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We report the theoretical investigation of the disorder effects on the bulk states of inverted InAs/GaSb quantum
wells. As disorder sources we consider the interface roughness and donors/acceptors supplied by intentional
doping. We use a k · p approach combined with a numerical diagonalization of the disordered Hamiltonian to
get a full insight of the disordered eigenenergies and eigenfunctions of the electronic system. While interface
roughness slightly perturbs the carrier motion, we show that dopants strongly bind and localize the bulk states of
the structure. Moreover, both types of scatterers strengthen the intrinsic hybridization between holes and electrons
in the structure.
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I. INTRODUCTION

Topological insulators are phases of matter characterized by
an insulating gap and protected conducting surface (or edge)
states [1]. In two-dimensional (2D) structures, these phases
manifest themselves by the formation of helical channels
at the edges of an insulating 2D electronic system, giving
rise to the so-called quantum spin Hall effect (QSHE).
After its theoretical prediction [2,3] and its first experimental
demonstration in HgTe quantum wells (QWs) [4], it has been
predicted that InAs/GaSb QWs should also be promising 2D
topological insulator candidates [5]. Similar to HgTe QWs,
InAs/GaSb QWs have unique band alignments that display
a sub-band inversion transition as a function of the layer
thickness. Moreover, due to their type II alignment (where
the confinement of holes and electrons occurs in two different
layers), InAs/GaSb QWs have the additional advantage of
being electrically tunable through the phase transition [6,7].

A nonlocal transport through edge states has been already
reported in inverted InAs/GaSb QWs [8–10]. However, a
substantial bulk conductivity still degrades the visibility of
the dissipationless edge channels indicating that the bulk is
rather a metallic system. A few solutions have so far been
proposed such as the intentional addition of disorder in the
sample to lower the bulk mobility and suppress the parasitic
channels [11–13]. In contrast to experimental studies, there
has been little theoretical work done on disordered inverted
InAs/GaSb QWs. Theoretical studies of QSH states in doped
InAs/GaSb QWs have been reported [14,15], showing that an
intentional Si doping leads to the opening of a mobility gap.
In this work, the dopants were considered as δ-like scatterers
within the tight-binding approach, not accounting for the actual
long-range of the Coulomb interactions. This approach is
sufficient to predict the existence of in-gap localized states
but is not adequate to get a quantitative description of the
disordered bulk states in these complex structures.

In this paper, we present a theoretical analysis of the
disorder effects on the bulk states in inverted InAs/GaSb
QWs based on realistic disorder modelings. We combine
an eight-band k · p model and a numerical diagonalization
of the disordered Hamiltonian within the envelope function
formalism. This approach is more appropriate for the descrip-
tion of slowly varying potentials like Coulomb potentials and
allows an accurate determination of the band dispersion of

the nondisordered structure as well as a full treatment of the
carrier-disorder interactions.

Our paper is organized as follows. In Sec. II, we first
present our model of disorder where we concentrate on two
types of static scatterers: the interface roughness and the
donors/acceptors supplied by intentional doping. Then, in
Sec. III we describe our theoretical approach based on the
k · p model for the computation of the unperturbed states of
an AlAs/InAs/GaSb/AlAs heterostructure and the numerical
diagonalization of the disordered Hamiltonian expanded in
this unperturbed basis. Finally, in Secs. IV and V, we report
the different disorder effects such as the binding effects and the
spatial localization of the states as well as the disorder-induced
hybridization between valence and conduction carriers.

II. MODEL OF DISORDER

The interface roughness results from the interdiffusion
of the layers during the growth process. Therefore it is an
unavoidable source of scattering in heterostructures. In the
envelope function formalism, the interface defects can be
modeled by randomly distributed Gaussian protrusions either
from the InAs layer into the GaSb one (attractive defects)
or vice versa (repulsive defects) [16]. Using this model and
considering a single interface located at z = z0 (z defines the
growth axis), we write the disorder potential as

Vdef(ρ,z) = Vb

Ndef∑
j=1

fj (z) exp

(
− (ρ − ρj )2

2σ 2

)
, (1)

where fj (z) = Y (z − z0)Y (h − z + z0) [fj (z) = −Y (−z +
z0)Y (h + z − z0)] for repulsive (attractive) defects and with
Y the Heaviside function. The roughness height h is set to
two monolayers. The in-plane coordinates ρj = (xj ,yj ) are
random and locate the j th protrusion on the surface S of
the sample. The in-plane extension of the defects σ and the
band offset discontinuity Vb are set to 5.6 nm and 150 meV,
respectively while the number of defects Ndef is fixed by the
fractional coverage of the surface f = πσ 2Ndef/S. Note that
this model of disorder corresponds to the “smooth disorder”
potential used in Ref. [14]. In our model, the numbers of
attractive and repulsive defects are equal. Figure 1(a) shows
the potential energy created by a random distribution of
interface defects in a AlAs/InAs/GaSb/AlAs quantum well.
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CAMILLE NDEBEKA-BANDOU AND JÉRÔME FAIST PHYSICAL REVIEW B 95, 045107 (2017)

FIG. 1. Potential energy created by (a) interface defects and (b)
Si dopants in a 50/15/8/50 nm AlAs/InAs/GaSb/AlAs structure.
The scatterers have randomly generated in-plane coordinates and
their location along the growth axis coincides with the InAs/GaSb
interface. The sample area S is 160 × 160 nm2 and the disorder
parameters are given in the text.

Due to their ability to bind and localize states [17], dopants
are also known to be a relevant source of scattering in
heterostructures. We consider the doping configuration that
has been experimentally realized by Du et al. [13] where one
monolayer of Si atoms of concentration nimp = 1011 cm−2 is
grown at the InAs/GaSb interface. Since Si atoms behave as
donors in InAs and as acceptors in GaSb [18], the densities of
donors and acceptors are both equal to nimp/2 in our model.
Like interface defects, the dopants are randomly distributed in
the layer plane located at the InAs/GaSb interface. Accounting
for screening effects by the mobile carriers, the disorder
potential is described by a Yukawa-like potential with Debye
screening length λ [19]:

Vdop(r) =
Nimp∑
j=1

sj

e2
0

4πε0εr

e−|r−rj |/λ

|r − rj | , (2)

where rj = (ρj ,z0), Nimp is the number of impurities (Nimp =
nimp/S), e0 is the elementary charge, and ε0 and εr are
the dielectric constants of the vacuum and the material,
respectively. The prefactor sj equals +1 (−1) for acceptors

FIG. 2. Sub-band dispersion along the (100) (left panel) and (110)
(right panel) directions of a 50/15/8/50 nm AlAs/InAs/GaSb/AlAs
structure. The spin-down dispersion is plotted in the solid lines, and
the spin-up dispersion in the dashed lines.

(donors). Figure 1(b) shows the potential energy created by a
random distribution of Coulombic donors and acceptors in the
same structure as in Fig. 1(a).

III. k · p MODEL AND NUMERICAL DIAGONALIZATION

As previously, we consider a 15/8 nm InAs/GaSb QW
embedded in two wide gap AlAs barriers of thickness
50 nm. In the presence of disorder, the one-particle envelope
Hamiltonian is

H = H0 + V, (3)

where H0 is the Hamiltonian in the absence of disorder and
V is the disorder potential either equal to Vdef or Vdop. We
compute the eigenstates of H0, i.e., the sub-band dispersion
En(k) and the spinor wave functions χn(k,z), for all k
directions by using the eight-band k · p model developed in
Ref. [20]. n labels the different sub-bands and k = (kx,ky) is
the in-plane momentum. The direction (001) coincides with
the growth axis and the material parameters are taken from
Ref. [21].

Figure 2 shows the calculated sub-band dispersion of the
InAs/GaSb QW along the (100) and (110) directions for the
two spin orientations where ten sub-bands have been taken into
account. As expected from the layer ratio, the structure exhibits
a band-inversion characterized by multiple anticrossings at
finite k values, along with the opening of a hybridization gap
between the conduction sub-band Ee and the valence one Eh.
Moreover, due to the asymmetry of the confining potential, the
spin degeneracy is lifted at finite k. This results in a significant
dependence of the dispersion upon the spin orientation [22].
The spin-up dispersion has a gap of about 6 meV while the
spin-down dispersion is nearly gapless (an energy gap of less
than 1 meV is extracted from the data). Since such a small gap
is not wide enough to prevent parasitic scatterings between
the conduction and valence bulk states, this local closing of
the energy gap can be readily identified as the main cause of
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the metallic behavior of the structure observed experimentally
[9].

In the following, we consider the case where the Fermi
level lays inside the hybridization gap. Thus, for the numerical
diagonalization of H , we restrict our consideration to the
two sub-bands of interest: Ee and Eh (see Fig. 2). Since
V is spin independent, the results obtained for a given spin
orientation are qualitatively similar to those obtained for the
opposite spin orientation; the difference between the two
configurations mainly resides in the size of the energy gap.
The calculation of the eigenstates of (3) is performed by a
numerical diagonalization of H in the two-sub-band basis
{Ee,Eh} of periodic plane waves (Born–von Karman boundary
conditions) on a 160 × 160 nm2 finite sample [16]. The wave
functions of the basis states are

�(ρ,z) = 〈ρ,z|n,k〉 = 1√
S

eik·rχn(k,z) , (4)

where n = {e,h}. For a basis formed by N periodic plane
waves, the Hamiltonian H is expressed as the following 2N ×
2N block matrix

H =
(

Hee Heh

Hhe Hhh

)
. (5)

The diagonal blocks in (5) contain the intra-sub-band coupling
terms:

Hnn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

En(k1) + V nn
k1,k1

V nn
k1,k2

· · · V nn
k1,kN

V nn
k2,k1

. . .
...

...
. . .

...
... V nn

kN−1,kN

V nn
kN ,k1

· · · V nn
kN ,kN−1

En(kN ) + V nn
kN ,kN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

while the off-diagonal blocks contain the inter-sub-band
coupling terms

Hnn′ =

⎛
⎜⎝

V nn′
k1,k1

· · · V nn′
k1,kN

...
. . .

...
V nn′

kN ,k1
· · · V nn′

kN ,kN

⎞
⎟⎠. (7)

In (6) and (7), the matrix elements of the disorder poten-
tial V nn′

k,k′ = 〈nk|V |n′k′〉 are calculated the same way as in
Ref. [23].

The disorder breaks the in-plane translational invariance,
giving rise to a set of discrete energy levels for the energy
spectrum. Consequently, the in-plane momentum is no longer
a good quantum number and must be replaced by a discrete
index ν, namely,

k → ν; En(k) → Eν, (8)

where the Eν’s are the eigenvalues of H . Their corresponding
eigenfunctions are then written as

�ν(ρ,z) = 1√
S

∑
k

∑
n=e,h

c(ν)
n (k)eik·ρχn(k,z), (9)

FIG. 3. Density of states of a 50/15/8/50 nm
AlAs/InAs/GaSb/AlAs structure for (a) spin-down states and
(b) spin-up states. Three cases are considered: in the absence of
disorder (upper panels), in the presence of interface defects (middle
panels), and with Si dopants (lower panels). Fifty random realizations
of disorder have been averaged.

where the coefficients c(ν)
n (k) are the coordinates of the

eigenvectors of H associated with the eigenvalue Eν . This
approach consists of a full treatment of the static disorder
where the only assumption lies in the choice of the expression
and the parameters of V . Due to the randomness of the disorder
potential, the diagonalization of H is repeated for a large
number of random realizations. The quantities that are showed
in the following are the results of an averaging over a large set
of random trials.

IV. BINDING AND LOCALIZATION EFFECTS

As a first noticeable effect, the disorder reorganizes the
energy spectrum of the system. Figure 3 displays the density
of states (DOS) in three different configurations: without
disorder, with interface roughness, and with Si dopants. The
results for the spin-down and spin-up orientations are shown in
Figs. 3(a) and 3(b), respectively. Both types of scatterers create
states below (for conduction states due to attractive potentials)
and above (for valence states due to repulsive potentials)
the sub-band edges. The effect of interface roughness is
quantitatively much smaller. Extremely shallow bound states
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FIG. 4. In-plane probability density of disordered states at various
energies in a 50/15/8/50 nm AlAs/InAs/GaSb/AlAs structure. The
upper panels correspond to the case where dopants are taken as the
source of disorder in the structure and the energies of the states are
(a) Eν = 114 (in-gap state) and (b) Eν = 145 meV (continuum state).
The lower panels correspond to the case where interface roughness
is taken as the source of disorder and the energies of the states are
(c) Eν = 115.6 (in-gap state) and (d) Eν = 141.5 meV (continuum
state). The two plots of each panel correspond to the same random
realization of disorder.

with typical binding energies of 0.3 to 0.5 meV below/above
the sub-band edges are found whereas binding energies of
dopants reach 2 to 3 meV and tend to close the energy gap. This
very weak binding effect by the interface defects originates
from the shorter range and smaller depth compared to the
fluctuations of the Coulomb potential. Note also that in type
II QWs, the carriers are mostly confined in each layer and
therefore have a weak probability density |χn(k,z0)|2 at the
interface [20], where both interface defects and dopants are
actually located. This reduces the potential strength of both
scatterers [24]. Similarly, bound states are also found for the
spin-up orientation. However, a plot of the DOS cannot reveal
their existence due to the quasiabsence of the energy gap.
In Fig. 3(b) one can still notice a broadening of the DOS
arising from the lifting of degeneracy of the states by the
dopants.

Another way to evidence bound states is to evaluate their
spatial localization. Bound states emerge from multiscattering
events and have the particularity to be spatially localized in
the layer plane due to the admixture of the carrier in-plane
wave functions by the disorder [17]. Figure 4 displays the
in-plane probability density of disordered states at various
energies in the presence of dopants (upper panels) and interface
defects (lower panels). In-gap states are strongly localized by
the dopants, as shown in Fig. 4(a), whereas continuum states
remain extended [see Fig. 4(b)]. As shown in Fig. 4(c), the
localization by interface roughness of shallow bound states is
weak. The continuum states in both disorder configurations
have a similar extension as shown in Figs. 4(b) and 4(d).

One way to quantify this localization effect is to compute
the in-plane localization length of the disordered states. The

FIG. 5. In-plane localization length versus the eigenvalues of the
bulk states of a 50/15/8/50 nm AlAs/InAs/GaSb/AlAs structure.
Two types of scatterers are considered: the Si dopants (upper panel)
and the interface roughness (lower panel). These results are shown
for the spin-up orientation. Fifty random realizations of disorder have
been taken into account.

in-plane localization can be defined as

lν =
(∫∫

d2ρ|ϕν(ρ)|4
)−1/2

, (10)

where ϕν( �ρ) is the in-plane part of the wave function obtained
by integrating the modulus square of (9) over z.

Figure 5 shows the localization length of the spin-up eigen-
states. The spatial localization by the dopants is significantly
more pronounced, especially close to the sub-band edges
(around 116 meV; see also Fig. 1) where a dip of about 4 meV
wide appears. This drastic decrease of the localization length
can be interpreted as the opening of a mobility gap [13]. On the
other hand, the localization by interface defects remains weak
as expected from the in-plane probability density computed
in Figs. 4(c) and 4(d). Similar features are found for the
spin-down states.

These results are consistent with the experimental observa-
tions [13] and the theoretical results of Ref. [14]. with the tight-
binding formalism and additionally provide a quantitative
estimate of the binding energies and localization lengths. In
particular, a localization of the continuum states by dopants is
found to be about 25% compared to nondisordered extended
states on a 160 × 160 nm2 surface [25]. An intentional
doping certainly closes the energy gap and decreases the bulk
conductivity by opening a mobility gap but also disturbs the
remaining extended states.

V. DISORDER-INDUCED HYBRIDIZATION

The in-plane localization results from the strong admixture
of the states by the disorder. In the absence of a scatterer,
each state �ν is associated with a single plane wave of wave
vector k, but in disordered samples �ν contains several k

contributions in its expansion (9). In the previous section, we
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FIG. 6. Normalized probability density in each layer of the
spin-up states in a 50/15/8/50 nm AlAs/InAs/GaSb/AlAs structure.
The cases without disorder (upper panel), with interface roughness
(middle panel), and with Si dopants (lower panel) are shown. Fifty
random realizations of disorder have been averaged.

have shown the consequence of this admixture on the in-plane
carrier motion, but this mixing also translates into a strong ad-
mixture of the wave functions χn(k,z) for the motion along the
z direction. To illustrate this effect, we define the normalized
probability density of the eigenstates in each layer as

ζ
(ν)
InAs/GaSb =

∫
InAs/GaSb |χ̃ ν(z)|2dz∫ +∞

−∞ |χ̃ ν(z)|2dz
, (11)

where χ̃ ν(z) is the z part of the disordered wave functions
obtained by integrating �ν(ρ,z) over the (x,y) plane. Figure 6

displays the energy dependence of ζ
(ν)
InAs and ζ

(ν)
GaSb for the spin-

up orientation (similar results are obtained for the spin-down
states but are not shown here). One particularity of the type II
alignment is that the confinement along the growth axis of the
conduction and valence states does not occur in the same layer.
As shown in the upper panel of Fig. 6, without disorder and far
from the sub-band edges (for energies E > 135 and E < 90
meV), the conduction carriers are confined in the InAs layer
while the valence carriers are confined in the GaSb layer. Near
the sub-band edges, or in other words in the inverted region
(90 < E < 135 meV), the confining layer varies from InAs to
GaSb reflecting the band inversion and the hybridization of the
valence and conduction states in this energy range. Values of
ζ

(ν)
InAs/GaSb lower than 1 and close to 0.5 indicate a delocalization

of strongly hybridized wave functions over the two layers. As
shown in Fig. 6, the static disorder strengthens this intrinsic hy-
bridization. The number of delocalized states increases and the
hybridization region becomes wider. These features are again
found to be weaker for interface roughness than for Si dopants.
Finally, it is important to remark that such delocalization
effects along the growth axis are specific to inverted QWs. In
noninverted semiconductor QWs, where there is no electron-
hole admixture, no disorder-induced hybridization is expected.

VI. CONCLUSION

We have theoretically investigated the effects of the inter-
face roughness and Si dopants on the bulk states of an inverted
InAs/GaSb QW. The combination of k · p calculations and
numerical diagonalizations enable one to get a deep under-
standing and a full characterization of the disordered energy
spectrum and eigenfunctions of the system. We found that an
intentional doping leads to the opening of a mobility gap in the
vicinity of the conduction and valence sub-band edges despite
the closing of the energy gap due to the formation of in-gap
bound states. This result is in agreement with the features found
by the tight-binding approach and can be identified as being the
origin of a decrease of the bulk conductance in actual samples.
The interface roughness, for its part, generates a potential that
is too weak to significantly localize the bulk states and only
perturbs marginally their energy spectrum. On the other hand,
both types of scatterer affect the remaining extended states and
strengthen the intrinsic hybridization of electrons and holes.
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