the
approach of Refs. [5,7] for improving standard TRG by taking
the environment into consideration. Appendix F describes how
the tensors involved in the TNR coarse-graining iteration can
be optimized using a larger (though still local) environment,
and the benefits of doing so. Note that, by also incorporating
the ideas of Appendix E, the leading order computational
cost of optimizing using the larger environments remains
unchanged at O(χ6). It is also possible to modify TNR to take

account of the full environment from the network, similarly
to how the second renormalization group (SRG) method [5]
modifies the TRG to take account of the full environment.
This modification, which we shall not detail in the present
paper, requires sweeping the optimization back and forth over
different scales of coarse-graining, functioning similarly to the
energy minimization algorithm for optimizing a MERA [19].

V. CALCULATION OF OBSERVABLES

In this section we discuss how TNR can be applied to
compute expectation values of local observables in classical
statistical or quantum many-body systems. There are many
different ways of performing this calculation; one approach
could be to construct a MERA from the TNR coarse-graining
transformations, as described in Ref. [18], from which expec-
tation values could then be computed using standard MERA
techniques [19]. In this paper we describe a different approach
based on directly coarse-graining the network with the addition
of an impurity tensor.

Let G(0) be a homogeneous square lattice tensor network
with periodic boundaries that consists of an L × L array of
copies of a four-index tensor A(0). Assume that the sequence
of T = log2(L/2) TNR transformations have been optimized
as to generate a sequence of coarser lattices, see Eq. (27),
where G(T ) is a 2 × 2 lattice of tensors A(T ) that can be exactly
contacted. In order to evaluate the expectation value of a local
observable, we must now evaluate the tensor network G(0)

with the addition of an impurity tensor representing the local
observable under consideration. Here we consider an impurity
tensor M (0) that replaces a 2 × 2 block of A tensors from G(0).
To evaluate the impurity network we use the same projective
truncations as was used to coarse-grain the homogeneous
network G(0) everywhere except in the immediate vicinity of
the impurity, the presence of which is incompatible with the
coarse-graining steps used for the homogeneous system; see
Figs. 8(a)–8(e). After an iteration of TNR to the impurity
network, one obtains a new impurity network, equal to the
homogeneous network G(1) except where a new impurity
M (1) replaces a 2 × 2 block of tensors A(1); see Fig. 8(f).
The coarse-grained impurity M (1) is defined from applying
a set of two-body gates, {GR,GL,GU,GY }, to the initial
impurity tensor M (0), as depicted in Fig. 8(g), where the gates
are functions of A(0) and the isometries {vL,vR,u,yL,yR,w}
used in the TNR iteration, as depicted in Fig. 8(h). The
coarse-graining transformation can be applied to the impurity
network multiple times as to generate a sequence of impurity
tensors,

M (0) → M (1) → · · · → M (T ), (30)

each imbedded in an increasingly coarse-grained square-lattice
network. We call the transfer operator that maps impurity
tensors from one length scale to the next, which was introduced
in Ref. [15], the ascending superoperator R,

M (s+1) = R(M (s)), (31)

as shown in Fig. 8(g). After T = log2(L/2) RG steps, the
impurity network only contains a single tensor M (T ), in place of
the 2 × 2 block of tensors A(T ) that would otherwise have been
in the homogeneous network G(T ), from which the expectation

045117-8



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 8. (a)–(e) An iteration of the TNR coarse-graining trans-
formation for a square-lattice tensor network with an impurity
tensor M (0). The projective truncations of the TNR iteration are
applied as usual, see Fig. 5, neglecting those which are incompatible
impurity tensor. (f) The coarse-grained square lattice is homogeneous
everywhere except for a 2 × 2 region occupied by new impurity
tensor M (1). (g) The coarse-grained impurity tensor M (s+1) is given
by enacting ascending superoperator R, defined from two-body gates
{GR,GL,GU,GY }, on the impurity tensor M (s). (h) Definition of
two-body gates {GR,GL,GU,GY }.

value is evaluated through the appropriate trace of M (T ) as
depicted in Fig. 9.

Note that the evaluation of two-point correlators, which
corresponds to contracting a network with two local impurities,
can be handled similarly. In this case each of the impurities
will transform individually in the same way as Eq. (31) until
they become adjacent to one another in the network, where
they will then fuse into a single impurity after the next TNR
iteration.

The evaluation of local observables can also be formulated
in a more general way, using TNR to map the network on
the punctured plane to an open cylinder, analogous to the
logarithmic transformation in CFT [12,13]. This mapping
using TNR was originally formulated in Ref. [15], to which we

FIG. 9. A finite network with periodic boundaries and a local
impurity M (s) is coarse-grained into a single-impurity tensor M (s+1)

under the transformation depicted in Fig. 8. The expectation value of
the local observable corresponding to the impurity is given from the
trace of M (s+1) as depicted.

FIG. 10. (a) An 8 × 8 square lattice of tensors that has had a 2 × 2
block of tensors removed, leaving 8 open indices. (b) The lattice after
one iteration of coarse-graining with TNR. (c) The lattice after a
second iteration of coarse-graining with TNR. (d) The network from
(c) is redrawn on the cylinder. Each double layer of the network
corresponds to the ascending superoperator R as defined in Fig. 8(g).
(e) An 8 × 8 square lattice of tensors with an impurity σ positioned on
a link. (f) The network from (e) after two iterations of coarse-graining
with TNR.

refer the interested reader for more details. A brief summary
is included here for completeness. In Fig. 10(a) we consider
a finite square lattice network that has a 2 × 2 block of
tensors removed, such that the indices connecting to the
block are left open. As with the case of the impurity network
considered previously, one can coarse-grain this network with
TNR, performing the same projective truncations except in
the immediate vicinity of the open indices, which must remain
untouched. The result of this is shown in Figs. 10(a)–10(d);
the square lattice network (with an open “hole”) is mapped
to a tensor network on a finite-width cylinder. Here one end
of the cylinder has free indices, which correspond to those of
the open “hole,” and moving along the length of the cylinder
corresponds to a change of scale in the original system, where
each double row of tensors in the cylinder corresponds to an
application of the ascending superoperator R as defined in
Fig. 8(g).

Using the same transformations, the tensor network with
local impurity, as depicted in Fig. 10(e), is mapped to a
closed cylindrical network after coarse-graining with TNR, as
depicted in Fig. 10(f). Contracting this network from bottom
to top would be equivalent to evaluating the expectation value
by coarse-graining the observable as discussed previously; see
Eq. (30). However, one could also evaluate the observable by

045117-9



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

contracting the network from top to bottom, or in some other
desired order. In practice, exact contraction of the network
shown in Fig. 10(f) is computationally expensive for large bond
dimension χ ; thus it may be necessary to use an approximate
method for this evaluation. The approximate method we
employ in this paper is based on contracting the network
layer by layer from top to bottom, where we approximate the
boundary state as a matrix product state [34,35] (MPS) and
use the TEBD algorithm [36,37] to apply each layer of gates
from the cylinder while maintaining an MPS representation.

VI. BENCHMARK RESULTS

A. 2D classical Ising model

In this section we provide benchmark calculations for
the binary TNR algorithm, comparing against TRG, for the
partition function of the 2D classical Ising model, as defined in
Eqs. (1) and (2). We begin by encoding the partition function
as a tensor network as discussed in Sec. II A: a four-index
tensor Aijkl is used to encode the four Boltzmann weights on
the edge of a plaquette, as per Eq. (3), which corresponds to
having one tensor A for every two spins and a tensor network
with a 45◦ tilt with respect to the spin lattice; see Figs. 1(a)
and 1(b). For convenience we then contract a 4 × 4 square
of tensors A to form a new tensor A(0) of bond dimension
χ = 16, which serves as the starting point for both the TNR
and TRG approaches. We apply up to 20 RG steps of either
TNR or TRG, which corresponds to lattices of Ising spins with
linear dimension up to L = 4 × 220 ≈ 4 × 106 spins. Here we
define an RG step as that which maps the square lattice to
a new square lattice of the same orientation, but of half the
linear dimension; note that this corresponds to two steps of
TRG as defined in Ref. [2]. Each of the approaches generates
a sequence of coarse-grained tensors, as per Eq. (29), where
copies of tensor A(s) comprise the coarse-grained network after
s RG steps.

In the implementation of TNR we enforce reflection
symmetry, as discussed in Appendix D, on both spatial axes,
and also employ the ideas discussed in Appendix E to reduce
the leading order cost of the TNR algorithm from scaling as
O(χ7) to scaling as O(χ6) in terms of the bond dimension χ .
Furthermore we optimize tensors using the larger environment
as discussed in Appendix F, and also use Z2-invariant tensors
(recall that the Ising model has a global Z2 symmetry: it
is invariant under the simultaneous flip σk → −σk of all
the spins), which are employed using standard methods for
incorporating global symmetries in tensor networks [38]. The
TRG results have been calculated using the square-lattice TRG
algorithm as presented in Ref. [2], the cost of which also scales
as O(χ6) in terms of the bond dimension χ . While the cost of
TRG and TNR both scale as O(χ6), the overall cost of a TNR
calculation is greater than a TRG calculation of the same bond
dimension by a constant factor, k ≈ 200, stemming from the
iterative nature of the TNR optimization.

Figure 11(a) explores the truncation error ε, as defined
in Eq. (11), incurred in RG step s of the either the TRG
or TNR approach applied to the Ising model at critical
temperature, Tc = 2/ ln (1 + √

2) ≈ 2.269. It is seen that,
although increasing the bond dimension χ of TRG reduces the

FIG. 11. (a) Comparison between TRG and TNR of the truncation
error ε, as defined in Eq. (11), as a function of RG step s in the 2D

classical Ising model at critical temperature Tc. While increasing
the bond dimension χ gives smaller truncation errors, the truncation
errors still grow quickly as a function of RG step s under TRG.
Conversely, truncation errors remain stable under coarse-graining
with TNR. (b) Relative error in the free energy per site δf at the
critical temperature Tc, comparing TRG and TNR over a range of bond
dimensions χ . The error from TRG is seen to diminish polynomially
with bond dimension, with fit δf ∝ χ−3.02 (where the inset displays
the same TRG data with logarithmic scales on both axes), while the
error from TNR diminishes exponentially with bond dimension, with
fit δf ∝ exp(−0.305χ ). Extrapolation suggests that TRG would need
bond dimension χ ≈ 750 to match the accuracy of the χ = 42 TNR
result.

initial truncation error ε, the error always increases quickly
as a function of RG step s regardless of the bond dimension
in use, a phenomenon described as the breakdown of TRG
at criticality in the original work by Levin and Nave [2]. In
comparison it is seen that TNR avoids such a breakdown; the
truncation errors ε remain constant over many RG steps s when
coarse-graining with TNR, beyond a slight increase after the
initial RG step.

The relative error in the free energy per site, f =
−T ln(Z)/N , at the critical temperature Tc is compared for
TRG and TNR over a range of bond dimensions χ in Fig. 11(b).
Evident is a qualitative difference in the convergence of
the free energy between the approaches. In TRG the free
energy f is seen to converge polynomially with χ , with fit
δf ∝ χ−3.02, while in TNR f is seen to converge exponentially
fast with χ , with fit δf ∝ exp(−0.305χ ). Given that the cost
of implementing the two approaches differs only by a constant
factor, k ≈ 200, for equivalent bond dimension χ , it is evident
that TNR can produce a significantly more accurate free
energy than would be computationally viable with standard
TRG. For instance, extrapolation suggests that in order to
match the accuracy in the free energy for χ = 42 TNR, which
required approximately 12 hours computation time on a laptop
computer, one would need to implement TRG with χ ≈ 750,
far beyond what is considered feasible with the approach.
Figure 12 shows the spontaneous magnetization M(T ) and
specific heat c(T ) = −T

∂2f

∂T 2 obtained with TNR for χ = 6,

045117-10



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 12. (a) Spontaneous magnetization M(T ) of the 2D classical
Ising model near critical temperature Tc, both exact and obtained with
TNR with χ = 6. Even very close to the critical temperature, T =
0.9994 Tc, the magnetization M ≈ 0.48 is reproduced to within 1%

accuracy. (b) Specific heat, c(T ) = −T
∂2f

∂T 2 , both exact and obtained
using TNR with χ = 6.

over a range of temperatures T near the critical temperature
Tc. Remarkable agreement with the exact results is achieved
throughout, even very close to the critical point Tc.

Next we explore the ability of TNR to produce a scale-
invariant RG flow in the space of tensors A(s) for the Ising
model at critical temperature Tc. We apply up to 20 RG
steps of TNR to the partition function, employing the gauge-
fixing strategy discussed in Appendix G from the third RG
step onwards. The difference δ(s) ≡ ‖A(s) − A(s−1)‖ between
tensors at successive RG steps (where tensors have been
normalized such that ‖A(s)‖ = 1) is displayed in Fig. 13.
For the larger χ calculations, the difference δ(s) reduces after
the initial RG steps, before increasing again in the limit of
many RG steps. This behavior is to be expected. The main
limitation to realizing scale-invariance exactly in the initial
RG steps is physical: the lattice system includes RG-irrelevant
terms that break scale invariance at short-distance scales, but
are suppressed at larger distances. On the other hand, after
many RG steps the main obstruction to scale invariance is
the numerical truncation errors, which can be thought of as
introducing RG-relevant terms, effectively shifting the flow
away from criticality and thus away from scale invariance.
However, use of a larger bond dimension χ reduces truncation
errors, allowing TNR to not only achieve a more precise
approximation to scale invariance, but also to hold it for more
RG steps.

In order to demonstrate that the (approximate) fixed-point
map given by TNR is representative of the 2D Ising uni-
versality class we extract the critical data from this map. This
calculation was previously carried out in Ref. [15], to which we
refer the interested reader for more details. Scaling operators,
with their corresponding scaling dimensions, are obtained
from diagonalization of the ascending superoperator R, see
Fig. 8(a), associated with the s = 4 coarse-graining iteration
with TNR. At this level of coarse-graining the RG-irrelevant

FIG. 13. The precision with which TNR approximates a scale-
invariant fixed-point tensor for the 2D classical Ising model at critical
temperature Tc is examined by comparing the difference between ten-
sors produced by successive TNR iterations δ(s) ≡ ‖A(s) − A(s−1)‖,
where tensors have been normalized such that ‖A(s)‖ = 1. The
precision with which scale invariance is approximated in the initial
RG steps (small s) is limited by the presence of RG-irrelevant terms
in the lattice Hamiltonian that break scale invariance at short-distance
scales, while numerical truncation errors, which can be thought of as
introducing RG-relevant terms, shift the system from criticality (and
thus scale invariance) in the limit of many RG steps s.

terms in the system have been sufficiently suppressed, such
that a good approximation to scale-invariance is realized. The
smallest 101 scaling dimensions obtained from a χ = 6 TNR
calculation are displayed in Fig. 14, all of which are within
2% of their exact values. Also computed were the operator
product expansion (OPE) coefficients [12,13] for the primary
fields, see again Ref. [15] for details, which were found to
match their correct values from CFT to within 0.2%. These
results indeed confirm that the fixed-point RG map given by
TNR is accurately characterizing the Ising CFT.

B. 1D quantum Ising model

In this section we provide benchmark calculations for the
binary TNR algorithm applied to the Euclidean path integral

FIG. 14. The smallest 101 scaling dimensions of the 2D classical
Ising model at critical temperature Tc, obtained by diagonalizing
the ascending superoperator R, see Fig. 8(g), using TNR with bond
dimension χ = 6. The scaling dimensions are organized according
to the parity p = ±1 (even/odd) and locality of the corresponding
scaling operators. All scaling dimensions shown are reproduced to
within 2% of their exact values.

045117-11



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

of the 1D quantum Ising model, which has Hamiltonian HIs

defined

HIs =
∑

k

(
σx

k σ x
k+1 + λσ z

k

)
, (32)

where σx and σ z are Pauli matrices, and λ represents the
magnetic field strength. For convenience we perform an initial
blocking step, in which blocks of four spins are combined into
effective sites of local dimension d = 16, and then generate the
tensor network representation of the Euclidean path integral
as explain in Sec. II B. We typically use a time step of
τ = 0.002 and coarse-grain in the Euclidean time direction
using 10 iterations of the single-dimension coarse-graining
scheme explained in Appendix A, before beginning the TNR
calculation.

To start with, we compare the performance of the TNR al-
gorithm as a means to optimize a MERA [17] versus the energy
minimization approach of Ref. [19]. The ground state of the
Ising Hamiltonian HIs at critical magnetic field strength, λ = 1,
is represented using a scale-invariant MERA [19,21–24], here
consisting of three transitional layers followed by infinitely
many copies of a scale-invariant layer, obtained in two different
ways. In the first approach, we apply four coarse-graining iter-
ations of TNR to the Euclidean path integral of HIs, after which
the flow in the space of tensors has reached an approximate
scale-invariant fixed point. A scale-invariant MERA is then
built from certain tensors that were produced from the TNR
calculation, specifically the disentanglers u and isometries w,
as described in Ref. [18]. Here the first three iterations of
TNR generate the three transitional layers, while the fourth
iteration of TNR is used to build the scale-invariant layer. In the
second approach, we use the energy minimization algorithm
of Refs. [19,23] to directly optimize a scale-invariant MERA
(with three transitional layers preceding the scale-invariant
layers) by iteratively minimizing the expectation value of the
H . Presented in Fig. 15(a) is the comparison between the
ground state energy error δE obtained by the two methods.
For an equivalent bond dimension χ , energy minimization
produces a MERA with smaller error δE than TNR, by a
factor k ≈ 10 that is roughly independent of χ . However,
optimization using TNR is also computationally cheaper than
optimization using the energy minimization algorithm; the
cost of TNR scales as O(χ6) in terms of bond dimension χ ,
while the energy minimization scales as O(χ9). In addition, the
energy minimization algorithm, which iteratively sweeps over
all MERA layers, requires more iterations to converge than
does TNR. Taking these considerations into account, TNR can
be seen to be the more efficient approach to obtain a ground
state MERA to within a given level of accuracy in the energy
δE; see Ref. [18] for additional details. Thus the TNR approach
represents a useful, alternative means for optimizing a MERA
and, by extension, is promising as a tool for the exploration of
ground states of quantum systems.

In Fig. 15(b) the low-energy excitation spectra of HIs at
criticality, λ = 1, are plotted as a function of system size L.
This was computed using TNR to coarse-grain the Hamiltonian
HIs, as explained in Ref. [18], which was then diagonalized on
a finite lattice with periodic boundaries. The excitation spectra
reproduce the expected 1/L scaling with system size and
match the predictions from CFT [12,13], demonstrating that, in

FIG. 15. (a) Relative error in the energy of scale-invariant
MERAs optimized for the ground state of the 1D quantum Ising
model at criticality in terms of bond dimension χ , comparing
MERAs optimized using TNR to those optimized using variational
energy minimization. Energy minimization produces MERAs with
a more accurate approximation to the ground state energy, but is
significantly more computationally expensive [with a computational
cost that scales as O(χ 9) versus as O(χ 6) for TNR]. (b) Low-energy
eigenvalues of the 1D quantum Ising model at criticality as a function
of 1/L, computed with χ = 12 TNR. Discontinuous lines correspond
to the finite-size CFT prediction, which ignores corrections of
order L−2.

addition to the ground state, TNR can accurately approximate
the low-energy eigenstates of HIs.

Next we explore the use of TNR for computing expectation
values of finite-temperature thermal states. This is achieved by
applying TNR to the tensor network corresponding to e−βHIs

for inverse temperature β, as discussed in Sec. II B, which
is then used to generate a thermal state MERA as explained
in Ref. [18]. The thermal energy per site as a function of
β is displayed in Fig. 16(a) for several different magnetic
field strengths λ. In the gapped regime, λ > 1, the thermal
energy converges exponentially quickly to the ground state
energy in the limit of large β (or small temperature T ),
while at the gapless critical point, λ = 1, the thermal energy
converges polynomially quickly to the ground state energy
with β. The results from χ = 12 TNR accurately reproduce
the exact energies over the range of parameters considered.
Two-point correlation functions of the critical, λ = 1, system
are examined in Fig. 16(b) over a range of inverse temperatures
β, where correlations are seen to decay faster at smaller
β (or equivalently at higher temperature T ) due to thermal
fluctuations. Again, the results from χ = 12 TNR accurately
reproduce the exact correlations, indicating that TNR can be
used to approximate thermal states of quantum systems over a
wide range of temperatures.

VII. DISCUSSION

After reviewing the conceptual foundations for real-space
renormalization of partition functions and Euclidean path
integrals, when expressed as tensor networks, a self-contained

045117-12



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 16. (a) Thermal energy per site (above the ground state
energy) as a function of the inverse temperature β, for the 1D quantum
Ising model in an infinite chain, for different values of magnetic field
λ. Data points are computed with χ = 12 TNR while continuous lines
correspond to the exact solution. (b) Connected two-point correlators
at the critical magnetic field λ = 1, as a function of the distance d ,
for several values of β. Data points are computed with χ = 12 TNR
while continuous lines again correspond to the exact solution.

description of the algorithm for employing TNR to study
properties of classical and quantum many-body systems was
provided.

Benchmark results, provided in Sec. VI, demonstrated
some of the advantages of TNR. These include (i) providing
a computationally sustainable coarse-graining transformation
even for systems at or near critical point (i.e., one that can
be iterated many times without increase in truncation error),
(ii) convergence in the RG flow of tensors to a scale-invariant
fixed point for a critical system (which then allows calculation
of the critical data from the fixed-point RG map directly), (iii)
providing an alternate, more efficient means for optimizing
a MERA for the ground state of a quantum system, and (iv)
providing a means to accurately study properties of thermal
states of quantum systems over a wide range of temperatures T .
With regards to (i) above, TNR was demonstrated to overcome
a major obstacle of previous schemes for renormalization of
tensor networks, such as TRG, which exhibit a computational
breakdown when near or at a critical point. As a consequence,
the free energy per site f of the 2D classical Ising model at
criticality was seen to converge to the exact value exponentially
faster in bond dimension χ with TNR than with the previous
TRG approach.

Future work shall include the development and implemen-
tation of TNR schemes for the coarse-graining of networks on
3D lattices, which could be applied to study 3D classical
statistical and 2D quantum many-body systems. A TNR
scheme for 3D lattices would offer an alternative, potentially
more efficient, means to optimize a 2D MERA over the
previous (often prohibitively expensive) strategies based on
energy minimization [39,40]. The TNR approach presented in
this paper can also be used to compute the norm 〈�|�〉 of a
2D quantum many-body state encoded in a projected entangled
pair state (PEPS) [41,42]; thus it could be incorporated as a key
part of an algorithm for simulation of 2D quantum many-body
systems using PEPS [43].

ACKNOWLEDGMENTS

The author thanks Markus Hauru and Guifre Vidal for
insightful comments. The author acknowledges support by the
Sherman-Fairchild Foundation and by the Simons Foundation
(Many Electron Collaboration).

APPENDIX A: COARSE-GRAINING ALONG
A SINGLE DIMENSION

In this Appendix we describe a scheme that coarse-grains
a square lattice along one dimension only, which is similar
in effect to the higher-order tensor renormalization group
(HOTRG) method introduced in Ref. [8]. It is useful to perform
this coarse-graining to rescale one dimension before applying
the TNR algorithm if the initial tensor network is highly
anisotropic in the strength of its correlations (which occurs,
for instance, when the network represents the Euclidean path
integral of a quantum system expanded with a very small
time step τ ). The preliminary coarse-graining can generate a
network that is more isotropic in the strength of its correlations
and thus more suitable as a starting point for the TNR approach,
which then rescales both lattice dimensions equally.

An iteration of the coarse-graining, which acts to compress
the vertical dimension of the square-lattice tensor network by
a factor of two, is depicted in Fig. 17. The first step, as shown
Fig. 17(a), involves a projective truncation that acts on a pair
of A tensors, as further detailed in Fig. 17(b). The isometries
w that comprise the projector can be optimized in the standard
way, as discussed in Sec. III C. The second step, as shown in
Fig. 17(c), involves contraction of a pair of A tensors with
isometries w, as detailed in Fig. 17(d), to generate the tensors
A′ of the coarse-grained network.

APPENDIX B: TERNARY TNR SCHEME

The binary TNR scheme presented in Sec. IV A is one
of many possible TNR schemes for the square lattice; here

FIG. 17. An iteration of a coarse-graining scheme that acts to
compress only the vertical dimension of the square-lattice tensor
network. (a) A projective truncation, involving isometries w, is
employed. (b) Details of the projective truncation from (a); here a
projector P , composed of an isometry w and its conjugate, is applied
to a pair of A tensors. (c) The coarse-grained network, composed
of tensors A′, is given via tensor contractions. (d) Definition of the
coarse-grained tensor A′.

045117-13



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 18. A depicted of an iteration of the ternary TNR scheme,
which maps a square-lattice tensor network to a coarse-grained
square lattice of one-third the linear dimension of the original. (a) A
projective truncation, detailed in Fig. 19(a). (b) Pairs of disentanglers
u annihilate to identity. (c) A projective truncation, detailed in
Fig. 19(b). (d) A projective truncation, detailed in Fig. 19(c). (e) Pairs
of isometries w annihilate to identity, yielding the coarse-grained
square lattice network.

we describe a ternary TNR scheme which reduces the linear
dimension of the lattice by a factor of 3 with each iteration
(or, equivalently, coarse-grains a 3 × 3 block of tensors into
a new tensor with each iteration). One advantage of the
ternary TNR scheme is that single-tensor impurities can remain
single-tensor impurities under coarse-graining, in contrast to
the binary TNR scheme in which impurities spread to 2 × 2
blocks as depicted Fig. 8. This property could be convenient
for certain types of calculation, such as in the evaluation of
conformal data from a critical system. Through a similar
derivation as presented in Ref. [18], where the binary TNR
scheme was shown to yield a binary MERA, the ternary TNR
scheme can be shown to yield a ternary MERA [19].

The steps of an iteration of the ternary TNR scheme
are shown in Figs. 18(a)–18(e). These steps are as follows:
(a) a projective truncation involving isometries vL, vR and
disentangler u as detailed in Fig. 19(a), (b) annihilation of
conjugate pairs of disentanglers u to identity, (c) a projective
truncation involving isometries yL and yR as detailed in
Fig. 19(b), (d) a projective truncation involving isometry w

as detailed in Fig. 19(c), (e) annihilation of conjugate pairs
of the isometry w to identity. The four-index tensor A′ of the
coarse-grained network, as defined in Fig. 19(c), now accounts
for a 3 × 3 block of tensors A from the original square-lattice
network.

APPENDIX C: ISOTROPIC TNR SCHEME

In this appendix we present another TNR scheme for the
square lattice. Like the binary TNR scheme presented in
the main text, this scheme also reduces the linear dimension
of the lattice by a factor of 2 with each iteration. However,
unlike the binary TNR scheme, this scheme treats both
dimensions of the lattice equally, for which we refer to it as

FIG. 19. Overview of the projective truncations involved in the
ternary TNR scheme. (a) A projective truncation, implemented by
projector Pu composed of isometries vL, vR and disentangler u, acts
upon a 3 × 2 block of A tensors. (b) A projective truncation, formed
from isometries yL, yR and their conjugates, acts upon B tensors. (c) A
projective truncation, formed from isometry w and its conjugate, acts
to give the new four-index tensor A′ of the coarse-grained network.

the isotropic TNR scheme. Thus, if the starting network that
is invariant under 90◦ rotations, such as that corresponding
to the partition function of an isotropic 2D classical statistical
model, this TNR scheme can preserve the rotational symmetry
under coarse-graining.

The isotropic TNR scheme is applied to a square-lattice
network with a four-site unit cell, where it is assumed that
the network consists of three types of four-index tensor, Ab,
Ap, and Ar . As shown in Fig. 20 the lattice has a 2 × 2 unit
cell where each Ab tensor connects with four Ap tensors in
the network, and likewise each Ar tensor also connects with
four Ap. It is assumed that Ap and Ar tensors are invariant
with respect to 90◦ rotations, while Ap tensors are invariant
with respect to 180◦ rotations; under this assumption the
square-network itself is invariant with respect to 90◦ rotations
centered about either an Ap or Ar tensor. Notice that a uniform
(one-site unit cell) square lattice is just a special case of
this four-site unit cell lattice, where indices on one of the
sublattices, such as indices connected to Ar tensors, are fixed
at trivial dimension, i.e., bond dimension χ = 1. Thus this
isotropic TNR scheme can be directly applied to the partition
function of an isotropic 2D classical statistical model, when it
is represented as a uniform square-lattice network of tensors
A that are invariant with respect to 90◦ rotations.

The steps of a coarse-graining iteration of the isotropic TNR
scheme are shown in Figs. 20(a)–20(d). The initial step, shown
in Fig. 20(a), involves two different projective truncations. One
of the projective truncations, as detailed in Fig. 21(a), acts upon
a block of four Ap tensors and a Ab tensor, while the other
acts upon individual Ar tensors as detailed in Fig. 21(b). In
the second step of the iteration, shown in Fig. 20(b), conjugate
pairs of disentanglers u annihilate to the identity. A pair of
projective truncations are used in the third step of the iteration,

045117-14



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 20. Depiction of a single iteration of the isotropic TNR
scheme, which maps a square-lattice network, composed of tensors
Ab, Ap , and Ar , to a coarser lattice of the same type. (a) Two types of
projective truncation are made, as detailed in Figs. 21(a) and 21(b).
(b) Conjugate pairs of disentanglers u annihilate to identity. (c) Two
types of projective truncation are made, as detailed in Figs. 21(c)
and 21(d). (d) Conjugate pairs of isometries w annihilate to identity,
yielding a coarse-grained network composed of tensors A′

b, A′
p ,

and A′
r .

seen in Fig. 20(c). These projective truncations, which involve
a projector composed of an isometry w and its conjugate, are
detailed in Fig. 21(c)–21(d). In the final step of the iteration, as
shown in Fig. 20(d), certain isometries w annihilate to identity
with their conjugates, yielding the coarse-grained network.
Notice that the tensors Ab

′, Ar
′, and Ap

′ of the coarse-grained
network, as defined in Fig. 21, possess the same rotational
symmetry as the corresponding initial tensors Ab, Ar , and Ap,
and also that the coarse-grained network has the same unit cell
(in terms of the coarse-grained tensors) as the initial network,
but is reduced by a factor of 2 in linear dimension.

APPENDIX D: REFLECTION SYMMETRY

In this Appendix we describe the details, given a tensor
network G that is symmetric with respect to spatial reflections
(perhaps in conjunction with complex conjugation) along
one axis, for how the symmetry can be preserved under
coarse-graining with TNR. For the case in whichG represents a
Euclidean path integral the presence of this symmetry follows
from the Hermiticity of the Hamiltonian, and is thus always

FIG. 21. Overview of the projective truncations involved in an
iteration of the isotropic TNR scheme. (a) A projective truncation,
involving isometries v and disentanglers u, is enacted upon a
product of four Ap tensors and a Ab tensor. The coarse-grained
tensor A′

b is also defined. (b) A projective truncation, involving
isometries y and disentanglers u, is enacted upon Ar tensors.
(c) A projective truncation, involving isometries w, is enacted,
yielding coarse-grained tensors A′

r . (d) A final projective truncation,
again involving isometries w, is applied to a product of Ab and v

tensors, yielding coarse-grained tensors A′
p .

present, while for the case in which G represents a partition
function the symmetry is present if the underlying 2D classical
statistical model is invariant under spatial reflection along an
axis. Proper exploitation of this symmetry is desirable as it can
significantly simplify the TNR algorithm.

We say the homogeneous tensor network G is Hermitian
symmetric with respect to the horizontal axis if a row of
tensors, which form a matrix product operator (MPO), is
invariant with respect to permutation of top-bottom indices
in conjunction with complex conjugation; see also Fig. 22.
If a row of tensors satisfies the above definition of reflection
symmetry, then it can be shown that permutation of top-bottom
indices and complex conjugation of tensor A is equivalent to
enacting a unitary gauge change on its horizontal indices,

A† ≡ (Ailkj )∗ =
∑
j ′,l′

x∗
j,j ′Aijklxl′,l ; (D1)

see also Figs. 22(b) and 22(c). Here the indices of tensor Aijkl

are labeled clockwise from the top, as per Fig. 1(a), and x is
some unitary matrix.

045117-15



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

FIG. 22. (a) The tensor A is Hermitian symmetric if a row of
such tensors is invariant with respect to permutation of top-bottom
indices in conjunction with complex conjugation. (b) Permutation
and complex conjugation of Hermitian symmetric A is equivalent to
a gauge change, enacted by some unitary matrix x, on its horizontal
indices. (c) Definition of A†. (d) A gauge change is performed
on the tensors of every second row of the square-lattice network.
(e) Definition of tensor Q. (f) Tensor Q is seen to be Hermitian. (g)
and (h) Constraints for isometries yL and yR necessary such that the
tensors of the coarse-grained network remain Hermitian symmetric.

In the first step of the TNR iteration, as discussed in
Sec. IV A, it is useful to enact the unitary gauge change x
on every second row of tensors in the network G as depicted
in Fig. 2(b). Let us define tensor Q as the tensor formed from
contracting two copies of A and two copies of A† together
as depicted in Fig. 2(d). The reason that the initial gauge
transformation on G is useful is that it allows tensor Q to
be Hermitian under exchange of top-bottom indices; thus at
the first step of the TNR iteration the same projector Pu may be
used both on the top and bottom of Q; see Figs. 6(a)–6(c). The
reflection symmetry can be preserved under the TNR iteration,
such that the tensors A′ of the coarse-grained network satisfy
Eq. (D1) for some unitary matrix x′, if the isometries yL and
yR used in the second step of the TNR iteration satisfy the

FIG. 23. (a) Details of an optional, preliminary projective trun-
cation for the binary TNR scheme where two copies of a projector P ,
which is formed from a product isometric tensors qL, qR , z and their
conjugates, are enacted upon a 2 × 2 block of A tensors. (b) Definition
of tensor K . (c) Definition of tensor B̄, which differs from the previous
B, see Fig. 6(b), only by an amount related to the truncation error
of P in (a). (d) Detail of the environment 	u computed from B̄. The
cost of contracting this network scales as O(χ6) in terms of the bond
dimension χ , as opposed to O(χ 7) for the previous environment of
Fig. 7(c).

relation shown in Figs. 22(e) and 22(f). This relation states that
the isometries should be invariant under complex conjugation
in conjunction with permutation of their incoming indices and
a unitary gauge change, enacted by unitary matrix x′, on their
outgoing index. Isometries yL and yR satisfying this relation
can be obtained by symmetrizing the environments 	yL

and
	yR

of the isometries during their optimization, similarly to
previously strategies for preserving reflection symmetry in
MERAs described in Ref. [31].

Finally, we remark these ideas can be extended such that
reflection symmetry along the vertical axis can be preserved
(simultaneously with that on the horizontal axis), if both
symmetries are present in the initial network.

APPENDIX E: REDUCTION OF COMPUTATIONAL COST

The cost of the TNR algorithm as described in Sec. IV
scales as O(χ7) in terms of the bond dimension χ ; in this
Appendix here we describe how this cost scaling can be
reduced to O(χ6). This reduction in cost is achieved by doing
an additional projection truncation at the start of each TNR
iteration; specifically this projective truncation is enacted on
2 × 2 blocks of A tensors, with two of the tensors conjugated
as discussed in Appendix D, before the projective truncation
step of Fig. 6(a)–6(c). The projector P involved in this step
is composed of isometries ql , qr , and z (and their complex
conjugates), as depicted in Fig. 23, and can be optimized with
the standard iterative SVD approach as described in Sec. III C.

After this initial projective truncation the cost of the
subsequent step of the TNR iteration is reduced. Figure 23(c)
depicts the new tensor B̄, which differs from the tensor B in

045117-16



ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

Fig. 6(b) only by an amount related to the truncation error
ε of the initial projection step, but can be computed with a
cost that scales O(χ6), as opposed to O(χ7) for computing B.
Likewise the environment 	u of disentangler u when expressed
in terms of B̄, see Fig. 23(d), can also be computed with cost
O(χ6) instead of the cost O(χ7) associated with computing the
previous environment of Fig. 7(c). Similarly, the environments
of isometries vL and vR can also be computed with cost O(χ6)
when using B̄. Thus, when using the results of this Appendix,
no operation required to implement the binary TNR scheme
has a cost scaling of greater than O(χ6).

APPENDIX F: OPTIMIZATION USING A LARGER
ENVIRONMENT

In this Appendix we discuss how the accuracy of the
binary TNR scheme, for given bond dimension χ , can be
improved by taking a larger environment into account at
each truncation step. This follows similar ideas introduced
in Ref. [7] to improve TRG by taking the local environment
into consideration at each truncation step.

The TNR approach is based on the use projective trun-
cations to implement coarse-graining transformations, as
discussed in Sec. III C. A projective truncation involves
application of a projector P to a local subnetwork of tensors
F , where it is desired that P acts on F as an approximate reso-
lution of the identity; see Eq. (19). Use of a larger subnetwork
F typically allows a more accurate truncation, as the projector
P can take into account correlations from a larger region of the
network. Figure 24(a) depicts a larger subnetwork, consisting
of two copies of the B tensor in addition to vL and vR tensors,
that can be used in the determination of the projectors PL,
PR , and Pw in the second and third step of the TNR iteration.
The condition that projectors PL, PR , and Pw act with small
truncation error on this subnetwork, as shown in Fig. 24(a),
is less restrictive than the condition previously imposed on
the projectors in Sec. IV (which used a smaller subnetwork),
thus potentially allowing for more accurate projectors to
be chosen. The isometric tensors {yL,yR,w} that compose
these projectors can be chosen to minimize the truncation
error ε by optimizing them to maximize ‖Ã‖2, with tensor
Ã as defined in Fig. 24(b), which effectively replaces the
two separate optimizations depicted previously in Figs. 6(d)
and 6(f).

We would also like to use the larger subnetwork in the
optimization of the disentangler u. Given that the B tensors
depend on the disentanglers u, as depicted in Fig. 6(b), one
could likewise optimize u to maximize ‖Ã‖2. However, the
dependance of Ã on disentanglers u is not in a form that is
directly compatible with the optimization problem discussed
in Sec. III C. To this end, we use a modified environment 	̃u

of u generated from ‖Ã‖2, as depicted in Fig. 24(c), where the
modified environment results from the removal of either a pair
tensors, vLv

†
L or vRv

†
R , from Ã. The modified environment 	̃u

is now compatible with the previous optimization strategy of
iterative SVD updates, and thus can be used to directly replace
the previous environment 	u of u from Fig. 7(c). Note that
	̃u can be computed with cost that scales as O(χ7) in terms
of bond dimension χ [or O(χ6) when employing the ideas of

FIG. 24. (a) Isometric tensors yL, yR , w yielding a more accurate
coarse-graining transformation can found by optimizing them to
minimize the truncation error when applied to a region of the network,
here containing two copies of the B tensor, that is larger than was
previously considered in Figs. 6(d) and 6(f). Notice that minimizing
the truncation error is equivalent to maximizing the norm of Ã.
(b) Definition of tensor Ã. (c) The two contributions to the modified
environment 	̃u for disentangler u, as generated from ‖Ã‖2.

Appendix E], which is the same scaling with χ as the basic
TNR algorithm discussed in Sec. IV.

APPENDIX G: ACHIEVING A SCALE-INVARIANT
RG FLOW

A novel and useful feature of the TNR approach is
that, when applied to a scale-invariant critical system, it
can generate an explicitly scale-invariant RG flow, such that
tensors at different scales s of coarse-graining are equal,

A(s+1) ≈ A(s), (G1)

045117-17



G. EVENBLY PHYSICAL REVIEW B 95, 045117 (2017)

up to small differences stemming from truncation errors.
However, realization of scale invariance requires fixing the
gauge degree of freedom, which we now discuss.

Given a square lattice network G composed of identical
tensors Aijkl there exists a local gauge freedom in the network
relating to a local change of basis on individual indices of the
tensor, implemented by unitary matrices x and y,

Aijkl →
∑

i ′j ′k′l′
(A)i ′j ′k′l′xii ′ (x†)k′kyll′ (y†)j ′j , (G2)

under which the tensor network remains unchanged. (Note
that in general the tensor network is invariant under changes
of gauge implemented by invertible matrices; however the
more restrictive class of unitary changes of gauge is sufficient
to consider whether reflection symmetry is exploited; see
Appendix D). If the gauge degree of freedom is not given
proper consideration, application of TNR to a scale-invariant
critical system will not, in general, produce an explicitly
scale-invariant RG flow, as defined by Eq. (G1). Instead
an implicitly scale-invariant RG flow may be given, where
the tensors A(s+1) and A(s) differ by choice of gauge, even
though they are representative of the same critical fixed
point. (Conversely, it can be demonstrated that TRG does not
generate an implicitly scale-invariant RG flow when applied to
a scale-invariant system, as certain gauge-invariant properties
of tensors A(s) diverge with RG step s; see Ref. [1]). We now
explain how the gauge freedom in TNR can be fixed such

that an otherwise implicitly scale-invariant RG flow becomes
explicitly scale-invariant.

There are many strategies one could employ to fix the choice
of gauge on tensor A(s+1) to be compatible with that on the
previous tensor A(s). One possibility is to include a separate
gauge-fixing step after each coarse-graining iteration that
minimizes the difference ‖A(s+1) − A(s)‖ through optimization
of unitary matrices x and y that implement a change of gauge
on A(s+1), as per Eq. (G2). A different possibility, one that we
find more convenient, is to include the gauge-fixing as part of
the tensor optimization described in Sec. IV B. Let B(s) be the
tensor obtained after the first step of the TNR iteration on A(s),
as per Fig. 6(b), and assume we wish to choose a gauge on
isometries v

(s)
L , v

(s)
R and disentangler u(s) consistent with the

previous TNR iteration, i.e., such that the choice of gauge on
B(s) takes it as close to possible B(s−1). Let us define

B̃ = B(s) + δB(s−1), (G3)

for some δ > 0. Then, during the optimization of v
(s)
L , v

(s)
R ,

and u(s), if B̃ is used instead of B(s) in the calculation of
the tensor environments, Figs. 7(a)–7(c), the optimization is
biased towards ensuring that the tensors are chosen in the same
gauge as those at the previous TNR iteration. Typically we take
δ = 1 for the early stages of the optimization of tensors v

(s)
L ,

v
(s)
R , and u(s), but reduce δ smaller as the tensors converge. The

same strategy can then be employed during the optimization
of tensors y

(s)
L , y

(s)
R , and w(s) in the other intermediate steps of

the TNR iteration to ensure that the gauge on A(s+1) is fixed in
a way compatible with A(s).

[1] G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405
(2015).

[2] M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601
(2007).

[3] H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101,
090603 (2008).

[4] Z.-C. Gu, M. Levin, and X.-G. Wen, Phys. Rev. B 78, 205116
(2008).

[5] Z.-Y. Xie, H.-C. Jiang, Q.-N. Chen, Z.-Y. Weng, and T. Xiang,
Phys. Rev. Lett. 103, 160601 (2009).

[6] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[7] H.-H. Zhao, Z.-Y. Xie, Q.-N. Chen, Z.-C. Wei, J. W. Cai, and T.

Xiang, Phys. Rev. B 81, 174411 (2010).
[8] Z.-Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T.

Xiang, Phys. Rev. B 86, 045139 (2012).
[9] B. Dittrich, F. C. Eckert, and M. Martin-Benito, New J. Phys.

14, 035008 (2012).
[10] A. Garcia-Saez and J. I. Latorre, Phys. Rev. B 87, 085130

(2013).
[11] For a review of the renormalization group, see M. E. Fisher,

Rev. Mod. Phys. 70, 653 (1998).
[12] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field

Theory (Springer-Verlag, New York, 1997).
[13] M. Henkel, Conformal Invariance and Critical Phenomena

(Springer-Verlag, Berlin, Heidelberg, 1999).
[14] K. G. Wilson, Phys. Rev. B 4, 3174 (1971); 4, 3184 (1971); Rev.

Mod. Phys. 47, 773 (1975).

[15] G. Evenbly and G. Vidal, Phys. Rev. Lett. 116, 040401
(2016).

[16] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[17] G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
[18] G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 200401 (2015).
[19] G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009).
[20] V. Giovannetti, S. Montangero, and R. Fazio, Phys. Rev. Lett.

101, 180503 (2008).
[21] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, Phys. Rev. A 79,

040301(R) (2009).
[22] G. Evenbly, P. Corboz, and G. Vidal, Rev. A 81, 010303(R)

(2010).
[23] G. Evenbly and G. Vidal, in Strongly Correlated Systems:

Numerical Methods, edited by A. Avella and F. Mancini,
Springer Series in Solid-State Sciences, Vol. 176 (Springer-
Verlag, Berlin, Heidelberg, 2013), Chap. 4.

[24] J. C. Bridgeman, A. O’Brien, S. D. Bartlett, and A. C. Doherty,
Phys. Rev. B 91, 165129 (2015).

[25] M. Suzuki, Phys. Lett. A 146, 319 (1990); J. Math. Phys. 32,
400 (1991).

[26] A. T. Sornborger and E. D. Stewart, Phys. Rev. A 60, 1956
(1999).

[27] L. de Lathauwer, B. de Moor, and J. Vandewalle, SIAM J. Matrix
Anal. Appl. 21, 1253 (2000).

[28] G. Evenbly, R. N. C. Pfeifer, V. Pico, S. Iblisdir, L. Tagliacozzo,
I. P. McCulloch, and G. Vidal, Phys. Rev. B 82, 161107(R)
(2010).

045117-18

https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.101.090603
https://doi.org/10.1103/PhysRevLett.101.090603
https://doi.org/10.1103/PhysRevLett.101.090603
https://doi.org/10.1103/PhysRevLett.101.090603
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevLett.103.160601
https://doi.org/10.1103/PhysRevLett.103.160601
https://doi.org/10.1103/PhysRevLett.103.160601
https://doi.org/10.1103/PhysRevLett.103.160601
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1088/1367-2630/14/3/035008
https://doi.org/10.1088/1367-2630/14/3/035008
https://doi.org/10.1088/1367-2630/14/3/035008
https://doi.org/10.1088/1367-2630/14/3/035008
https://doi.org/10.1103/PhysRevB.87.085130
https://doi.org/10.1103/PhysRevB.87.085130
https://doi.org/10.1103/PhysRevB.87.085130
https://doi.org/10.1103/PhysRevB.87.085130
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevLett.116.040401
https://doi.org/10.1103/PhysRevLett.116.040401
https://doi.org/10.1103/PhysRevLett.116.040401
https://doi.org/10.1103/PhysRevLett.116.040401
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.115.200401
https://doi.org/10.1103/PhysRevLett.115.200401
https://doi.org/10.1103/PhysRevLett.115.200401
https://doi.org/10.1103/PhysRevLett.115.200401
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevLett.101.180503
https://doi.org/10.1103/PhysRevLett.101.180503
https://doi.org/10.1103/PhysRevLett.101.180503
https://doi.org/10.1103/PhysRevLett.101.180503
https://doi.org/10.1103/PhysRevA.79.040301
https://doi.org/10.1103/PhysRevA.79.040301
https://doi.org/10.1103/PhysRevA.79.040301
https://doi.org/10.1103/PhysRevA.79.040301
https://doi.org/10.1103/PhysRevA.81.010303
https://doi.org/10.1103/PhysRevA.81.010303
https://doi.org/10.1103/PhysRevA.81.010303
https://doi.org/10.1103/PhysRevA.81.010303
https://doi.org/10.1103/PhysRevB.91.165129
https://doi.org/10.1103/PhysRevB.91.165129
https://doi.org/10.1103/PhysRevB.91.165129
https://doi.org/10.1103/PhysRevB.91.165129
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1103/PhysRevA.60.1956
https://doi.org/10.1103/PhysRevA.60.1956
https://doi.org/10.1103/PhysRevA.60.1956
https://doi.org/10.1103/PhysRevA.60.1956
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1103/PhysRevB.82.161107
https://doi.org/10.1103/PhysRevB.82.161107
https://doi.org/10.1103/PhysRevB.82.161107
https://doi.org/10.1103/PhysRevB.82.161107


ALGORITHMS FOR TENSOR NETWORK RENORMALIZATION PHYSICAL REVIEW B 95, 045117 (2017)

[29] P. Silvi, V. Giovannetti, P. Calabrese, G. E. Santoro, and R.
Fazio, J. Stat. Mech. (2010) L03001.

[30] G. Evenbly and G. Vidal, Phys. Rev. B 91, 205119 (2015).
[31] G. Evenbly and G. Vidal, J. Stat. Phys. 157, 931 (2014).
[32] Y.-L. Lo, Y.-D. Hsieh, C.-Y. Hou, P. Chen, and Y.-J. Kao, Phys.

Rev. B 90, 235124 (2014).
[33] M. Hauru, G. Evenbly, W. W. Ho, D. Gaiotto, and G. Vidal,

Phys. Rev. B 94, 115125 (2016).
[34] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun. Math.

Phys. 144, 443 (1992).
[35] S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).

[36] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[37] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[38] S. Singh, R. N. C. Pfeifer, and G. Vidal, Phys. Rev. A 82, 050301

(2010).
[39] L. Cincio, J. Dziarmaga, and M. M. Rams, Phys. Rev. Lett. 100,

240603 (2008).
[40] G. Evenbly and G. Vidal, Phys. Rev. Lett. 102, 180406 (2009).
[41] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066.
[42] F. Verstraete, J. I. Cirac, and V. Murg, Adv. Phys. 57, 143 (2008).
[43] J. Jordan, R. Orus, G. Vidal, F. Verstraete, and J. I. Cirac, Phys.

Rev. Lett. 101, 250602 (2008).

045117-19

https://doi.org/10.1088/1742-5468/2010/03/L03001
https://doi.org/10.1088/1742-5468/2010/03/L03001
https://doi.org/10.1088/1742-5468/2010/03/L03001
https://doi.org/10.1103/PhysRevB.91.205119
https://doi.org/10.1103/PhysRevB.91.205119
https://doi.org/10.1103/PhysRevB.91.205119
https://doi.org/10.1103/PhysRevB.91.205119
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1103/PhysRevB.90.235124
https://doi.org/10.1103/PhysRevB.90.235124
https://doi.org/10.1103/PhysRevB.90.235124
https://doi.org/10.1103/PhysRevB.90.235124
https://doi.org/10.1103/PhysRevB.94.115125
https://doi.org/10.1103/PhysRevB.94.115125
https://doi.org/10.1103/PhysRevB.94.115125
https://doi.org/10.1103/PhysRevB.94.115125
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevLett.100.240603
https://doi.org/10.1103/PhysRevLett.100.240603
https://doi.org/10.1103/PhysRevLett.100.240603
https://doi.org/10.1103/PhysRevLett.100.240603
https://doi.org/10.1103/PhysRevLett.102.180406
https://doi.org/10.1103/PhysRevLett.102.180406
https://doi.org/10.1103/PhysRevLett.102.180406
https://doi.org/10.1103/PhysRevLett.102.180406
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.250602



