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Criticality in models of correlated electrons emerges in proximity of a low-temperature singularity in a
two-particle Green function. Such singularities are generally related to a symmetry breaking of the one-particle
self-energy. A consistent description demands that the symmetry breaking in the self-energy emerges at the
critical point of the respective two-particle function. This cannot easily be achieved in models of correlated
electrons, since there are two ways connecting one- and two-electron functions that cannot be made fully
equivalent in approximations. We present a general construction of diagrammatic two-particle approximations
consistent with the one-particle functions so that both produce qualitatively the same quantum critical behavior in
thermodynamically equivalent descriptions. The general scheme is applied on the single-impurity Anderson model
to derive qualitatively the same Kondo critical scale from the spectral function and the magnetic susceptibility.
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I. INTRODUCTION

A consistent and reliable description of the low-temperature
behavior of strongly correlated electron systems has not yet
been reached in spite of decades of intensive research in
this field. Most properties of weakly and moderately coupled
electrons in metals are captured in a sufficient extent by the
Fermi-liquid theory. The problems arise when one tries to
extend Fermi-liquid solutions to the strong-coupling regime.
Fermi liquid becomes unstable due to quantum dynamical
fluctuations and the electron system approaches a quantum
critical point for a sufficiently strong interaction. Nonperturba-
tive approaches are then needed. One option is to use unbiased
numerical simulations that are not restricted to weak coupling.
Various variants of quantum Monte Carlo [1,2], or numerical
[3,4], density matrix [5,6] or functional [7,8] renormalization
group, are widely used to obtain quantitative nonperturbative
results in the whole range of the interaction strength. Monte
Carlo simulations use the Matsubara formalism and are good
for relatively high temperatures. Numerical works based on
renormalization group schemes do well for low-lying energy
states at low temperatures. In both cases, only static thermo-
dynamic properties are directly available. Numerical solutions
are restricted to finite-size clusters and relatively small sets of
Matsubara frequencies or low-lying energy states. Moreover,
they address primarily one-electron functions. Proximity of
the critical points demands, however, controlling two-particle
and response functions that unlike the one-particle ones, may
diverge at the critical point. The singularities in two-particle
functions and the critical, nonanalytic behavior can be iden-
tified and fully controlled only analytically. The singularities
and divergencies must be treated separately from the nondi-
vergent quantities so that to reach stable solutions and to avoid
spurious behavior in numerical calculations and iterations.

Analytic approaches are generally based on a many-
body perturbation, diagrammatic expansion in the interaction
strength. They work well in the weak-coupling, Fermi-liquid
regime. To extend them beyond weak electron correlations,
one needs to sum infinite series of specific classes of
diagrams and make the approximations nonperturbative and
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self-consistent. Self-consistency cannot be introduced in an
arbitrary manner, since there is a danger that some of the
macroscopic conservation laws be broken. The canonical way
how to achieve conserving and thermodynamically consistent
approximations was outlined by Baym and Kadanoff [9,10].
When an approximation can be derived from a generating
Luttinger-Ward functional of the full one-particle propagator,
the continuity equation holds and mass is conserved. The
fundamental quantities in the Baym-Kadanoff construction
are the generating functional, the one-particle propagator,
and the self-energy. The two-particle vertex functions are
not explicitly addressed and are determined via functional
derivatives from the self-energy, treated as a functional of the
renormalized one-electron propagator. The renormalization in
the Baym-Kadanoff construction does not renormalize the bare
interaction [11]. Consequently, there is no direct control of sin-
gularities in the Bethe-Salpeter equations for the two-particle
functions. To circumvent this problem, a so-called parquet
scheme was introduced taking into account also renormaliza-
tions of two-particle vertices [12—16]. The renormalization of
the unperturbed propagator and the bare interaction must be
made in a coordinated way so that not to break the macroscopic
continuity equation [17]. Even if we guarantee mass conser-
vation in the theory with renormalized one- and two-particle
functions, we are unable to match the irreducible vertex derived
from the self-energy via the functional Ward identity with the
full vertex used in the Schwinger-Dyson equation [18,19]. This
inconsistency was first met already earlier when attempting to
go beyond the weak-coupling theory of superconductivity of
Bardeen, Cooper, and Schrieffer (BCS) [20]. When the fully
self-consistent 7 -matrix approximation (TMA), conserving in
the Baym-Kadanoff sense, is used to renormalize multiple
electron-electron scatterings of the BCS theory, the pole in the
two-particle correlation function does not lead to opening of
the superconducting gap [21]. To resolve the problem, a variety
of modifications of TMA combining self-consistent and bare
propagators have been proposed [22,23]. These attempts to
resolve the inconsistency of the fully self-consistent TMA are
mostly ad hoc suggestions that lack the solid basis on which
one could systematically build up further improvements. A
more general, internally consistent scheme leading to areliable
description of quantum criticality is needed.
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The aim of this paper is to address the problem of a system-
atic description of criticality in correlated electron systems.
Critical behavior there is indicated by a singularity in a Bethe-
Salpeter equation. The principal new idea of our construction
is to use the irreducible vertex from the singular Bethe-Salpeter
equation, instead of the self-energy, as a generating function
obtained from a diagrammatic perturbation expansion. We
solve a linearized Ward identity for the given irreducible vertex
to determine a thermodynamic self-energy. We introduce
self-consistency into the diagrammatic expansion by renor-
malizing the one-particle propagators by the thermodynamic
self-energy. In this way, we achieve a consistency between the
divergence in the Bethe-Salpeter equation and the correspond-
ing symmetry breaking in the thermodynamic self-energy. Ap-
proximate irreducible vertices do not, however, guarantee that
this thermodynamic self-energy fulfills the Schwinger-Dyson
equation. It can actually be achieved only in the exact dynam-
ical solution for the irreducible vertex that is far beyond reach.
The physical self-energy is nevertheless the one fulfilling
the Schwinger-Dyson equation. We hence introduce another
self-energy from the Schwinger-Dyson equation that we call
spectral. The one-particle propagators in the Schwinger-Dyson
equation do not change their renormalization. It means that the
spectral self-energy no longer enters a self-consistency loop.
The spectral self-energy is the principal output of the theory
and is used to determine all physical and measurable quantities.
A symmetry of the one-electron propagator with the spectral
self-energy gets broken at the critical point of the Bethe-
Salpeter equation and the response function to the perturbation
induced by the conjugate symmetry-breaking field.

The presentation of our construction consists of four
hierarchical levels. In the first one we identify the origin of
the failure of the ®-derivable approximations to match the
symmetry breaking in the self-energy with the singularity
in a Bethe-Salpeter equation (Sec. II). In the following step,
Sec. III, we introduce the construction of the thermodynamic
self-energy from the electron-hole irreducible vertex via the
Ward identity and its utilization in the construction of physical
quantities near a magnetic phase transition. One needs to
introduce approximations on the two-particle vertex to reach
quantitative results. We use the parquet approach to achieve a
two-particle self-consistency in the perturbation expansion
for two-particle vertices in Sec. IV. Finally, we choose the
single-impurity Anderson model (SIAM) to demonstrate ex-
plicitly how our construction with the simplest self-consistent
approximation for the irreducible vertex leads to qualitatively
the same Kondo scale in the spectral function and in the
magnetic susceptibility, Sec. V. Numerical calculations for
SIAM at half-filling are presented in Sec. VI. In Sec. VII,
we discuss consequences and changes our construction brings
compared to the Baym and Kadanoff approach.

II. CONSERVING APPROXIMATIONS: GENERATING
FUNCTIONAL AND CHARGE CONSERVATION

We use the paradigm Hubbard Hamiltonian of interacting
lattice electrons

ﬁ# = ZG(k)CIkaG + U Zﬁ\”h\u - Zﬂah\ia (1)
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allowing us to study strong electron correlations nonper-
turbatively. We denoted (k) the lattice dispersion relation,
WUs = I+ oh is the spin-dependent chemical potential with
a magnetic field h. Operators c,Tm, ¢, create and destroy
electron with quasimomentum K and 72j,, is the operator of the
electron density on site R;. The fundamental ingredients of the
description of models of interacting fermions are Green func-
tions for which we introduce a perturbation (diagrammatic)
expansion. We use a renormalized perturbation expansion
in the interaction strength and represent it with the aid of
Feynman diagrams.

It is generally believed that the so-called ®-derivable
approximations with the generating Luttinger-Ward functional
®[G] are thermodynamically consistent and obey all con-
servation laws. This construction leads to the one-electron
irreducible vertex (self-energy) as the principal object of the
perturbation expansion. If we want to control directly also the
two-particle irreducible vertices, it is necessary to distinguish
electron and hole propagators that we denote G and G, since
they generate different types of the two-particle irreducibility.
The generating functional for independent electron and hole
functions then reads

2 -
—Q[¥,G,2,G]
N

1

= ®[U;G,G]
BN

Dt nfiw, + o — €(k)

on,k

— 2, (iw)] + e In[—iw, + py — (k)
_Ea(_kv_ia)n)] + Ga(kaiwn)fa(_ks_iwn)
+60(_k»_iwn)20(kaiwn)}a (2)

where N is the number of lattice sites, 8 = 1/kpT, and Y isthe
hole self-energy. We set kg = 1. In equilibrium, the electron-
hole symmetry imposes the following relations =, (k,iw,) =
2o (=K, —iw,), and G, (K,iw,) = G,(—Kk,—iw,) that we use
in final expressions. We distinguish the electron and hole
functions only to derive equations for the one and two-particle
irreducible vertices being (functional) derivatives of the Ward-
Luttinger functional ®[U; G,E].

The first fundamental equation is that for the self-energy of
the Hubbard model

3®[U;G,G]
5G,
—UG,G_,xT%_[U;G,GloG_, (3)

%, [U;G,G] = U(G_s)

and has the form of the Schwinger-Dyson equation, see
Fig. 1. The angular brackets stand for the sum over momenta
and Matsubara frequencies. Notice that the linear, Hartree
term on the right-hand side can be represented equivalently
also with the particle propagator U(G_,). The static local
function cannot distinguish between the particle and the
hole. We skipped the momentum and frequency variables but
distinguished electron-hole (antiparallel lines), %, and electron-
electron (parallel lines), o, propagation corresponding to
different ways of attaching the frequencies and momenta. We
denoted I'* a two-particle vertex. The one-particle propagators
are determined from the Dyson equation, G,(K,iw,) =1/
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FIG. 1. Diagrammatic representation of the Schwinger-Dyson
equation (3). The hole Green function G, propagates charge from
right to left, as indicated by arrow. We denoted & = —¢ and
k= (k,ia)n)’ q= (‘lem)

[iw, + e — €(k) — X, (K,iw,)] resulting from a station-
arity condition 8Q[X,G,%,G]/6%(—k,—iw,) =0 and the
electron-hole symmetry.

The full vertex is generally represented via irreducible
vertices and Bethe-Salpeter equations. The two-particle ir-
reducibility is not uniquely defined, hence there are several
independent Bethe-Salpeter equations. As an example we
choose the singlet electron-hole Bethe-Salpeter equation for
the two-particle vertex ', _,

Ty o[U;G,G] = A? _[U;G,G] — A® [U;G,G]
X GyG_y %Ty_,[U;G,G], 4)

where the irreducible vertex Af,hfg[U : G, G] should be con-
nected in the conserving theory with the self-energy via a
functional Ward identity [10],

83,[U;G,G]
8G_,
Analogously, we can represent the full vertex I, _, via the
irreducible vertex in the electron-electron scattering channel
AY  =68%,/8G_,. There are also triplet vertices A =
8%4/8G, and A" = 8%,/8G, determining the full triplet
vertex [y, that we do not consider here. Notice that to
distinguish different two-particle irreducibilities we have to
distinguish electrons from holes in the functional derivatives.
The two vertex functions from the Schwinger-Dyson and
Bethe-Salpeter equations, Eqs. (3) and (4) equal in the
exact theory. That is ['*[U; G,G] =T'[U; G,G]. This cannot,
however, be achieved in accessible approximate treatments.
Consistency between the one and two-particle functions in the
Baym-Kadanoff construction with the generating self-energy
functional £[G] is guaranteed if the functional Ward identity,
Eq. (5), is obeyed and the full vertex is represented via the
Bethe-Salpeter equation (4). If I'*[U;G,G] =T'[U;G,G],
then a functional derivative of the self-energy and of the
irreducible vertex must comply with another equation when
Eq. (4) is inserted in Eq. (3):

A [U;G,G] = 5

8%,[U:G,G — _
22068l yl1 4 6,G oA 4] Gy
8G_,
_ 5Aeh
x(Af,h_g +G, _"“’)
8§G_,

< [1+%G,G oA ] oG,  (6)

It is evident that Egs. (5) and (6) cannot be obeyed si-
multaneously with approximate irreducible functions and
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Ir'*[U;G,G] # I'[U :G,G]. To keep the approximation for
the self-energy from Eq. (3) conserving, one has to treat
vertex I'* as an auxiliary function and to give the physical
meaning only to vertex I" from the Bethe-Salpeter equation (4).
This is, however, possible only up to a critical point, di-
vergence in the auxiliary vertex I'*. One cannot continue
the approximation beyond this critical point unless the Ward
identity is obeyed. At least to the extent that would guarantee
that the critical point in the vertex function I'* introduces a
symmetry breaking and emergence of an order parameter in the
self-energy. The problem is more severe, since the two vertex
functions I and I'* in the ®-derivable approximate theories
lead to two different critical points that should coincide in the
exact solution.

The existence of two vertex functions I'* and I' is a
consequence of the inability to obey charge conservation. This
can be demonstrated on a singlet correlation function Cj; =
(nirmy,) — (miy) (). We can generate its dynamical version
in two ways by functional derivatives with respect to space
and time inhomogeneous perturbations U — U + §Ujj(t,7")
and 1, — s + Sis(T) as follows [19]:

sP[U,G] .

7 — 8Gip(t,T)
8U;j(7,0) =0 (g ) (niy ) =

———— - ()

,3 ) My (0) sU=0

51u=0

The correlation function on the left-hand side is constructed
from vertex I'*, while that on the right-hand side from vertex
I'. This dynamical equality expresses conservation of charge
in the sense that the electrostatic interaction U is generated
entirely by the present charge densities. If the two definitions
differ then there are additive sources of the particle interaction.
Differences between the two definitions from Eq. (7) become
dramatic in criticality. They are unacceptable if both definitions
produce different critical points. The left-hand-side function
diverges at the critical point of the Bethe-Salpeter equation,
while the right-hand-side function diverges at the point where
an order parameter in the self-energy emerges. A thermo-
dynamically consistent description of quantum criticality
must produce an unambiguous singularity in the two-particle
vertices.

The inability to fulfill simultaneously Eqs. (5) and (6) is the
origin of the problems of the self-consistent approximations
in the Baym-Kadanoff approach. The emergence of the order
parameter, resulting from the divergence on the right-hand side
of Eq. (7), is not matched by the divergence of the two-particle
vertex from its left-hand side at the critical point. We propose
to relate the self-energy in the Green function on the right-hand
side of Eq. (7) to the irreducible vertex from the left-hand side
via the Ward identity, Eq. (5), to reconcile the discrepancy.

III. TWO-PARTICLE APPROACH: THERMODYNAMIC
CONSISTENCY IN CRITICALITY

The starting point of our construction is the irreducible
vertex of the critical Bethe-Salpeter equation that serves as a
generating functional of the theory. It is an input determined
from a self-consistent perturbation expansion. The self-energy
is then derived from this vertex via the Ward identity.
This thermodynamically constructed self-energy is used in
the renormalized one-particle propagators. In this way, we
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FIG. 2. Diagrammatic representation of the Bethe-Salpeter
equation (8), in the electron-hole channel summing electron-hole
ladders. The dashed lines within the boxes indicate how incoming
and outgoing electrons are interconnected.

achieve consistency between the criticality in the two-particle
vertices and derivatives of the one-particle self-energy. The
diagrammatic perturbation expansion is hence not applied
on the one-particle self-energy but rather on the two-particle
irreducible vertices that generate singularities in the Bethe-
Salpeter equations. For the sake of simplicity, we consider here
only Bethe-Salpeter equations in the singlet electron-hole and
electron-electron channels that we later use to form nontrivial
approximations.

The Bethe-Salpeter equation for the multiple scatterings
of the electron with spin up and the hole with spin down,
electron-hole singlet channel, reads

1 /) "
ik kiq) = AT (kK q) = 20 D AT (kK" 0)GH (")
-

X G (k" + @)y (K" k' q), ®)

where we introduced a momentum-frequency notation with
k= (k,iw,), g = (q,iv,,) for the fermionic and bosonic vari-
ables, respectively, with w, = 2n + 1)nT and v,, =2mn T
at temperature 7. We denoted k and k' the momentum and the
frequency of the incoming and outgoing particle carrying spin
up and q is the difference between the momentum-frequency
variables of the particle and the hole. Vertex A;‘l is irreducible
with respect to simple electron-hole scatterings. That is, it
cannot be disconnected by cutting two antiparallel lines. The
reducible diagrams are summed in the Bethe-Salpeter equation
(8), see Fig. 2. Analogously, the Bethe-Salpeter equation with
multiple scatterings of two electrons with opposite spins,
electron-electron channel, is in the same notation,

Ty (kK5 q)

ee /. 1 ee ., / " "
= Af kK ) = o0 ;Am(k,k 1q + K = K)Gy(K")

xGy(qg+k+k —k"Ty (K" k';q +k — k"), C))

which is diagrammatically represented in Fig. 3.

-=a — = -=a -=o

FIG. 3. Diagrammatic representation of the Bethe-Salpeter
equation (9), in the electron-electron channel summing electron-
electron ladders.
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A singularity in the Bethe-Salpeter equation emerges at
the Fermi energy, v,, = 0, and in the spin-symmetric phase,
G, = G withincreasing the interaction strength at a vector q.
To simplify the reasoning we assume a homogeneous critical
point with q = 0. It is the electron-hole channel that is singular
for the repulsive interaction and the electron-electron channel
for the attractive coupling. We will investigate the repulsive
case and a magnetic transition. That is, matrix

My = BN8w + A (k.k';0)G (K (10)

has zero eigenvalue at a critical interaction strength. This
critical point corresponds to the paramagnetic-ferromagnetic
transition with a divergent homogeneous magnetic susceptibil-
ity. The antiferromagnetic transition would emerge at a vector
Q for which e(k 4+ Q) = —e(k). The magnetic susceptibility
at zero magnetic field is defined as

_dm _ 1 [dy) )] _ 2 )
X_dh_NXi:[dh dh]_NXi: dh

2 54— 2y gar(1 - B
=5y 2 G0 = ﬁNXk:G(k) (1 n )

)

The susceptibility diverges only if the derivative of the self-
energy diverges and a spin-polarized self-energy emerges. This
divergence must match the divergence in the Bethe-Salpeter
equation (8) in the thermodynamically consistent approach.
It is the case when the Ward identity, Eq. (5), is fulfilled.
It contains a functional derivative from which it is mostly
impossible to resolve the self-energy from a given two-particle
vertex. We hence have to resort to approximations. To reach
a qualitative agreement between the symmetry breaking in
the self-energy and the divergence in the vertex function
we linearize the Ward identity with respect to the external
magnetic field and introduce an approximate thermodynamic
self-energy

=10 = %o+ ﬁiN D OANKK00G (), (12)
k/

where we introduced an initial self-energy X independent of
the magnetic field and used a symmetrized irreducible ver-
tex AN(k,k’;0) = (AeThl(k,k’; 0) + A‘ihT(k,k’; 0))/2. This sym-
metrization does not change the Bethe-Salpeter equation at
zero magnetic field. It only guarantees that the symmetric
vertex is an even function of the magnetic field, since generally
A‘ihT(k,k’; 0) = AeThl(—k,—k’; 0). Equation (12) is a linearized
form of the full functional identity in that only a linear response
to the external magnetic field has been taken into account
in solving Eq. (5). Equation (12) does not lead to the full
dependence of the self-energy on the external magnetic field,
since vertex A?l is only a partial (functional) derivative of the
self-energy. To restore the full dependence one has to add the
other irreducible vertices. The contribution from vertex A

compensates the contribution from vertices A{ and A;hT atthe
critical point of the magnetic transition and their dependence
on the magnetic field can be neglected within linear response.
Our objective is to reach a qualitative agreement between the
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one and two-particle functions in the critical region for which
Eq. (12) is sufficient.

Within the linear response we can neglect dependence
of vertex A" on the magnetic field and can represent the
derivative of the self-energy from Eq. (12) as

dSIk) 1 d

dh BN — dh

[A(k,K';0)G | (K)]

1 d
=—— ) ALK 00—G(K
ﬁN; ( ) Grk)

1
— Aeh(k,k/;O)G(k/)z[l -

B dz{(k’)}
BN 4

dh
13)

where we used the symmetry dG | /dh = —dG4/dh ath = 0.
The derivative of the self-energy is then determined
generally from a matrix (integral) equation

dsI (k)

L eh /. \2
N ;[ﬂNak,k/M (kK5 0G®K 1 —

1
— ¥ Ak K 0GK)

=N 2 (14a)

that has the same integral kernel as the Bethe-Salpeter
equation (8). We can hence represent its solution via the full
vertex as

d=ly 1
dh BN

Z [(k,k';0)G(K')>. (14b)
©

The derivative of the thermodynamic self-energy has the same
divergence as the Bethe-Salpeter equation (8) determined by
zero eigenvalue of matrix M, ,, from Eq. (10). It means that
the singularity in the Bethe-Salpeter equation is accompanied
by a symmetry breaking in the self-energy if the one-electron

J

dh BN dh

ds! (k'
dsy(k) U ZG(k’)z[l— H )”1_
-
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propagators are renormalized with the thermodynamic self-
energy from Eq. (12). In this way, qualitative thermodynamic
consistency is achieved and quantum criticality of the two-
particle function coincides with the critical behavior of the
derivative of the self-energy with respect to the symmetry-
breaking field.

Having introduced a thermodynamic self-energy to be used
in the two-particle functions, we have to elucidate the role
of the self-energy from the Schwinger-Dyson equation that
is an exact dynamical equation resulting from the functional
many-body Schrodinger equation [24]. Its explicit form is

U Lo 1
Za k) = — G,J k/ iw,y0" _ _~ GO' k//
) = 25 kZ ( )[e N kZ (k")

X G_og(k" +k — K)ok ks k — k’)]. (15)

This self-energy differs from the thermodynamic one 7
from Eq. (12) in approximate treatments when the full two-
particle vertex I';_, is determined from the Bethe-Salpeter
equation (8) with the generating irreducible vertex A" .
The existence of two self-energies is a consequence of the
uniqueness of the two-particle vertex. The concept of two-
self-energies is not unusual and is used for instance in the
local-moment approach of Logan and his group [25,26]. One
of the self-energies must then be used only as an auxiliary
function. In our case it is the thermodynamic one, Eg , that
is used in the one-particle self-consistency to renormalize
the one-particle propagators in the perturbation theory. The
physical self-energy is then X, from Eq. (15) where the
one-electron propagators use the thermodynamic self-energy,
Go(k) =liw, + p +oh — e(k) — L (iw,,k)]~". We call the
physical self-energy from Eq. (15) spectral, since it determines
the spectral and dynamical properties of the equilibrium state.
It has a richer dynamical structure than the thermodynamic
one and, what is most important, it generates qualitatively the
same thermodynamic behavior with he same critical point in
the susceptibility. We demonstrate this on its derivative with
respect to the magnetic field. The derivative of the spectral
self-energy is

1
— GUNGk + kK —kKNC K k k' — k"
ﬂN; (k"G (k + )T( )

+ G + k" — k)T K"k k' — k) — DKk k" — k))]}. (16)

Since the irreducible vertex A‘%hl depends on even powers of the magnetic field, the derivative of the full vertex I'y, defined in

Eq. (8), vanishes at 1 = 0.

The magnetic susceptibility at # = O calculated from the Green function with the spectral self-energy then is

2 U 1
=—— Y Ghk=-AZU)) 11— — GK)P|1-—— TWK.K":0)0GK")>
X ﬁNij< ()): ﬁN;()[ ﬁN;( )()}

X |:1 — ﬁLN Z GGk + kK —kKNCEK" ks k' — k') + Gk + k" — k)T (K" k; k' — k) — T (k' ,k; k' — k)))i| } an
o
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where AX(k) = X(k) — X7 (k). It is clear that the magnetic
susceptibility becomes critical if the divergence in I'(k,k’; ¢) at
g = 0is independent of the incoming and outgoing fermionic
energy-momenta k and k’. The physical self-energy then breaks
its spin-reflection symmetry at the same critical point at which
the full two-particle vertex from the Bethe-Salpeter equation
in the singlet electron-hole channel, Eq. (8) has a pole.

IV. APPROXIMATE VERTICES: TWO-PARTICLE
SELF-CONSISTENCY

A. Hartree approximation

The fundamental object of our construction is the ir-
reducible two-particle vertex generating singularity in the
Bethe-Salpeter equation. It is the input into the theory and must
be determined diagrammatically. Its simplest approximation is
the bare interaction, thatis A®® = U. Then the thermodynamic
self-energy is the Hartree one, £ = Un” _, while the spectral
self-energy is determined from a ladder approximation in the
singlet electron-hole channel

U G_,(k
5,k = 2y Getta) (18)
BN Z= 1+ Uxo—s(q)
We denoted the electron-hole bubble x,_,(q) =

(BN)™! >« Golk +q)G_s(k). Both self-energies give a
mean-field description of the magnetic critical behavior at
weak coupling and high spatial dimensions. If we want to
develop approximations applicable also in strong coupling
and low dimensions we must go beyond the simplest
approximation and introduce a two-particle self-consistency.
To improve upon the Hartree approximation by replacing the
thermodynamic self-energy in the one-electron propagators
by the spectral one from Eq. (18), resulting in the so-called
FLEX approximation [17], is a step in the wrong direction.
It breaks the Ward identity and disconnects the symmetry
breaking in the spectral self-energy from the critical point
of the two-particle vertex of the Schwinger-Dyson equation.
The correct procedure is to improve upon the irreducible
vertex A", To avoid spurious and unphysical singularities
such as the Hartree one in low spatial dimensions we need to
introduce a two-particle self-consistency. We use the parquet
approach to do so.

B. Parquet equations

The idea of the parquet approach is to use complementarity
of reducible contributions from the respective Bethe-Salpeter
equations, second terms on right-hand sides of Egs. (8) and (9).
Or, equivalently, the sum of the irreducible vertices from which
their common part, the vertex irreducible in both channels, is
subtracted, gives the full two-particle vertex. We then have the
fundamental two-channel parquet equation

Thyk ks q) = A (kK5 q) + A (kK5q) = U (19)

We approximated the vertex irreducible in both channels by the
bare interaction, which is called a parquet approximation. Ex-
cluding the full vertex I'y ;, from Egs. (8) and (9) by Eq. (19) we
obtain a set of parquet equations determining the irreducible
vertices A‘;hi and A for the given interaction strength U and
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the one-particle propagators G,. The interaction strength is
an external parameter but the one-electron propagators must
be related to the vertices from the parquet equations in a
consistent theory. The parquet approach aims at simultaneous
renormalizations of the one- and two-particle functions. It was
introduced into nonrelativistic many-body problems by De
Dominicis and Martin [13-16] and later used by a number
of authors for interacting Fermi [11,17,27-33] as well as
Bose systems [34,35]. Interest in the parquet construction of
two-particle irreducible vertices has recently been renewed
with the increasing numerical power allowing for numerical
solutions of the full set the of parquet equations in specific
situations [36-39].

We are not aiming at solving the parquet equations in their
most complete form but rather to demonstrate on them how to
achieve qualitative thermodynamic consistency between the
singularity in the two-particle vertex and the one-electron
self-energy in proximity of critical points in Bethe-Salpeter
equations. We hence use the simplest form of the parquet
theory with only two channels with scattering of singlet
electron-electron (hole-hole) and electron-hole pairs. This
minimal set of parquet equations contains the singularity of the
full vertex and can hence be used to study quantum criticality
in models with the Hubbard local interaction.

C. Reduced parquet equations

The problem of the unrestricted general parquet equations
is that they cannot be formulated in real frequencies, since
the analytic structure of the resulting two-particle vertices is
unknown. The full set of parquet equations can be solved
only numerically and hence the spectral properties of the
solution of the vertex functions and the self-energy are not
directly accessible. Moreover, it is numerically hard to go
to very low temperatures and deep into the critical region in
Matsubara formalism. There is yet a more important deficiency
of the two-channel parquet equations with the bare interaction
U as its input. They are unable to reach critical points in
the Bethe-Salpeter equations and the strong-coupling Kondo
critical regime in the single-impurity model. Divergence in
the Bethe-Salpeter equation in one channel is transferred
to the irreducible vertex in the other channel. Convolutions
of the divergent vertex induce new divergencies that must
be compensated by corrections to the bare fully irreducible
vertex. They are missing in the simplest version of the parquet
equations. When no compensation is present the two-particle
self-consistency does not allow to reach the critical point
[40]. It means that we either must go beyond the simplest
parquet approximation with the bare interaction and introduce
a dynamical fully irreducible vertex or we simplify the parquet
equations appropriately.

An easier way is to slightly modify the structure of the two-
particle self-consistency induced by the parquet equations. We
must proceed in such a way that the critical region of the
underlying model is reachable. The singular channel in models
with the repulsive interaction is the electron-hole one, Eq. (8)
and the irreducible vertex Af is divergent at the critical point.
We hence must avoid multiple convolutions of this singular
function. We first replace the full vertex I' by the parquet
equation, Eq. (19), on the left-hand side of the nondivergent
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Bethe-Salpeter equation (9). Vertex I' on the right-hand side
of this equation will be replaced by the nonsingular irreducible
vertex A" so that not to enhance the singularity in the
Bethe-Salpeter equation. The irreducible vertex A¢ in this
equation can be replaced in the leading order by its singular
part, being the reducible vertex in the electron-hole channel
K. That is, the fully irreducible vertex (bare interaction)
is subtracted from A¢. This replacement is necessary so
that the proper balance between multiple scatterings from the
electron-hole and electron-electron channels is achieved and
the critical regime can be reached. The critical behavior of
the potentially singular Bethe-Salpeter equation has not been
changed by this reduction. The suggested simplification should
guarantee that when the fully irreducible vertex is replaced by
the bare interaction in the parquet approach, the critical region
can be reached.

The reduced parquet equations for the electron-hole ir-
reducible and reducible vertices are after the introduced
modifications

A (kK5 q)

1
=U— N Z K (kK" q +K —K")Gy (k")
"

xG(qg+k+k — k”)A‘}}l(k”,k’;q +k—=K" (20)
and

K (kK5 q)

1 " "
=~ g5 2 AT G K"
-

x G (K" + QK (K" K q) + AL (K" K s )] (21)

These equations still contain the necessary two-particle self-
consistency needed for a qualitatively correct description of
the critical behavior of the full two-particle vertex F%hl Itis
important that this simplification does not change the structure
of the poles in the Bethe-Salpeter equations. Equations (20)
and (21) are a generalization, formalization of the simplified
parquet equations introduced earlier in Ref. [41] and used to
describe the Kondo regime in SIAM.

One can observe an important simplification in the reduced
parquet equations. If we relabel the bosonic variablesg — g +
k 4+ k' in Eq. (20) and use it as the bosonic variable in vertex
AeT*l we find that this vertex does not explicitly depend on the
outgoing fermionic variable k’. We obtain a new representation
of the reduced parquet equations

1
Alg) = U~ 25 > KkK'q—k—k")
k//

x G(k")G(qg — k" )A(K"; q) (22)
and
/ 1 " " "
K(kkiq) = =50 > Alkig +k +K)GK)G(g + k)
k//
X [K(K'Kq)+ MK sq +K +K)],  (23)

where we skipped the upper index eh at the vertex functions.
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With the two different bosonic variables used in the parquet
equations we have two ways to represent the full two-particle
vertex. We either have

C(k,k';q) = Atk;q) + K(k,k';q —k — k'), (24a)

or

C(k,k';q9) = Ak;q +k+ k) + Kk,k 5 q), (24b)

depending on whether it is more convenient to use the con-
served momentum-frequency in the electron-electron channel,
Eq. (24a) or in the electron-hole channel, Eq. (24b).

The thermodynamic self-energy for the reduced parquet
equations in the new notation is

>Tk)y = %o+ ,BLN Z Ak k + KHNG(K). (25)
=

The matrix equation for the derivative of the thermodynamic
self-energy is identical with that of the full parquet equations,
see Eq. (14),
d ETT (k")

dh

1
N Y [BNSew + Alkk + k)G
z

1
=— Y Atk k 4+ k)G (26)
N 2

Using the solution of Eqs. (23) and (22), we can represent the
derivative via the vertex functions

dx] (k) 1

—T = — . ’ /. N2

dh BN ;[A(k”k+k)+l<(k,k,0)]G(k).
27

We further use Eq. (14b) to represent the magnetic suscepti-
bility calculated from the thermodynamic self-energy:

2
T=__ sz
X ﬁN; (k)

X {1 - ﬂLN Z[A(k;k + k) + K(k,k';0)]G(K)* §.
=

(28)

Finally, the physical (spectral) self-energy has the following
representation:

U
¥, (k =—§:G_Jk’
(k) BN L (k")
iw,0" 1 " / ”
x|:e 0 —ﬂ—NEk”:Ga(k VG _o (K + k" — k)

x (AK"; K + K"+ KK kK — k”))}. (29)

The magnetic susceptibility at zero magnetic field calculated
from the Green function with the spectral self-energy was
given in Eq. (17).
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V. SINGLE-IMPURITY ANDERSON MODEL
AT HALF-FILLING

The simplest example of quantum criticality of correlated
electrons is the single-impurity Anderson model. There is no
critical point in this model for finite interaction strengths but
the strong-coupling Kondo regime is a critical region of a
metal-insulator transition at infinite interaction. A consistent
description of this limit demands that the Kondo scale (temper-
ature) determined from the one-particle spectral function, the
width of the quasiparticle peak, or the two-particle magnetic
susceptibility is qualitatively the same that saturates at the
Kondo temperature. To reach this, one needs a thermodynam-
ically consistent description of quantum criticality.

The Anderson model is described by the Hamiltonian

Hsiam = Z E(k)CIkaU + Z(Vk clfmd(, +H.c)
ko ko

+Eq Y _did, + Unfny, (30)

where d,, and d are annihilation and creation operators of
the impurity electrons and 7% = d!d_. We integrate over the
itinerant degrees of freedom and introduce an energy scale on
the impurity A(e) = ) |Vi|*8(e — €(k)) = A. Then only
local degrees of freedom become relevant and the dynamical
variables in the self-energy and the vertex functions reduce to
Mastsubara frequencies. An effective grand partition function
can be represented via a functional integral over Grassmann
variables:

Z = /prw* eXp {Z w;[GO(iwn)]_lwn

B
—U/ dt ﬁ‘;(r)ﬁfj(r)} €20
0

with [Go(iw,)] ™! = iw, + 1 — E;4 + i Asign w,.

We use our general construction of thermodynamically
consistent approximations to obtain qualitatively the same
Kondo scale from the spectral function and the local magnetic
susceptibility. The ®-derivable (FLEX) approximations do not
lead to the Kondo scale at all [42]. Apart from numerical
methods based on the numerical renormalization group [43]
and the functional renormalization group [8,44], there are
no analytic approaches that would predict the correct linear
dependence of the logarithm of the Kondo scale on the
interaction strength simultaneously in the spectral function
and the magnetic susceptibility in a qualitatively consistent
manner. We show that our general construction applied on
SIAM does the job.

A. Effective-interaction approximation

We need to apply a two-particle self-consistency from the
parquet approach to describe qualitatively correctly the strong-
coupling limit of STAM. The reduced parquet equations do not
generally allow for analytic continuation to real frequencies
and must be solved only numerically in the Matsubara formal-
ism. To allow for an analytic representation of the vertex and
spectral functions, we simplify the reduced parquet equations.
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Our ultimate aim is to derive an analytic, mean-field type
description of the critical behavior of a singularity in a Bethe-
Salpeter equation. The idea of simplifying the description of
the critical behavior is motivated by the renormalization-group
reasoning. We separate the relevant quantities that diverge at
the critical point from the irrelevant ones that remain finite at
the critical point. To do so, we take into account only the
potentially divergent fluctuations and neglect the bounded,
nondivergent ones and replace them with constants [41].

The fermionic variables of the two-particle vertices are less
important, irrelevant in the critical region, since their fluctu-
ations are noncritical and are summed over in physical quan-
tities. The irreducible vertex A(iw,,iv,,) does not depend on
the outgoing frequency, since the fully irreducible vertex is the
static bare interaction. We further neglect its weak dependence
on the incoming fermionic frequency. The same we do for
vertex K. This simplifying approximation does not influence
quality of the critical behavior of vertex K (iw,,iw, ;iv,,) dis-
playing singularity at the transfer bosonic variable v = 0. Such
approximation should work well at low temperatures where we
expect quantum critical behavior to emerge. Since vertex A
does not contain physically relevant singularities in the (local)
Fermi-liquid phase of SIAM, we can moreover neglect its
dependence on the bosonic frequency.! That is, we neglect all
finite (noncritical) fluctuations and keep dynamical only the
critical ones. We hence make the following replacements:

Ay = A(0;0),
K(iv,) = K(0,0;iv,,).

(32a)
(32b)

This reduction allows us to find the vertex functions explicitly
in the whole plane of complex frequencies. A similar reduction
was already used in SIAM and led to a qualitatively correct
Kondo scale in the spectral self-energy [41]. What is done
differently here is the renormalization of the one-particle
propagators used in the equations defining the vertex functions.

The reduced vertices at low temperatures in this approx-
imation are determined from algebraic equations in form of
linear fractions:

U
“ Ty 49
_ NM(E)

K(E) == + AG(E) (34

with
©d
¢(E) = —/ ?wf(w)[G(w)-i- G(w — BE)ISG(w)  (35)

and
*® dw
v =/ —bORIK (-0)G(@)G (=), (36)

where asterisk denotes complex conjugation and f(w)
and b(w) are Fermi and Bose distribution functions. The

Trreducible vertex can contain singularities near the metal-insulator
transition but they are not related to a symmetry breaking in the
self-energy, Refs. [45,46]. They do not, however, contribute to the full
two-particle vertex and have no physical consequences, Ref. [47].
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thermodynamic self-energy becomes a single real constant

T *dw T
=B =3 A [ T F@RG) = S0+ An (3T
oo T
where n” is the particle density calculated from the

Green function with the thermodynamic self-energy and
Yo = (U — AN)/2.
The spectral self-energy is

*® dw
):(E):—U/ —{
o TT

— b(w)G(E + w)&”s[

f(@)IG(w)
1+ A¢(w — E)

1
1+ A¢(w)} } e

To find a representation of the derivative of the spectral
self-energy and the magnetic susceptibility, we introduce an
auxiliary function

X n) = T n m
(iwy) 5 ; T A¢(ivm)]2[G(lw +iv,)
X (1 + Ag(ivm)) + Ak (ivy) — k(=ivy))]  (39)
with
* dw 5
K(E) = —/ 7f(w)[G(w— E)
+2G(w + EYRG(@)ISG(w). (40)
The derivative of the spectral self-energy then is
dX(iwy) _ UX(iw,) ’ @1
dh 1+ A¢(0)

from which we obtain an explicit representation of the
magnetic susceptibility at low temperatures:

UX(iwy) } @)

2 I
X = ﬂanG(zwn AS(iw,)) [1 T 200

Itis easy to find the spectral representation of the derivative
of the spectral self-energy via an auxiliary function

X(E) = —/oo d?wb(a)){

o0

SG(@)?]
1+ Ap(w — E)
Alk(w — E) — k(E — w)IG(w)
[1+ A¢(w — E)]?

2 P (w)
+AG(E + ) \SI:—I n A¢(a)):|

~f K@) — ¥ (—w)
+AG(E+w)¢|:—[l L ]} 3)

B. Kondo critical behavior at zero temperature
Kondo regime is reached when the denominator of vertex
K (w) approaches zero, witha = 1 + A¢(0) <« 1 defining the
Kondo dimensionless scale. In this strong-coupling limit, we
can use a low-frequency polar decomposition

A

K©) = T Ae0) = iAda’

(44)
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where the frequency variable is tacitly assumed to be taken
with an infinitesimal positive imaginary part when not said
otherwise. Here

O dw
$(0) = — f —3[G()], (452)
oo TT
IG(0)]
- RGO (45b)
bid
‘We then obtain
v /0 do [ G(@G"(=w)
o T a—iAd'w
IG(0)]?1
ﬁwzunm. (46)
104
The dimensionless Kondo scale then is
a=e Um, 47)

where pg = —3JG(0)/m = 1/7 A is the density of states at the
Fermi energy. The prefactor in the exponent of the Kondo scale
slightly differs from the exact one for the Lorentzian density
of states. The Bethe-ansatz solution gives 712/ 8. Be aware,
however, that this prefactor is nonuniversal and depends on the
form of the density of states. Our approximation reproduces
the Kondo scale only qualitatively, that is, predicts linear
dependence of the exponent on the interaction strength.

This result was derived already earlier in Ref. [41], since the
effective-interaction approximation is essentially equivalent to
the simplified parquet equations used there. The equivalence
holds, however, only at zero temperature at the charge and spin-
symmetric situation where the self-energy is compensated
from symmetry reasons by the chemical potential. If we
move away from half-filling or break the spin-reflection
symmetry, the two approaches differ. The former approach
uses a static Hartree-like self-energy X, = Un_, with the
spin density n, calculated with the full one-electron propa-
gator and the spectral self-energy from the Schwinger-Dyson
equation. Although there is no difference at the Kondo scale
determined from the spectral function, there is a significant
difference in the thermodynamic Kondo scale determined from
the local magnetic susceptibility. The susceptibility with the
thermodynamic self-energy, Eq. (11), is proportional to the
inverse Kondo scale

2 1 dw
x'== / —S[G(w)*],
a J_ T

o0

(48)

as well as the susceptibility using the spectral self-energy,
Eq. (42), with the auxiliary function X (w), Eq. (43),

22U (Y dw

X = — G- AT (@) X(w)].  (49)

a J-co
The magnetic susceptibility for the one-electron propaga-
tors using the Hartree self-energy reads

e 20 3G (@ — A (@)A1 = UX(@))]
K= e (50)
1+ U2 [7 93[G(w — AZ ()’ X(w)]

with no exponentially small Kondo scale. Although the Hartree
self-energy in the one-electron propagators of the parquet
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equations reproduces qualitatively correctly the Kondo asymp-
totics of the spin-symmetric spectral function, the width of the
Kondo resonance, it is unable to generate the Kondo scale in
the magnetic susceptibility. Since the Hartree self-energy does
not match the criticality in the two-particle vertex, there is no
guarantee that the susceptibility from Eq. (50) is free from
unphysical instability. The denominator in the susceptibility is
a decreasing function of the interaction strength and a spurious
magnetic instability occurs at a finite interaction strength

Od
2 w ~ 2
U / —3[G(w — AZ(w)) X(w)] = —1. (51)
o T

The situation is not improved if the self-energy is deter-
mined self-consistently from the Schwinger-Dyson equation.
Such a construction fails to reproduce the exponentially
small Kondo scale emerging either in the spectral or in the
thermodynamic functions. A spurious magnetic instability, as
in Eq. (51), occurs as well at a finite interaction strength in
FLEX-type approximations.

VI. NUMERICAL RESULTS

Numerical solution of the full reduced parquet equations
is unbiased but reachable only for rather high temperatures
and not very strong interaction. The effective-interaction
approximation allows us to find an approximate analytic form
of the Kondo asymptotics as presented in Sec. V B. We now
present a full numerical solution of Egs. (33) and (34) at half-
filling and low temperatures. The thermodynamic self-energy
is exactly compensated by the chemical potential due to the
electron-hole symmetry, n” =n =1/2 and u — %y = A/2.
The one-electron propagators are then the bare ones, G(z) =
[z + i Asign3z]~!. We set the energy scale A = 1. A solution
to Egs. (33) and (34) can be reached even for rather strong
interactions. Hence we can trace forming of the exponential
Kondo scale.

We plotted in Fig. 4 the spectral function for several values
of the interaction strength to demonstrate the formation of
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FIG. 4. Spectral function of SIAM at zero temperature and
half-filling calculated within the effective-interaction approximation.
Formation and separation of the central quasiparticle and satellite
peaks with increasing interaction strength is well reproduced. The
inset is a magnification of the central peak.
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FIG. 5. The real part of the spectral self-energy in the strong-
coupling regime for the same setting as in Fig. 4. A broader peak
beyond the Fermi-liquid regime near the Fermi energy is responsible
for the high-energy satellite peak in the spectral function. The inset
shows the real part of the singular two-particle vertex for U = 18.

the low-frequency quasiparticle and high-frequency satellite
peaks. The canonical three-peak structure of the spectral func-
tion can be deduced from the behavior of the real part of the
self-energy, Fig. 5. The width of the central peak is determined
by the slope, the derivative of the self-energy at the Fermi level.
The two sharp peaks in the real-part of the self-energy delimit
the Fermi-liquid domain. New peaks develop with increasing
interaction beyond these limits. The height of this peak is deci-
sive for formation of the satellite peaks in the spectral function.
If INE(w)| > |w|, then a new maximum in IG(w) starts to
develop around wy = N X (wy). The center of the satellite peaks
is close to the atomic value at £U /2. It is slightly closer to the
Fermi energy in the effective-interaction approximation. The
height of the sharp peaks delimiting the region of the Fermi
liquid determines how much the density of states is suppressed
between the central and satellite peaks. It can vanish only for
a finite bandwidth w of the unperturbed energy spectrum if
IRE(w) — w| = w and simultaneously IX(w) = 0. It cannot
happen in SIAM with the Lorentzian density of states. To
assess the accuracy of our approximation, we compared our
spectral function with that from the numerical renormalization
group (NRG) in Fig. 6. The NRG data were obtained by
the NRG Ljubljana code [48]. We can see that the effective-
interaction approximation gives a narrower quasiparticle peak
and more pronounced satellite Hubbard bands.

The consistent description of quantum criticality should
produce qualitatively the same critical behavior from different
thermodynamically equivalent definitions. The measure of
criticality in STAM is the Kondo scale, or more precisely its
asymptotic vanishing. The Green functions can be used to
define the (dimensionless) Kondo scale in several ways. The
primary definition is the critical asymptotics of the two-particle
singular vertex K (w) for @ = 0. We used the denominator
of this vertex and defined the Kondo scale a = 1 4+ A¢(0),
see Eq. (44) or the asymptotics of vertex A approaching its
critical value, Eq. (47). We can also extract the Kondo scale
from the one-particle spectral function via the derivative of
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FIG. 6. Comparison of the zero-temperature spectral function
of the impurity model at half-filling calculated from the effective-
interaction approximation to the parquet equations and NRG for
U = 8. The inset is a magnification of the quasiparticle peak.

the self-energy Z = 1/(1 — X’(0)) or by taking the half width
of its quasiparticle peak at half maximum. These different
definitions are compared in Fig. 7. The first two scales coincide
at strong coupling as well as do the latter two. The absolute
values of the two scales differ numerically, since they contain
different nonuniversal prefactors. They produce qualitatively
the same exponential dependence of the Kondo scale on
the bare interaction strength. Notice that the half width
of the quasiparticle peak is parallel to the exact Kondo scale in
the inset of Fig. 7. It indicates that this definition of the Kondo
scale fits quite well the exact result. Misplacement of our
approximate curve is due to a difference in the pre-exponential
factor caused by logarithmic corrections.

The major objective of the consistent theory of quantum
criticality is equivalence of the critical behavior derived from
the spectral and thermodynamic functions. In our case, it is a
qualitative equivalence of the Kondo scale defined either from

1
172}
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FIG. 7. Various definitions of the Kondo scale, defined from the
derivative of the self-energy (Z), half width at half maximum of
the central peak (HWHM), from formula (47) [exp(—Upr)], and the
denominator of the singular two-particle vertex (a). The inset shows
the HWHM scale (red) compared with the NRG result (blue).
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FIG. 8. Zero-temperature magnetic susceptibilities calculated
with the spectral self-energy (x), the thermodynamic self-energy
(x7), the Hartree-Fock one () "F), and the exact Bethe ansatz solution
(x¢"). While the first two determine the same Kondo scale slightly
differing from the exact result in strong-coupling, the third one
displays a spurious magnetic instability.

the spectral function, critical behavior of vertex K(w), or the
local magnetic susceptibility. Since we have two self-energies
in our approximation, there are also two susceptibilities. The
auxiliary one derived from the spin-dependent propagators
with the thermodynamic self-energy, x” copies the Kondo
scale from the two-particle vertex. The physical susceptibility
x is that derived from the propagators with the spectral self-
energy. We plotted the two susceptibilities in Fig. 8. We can
see that they coincide in the strong-coupling regime and lead
to asymptotically the same Kondo scale that slightly differs in
the slope from the exact Bethe ansatz result, due to a difference
in the prefactor in the exponent of the Kondo scale.

We plotted also the susceptibility derived from the prop-
agators with the static Hartree self-energy in Fig. 8. It is
worth noting that this susceptibility differs from the Hartree
approximation, since the particle density is calculated from
the propagator with the full self-energy from the Schwinger-
Dyson equation. Although this approximation with the Hartree
self-energy correctly reproduces at half-filling the spectral
Kondo scale, it fails to do it in the magnetic susceptibility [49].
This approximation gets unstable and the local susceptibility
diverges at a critical interaction Uy & 2.45 before the Kondo
regime can be reached. This example demonstrates how
important it is to check stability of spin-symmetric solutions
before any conclusions are accepted.

We continued the effective-interaction approximation to
low nonzero temperatures to make an assessment of the
temperature Kondo asymptotics. We plotted the spectral
function for three temperatures for U = 6 in Fig. 9. The
three-peak structure becomes evident with the density of
states at the Fermi energy approaching its zero-temperature,
interaction-independent value, compare with Fig. 10. The local
magnetic susceptibilities x and x 7 in Fig. 10 show the Curie
T~! behavior but saturate at zero temperature. The slopes and
the limiting values differ from each other and also from the
exact Kondo temperature Tk due to different magnetic moment
in different formulas.
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Spectral function

FIG. 9. Formation of the quasiparticle peak in the spectral
function at half-filling with decreasing temperature for U = 6.

VII. DISCUSSION AND CONCLUSIONS

Thermodynamic consistency between one- and two-
electron functions is guaranteed by Ward identities. It is,
however, impossible to reconcile the Ward identities with the
Schwinger-Dyson equation in approximate treatments. Since
we cannot guarantee that the single self-energy leads to a
single singular two-particle vertex we inverted the construction
and set the two-particle irreducible vertex from the singular
Bethe-Salpeter equation as a generating function. It means
that we apply the two-particle diagrammatic expansion on a
two-particle irreducible vertex that enters the Ward identity.
The Ward identity is then used to determine a thermodynamic
self-energy. The full functional Ward identity cannot generally
be resolved and we resort to the Ward identity linearized in the
symmetry-breaking field related to the critical point. Such a
thermodynamic self-energy breaks its symmetry at the critical
point of the two-particle function. This thermodynamic self-
energy is then used in the renormalization of the one-electron
propagators in the perturbation expansion of all physical
quantities.

FIG. 10. Temperature dependence of inverse susceptibilities x 7
and yx together with the density of states at the Fermi energy pr for
U = 6.Kondo temperature Tx = /U /7 py exp{—m2Up,/8} from the
Bethe-ansatz solution was indicated for comparison.
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Approximate irreducible vertices cannot guarantee that
the thermodynamic self-energy obeys the Schwinger-Dyson
equation with the vertex satisfying the Bethe-Salpeter equation
with the same irreducible vertex. We then have to distinguish
two self-energies and give the thermodynamic self-energy
an auxiliary role by renormalizing the one-electron propa-
gators. The physical self-energy is then the one from the
Schwinger-Dyson equation. The one-electron propagators in
the Schwinger-Dyson equation are renormalized only with the
thermodynamic self-energy and consequently the symmetry
of the physical self-energy is broken at the critical point of the
two-particle function. In this way, we achieved a qualitative
consistency in the description of quantum criticality.

We applied our construction on the single-impurity Ander-
son model where the critical behavior is the Kondo asymptotics
with the critical point at infinite interaction. We used a parquet-
type scheme with two scattering channels to demonstrate that
the Kondo critical behavior can equivalently be determined
from the spectral as well as from thermodynamic functions.
We showed that the Kondo exponential scale can be deduced
either from the singular two-particle vertex, width of the
quasiparticle peak in the spectral function, derivative of the
spectral self-energy at the Fermi energy, and also from the
local magnetic susceptibility. All the definitions lead to a
qualitatively correct exponential Kondo scale. They reproduce
its universal feature, that is, linear dependence of its logarithm
on the bare interaction strength.

To summarize, we presented a scheme how to systemati-
cally generate approximations in a controlled way providing
a qualitatively consistent description of quantum criticality
in the correlated electron systems so that the critical point
in the Bethe-Salpeter equation induces a symmetry breaking
in the self-energy. We demonstrated that this can be reached
within a partially renormalized perturbation expansion for two-
particle irreducible vertices. We thereby resolved a problem
of thermodynamic consistency of the existing expansions
for vertex functions used for extensions of the dynamical
mean-field theory. On an example of the single-impurity
model we demonstrated how to reduce the two-particle theory
to analytically controllable approximations that allow for
reaching the critical asymptotics of the relevant physical
quantities. Qualitative consistency between different thermo-
dynamically equivalent definitions is thereby guaranteed. This
approximation can straightforwardly be generalized to lattice
models and thus offers an affordable scheme of a consistent
description of quantum criticality in models of correlated
electrons. Consistency between the critical behavior in the
one-electron spectral function and the magnetic susceptibility
is of utter importance in the dynamical mean-field theory and
the extensions thereof in the description of the Mott-Hubbard
metal-insulator transition.
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APPENDIX: SECURING ANALYTICITY IN THE
NUMERICAL CALCULATION (ZERO TEMPERATURE)

The defining equations for the vertices at zero temperature
can be reduced to contain only their imaginary parts with the
Kramers-Kronig relations determining the corresponding real
parts. We guarantee thereby analyticity of the functions for real
frequencies also in the numerical evaluation when integrals are
replaced by discrete sums. The imaginary parts of the bubbles
can be represented as

IEl g
3¢(E)=f ?w[B(w)G(—E)—G(—w)Q(E)]

IE|

X IG(w)IG(w + E), (A1)

PHYSICAL REVIEW B 95, 045108 (2017)

El de
Sk(E) = —/ —[0(@)0(—E) — 0(—w)(E)]

|E| T

x S[G()*13G(w — E). (A2)

All complex functions take their variables on the real axis as
the limit from the upper complex half-plane.
Analogously, for the spectral self-energy,
El dew
SE(E)=U / —[0(@)0(—E) — 0(—w)0(E)]
4

—IE|

x 3G (w + E)s[ (A3)

1
L+ A¢(w>]
The corresponding real parts of the above analytic functions
are obtained from the Kramers-Kronig relation

*® dw IX(w)
RX(E) = X(c0)+ P — )
o T w—E

(A4)

where P [ denotes the principal value of the integral.
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