
PHYSICAL REVIEW B 95, 045102 (2017)

Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions

Kirill Plekhanov,1,2 Guillaume Roux,1 and Karyn Le Hur2

1LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
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The realization of synthetic gauge fields has attracted a lot of attention recently in relation to periodically
driven systems and the Floquet theory. In ultracold atom systems in optical lattices and photonic networks,
this allows one to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall
phases, and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic
Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane
models still possess a topologically nontrivial band structure associated with chiral edge modes. Focusing on
(interacting) boson systems in s-wave bands of the lattice, we show how to engineer through the Floquet
theory, a quantum phase transition (QPT) between a uniform superfluid and a Bose-Einstein condensate analog
of Fulde-Ferrell-Larkin-Ovchinnikov states, where bosons condense at nonzero wave vectors. We perform a
Ginzburg-Landau analysis of the QPT on the graphene lattice, and compute observables such as chiral currents
and the momentum distribution. The results are supported by exact diagonalization calculations and compared
with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested
using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice
for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.
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I. INTRODUCTION

A. Generalities and experimental context

Topological phases of matter play an important role, from
quantum Hall physics [1–3] to the concept of symmetry
protected topological phases [4–8]. Topological Bloch bands
have also been detected in quantum materials (topological
insulators) [9–14], ultracold atoms [15–17], and photon sys-
tems [18–21]. Very recently, experimental realizations of the
Harper-Hofstadter model [22,23] were performed with ultra-
cold atoms by using the laser-assisted tunneling technique [24–
27], proposed for the first time in Ref. [28]. At the same
time, the possibility of generating artificial gauge fields was
transferred into the domain of electromagnetic waves, giving
opportunity to realize photonic chiral edge modes associated
with Bloch bands with nonzero Chern numbers [29,30].
Several years later, such objects were realized experimentally
using the lattice of ferrite rods [31] and in a system of
coupled optical-ring resonators [32]. In a similar way, the
artificial magnetic field realization of the effective Haldane
model [33], known as the model for the quantum anomalous
Hall effect, was done first by using the array of evanescently
coupled helical waveguides with the propagation coordinate
z playing the role of time [34], and later in the system of
shaken honeycomb optical lattice [35], following the first
experimental realization of artificial graphene with ultracold
atoms [36,37]. This occurred in parallel to first observations of
the quantum anomalous Hall effect in quantum materials [38]
(an overview on recent progress in this domain can be found
in Refs. [39,40]). Recent experimental realization of Floquet
engineered bands in tunable honeycomb lattices with full
momentum-resolved measurement of the Berry curvature was
also reported in Ref. [41].

From a complementary point of view, in the case of
bosonic ultracold atoms systems (or also exotic polariton
superfluids [42] and photonic BECs [43]), the realization of

the Haldane model as reported in Refs. [35,41] allows one to
investigate the rich properties of lattice bosons subjected to
artificial gauge fields. Such studies were performed in one di-
mension [44,45] and ladder [46] systems, on triangular [47,48]
and square [49] lattices. It is known that this can give rise
to the condensation of bosons at nonzero momentum [50–
53]—the effect showing similarity to the FFLO phase [54,55].
Finite momentum BEC was also predicted [56–58] and
observed [59,60] with p-wave band superfluids and for a
near-resonant hybridization of s and p bands of bosons [61,62].

Importantly, experimental realizations of artificial magnetic
fields in ultracold atom systems and in photonic lattices
are based on the application of a periodic time-dependent
perturbation. In the case of a nonresonant coupling, the Floquet
theory is often used to solve the problem. According to the
Floquet theory [63–65], one expects that the dynamics of such
systems in the high-frequency regime will be separated into
the “slow” and “fast” parts. The slow dynamics will thus be
simply described in terms of a time-independent effective
(Floquet) Hamiltonian. Generally, an exact expression of
the effective (Floquet) Hamiltonian is not accessible and
one should rely on approximations such as, for example,
the Magnus expansion [66,67] or the HFE (high-frequency
expansion) [68–72] (see Refs. [73–75] for general review
and comparison of the two approaches). These expansions
are perturbative and their convergence is not ensured even in
the relatively simple case of noninteracting systems. When
interactions must be taken into account, the situation becomes
even more complicated. The behavior of driven many-body
systems was studied theoretically and numerically [76–89]
and the invalidity of the HFE was often related to the problem
of heating in many-body systems [80–95].

Nevertheless, today a lot of interest is dedicated to
“Floquet engineering” [73–75,96]. More generally, it con-
sists of generating an effective (Floquet) Hamiltonian with
desired properties, starting from a more trivial one by
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superimposing a periodic time-dependent perturbation. Us-
ing the Floquet theory (and the high-frequency expansion)
and a well-chosen geometry allows one to design targeted
Hamiltonians. Many theoretical studies were done in order
to investigate the possibility of obtaining Floquet topological
(Chern) insulators from irradiated graphene structures [97–
106] that were recently observed experimentally [107]. Driven
superconducting systems were considered in order to observe
Floquet Majorana fermions [108–113]. These works are
in deep connection with the study of topological proper-
ties and corresponding topological invariants of periodically
driven systems [114–122], showing that their topological
structure is even richer then in the general classification at
equilibrium [123].

B. Aims and structure of the paper

In the present work, our first goal is to investigate the
possibility of observing photonic analogs of Bloch bands with
nonvanishing Chern numbers and related edge modes, that
are topologically protected from scattering. In this context,
we propose a way to engineer an anisotropic version of the
Haldane model [33]. Our starting point is the nonequilibrium
system that was theoretically proposed in Refs. [124,125] and
recently realized experimentally, as reported in Ref. [126].
The considered system and related experimental realizations
are discussed in Sec. II. This discussion is followed by
precise calculations of the effective Hamiltonian and the
effective evolution of the system, based on the application
of the Floquet theory [63–65] and the HFE [68–75]. In
Sec. III A we show that the effective Hamiltonian corresponds
to the anisotropic Haldane model. We verify that topological
properties of the Haldane model subsist in the anisotropic
case and determine the related topological phase transition in
Sec. III B.

Secondly, in Sec. IV we show that the configuration of
artificial magnetic fields, appearing in the effective anisotropic
Haldane model described in the current work and considered
also in Ref. [35], supports the finite momentum phase with a
two-well structure for the ground state of bosons in s-wave
bands. The transition between the zero momentum (described
in Secs. IV A and IV B) and the finite momentum phase
(Secs. IV C and IV D) is of second order, in contrast to the
isotropic situation where chiral currents show a discontinuity
at the phase transition [53]. Observables such as chiral
currents and momentum distribution are studied and the
role of moderate interactions on the QPT is discussed in
Sec. IV E. Then, in Sec. V we check the validity of the HFE by
performing numerical comparison of the time evolution with
exact and effective Hamiltonians and we infer the regime of
consistency between the two Hamiltonians, in which above
mentioned properties of the system should be accessible for
the experimental observation.

Finally, in Sec. VI we study a ladder analog of the
anisotropic Haldane model. The nature of the QPT between
the zero momentum and the finite momentum phase changes,
giving rise to the apparition of flat bands (Sec. VI A). The role
of interactions far from the flat band region is then studied
using bosonization [127–130] (Secs. VI B–VI D). This ladder
version of the model is similar to the current experimental

development in ultracold atoms system reported in Ref. [46].
We also mention some other ladder models that can be
generated with the described approach on different types of
lattices in Sec. VI E.

Extra technical details will be provided in the appendixes.
Appendix A will discuss the Floquet theory and the Dyson
expansion to compute observables. In Appendix B, we discuss
in more detail the Ginzburg-Landau expansion in the finite-
momentum (FM) phase in the presence of interactions.

II. TIME-DEPENDENT MODEL

The system is described by the Hamiltonian Ĥ (t) = Ĥ0 +
V̂ (t), defined on a bipartite lattice where the two sublattices
are denoted by A and B. The Planck constant � is set to unity
for simplicity. The two terms read

Ĥ0 = ωA

∑
i∈A

â
†
i âi + ωB

∑
j∈B

b̂
†
j b̂j − t1

∑
〈ij〉

(â†
i b̂j + b̂

†
j âi),

V̂ (t) = V
∑
〈ij 〉

cos(ωt + θij )(â†
i b̂j + b̂

†
j âi). (1)

Here âi(b̂j ) are annihilation operators on site i(j ) of sublattice
A(B), and ωA(ωB) is the corresponding frequency in the case
of a photonic optical lattice.

Sublattices are coupled through a constant tunneling term
t1 and a time-dependent term V (which is periodic in time
with period T = 2π/ω) coupling nearest neighbors. In cavity
systems, this consists of coupling the cavities with dc and
ac terms and assuming that each of them has approximately
the same length. θij = −θji are scalar phases associated with
each oriented link between sites i and j , and

∑
〈ij 〉 denotes the

summation over all possible pairs of nearest neighbors (NN)
with i belonging to sublattice A and j to sublattice B. Related
scenarios have been suggested to realize quantum Hall phases
of bosons [131].

The laboratory frame realization of such a Hamiltonian was
proposed in the context of photonic lattices [124,125]. It was
also successfully implemented using superconducting qubits
arranged in a triangular loop with pairwise couplings [126],
based on earlier theoretical suggestions [132]. In the following
sections we will show that this approach can be used to
generate a photonic Chern insulator.

Similar systems were also experimentally realized with
ultracold atoms, by using lattice shaking [35] or laser-assisted
tunneling techniques [25–27]. Related theoretical proposals
were considered in Refs. [28,133] and the photon-assisted
tunneling was also suggested in Ref. [134]. In these cases
we should, however, think of ωA and ωB as of chemical
potentials on two sublattices, which have an additional periodic
time-dependent component, whereas the hopping term is
constant. It was argued that after moving to the rotating frame
(and applying the Floquet theory in the nonresonant case), one
can eventually generate artificial magnetic fields. In Ref. [35]
this approach was used to effectively generate the anisotropic
Haldane model. Within these protocols, we will show that we
can engineer a BEC analog of FFLO states, where bosons (in
the s-wave band of the optical lattice) condense at a nonzero
wave vector.
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Inspired by previous works [50,53], we are also interested
in rich properties of the many-body system in the interacting
regime. We consider the simplest possible case of interactions,
described by the Hamiltonian term,

ĤBH = U

2

∑
i∈A⊕B

n̂i(n̂i − 1), (2)

where U is the strength of repulsive on-site Bose-Hubbard in-
teractions and n̂i is the number operator on site i. In the system
of single-component bosons such interactions can originate
from the s-wave collisions between atoms. An experimental
realization of the Bose-Hubbard model can also be achieved in
photonic lattices using nonlinear LC resonators (qubits) [126]
or in the highly detuned limit, with an (approximately exact)
mapping between the Jaynes-Cummings lattice model and the
Bose-Hubbard model [135,136].

III. FLOQUET THEORY AND EFFECTIVE
ANISOTROPIC HALDANE MODEL

In this section we determine properties of the system that
evolves with the Hamiltonian Ĥ (t) of Eq. (1). We aim to
engineer an effective system that can support edge modes
topologically protected from scattering. Our approach is based
on Floquet theory [63–65] and the related high frequency
expansion (HFE) [69–75]. One can show that in the regime
of high frequency ω, the “slow” long-time dynamics of the
system can be described by a static effective Hamiltonian
Ĥeff. A common approximation consists then of expressing
the effective Hamiltonian in powers of 1/ω, in such a way that
Ĥeff =∑j Ĥ

(j )
eff . Here we denote by Ĥ

(j )
eff the contribution to

Ĥeff at the order j . Up to the first order, Ĥeff has the following
form [71–75]:

Ĥeff = Ĥ (0) + 1

ω

∞∑
i=1

1

i
[Ĥ (i),Ĥ (−i)] + · · · , (3)

where Ĥ (i) are distinct Fourier components of Ĥ (t). In this
section we consider only the first-order contribution. The
validity of such approximation is studied in Sec. V where
we show that the effect of higher orders is irrelevant if ω is
much larger than any other energy scale and the perturbation
amplitude V behaves as

√
ωt1.

A. Generating effective anisotropic Haldane model

We apply the expansion of Eq. (3) to a system described
by Eq. (1). The zero-order contribution reads Ĥ

(0)
eff = Ĥ0. At

order one, we obtain

Ĥ
(1)
eff = iV 2

2ω

∑
〈〈ik〉〉

sin(�ik)(â†
i âk − â

†
kâi)

− iV 2

2ω

∑
〈〈j l〉〉

sin(�jl)(b̂
†
j b̂l − b̂

†
l b̂j ). (4)

We have defined �ik = θij + θjk for each couple of next-
nearest neighbors (NNN) i and k sharing both the same NN
with the index j . We have denoted by

∑
〈〈ik〉〉 the summation

over all NNN on either sublattice A or sublattice B.

We see that terms in Ĥ
(1)
eff are purely imaginary NNN

hoppings whose amplitude t2,ik depends on the phases θij and
θjk on corresponding links:

t2,ik = −V 2

2ω
sin (�ik). (5)

The physical interpretation of this effect can be seen as
follows: When the hopping mediated by the time-driving term
is performed, the particle acquires an energy ω. Since this
energy is huge, the corresponding state is highly unstable and
the particle is forced to perform the conjugated NN hopping
and re-emits the energy ω. Since these hoppings are dephased
in our model, this leads to the apparition of the effective phase
acquired by the particle, resulting in the generation of an
artificial gauge field.

In order to be able to solve the problem, one should
consider a particular choice of the lattice geometry and of
the phases θij . By having in mind the idea of obtaining a
topologically nontrivial model with nonzero Chern number,
we decided to explore the possibility of generating an effective
Haldane model [33]. We thus consider the problem defined on
the honeycomb lattice from now on. Figure 1(a) represents
a possible choice of phases θij that fulfills our requirement.
The resulting term in the effective Hamiltonian corresponds
to the anisotropic Haldane model with absent horizontal NNN
hoppings and with amplitude t2 = −V 2/2ω of four leftover
NNN hoppings at each unit cell:

Ĥ
(1)
eff = −t2

⎛
⎝ anis∑

〈〈ik〉〉
e±iπ/2â

†
i âk +

anis∑
〈〈j l〉〉

e±iπ/2b̂
†
j b̂l + H.c.

⎞
⎠.

(6)
In the last equation, we denoted the presence of the anisotropy
by the label anis above the summation sign. The configuration
of hopping amplitudes in the anisotropic model is also
displayed in Fig. 1(b). The total magnetic flux through the
unit cell of the lattice sums up to zero, such that Landau levels
do not appear in the problem. We outline that phases θij modify
only the value of NNN hopping amplitudes and have no effect
on the Haldane phase, which is always equal to π/2.

For the purpose of clarifying connections of the HFE to
the standard perturbation theory, we perform calculations of
some relevant observables (i.e., currents) by using Dyson
series [137]. We deduce that results of both theoretical
approaches coincide in the regime of weak time-dependent
perturbation. Details of the calculations can be found in
Appendix A. The validity of considering only the first-order
term in the HFE will also be discussed in Sec. V.

B. Topological phase transition and chiral edge states

The Haldane model was first introduced as the model for the
quantum anomalous Hall effect for noninteracting fermions at
half-filling. In this section we want to show that the same
characterization applies to the anisotropic Haldane model,
which belongs to the class of Chern insulators and supports
topologically protected edge modes. We emphasize that even
very weak imaginary NNN hopping amplitude (t2 � t1) will
be sufficient to observe edge states.
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FIG. 1. (a) Distribution of phases on the NN bonds in the time-
dependent Hamiltonian (1) required to generate effective anisotropic
Haldane model. The phase ϕ is the free parameter. We notice that
these phases only change the value of the NNN hopping amplitude
and has no effect on the Haldane phase, that is always equal to π/2.
(b) Anisotropic Haldane model. Colored bold lines represent NNN
hoppings with amplitude modulus V 2

2ω
and assigning a phase ±π/2

if they are made in the anticlockwise (clockwise) direction. Dotted
lines correspond to the hopping absent in the model. (c) Magnetic flux
distribution in the anisotropic Haldane model. The total magnetic
flux through the unit cell sums up to zero, with closed loops of
vector potentials involving kite geometries rather then triangles as
in the isotropic case. (d) Definition of vectors ui and vi on the
honeycomb lattice. Each hexagon has the length of the side equal
to a. (e) Reciprocal lattice vectors q1, q2 and the first Brillouin zone
(BZ).

First, we fix the notation related to the structure of
the Bravais lattice and reciprocal lattice. We define by ui ,
i ∈ [1,2,3] vectors connecting each site on the sublattice
A to its three first neighbors on the sublattice B. Then,
vk = 1

2

∑
i,j ξijk(ui − uj ) (with ξijk—the Levi-Civita symbol)

are vectors connecting NNN sites on the same sublattices, as
shown in Fig. 1(d). We also consider that the length of the side
of each hexagon equals to a. We notice that any two vectors
vk form the basis of the Bravais lattice, that is given by one of
sublattices A or B.

We remark then that the Hamiltonian Ĥ = Ĥ0 + Ĥ
(1)
eff is

easily diagonalized by going to momentum space:

â(b̂)k = 1√
Nc

∑
i∈A(B)

e−ik·r i â(b̂)i . (7)

Nc is the number of unitary cells in the lattice and k is the
momentum in the first Brillouin zone (BZ), which is spanned
by vectors q1 = (2π/

√
3a,−2π/3a) and q2 = (0,4π/3a) as

depicted in Fig. 1(e). The Hamiltonian is then rewritten as

Ĥ =
∑

k∈BZ
ψ̂

†
k · H(k) · ψ̂k

=
∑

k∈BZ
ψ̂

†
k · [ε0I2×2 − d(k) · σ ] · ψ̂k, (8)

where σj are Pauli matrices and ε0 = (ωA + ωB)/2. We have

also defined the spinor ψ̂k = (âk

b̂k
) and three functions of the

momentum k:

dx(k) = t1

3∑
i=1

cos(k · ui),

dy(k) = t1

3∑
i=1

sin(k · ui), (9)

dz(k) = −M + 2t2

2∑
i=1

sin(k · vi), (10)

with ui and vi the vectors between NN and NNN sites,
respectively, such that vk = 1

2

∑
i,j ξijk(ui − uj ) with ξijk the

Levi-Civita symbol, and M = (ωA − ωB)/2 is the Semenoff
mass [138]. The eigenvalues of H(k) read

ε(k) = ε0 ± |d(k)|
= ε0 ±

√
d2

x (k) + d2
y (k) + d2

z (k). (11)

The corresponding band structure is illustrated in Fig. 2 for
various t2 and M .

In order to study topological properties of this band
structure, we take the expression of the Berry curvature B(k)
of an energy band:

B(k) = d̂
2

·
(

∂ d̂
∂kx

× ∂ d̂
∂ky

)
with d̂ = d(k)

|d(k)| . (12)

The flux of the Berry curvature through the BZ is called the
Chern number:

Cn = 1

2π

∫
BZ

d2k B(k). (13)

This quantity expresses how the eigenfunction spinor wraps
around the boundary of the BZ. Similarly to the isotropic
Haldane model, a continuous gauge cannot be defined over
the whole BZ, meaning that spinors possess singularities. It
occurs at two Dirac points KA and KB . Encircling only these
points gives the possibility of estimating the Chern number.
We find that the contribution at each point is equal to ±1/2,
where the sign corresponds to the sign of dz(k).

The missing link does not affect the possibility of topo-
logical bands in the anisotropic Haldane model (thanks to the
presence of closed loops of vector potentials involving kite
geometries), but modifies the critical point of the topological
versus nontopological phase transition and the edge-mode
dispersion relation. More precisely, in the anisotropic Haldane
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FIG. 2. (a)–(c) Numerical calculations of the band structure for
the anisotropic Haldane model in the strip geometry with zigzag edges
[cut along the x axis of Fig. 1(c)], showing the topological phase
transition. Edge modes cross the gap between two bands for M/t2 <

2
√

3. The gap closes at M/t2 = 2
√

3. Edge modes do not cross the
gap anymore for M/t2 > 2

√
3. (d) Comparison between numerical

results (solid blue lines) and analytical solution for edge modes based
on an exponentially decaying ansatz [139,140] (red dotted lines).
Band structure represented in this way is periodic with period 2q1x ,
where q1 is the reciprocal lattice vector defined in Fig. 1(d).

model we find that dz(KA) = −M − 2
√

3t2 and dz(KB) =
−M + 2

√
3t2. Thus, in the regime t2 > M/(2

√
3), the phase

acquired by the particle wrapping around the BZ does
not vanish. In this case, according to the bulk-boundary
correspondence [11], by fixing the chemical potential of the
system to the gap between two bands, one should be able to
observe edge modes that go across the boundary of our system
in real space. These modes should disappear in the regime
t2 < M/(2

√
3), after moving through the topological phase

transition at t2 = M/(2
√

3), for which the gap between two
bands closes and the system becomes conducting.

These calculations are verified numerically by diagonaliz-
ing the Hamiltonian in the strip geometry, i.e., with periodic
boundaries along x and open boundaries along y (zigzag
boundary conditions). The band structure is calculated for dif-
ferent values of t2/M and edge modes are detected, as seen in
Fig. 2. Moreover, we adapt methods previously used in works
of Refs. [139,140] to derive an analytical calculation of the
dispersion relation for edge modes of the anisotropic Haldane
model, by considering an exponentially decaying ansatz. In
Fig. 2(d), we compare the analytical and numerical solutions.
We outline that if t2 > M/(2

√
3), even weak values of t2

(compared to t1) and, as a consequence, small amplitudes of
the Floquet perturbation V , permit one to observe edge modes.

IV. ENGINEERING A BOSONIC FFLO ANALOG

Topological properties of the (anisotropic) Haldane model
described in the previous section can be probed in photonic
systems [124–126] or with fermions at half-filling [35,41]. The
system of bosons can, however, give access to the physics of

FIG. 3. Lowest energy band of the anisotropic Haldane model
(on the left) and of the isotropic Haldane model (on the right) in
the noninteracting case (U = 0), plotted for different values of t2
(different lines). Here t c

2 is the “critical” value of the coupling when
minima move away from the point �. Yellow dotted lines represent
reciprocal lattice generated by vectors q1 and q2 defined in Fig. 1(d).
Presence of artificial gauge fields (complex NNN hoppings in our
case) is required for observation of minima at points in the BZ
different from the point �.

unusual superfluids and Mott insulators [50,51,53]. Following
Ref. [53], in this section we study properties of lattice bosons
with artificial gauge fields in the anisotropic Haldane model.
We show how the QPT between the uniform superfluid and
the finite momentum BEC is affected by the anisotropy (by
performing a comparison to the isotropic case studied in
Ref. [53]) and we explore the effect of weak interactions in
such a system.

Therefore, we consider the Hamiltonian Ĥ = Ĥ0 + Ĥ
(1)
eff +

ĤBH, where

Ĥ0 = ε0

⎛
⎝∑

i

â
†
i âi +

∑
j

b̂
†
j b̂j

⎞
⎠− t1

∑
〈ij〉

(â†
i b̂j + b̂

†
j âi),

Ĥ
(1)
eff = −t2

⎛
⎝ anis∑

〈〈ik〉〉
e± iπ

2 â
†
i âk +

anis∑
〈〈j l〉〉

e± iπ
2 b̂

†
j b̂l + H.c.

⎞
⎠,

ĤBH = U

2

∑
i

n̂i(n̂i − 1). (14)

For the sake of clarity, we choose ωA = ωB = ε0, such that
the Semenoff mass term M = (ωA − ωB)/2, producing charge
density wave orders in real space, is zero. When interactions
are absent or sufficiently weak, this system is characterized
by the presence of two distinct phases corresponding to the
formation of either a zero-momentum BEC (ZM phase) or a
finite-momentum BEC (FM phase) analogous to FFLO states.
These phases appear since the single-particle Hamiltonian has
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minima at different points in the lowest band, as depicted in
Figs. 3 and 5. The ZM-FM transition between two phases is
characterized by a change in the current patterns. We notice
also that the nature of this transition is different in isotropic
and anisotropic configurations of the Haldane model. In the
first case the global minimum in the ZM phase transforms into
a local maximum in the FM phase. Whereas in the second case
the global minimum in the ZM phase still stays a minimum
in the FM phase, but becomes local. This effect is due to the
breaking of C3 symmetry between two models. We outline
also that considering a model with artificial gauge fields is the
only possibility of observing the FM phase using s bands.

A. ZM phase

The ZM phase occurs as long as t2 < tc2 = √
3/8t1, while

the isotropic model has a critical value t c2 = t1/
√

3. At zero
temperature, bosons condense at zero momentum at the center
� of the BZ, meaning that we can approximately write

âi ≈ â�√
Nc

, b̂j ≈ b̂�√
Nc

. (15)

Within this approximation, the Hamiltonian simplifies to

Ĥ ≈ ε0(â†
� â� + b̂

†
� b̂�) − 3t1(â†

� b̂� + b̂
†
� â�)

+ U

2

[
â
†
� â�

(
â
†
� â�

Nc

− 1

)
+ b̂

†
� b̂�

(
b̂
†
� b̂�

Nc

− 1

)]
. (16)

We next introduce the total number of sites Ns = 2Nc,
the filling n = N/Ns and the complex order parameter in
sublattice A as 〈âi〉 = 〈â�〉/√Nc = √

neiθA , with a similar
expression for sublattice B, assuming an equal filling in both
sublattices. The superfluid phases θA/B in each sublattice

are pinned by the t1 hopping term, such that θA = θB . This
corresponds to the presence of one Goldstone mode. The
ground-state energy then reads

EZM
GS = Ns

[
(ε0 − 3t1)n + U

2
n(n − 1)

]
. (17)

We remark that the contribution of t2 terms effectively vanishes
in the ground state. The bond currents are defined as Jii ′ =
−2 Im (tii ′ 〈â†

i âi ′ 〉) within sublattice A and similar expressions
are used between sublattices A and B and within sublattice
B. Here tii ′ is the amplitude of the corresponding tunneling.

In the ZM phase, currents between NNN sites in the direction
of vectors v1 or v2 are proportional to t2:

J ZM
AA,v1

= J ZM
AA,v2

= −2 Im (−it2n) = 2nt2. (18)

In the anisotropic case we do not have NNN hoppings along
v3, meaning that the corresponding currents are also always
zero: J ZM

AA,v3
= 0.

B. Excitations in the ZM phase (Bogoliubov transformation)

In this section we use the Bogoliubov transformation [141]
to study excitations above the ground state in the ZM phase.
When the temperature T is sufficiently low, one can suppose
that the ground state at k = 0 will be still macroscopically
occupied by a population of N0 = n0Ns bosons (with filling
n0). Small fluctuations can be described by operators ẑν,k with
ν = a or b. The total number of particles is thus

N = N0 +
∑

k ∈ BZ,

k �= 0,ν

ẑ
†
ν,kẑν,k. (19)

We are interested in writing the Hamiltonian Ĥ in powers of
ẑν,k. For convenience we also prefer to express Ĥ in the grand
canonical ensemble, by introducing the chemical potential μ.
To zero order in the perturbation we recognize the expression
for the ground-state energy EZM

GS − μN0.
The term linear in the fluctuation vanish for a particular

value of the chemical potential, that is,

μ = −3t1 + Un0. (20)

To second order in perturbation we obtain

Ĥ2 =
∑

k ∈ BZ,

k �= 0

[
ẑ
†
a,k

ẑ
†
b,k

]t

· [−d(k) · σ − μI2×2] ·
[
ẑa,k

ẑb,k

]

+ Un0

2

∑
k ∈ BZ,

k �= 0,ν

[ẑ†ν,kẑ
†
ν,−k + ẑν,kẑν,−k + 4ẑ

†
ν,k ẑν,k], (21)

where functions dj (k) are defined in Eq. (9). The resulting
Hamiltonian can now be rewritten (up to some constant term
E0) as

Ĥ2 = −1

2

∑
k

Ẑ
†
k · HPH(k) · Ẑk, (22)

where Ẑk and HPH(k) are defined as follows:

Ẑ
†
k = [ẑ†a,k,ẑ

†
b,k,ẑa,−k,ẑb,−k], (23)

HPH(k) =

⎡
⎢⎢⎢⎢⎣

μ + dz(kkk) − 2Un0 dx(kkk) − dy(kkk)i −Un0 0

dx(kkk) + dy(kkk)i μ − dz(kkk) − 2Un0 0 −Un0

−Un0 0 μ − dz(kkk) − 2Un0 dx(kkk) + dy(kkk)i

0 −Un0 dx(kkk) − dy(kkk)i μ + dz(kkk) − 2Un0

⎤
⎥⎥⎥⎥⎦. (24)
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FIG. 4. Dispersion relation of excitations in the ZM phase of the
anisotropic Haldane model, showing the linear Bogoliubov dispersion
relation around the point � in the BZ. All figures were taken for t1 = 1
and n0U = 1.

This Hamiltonian can be diagonalized by using the Bogoliubov
transformation from the particle operators ẑν,k to quasiparticle
operators ξ̂ν,k. Transformed operators should preserve the
bosonic commutation relations:

[
ξ̂
†
ν1,k1

,ξ̂ν2,k2

] = δk1 k2δν1ν2 , (25)[
ξ̂ν1,k1 ,ξ̂ν2,k2

] = 0. (26)

In the matrix notation this transformation can be written
as Ẑk = Tk · �̂k. The condition of preserving commutation
relations imposes restrictions on the form of Tk. It should
verify

Tk · � · T
†
k = T

†
k · � · Tk = � =

[
I2 0
0 −I2

]
. (27)

Our goal consists then in finding a transformation Tk that could
diagonalize the Hamiltonian: T †

k · HPH(k) · Tk = D(k). If such
a transformation exists in spite of constraints imposed by
Eq. (27), eigenvalues of the matrix �D(k) will correspond to
the spectrum of Bogoliubov pseudoparticles. One can then use
the following identity: T −1

k �HPH(k)Tk = �D(k) to deduce
that matrices �HPH(k) and �D(k) are similar. Thus, in order
to obtain the Bogoliubov spectrum we only need to diagonalize
�HPH(k).

In Fig. 4 we show the corresponding solution for the
anisotropic Haldane-like model at the value of the interaction
such that n0U = t1 = 1. The dispersion relation is linear
around the point k = 0. We remark that in the anisotropic
case the velocity of the “sound” mode depends on t2, whereas
in the isotropic case it was completely independent of t2.
In Ref. [142] it was shown for the case of the isotropic
Haldane model, that topological properties of Bloch bands
present in the noninteracting case are smoothly carried over to
Bogoliubov excitation bands in the ZM phase. We expect the
same formalism to be applicable to the case of the anisotropic
Haldane model and in the FM phase.

C. Critical value of the NNN hopping amplitude

As we increase the ratio t2/t1 up to some critical value,
the minimum of the single-particle band structure at the point
� splits into two new minima that then start moving away

from the center of the BZ. Numerical simulations of the Fig. 3
and symmetry arguments imply that for any value of t2/t1,
the position of minima along the y axis does not change.
Thus, it should be sufficient for us to perform calculations
only along the ky = 0 axis in the BZ. In Fig. 5 we show some
examples of the analytical energy structure compared to results
of ED simulations for the one-particle Hamiltonian in different
regimes of t2 for ky = 0, kx ∈ [0,4π/

√
3a].

The goal of this subsection is to deduce the precise value
of the critical NNN hopping amplitude t c2 . Let us consider
that the condensation in the general case occurs at points
k = ±(zπ/

√
3a)ex , for some real z ∈ [0,2], defined up to

a reciprocal lattice vector. Eigenvalues of the one-particle
Hamiltonian Ĥ1p at these points are

ε±(z) = ε0 ±
√

5t2
1 + (16t2

2 − 4t2
1

)
sin2

(
πz

2

)
+ 4t2

1 cos

(
πz

2

)
.

(28)

Extrema of the lower band energy correspond to zeros of ∂ε−(z)
∂z

,
which we will denote by zc. They are solutions of the following
set of equations:

sin

(
πzc

2

)
= 0,

cos

(
πzc

2

)
= 1

2

(
t2
1

4t2
2 − t2

1

)
. (29)

We deduce three main regimes in the evolution of the energy
band structure along the ky = 0 line.

The first regime is determined by |t2| <
√

1/8t1. In this re-
gion the solution of the second equation exists and corresponds
to the maximum of the band at two Dirac points. If we increase
t2, starting from zero, the value of zc corresponding to these
maxima increases (Dirac points move away from extremities
of the BZ) until it reaches the value zc = 2. The minimum of
the band is localized at the point �, which corresponds to the
solution of the first equation for zc = 0.

In the region
√

1/8t1 < |t2| <
√

3/8t1 there is no solution
of the second equation and the band possesses only one
minimum at zc = 0 and maximum at zc = 2.

In the region |t2| >
√

3/8t1 the solution of the second
equation starts existing again and corresponds to two new
minima of the band. At the same time, the solution of the
first equation at zc = 0 transforms into a local maximum
and the solution at zc = 2 stays a global maximum of the
band. This defines the precise point of the ZM-FM transition:
t c2 = √

3/8t1.
The transition between all these three regimes can be clearly

seen in Fig. 5 (upper panel). The shape of the energy band at
the critical point, expressed in terms of the parameter z is

ε−(z) ≈
z→0

ε0 − 3t1 + t1

12

(
πz

2

)4

. (30)

Thus, at the transition the well becomes much wider: The sec-
ond power in the dispersion relation is replaced by the fourth
power. In the following we will study more closely the behavior
of the time-dependent system in the regime of the effective
NNN hopping amplitude t2 close to t c2 . However, in order to

045102-7



KIRILL PLEKHANOV, GUILLAUME ROUX, AND KARYN LE HUR PHYSICAL REVIEW B 95, 045102 (2017)

FIG. 5. Cut of the lowest energy band of the single-particle system along the ky = 0 line. Analytical calculations (black solid line) are
superposed to the results of ED (red dashes). (Upper panel) Anisotropic model. Structure of the ED cluster is 10 × 2 cells (40 sites) with tilt
th = −1. Values of t2 are chosen is such a way that the condensation occurs precisely at the points allowed by the geometry of the ED cluster.
The value t2 = 2t c

2 is high enough to see the physics of the t2  t c
2 regime. In this last case, shown in the rightmost figure, only the small

distinction between analytical and numerical results (due to finite size effects) is observed. (Lower panel) Isotropic model. Structure of the ED
cluster is 9 × 2 cells (36 sites) with tilt th = −1.

give an estimation for required experimental parameters, we
calculate the critical value Vc needed to reach the ZM-FM
phase transition at a fixed frequency: Vc(ω = 60t1) ≈ 8.57t1.

Displacement of the condensation point for different pa-
rameters of the problem affects the procedure of the numerical
ED. Numerical simulations of the infinite lattice requires
considering a particular set of points on the lattice, forming a
cluster, and of periodic boundary conditions gluing together
different clusters. This defines the set of quantum numbers
associated with irreducible representations of the group of
translations along two Bravais vectors of the lattice. Each
quantum number corresponds to one point in the BZ and the
amount of quantum numbers equals the number of possible
translations in the cluster. Thus, by increasing the cluster size,
we increase the resolution in the BZ.

According to our previous discussion, in order to capture
the ZM-FM transition in the anisotropic model, one can restrict
ourselves to the case ky = 0. This motivates us to consider a
particular choice of clusters, maximizing the resolution in the
BZ along kx with the price of minimizing the resolution along
ky . We make such clusters by composing lx × ly unit cells of
the honeycomb lattice in the geometry of the parallelogram
generated by vectors lxv3 and lyv1. Each parallelogram is then
translated with spanning vectors s1 = lxv3 and s2 = lyv1 −
thv3 to fill the full lattice. Here th denotes the tilt. This defines
our implementation of PBC. Example of such tilted cluster is
shown in Fig. 6.

D. FM phase

The FM phase arises when t2 reaches the critical value
t c2 = √

3/8t1. In the limit t2  t1, the two sublattices become
decoupled and bosons condense at the two inequivalent points
KA = (π/

√
3a)ex (on sublattice A), and KB = −(π/

√
3a)ex

(on sublattice B), as shown on Fig. 3(c). We begin with
the study of the properties of the finite momentum BEC, by
considering first this simpler case.

1. FM phase in the regime of decoupled sublattices

In the limit of two decoupled sublattices, one can use the
following approximation for the real space annihilation (and
creation) operators:

âi ≈ e−ir i KA

√
Nc

âKA
, b̂j ≈ e−irj KB

√
Nc

b̂KB
. (31)

In the following we will also use the notation,

〈â†
i âi〉 = nA = NA/Nc, 〈b̂†j b̂j 〉 = nB = NB/Nc, (32)

FIG. 6. (a) Schematic representation of the tilted cluster with
4 × 2 cells and with the tilt th = −1, used in ED simulations of the
ZM-FM phase transition. Black lines determine boundary of each
cluster. (b) Corresponding quantum numbers allowed by symmetries
of the cluster.
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such that (nA + nB)/2 = n = N/Ns is the filling, since Nc =
Ns/2. Within the mean-field approximation, we simply write〈

âKA

〉 ≈ √NAeiθA,
〈
b̂KB

〉 ≈ √NBeiθB , (33)

where θA and θB are the superfluid phases associated with
the two condensates. One can easily check that in the ground
state the contribution of the NN hopping term vanishes in the
thermodynamic limit:

∑
〈ij 〉

â
†
i b̂j ∝

∑
i

⎛
⎝e−i KB ri

3∑
j=1

e−i KBuj â
†
i b̂KB

⎞
⎠

=
∑

i

ei(KA−KB )r i â
†
KA

b̂KB
= 0. (34)

We thus see that the contribution of the t1 term effectively
vanishes in the ground state. Finally, we obtain that in the
regime t2  t c2 , the mean-field approximation simplifies the
Hamiltonian into

Ĥ ≈ (ε0 − 4t2 − U/2)
(
â
†
KA

âKA
+ b̂

†
KB

b̂KB

)
+ U

Ns

[(
â
†
KA

âKA

)2 + (b̂†KB
b̂KB

)2]
, (35)

so that the ground-state energy reads

EFM
GS =

t2t c2

Ns

[
(ε0 − 4t2 − U/2)n + U

(
n2

A + n2
B

)
/4
]
. (36)

As the two sublattices are completely decoupled, both phases
θA and θB become independent parameters, which corresponds
to the presence of two Goldstone modes.

The phase difference θA − θB can be fixed if a coherent
coupling between the two wells is generated, resulting in a
modification of JAA and allowing for finite intersublattice
currents JAB . Such effect can be induced, for example, by
adding impurities to the model or, in the thermodynamic
limit, by taking into account quantum fluctuations via the
so-called “order by disorder” mechanism [143]. This problem
was studied in detail in Ref. [53] in the case of the isotropic
Haldane model, and it will not be considered in this work.
In numerical simulations, we also do not observe this effect
since the ground state obtained using ED corresponds to the
state without coherent coupling. In particular, NN currents
JAB calculated in the ground state using ED will always be
zero. As a consequence, in the following we will refer to
the relatively simple case of two condensates at KA and KB ,
which are completely decoupled. This leads in particular to the
conclusion that in the t2  t c2 regime of the FM phase NNN
currents are simply zero:

J FM
AA,vj

=
t2t c2

0. (37)

2. FM phase in the intermediate regime

We now consider the more realistic case when t2 becomes of
the order of t1 in the t2 > tc2 regime. We then define α̂k and β̂k

the annihilation operators in the lower and upper energy bands
of the single-particle Hamiltonian. At each point of the BZ
these operators are related to âk and b̂k through some unitary
transformation:

âk = μ(k)α̂k + ν(k)β̂k,

FIG. 7. (a) Variation of the second neighbor current JAA with
t2. Qualitative change of behavior can be seen when crossing the
critical value t c

2 = √
3/8t1. In the figure analytical prediction (blue

line) is compared with the results of ED (red circles). (b) Result of
ED showing patterns of currents JAA. Closed loops of chiral currents
involve lozenge geometries. Different types of arrows correspond to
different sublattices.

b̂k = eiφ(k)[−ν∗(k)α̂k + μ∗(k)β̂k], (38)

with |μ(k)|2 + |ν(k)|2 = 1. In the low temperature limit,
bosons condense at points ±K c = ±(zcπ/

√
3a)ex (we recall

that by our definition zc > 0) so that 〈α̂±K c
〉 ∼ √

N and
〈β̂±K c

〉 = 0. Thus, annihilation (and creation) operators in the
real space are approximated by

âi ≈ e−i K c r i âK c
+ ei K c r i â−K c√
Nc

,

b̂i ≈ e−i K c r i b̂K c
+ ei K c r i b̂−K c√
Nc

. (39)

We then introduce the averages,

〈â±K c
〉 = √NA,±eiθA,± , 〈b̂±K c

〉 = √NB,±eiθB,± , (40)

such that NA,+ + NA,− = NA, NB,+ + NB,− = NB , NA,± +
NB,± = N±, and NA + NB = N+ + N− = N . The approxi-
mation (39) can be used to find a more general form of
the GS Hamiltonian and GS energy in the FM phase (see
Appendix B for their complete expressions). Moreover, we
obtain that phases θA,± and θB,± are pinned pair by pairs,
which corresponds to the presence of two Goldstone modes.
We also get the expression of currents valid in both regimes
of t2.

JAA,v1 = JAA,v2 = −t2
NA

Nc

cos

(
zc

π

2

)
,

JAA,v3 = 0. (41)

The evolution of the currents JAA with t2 is shown in Fig. 7,
where the analytical prediction is compared with the results of
ED in a weakly interacting regime.

Another way to perform a numerical verification of the
behavior of the system in the FM regime is to look at
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FIG. 8. Momentum distribution n(k) at the transition in the FM
phase in the bosonic many-body ground state. Structure of the ED
cluster is 6 × 4 cells (48 sites) with tilt th = −2. Parameters of
simulations are as follows: N = 2, U = 0. Finite size effects result
in a tilt of the maxima of n(k) and its nonphysical oscillations.

the momentum distribution n(k). In Fig. 8, we give some
results of ED showing how the momentum distribution in the
many-body GS in the k = 0 sector evolves when changing t2
above the critical value t c2 . We effectively observe the splitting
of the condensation point into two points and their further
displacement along the ky = 0 line.

The continuous variation of currents suggests that the ZM-
FM transition in the anisotropic Haldane model is of the second
order. In order to justify this point, we first write explicitly the
unitary transformation of Eq. (38) at momentum ±K c in terms
of zc:

â±K c
= −

√√√√√X2(zc) + Y 2(zc) ± Y (zc)

2
√

X2(zc) + Y 2(zc)
α̂±K c

+
√√√√√X2(zc) + Y 2(zc) ∓ Y (zc)

2
√

X2(zc) + Y 2(zc)
β̂±K c

,

b̂±K c
= −

√√√√√X2(zc) + Y 2(zc) ∓ Y (zc)

2
√

X2(zc) + Y 2(zc)
α̂±K c

−
√√√√√X2(zc) + Y 2(zc) ± Y (zc)

2
√

X2(zc) + Y 2(zc)
β̂±K c

, (42)

where X(zc) and Y (zc) are defined as follows:

X(zc) = t1

[
1 + 2 cos

(
zc

π

2

)]
,

Y (zc) = 4t2 sin

(
zc

π

2

)
. (43)

One notices that N+ and N−, corresponding to the number of
particles in the wells at ±K c, and zc are the only parameters of
the problem. In Eq. (B6), we express the GS energy in terms

of these quantities. Close to the ZM-FM phase transition, we
expand the GS energy in powers of zc. By doing this calculation
in the noninteracting case we obtain

EGS =
zc→0

cst − t1N

[
8

3

(
t2

t1

)2

− 1

](
πzc

2

)2

+ N

108t3
1

(
128t4

2 − 9t4
1

)(πzc

2

)4

+ · · · . (44)

The sign change of the first term, proportional to z2
c , occurs at

the value t c2 = √
3/8t1, in agreement with our previous estima-

tions. Moreover, the sign of the second term, proportional to
z4
c , is always positive in the FM phase. Thus, we clearly see that

the transition in the anisotropic Haldane model is of the second
order. This is different from the case of the isotropic Haldane
model [53,144], where the transition is of the first order, since
three wells are simultaneously present at the transition.

E. Effect of interactions on the QPT

In order to study more precisely the effect of interactions on
the ZM-FM phase transition, we repeat the previous analysis
and write down the contribution to the GS energy in powers of
zc associated with the interaction term only. This calculation
is based on the ansatz (39). Thus, we must assume that
interactions are weak enough so that they do not affect the
two-well structure of the system in the FM phase. The result
of such a calculation is given in Eq. (B6) of Appendix B.

First, we see that in the FM phase interactions imposes
constraints onto N+ and N−—the numbers of particles in
each well, and removes the degeneracy that was present in
the noninteracting system. However, contrary to the most
intuitive guess, there are two ground states that minimize the
energy in two distinct subregimes of the FM phase: for t c2 <

t2 <

√
(17 + √

97)/24 t c2 interactions favor particles in one
particular well, such that either N+ or N− becomes precisely

equal to N . When t2 >

√
(17 + √

97)/24 t c2 the uniform
distribution of particles N+ = N− = N/2 is preferred.

The second effect of weak interactions consists of moving
the position of minima away from ±K c. In particular, to the
lowest order in zc, the contribution of interactions to the GS
energy at the SF-CSF transition is

�E′
GS = NUn

8t2
2

9t2
1

(
zc

π

2

)2

. (45)

This leads to the increase of the critical NNN coupling
amplitude t c2 . If particles are not located all in one well, there
appears an additional contribution,

�E′′
GS = −16U

3

N+(N − N+)

Ns

(
t2

t1

)2(
zc

π

2

)2

, (46)

that, on the opposite, tends to decrease t c2 . The second contri-
bution �E′′

GS dominates when N+ = N− = N/2, resulting in
the generation of an effective repulsion between the two wells
(see also Appendix B for a more detailed analysis).

In order to check our theoretical predictions, we per-
form ED calculations. We plot the many-body energy levels
Ei(kx) − E0 for different values of the total momentum k (here
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FIG. 9. Many-body energy levels (cut along the ky = 0 line in the BZ). ED cluster is 6 × 2 cells (24 sites). Position in the BZ of quantum
number associated with this precise cluster is shown on a small replica of Fig. 6(b). Different columns correspond to different values of U .
Different lines correspond to different values of t2. Parameters are N = 5 particles.

E0 denotes the lowest energy over all momentum sectors).
Simulation results are shown in Fig. 9 for an odd number of
particles and Fig. 10 for an even number of particles.

Without interactions, we observe a high degeneracy of
the many-body ground state due to the fact that all bosons
condense independently in one of the two wells. If one
increases the interaction strength, this degeneracy is lifted.
We observe that, close to the transition (t2 ≈ t c2 ) in the FM
phase, the most energetically favored ground state of the
weakly interacting regime corresponds to the state with all
particles condensed in the same well. This is not the case for
higher values of t2. If t2 increases, the ground state becomes,
as expected, the state with all particles uniformly distributed
over two wells (with N+ − N− = ±1 if N is odd). The value

at which this transition occurs agrees well with the analytical

prediction t2 =
√

(17 + √
97)/24 t c2 , with some imprecision

coming from finite size effects.
When U increases, the ground state changes into a more

complicated many-body state with n(k) having a nonzero
contribution at the � point. This transition is accompanied
by the change of the location of the minimum in momentum
space. In this regime the perturbation due to interactions cannot
be interpreted as small in terms of other parameters of our
problem. The effect of interactions in this nonperturbative
regime will not be considered in this work.

In simulations we do not observe the displacement of the
condensation point due to interactions. This is explained by
the fact that for weak interactions this effect is not noticeable

FIG. 10. Many-body energy levels (cut along the ky = 0 line in the BZ). Energy minima are shown in blue. ED cluster is 6 × 2 cells
(24 sites); the tilt th = −1. Position in the BZ of quantum number associated with this precise cluster is shown on a small replica of
Fig. 6(b). Different columns correspond to different values of U . Different lines correspond to different values of t2. Parameters are N = 6
particles.
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enough to be observed because of the finite sizes of ED
clusters, whereas in the regime of stronger interactions other
effects occur earlier.

V. VALIDITY OF THE HFE CONVERGENCE

We recall that all properties of the anisotropic Haldane
model studied in Secs. III B and IV correspond to the effective
Hamiltonian (3), which we expand only up to the first order
with contribution Ĥ

(1)
eff . In this section, we determine the

conditions of validity for this approximation. More precisely,
we want to compare the evolution of the system with the exact
time-dependent Hamiltonian Ĥ (t) of Eq. (1) to the evolution
with the effective Hamiltonian of the anisotropic Haldane
model.

A. Second-order terms in the HFE

In order to study in detail the convergence of the HFE,
one needs to evaluate higher order terms in this perturbative
expansion (3). In our case, i.e., for the time-dependent pertur-
bation V̂ (t) with only two nonvanishing Fourier components
V̂ (±1), the second-order term is determined using the following

identity [71–75]:

Ĥ
(2)
eff = 1

2ω2
([[V̂ (1),Ĥ0],V̂ (−1)] + H.c.). (47)

We study separately contributions coming from the term of
frequencies (chemical potentials) ωA and ωB and the term of
NN hoppings t1, that are present in Ĥ0, and we denote them,
respectively, by Ĥ

(2)
eff (ωB − ωA) and Ĥ

(2)
eff (t1).

If we consider the choice of phases depicted in Fig. 1, the
only effect of Ĥ

(2)
eff (ωB − ωA) consists of an asymmetric renor-

malization of chemical potentials, resulting in the generation
of an effective Semenoff mass term [138]. This effect vanishes
if ω  ωA − ωB . Ĥ (2)

eff (t1) generates NN and NNNN hoppings
with complex amplitudes, which can be used in particular to
obtain Chern insulators with Chern number greater than 1. It
also becomes irrelevant when ω  t1.

Moreover, if we consider the case of the many-body
system with interactions weak enough, such that the Floquet
approximation and the HFE are still valid, the interaction-
dependent term Ĥ

(2)
eff (U ) will also appear at the second order in

the perturbation theory. This term will lead to the generation of
density-mediated NNN hoppings and second-order hoppings
such that two particles move to or from one particular lattice
site at the same time. This term becomes negligible when
ω  U .

Ĥ
(2)
eff (ωB − ωA) = V 2

2ω

(
ωB − ωA

ω

)⎡⎣∑
〈〈ik〉〉

cos(�ik)(â†
i âk + â

†
kâi) −

∑
〈〈j l〉〉

cos(�jl)(b̂
†
j b̂l + b̂

†
l b̂j )

⎤
⎦,

Ĥ
(2)
eff (t1) = V 2

2ω

(
t1

ω

)
(NN and NNNN hoppings with complex amplitudes), (48)

Ĥ
(2)
eff (U ) = V 2

2ω

(
U

ω

)
(density-mediated NNN hoppings and second-order hoppings with complex amplitudes).

B. Numerical convergence

We estimate more quantitatively, which values of the
modulation frequency ω are big enough, compared to t1 and
U , so that we can neglect all second-contributions in the HFE.
For clarity, we consider the case of ωA = ωB , such that the
term Ĥ

(2)
eff (ωB − ωA) is exactly zero. Therefore, we perform

numerical simulations of the exact time evolution of the model.
We initially prepare the system in the state |�(t = 0)〉 = |�0〉
(in the following we will consider three different choices
for this initial state) and we use the exact diagonalization
technique to calculate states |�(t)〉 and |�eff(t)〉 at time
t , evolved with Ĥ (t) and Ĥeff, respectively, where the last
Hamiltonian is calculated up to the first order in the HFE (and
thus corresponds to the Hamiltonian of the anisotropic Haldane
model). As far as two states propagate in time, they deviate
one from another. This deviation is captured by the “fidelity”
F (t) defined as follows:

F (t) = |〈�(t) | �eff(t)〉|. (49)

From the results of Sec. IV, we notice that we are also
interested in the regime where the effectively generated NNN

hopping amplitude t2 = V 2

2ω
becomes of the order of t1,

which implies that it means that the amplitude V behaves
as

√
ωt1 in the limit ω → ∞. Thus, in order to have a more

complete description, we perform simulations for different
values of t2. Once t2 is fixed, we deduce the value of the
Floquet modulation amplitude using relation V = √

2ωt2. In
particular, the critical value Vc required to reach the ZM-FM
transition (according to the results of Sec. IV D) at fixed
frequency ω = 60t1 is Vc ≈ 8.57t1.

To start with, we show the calculations performed in the
single-particle case. Figure 11 represents the typical shape
of the fidelity for the time evolution over 100 periods. The
first important observation is related to the fast oscillation of
F (t), forming an “envelop” for its propagation in time. These
oscillations are due to intraperiodic submotions of the system,
not captured by Ĥeff, but described by Kick operators K̂eff (in
agreement and according to the definition of Refs. [71–75]).

Secondly, during the time evolution over an integer number
of periods, the value of intraperiodic maxima of F (t) de-
creases. This effect originates from higher order terms in the
HFE. Errors due to neglected terms are accumulated during
each period, leading to an exponential decrease of F (t) with
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FIG. 11. Numerical measurement of the fidelity F (t) =
|〈�(t) | �eff(t)〉| for the time evolution over 100 periods in the single-
particle case (U = 0). Exact time-dependent evolution is performed
for V = √

2ωt2.

time. The total error becomes smaller when we increase the
ratio ω/t1 or decrease t2/t1. This effect is observed more quan-
titatively in Figs. 12(a) and 12(b), where we plot the fidelity
for different values of parameters ω and t2. For clarity, we do
not show the entire time evolution, but only the value of F (t) at
few stroboscopic times. In Fig. 12(e), we also plot the diagram
of minima and local intraperiodic maxima of the fidelity,
corresponding to the lowest position of the “envelop” of F (t).

Another important point, not captured by Floquet theory
and the HFE, and which appears in simulations, is the fact that

the time evolution with both effective and exact Hamiltonians
depends on the initial state |�0〉. In our numerical simulations
we consider three different types of initial states: the ground
state of the effective Hamiltonian |GSeff〉, the ground state of
the unperturbed Hamiltonian |GS0〉, and a state |�rand〉 with a
random wave function.

All properties related to the fidelity, described above, are
observed in the case of the state |�rand〉. If, however, we con-
sider the state |GS0〉, we do not observe any noticeable time
evolution. In the case of the state |GSeff〉 in the regime
when the minimum of the lowest band is not localized at
point �, we clearly observe intraperiodic submotions of the
system. However, the envelop of F (t) is located close to
the maximum and does not decay with time. This can be
interpreted in terms of the symmetry of these states with
respect to Hamiltonians. For example, if the initial state is
one of two eigenstates at momentum k = 0, it will always
stay an eigenstate of both effective, exact time-dependent,
and unperturbed Hamiltonians. Thus, we will not observe any
evolution of the fidelity.

In order to prepare the basis for future investigations, we
perform similar numerical tests for fidelities of the HFE in
the many-body case. We are particularly interested in how
the convergence of the HFE is modified by Bose-Hubbard
interactions. As we already mentioned, interactions lead to
highly nontrivial effects such as heating or decoherence [80–
95]. In Figs. 12(c) and 12(d) we plot F (t) for two different
values of Un. We see that the effect of U leads to the faster
decay of the fidelity.

FIG. 12. Observable F (t) = |〈�(t) | �eff(t)〉| for the time evolution over T = 100 periods (a) and (b). Stroboscopic values of the fidelity
in the single-particle case (U = 0) for two different values of ω. (c) and (d) Stroboscopic values of the fidelity in the many-body case for two
different values of U , with ω = 100t1. (e) Diagram showing minima (black squares) and local maxima (blues circles) of F (t) for different
values of t2 and ω in the single-particle case (U = 0). All simulations are performed with randomly distributed initial state |�rand〉.

045102-13



KIRILL PLEKHANOV, GUILLAUME ROUX, AND KARYN LE HUR PHYSICAL REVIEW B 95, 045102 (2017)

FIG. 13. Strip (ladder) geometry consisting of two coupled
chains. Each site of the unit cell of this ladder is characterized by the
chain index 1 or 2 (represented in the picture by the fact that the figure
is either filled or not) and the sublattice index A or B (represented
by the color and the shape of the figure). In the continuum limit,
depending on the ratio t1/t2 we would prefer either to describe the
system in terms of (a) operators ψ̂1 and ψ̂2 if t1  t2, or (b) operators
ψ̂A and ψ̂B if t1 � t2.

VI. LADDER GEOMETRY

Many theoretical and experimental works were performed
during previous decades using the ladder geometry, allowing
for a strip version of two-dimensional (2D) lattices and the
efficient theoretical tools of quasi-one-dimensional systems
such as bosonization [127–130] and numerical techniques. In
particular, in bosonic systems, questions related to the Mott
insulator—superfluid phase transition, effects induced by the
magnetic field, such as Meissner effect, and apparition of
one-dimensional (1D) equivalent of a vortex lattice [145–152]
or also Laughlin bosonic phases [153] were addressed. Ex-
perimental realization of bosonic ladders, giving opportunity
to study the rich and profound physics of these systems was
done recently, using laser assisted tunneling [46] to create
artificial gauge fields. For fermionic systems, the observation
of intriguing chiral edge states in systems with synthetic
dimensions was reported in Refs. [154,155], in relation to
recent theoretical works [156–158]. In Ref. [159] systems

of coupled Rashba nanowires subjected to a periodic time-
dependent perturbation were found to support Weyl semimetal
and fractional topological phases.

Motivated by this context, we consider in this section a
ladder version of the anisotropic Haldane model introduced in
the preceding sections (Secs. III A and IV). We reformulate
the problem of Sec. IV in the ladder geometry of Fig. 13. We
consider the distance between NN being equal to a. The unit
cell of such ladders is formed by four distinct sites, that we
will distinguish by chain index ν ∈ {0,1} and by sublattice
index c ∈ {A,B}, with the convention that ĉν,i is either âν,i or
b̂ν,i , reminiscent of the 2D formulation of the problem. The
effective Hamiltonian evaluated up to the first order in the HFE
can be conveniently written in terms of four distinct terms Ĥ =∑

ν,c Ĥ U
ν,c +∑ν Ĥ ‖

ν +∑c Ĥ t2
c + Ĥ⊥ expressed as follows:

Ĥ
‖
1 + Ĥ

‖
2 = −t1

∑
i

(â†
1,2i b̂1,2i+1 + â

†
1,2i b̂1,2i−1 + b̂

†
2,2i â2,2i+1

+ b̂
†
2,2i â2,2i−1 + H.c.),

Ĥ
t2
A + Ĥ

t2
B = −it2

∑
i

(â†
1,2i â2,2i+1 + â

†
2,2i−1â1,2i

+ b̂
†
2,2i b̂1,2i−1 + b̂

†
1,2i+1b̂2,2i − H.c.),

Ĥ⊥ = −t⊥
∑

i

(â†
1,2i b̂2,2i + b̂

†
2,2i â1,2i),

Ĥ U
ν,c = U

2

∑
i

n̂ν,c,i(n̂ν,c,i − 1). (50)

in which the spatial index i runs over [1,2, . . . ,L/2], with
L the length of the ladder containing L/2 unit cells. If we
compare the strip geometry to the 2D geometry, we should
consider t⊥ = t1. Yet, we will study a more general case with
arbitrary hopping t⊥.

A. Single-particle spectrum basis

We first calculate the band structure ε0(k) of the non-
interacting system by going to the momentum space. The
Hamiltonian is rewritten in terms of 4 × 4 matrices H(k) as
follows: Ĥ = −∑k ψ̂

†
k · H(k) · ψ̂k , where k ∈ [− π

2a
, π

2a
] is the

vector in the 1D BZ, ψ̂k = (â1,k,b̂1,k,â2,k,b̂2,k)
t

and

Ĥ(k) =

⎛
⎜⎜⎜⎝

0 2t1 cos(ak) −2t2 sin(ak) t⊥
2t1 cos(ak) 0 0 2t2 sin(ak)

−2t2 sin(ak) 0 0 2t1 cos(ak)

t⊥ 2t2 sin(ak) 2t1 cos(ak) 0

⎞
⎟⎟⎟⎠. (51)

In Fig. 14, we show the spectrum ε0(k) for various t2. If
we consider, for instance, t2 = 0, we find that the spectrum

ε0(k) = ± 1
2 [t⊥ ±

√
t2
⊥ + 16t2

1 cos2(ak)], to be compared to
the standard ladder bands ε0(k) = ±t⊥ − 2t1 cos (ak). In the
general case, the four eigenvalues of H(k) are

ε0(k) = ± 1
2

[
t⊥ ±

√
t2
⊥ + 16t2

1 cos2(ak) + 16t2
2 sin2(ak)

]
.

(52)

From this equation and Fig. 14, we observe that there is a
transition at t1 = t2, separating the situation t2 < t1, in which
the minimum of the lowest band is located at k = 0, from
the situation t2 > t1, where the minimum of the lowest band is
k = π/2a (up to a reciprocal lattice vector). This is thus analog
to the ZM-FM transition of the 2D version of the model, except
that the minimum at k = π/2a does not move when changing
t2. This transition is actually related to the duality in the model,
appearing in Fig. 13, in which t1 ↔ it2 and one site each two is
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FIG. 14. Single particle spectra of the ladder model (U = 0). All
figures have parameters t1 = t⊥ = 1. We see that as t2 increases, the
minima of the bands moves from k = 0 to k = ± π

2a
. The gap between

middle bands closes at t2 = 0.

exchanged. This duality maps local kinetic energy onto current
operators and explains the t1 = t2 transition point.

It is lastly important to notice that, at this very transition
point t1 = t2, the model displays flat bands since the four

energies become ε0(k) = ± 1
2 [t⊥ ±

√
t2
⊥ + 16t2

1 ] and are thus
independent of k. Such peculiar band structure makes it
difficult to analyze the effect of interactions on the model
and we leave this question for possible future investigations.
Consequently, as bosonization requires one to linearize the
bands and numerics become challenging for flat band models,
we discuss in what follows the regimes t2 � t1 and t2  t1,
expecting that a third phase would appear around the transition
point. This gives an account on how the two phases emerge in
the presence of interactions.

B. Low energy continuum description and
two competing phases

In order to describe the behavior of the interacting system in
ZM and FM phases, far from the regime of flat bands, we write
Hamiltonian (50) in the continuum limit. If one considers only
one chain, for instance, its low-energy description falls into the
universality class of Tomonaga-Luttinger liquids. Excitations
are collective sound modes with linear dispersion and are
described using the “harmonic fluid approach” also known
as “bosonization” [127–130]. In the geometry under study and
setting x = ja with a the lattice spacing, one has the freedom
to define either the set of operators ψ̂1(2)(x) = ĉ1(2),j /

√
a,

corresponding to the lower/upper chain prescription, or the
operators ψ̂A(B)(x) = â(b̂)j /

√
a that correspond to the sublat-

tice prescription. This choice of prescription is schematically
represented in Fig. 13. Bosonic creation operators ψ̂†

ν (x) are
then written in terms of new bosonic fields θ̂ν(x) and φ̂ν(x) via

the following relation:

ψ̂†
ν (x) =

(
ρ0 − 1

π
∇φ̂ν(x)

)1/2∑
p

ei2p(πρ0x−φ̂ν (x))e−iθ̂ν (x).

(53)

The θ̂ν(x) are phase fields and the φ̂ν(x) are the long wave-
length density excitation, such that −∇φ̂ν(x)/π = ρ̂ν(x) − ρ0,
in which ρ̂ν(x) is the density operator and ρ0 its mean value
in the ground state. If the system is translationally invariant,
ρ0 = n/a with n = N/Ns the filling. Operators θ̂ν(x) and
φ̂ν(x) satisfy the following commutation relation:

[φ̂μ(x),θ̂ν(x ′)] = i
π

2
δμν Sgn(x − x ′). (54)

The oscillating contribution in Eq. (53) reflects the ordering in
the lattice description of the model (particles tend to develop
a crystal-like structure). If one averages the density over the
distances large compared to a, only the p = 0 term will remain.
This is the simplification that we will consider in the following.

C. Strong t1 phase

When NNN hopping amplitude t2 is small compared to t1,
the lower/upper chain prescription is well suited. This allows
us to express ĤL

ν = Ĥ ‖
ν + ĤU

ν,A + ĤU
ν,B as follows:

ĤL
ν =

∫
dx

2π

(
vK|∇ θ̂ν(x)|2 + v

K
|∇φ̂ν(x)|2

)
, (55)

where the speed of sound is v and the Luttinger parameter
is K . In the weakly interacting limit, they are identified as
v = ρ0

√
t1U and K = √

t1/U . Furthermore, the Luttinger
parameter satisfies K > 1 for finite repulsive short-range
interactions and K = 1 in the hard core limit. The two chains
are coupled by the following terms:

Ĥ⊥ = −ρ0t⊥
∫

dx cos[θ̂1(x) − θ̂2(x)], (56)

and

Ĥ
t2
A + Ĥ

t2
B = ρ0t2

∫
dx(sin[θ̂2(x + a) − θ̂1(x)]

+ sin[θ̂1(x) − θ̂2(x − a)]

+ sin[θ̂2(x) − θ̂1(x + a)]

+ sin[θ̂1(x − a) − θ̂2(x)]). (57)

If t⊥ is strong (compared to t1), phases θ̂μ(x) will be pinned by
the term Ĥ⊥ in such a way that 〈θ̂1(x)〉 = 〈θ̂2(x)〉 = const,
where 〈.〉 is taken in the ground state. Such configuration
also implies that 〈Ĥ t2

c 〉 = 0 and bosons on two chains form a
quasicondensate at the point k = 0 in the BZ. The expectation
value of θ̂ν(x + a) − θ̂ν(x) and θ̂2(x + a) − θ̂1(x) is related to
the value of densities of local currents between, respectively,
NN and NNN sites. One can deduce in particular that to the
lowest order in a all currents that flow in the right direction
(with increasing x) can be expressed as

J
‖,1
AB,r = −J

‖,2
AB,r = −2ρ0 Im[t1〈ei(θ̂1(x)−θ̂1(x+a))〉] = 0,

JAA,r = −JBB,r = −2ρ0 Im[it2〈ei(θ̂1(x)−θ̂2(x+a))〉]
= −2ρ0t2. (58)
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FIG. 15. Numerical simulations showing the LDOS ρi (via
scaling of blue circles) and the lattice current density Jij (black
arrows) in the ground state of the system in ladder geometry with
8 × 2 sites. (a) The phase t1 > t2 is characterized by |J ‖

AB | = 0 and
|JAA| ≈ 2ρ0t2. (b) The phase t1 < t2 is characterized by |J ‖

AB | ≈ 2ρ0t1
and |JAA| = 0. All simulations were performed in the system with
PBC along the x axis.

Indices AB and AA correspond, respectively, to NN and NNN
currents, 1 and 2 are chain indices, and r refers to the right
direction. Interchain currents are zero everywhere:

J⊥
AB = −2ρ0 Im[t1〈ei(θ̂2(x)−θ̂1(x))〉] = 0, (59)

which is a property related to the Meissner phase in bosonic
ladders, observed in particular in the experimental realization
reported in Ref. [46].

We illustrate this scenario by ED calculations. The numer-
ical results are shown in Fig. 15(a) and display the expected
current pattern for t2 = t1/2.

D. Strong t2 phase

From the other side, when t2 is strong, terms Ĥ
t2
A

and Ĥ
t2
B favor the generation of two decoupled in-

tercrossing chains characterized by 〈θ̂2(x + a) − θ̂1(x)〉 =
〈θ̂1(x) − θ̂2(x − a)〉 = −π/2 (i.e., the phase decreases with x),
and 〈θ̂1(x + a) − θ̂2(x)〉 = 〈θ̂2(x) − θ̂1(x − a)〉 = π/2 (i.e.,
the phase increases with x) for all x = 2ja. In order to
simply describe this phase, one uses the sublattice prescrip-
tion, considers operators θ̂A/B(x) and φ̂A/B(x) and performs
the gauge transformation: θ̂A/B(x) → θ̂ ′

A/B(x) = θ̂A/B(x) ±
πx/2a. This leads to

Ĥ t2
c + ĤU

1,c + ĤU
2,c =

∫
dx

2π

(
uK|∇ θ̂ ′

c(x)|2 + u

K
|∇φ̂c(x)|2

)
,

(60)

with u,K the corresponding parameters. The two chains are
coupled by t1 and t⊥ terms in the following way:

Ĥ⊥ = −t⊥ρ0

∫
dx cos[θ̂A(x) − θ̂B(x)], (61)

and

Ĥ
‖
1 + Ĥ

‖
2 = −t1ρ0

∫
dx(cos[θ̂B(x + a) − θ̂A(x)]

+ cos[θ̂A(x) − θ̂B(x − a)]

+ cos[θ̂B(x) − θ̂A(x − a)]

+ cos[θ̂A(x + a) − θ̂B(x)]). (62)

The ground state in the strong t2 limit corresponds to the
quasicondensation of bosons at the point k = ± π

2a
(defined

FIG. 16. Schematic representation of the ladder model of
Refs. [160,161], which can be generated by using the Floquet theory
and the HFE, starting from the Hamiltonian (1).

up to a reciprocal lattice vector π/a) in the BZ. The effect
of the t⊥ coupling consists of pinning the phases of the two
chains. One remarks that, according to the duality, t1 plays the
same role as t2 in the strong t1 phase. We are also interested
in how expectation values of the local current are modified.
Straightforward calculations imply that in the strong t2 phase
currents (expressed in the same way as previously) become

J
‖,1
AB,r = −J

‖,2
AB,r = −2ρ0 Im[t1〈ei(θ̂1(x)−θ̂1(x+a))〉] = 2ρ0t1,

JAA,r = −JBB,r = −2ρ0 Im[it2〈ei(θ̂1(x)−θ̂2(x+a))〉] = 0,

J⊥
AB = −2ρ0 Im[t1〈ei(θ̂2(x)−θ̂1(x))〉] = 0. (63)

These analytical predictions are also illustrated by ED simu-
lations gathered in Fig. 15(b).

E. Related model

We emphasize that many other effective models with
nontrivial profound physics could be generated using the
time-dependent model described by Eq. (1). In particular, one
could consider the square lattice with phases θij distributed in
the following way: θij = π/2 for all horizontal hoppings from
the right to the left and θij = 0 for all vertical hoppings from
the bottom to the top. The resulting model is geometrically
equivalent to the model of Refs. [160,161] (in the last reference
it was also referred to as the Creutz model) and sketched in
Fig. 16. This model also possesses a one to two quantum
well transition at the bosonic ground-state level and nontrivial
topological properties related to the generation of an effective
spin-orbit coupling (due to td term that couples different chains
of the ladder at neighboring positions j ).

VII. CONCLUSION

To summarize, we have shown exotic physics induced
by Floquet modulation of lattice systems, using analytical
calculations supported by exact diagonalizations. First, in
relation with the realization of topological phases, we have
shown how to engineer analogs of Haldane Chern insulators
with anisotropic next-nearest neighbor couplings. In the
context of photon systems, the ground state corresponds to
the vacuum in the bulk; shining light with a frequency within
the gap between the Bloch bands would allow one to realize
one-way motion of light at the edges, thereby probing the
topological nature [31,32,34]. Then, focusing on the s band of
an optical lattice, we have shown how to engineer a BEC analog
of a FFLO state, usually predicted for fermionic systems within
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Bardeen-Cooper-Schrieffer theory. The transition can be de-
tected via an indirect measurement of Meissner currents along
NNNs, averaged over one period of the Floquet perturbation, or
by focusing on the momentum distribution of bosons. We find
that the nature of the QPT is different in the isotropic [53] and
anisotropic contexts. In the latter case studied in the present
paper, the transition is of second-order type, which is exem-
plified by the continuity of Chiral currents at the transition.
Closed loops of Chiral currents also involve lozenges instead
of triangles. We have shown how interactions affect the band
structure and the momentum distribution across the QPT. The
effect of quite large interactions on the Floquet theory leading
potentially to heating and decoherence effects will be studied
separately. The present engineered gauge for the vector poten-
tials also allows tractable solutions in ladder (strip) geometries.
We have shown, using bosonization and exact diagonalization,
that a similar chiral bosonic QPT occurs in this case. However,
the vicinity of the phase transition, which exhibits flat bands, is
more complex and it will consequently be studied separately.
Similar Meissner currents have already been reported in
bosonic ladders [46] by analogy to superconductors. This time-
dependent approach could also be extended to simulate spin-
orbit models in relation with iridate materials [9,140,162,163].
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Bloch, Benoı̂t Douçot, Tianhan Liu, Belen Paredes, Arun
Paramekanti, Leticia Tarruell, Ronny Thomale, Julien Gabelli,
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APPENDIX A: EFFECTIVE HALDANE HAMILTONIAN
AND DOMINANT TERMS IN DYSON SERIES

FOR OBSERVABLES

It is known that the Floquet Hamiltonian obtained through
the Floquet-Magnus expansion is related to the Dyson se-
ries [137] and the (general) time-dependent perturbation
theory [67]. In this appendix, we emphasize this point, by
showing the similarity between observables calculated in the
context of time-dependent perturbation theory and with the
effective Hamiltonian in the context of the HFE, by considering
the particular case of the anisotropic Haldane model.

1. Perturbation theory

We consider the system evolving with the Hamiltonian
Ĥ (t) = Ĥ0 + V̂ (t) and we treat the time-dependent term
perturbatively. We now define the operator,

Ŝ(t,t0) = eiH0(t−t0)Û (t,t0), (A1)

where

Û (t,t0) = T exp

[
−i

∫ t

t0

dt1Ĥ (t1)

]
(A2)

is the evolution operator and T the time-ordered product. One
easily obtains that

Ŝ(t,t0) = T exp

[
−i

∫ t

t0

dt1V̂I (t1,t0)

]
, (A3)

where ÂI (t,t0) is the operator in the interaction picture:
ÂI (t,t0) = eiĤ0(t−t0)Â(t)e−iĤ0(t−t0). We consider that the ar-
gument in the exponential in Eq. (A3) is small. We thus
expand the exponential in the Dyson series and calculate the
time-ordered product:

Ŝ(t,t0) = 1 − i

∫ t

t0

V̂I (t1,t0)dt1

−
∫ t

t0

dt1

∫ t1

t0

dt2V̂I (t1,t0)V̂I (t2,t0) + · · · . (A4)

When the system is initially prepared in state |φ(t = 0)〉 =
|φ0〉, the mean value of an observable O at time t reads

O(t) = 〈Ô(t)〉t = 〈φ0| Ŝ†(t,t0)ÔI (t,t0)Ŝ(t,t0) |φ0〉 . (A5)

This provides an expansion of O(t) and study of the first
contributions in the following.

2. Observables

a. Second-neighbor currents

The continuity equation in the Schrödinger picture for the
particle density nA,i at site i on sublattice A takes the form,

d 〈n̂A,i〉t
dt

= d

dt
〈φ(t)| n̂A,i |φ(t)〉 = − 〈ĴA,i(t)〉t . (A6)

The operator ĴA,i(t) represents the sum of local instantaneous
currents at the corresponding site. When the system is out
of equilibrium, these currents do not vanish in general. By
performing the calculation of the commutator, we immediately
obtain

ĴA,i(t) = i
∑
j (i)

[−t1 + V cos(ωt + θij )](â†
i b̂j − b̂

†
j âi), (A7)

where
∑

j (i) denotes the sum over all sites j , NN of a given
site i.

After some calculations, one gets that the first nontrivial
term, that does not vanish when integrated over an integer
number of periods, appears at first order in the Dyson
expansion as follows:

J
(2)
A,i(t) =

〈
i

[ ∫ t

t0

dt1V̂I (t1,t),Ĵ
(1)
A,i(t)

]〉
t,0

, (A8)

where 〈· · ·〉t,0 = 〈φ0|eiĤ0(t−t0)(· · · )e−iĤ0(t−t0)|φ0〉. Now we
want to take into account the fact that ω is the largest
energy scale in the system. We perform the integration
over time and neglect all subdominant order terms in 1/ω2.
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We obtain

J
(2)
A,i(t) ≈ −V 2

ω

⎡
⎣ ∑

j (i),l(i)

cos(ωt + θij ) sin(ωt + θil) 〈b̂†j b̂l + b̂
†
l b̂j 〉t,0 −

∑
〈〈k|i〉〉

cos(ωt + θij ) sin(ωt+θkj ) 〈â†
i âk+â

†
kâi〉t,0

⎤
⎦. (A9)

We notice that the first term is odd under the change j → l

and that j is fixed by the choice of i and k in the second term.
We are interested in calculating the average of J

(2)
A,i(t) over the

period T . After some calculations this leads to∫ t0+T

t0

dt
d 〈n̂A,i〉t

dt

= V 2

2ω

∑
〈〈k|i〉〉

sin(�ik)
∫ t0+T

t0

dt 〈â†
i âk + â

†
kâi〉t,0 . (A10)

Here �ik = θij + θjk for any NNN sites i and k on the
sublattice A with the same NN site j on the sublattice B. The
first term has dropped in the expression because of the sign
under the exchange j → l. Last, we notice that we recover the
expression of the t2,ik hopping amplitude found in the HFE.

Finally, we see that these averaged currents are almost
the same as the ones obtained from the effective Hamil-
tonian. The only difference is that effective currents are
calculated in the state evolving with the complete effective
Hamiltonian Ĥeff, in which case we take the average 〈· · ·〉t ,
while averaged currents are calculated in the state evolving
with Ĥ0, in which case the average is 〈· · ·〉t,0:

d
〈
n̂eff

A,i

〉
t

dt
= − i

〈[
n̂A,i ,Ĥ

(1)
eff

]〉
t

= V 2

2ω

∑
〈〈k|i〉〉

sin(�ik) 〈â†
i âk + â

†
kâi〉t . (A11)

b. Displacement of the momentum distribution

The variation of the momentum distribution nk is closely
(but not directly) related to the form of currents expressed in
the previous subsection. In the initial state, the momentum
distribution is likely to be peaked at k = 0 so observing an
FM condensate requires that nk evolves significantly in time.
More precisely, we have on sublattice A the contribution,

d 〈n̂A,k〉t
dt

= 1

Nc

∑
i

⎛
⎝d 〈n̂A,i〉t

dt
+
∑
j �=i

eik(ri−rj ) d 〈â†
i âj 〉t
dt

⎞
⎠.

(A12)

Thanks to the fact that effective NNN currents should be
conserved, one can argue that the first term in the expression
above should sum up to zero when integrated over the full
period of time T .

In order to calculate the effect of the second term, we need
to perform the power expansion of d 〈â†

i âj 〉t /dt at the same
order as d〈n̂A,i〉t /dt . We see that despite the more complicated
dependency on the on-site creation and annihilation operators
â
†
i (b̂†i ) and âi(b̂i) (containing terms of currents between

second- and fourth-nearest neighbors), this term will have

exactly the same time dependency through the factor,

V 2

ω

∑
〈〈p|j 〉〉

[cos(ωt + θjk) sin(ωt + θpk)] 〈â†
pâi + â

†
i âp〉

t,0
.

(A13)

When integrated over the full period of time, this factor will
become an odd function of �jp = θjk + θkp, which sums up
to zero inside the summation

∑
i<j . Thus, we conclude that in

the regime of weak perturbation, we should have∫ t0+T

t0

dt
d 〈n̂A,k〉t

dt
= 0, (A14)

up to the order (V/ω)2, irrelevant in the regime ω → ∞.

c. Momentum distribution

In the same way one can use the Dyson series to calculate
the expectation value of the momentum distribution n̂A,k. In
this case, the first nontrivial term, which does not vanish
after taking the integration over an integer number of periods,
appears only in the second order in the expansion. It is written
as follows:

n
(2)
A,k(t) = −

〈∫ t

t0

dt1

∫ t1

t0

dt2{V̂I (t1,t)V̂I (t2,t),n̂A,k}
〉
t,0

+
〈[∫ t

t0

dt1V̂I (t1,t)

]
n̂A,k

[∫ t

t0

dt1V̂I (t1,t)

]〉
t,0

,

(A15)

with {,} the anticommutator. One easily sees that different
terms in the expression contribute as (V/ω)2, that is 1/ω times
smaller than the biggest contribution for currents:

〈n̂A,k〉t = 〈n̂A,k〉t,0 + 1

ω

V 2

ω
(· · · ). (A16)

We conclude that the momentum distribution is not the most
convenient observable to be studied in the weak perturbation
regime since it does not show any effect. Yet, the time-
dependent perturbation theory is not suitable to study the
regime when the perturbation becomes strong, which is the
usual one in our Floquet scheme.

APPENDIX B: FM PHASE IN THE
INTERMEDIATE REGIME

We recall the approximation based on the consideration of
the two-well structure, which we made in order to rewrite the
Hamiltonian (14) in the intermediate regime of the FM phase:

âi ≈ e−i K c r i âK c
+ ei K c r i â−K c√
Nc

,

b̂i ≈ e−i K c r i b̂K c
+ ei K c r i b̂−K c√
Nc

. (B1)
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By using this, we obtain the most general approximation of the Hamiltonian:

Ĥ ≈ ε0N − 4t2 sin

(
zc

π

2

)∑
μ=±

μ
(
â
†
μK c

âμK c
− b̂

†
μK c

b̂μK c

)− t1

[
2 cos

(
πzc

2

)
+ 1

]∑
μ=±

(
â
†
μK c

b̂μK c
+ H.c.

)

+ U

2

∑
μ=±

[
â
†
μK c

âμK c

(
â
†
K c

âK c
+ â

†
−K c

â−K c

Nc

− 1

)
+ b̂

†
μK c

b̂μK c

(
b̂
†
K c

b̂K c
+ b̂

†
−K c

b̂−K c

Nc

− 1

)]

+ U

Ns

[(
â
†
K c

â−K c

)(
â
†
−K c

âK c

)+ (b̂†K c
b̂−K c

)(
b̂
†
−K c

b̂K c

)+ H.c.
]
. (B2)

For the incoming purpose we define 〈
â±K c

〉 = √NA,±eiθA,± ,
〈
b̂±K c

〉 = √NB,±eiθB,± , (B3)

such that NA,+ + NA,− = NA, NB,+ + NB,− = NB , NA,± + NB,± = N±, and NA + NB = N+ + N− = N . We notice that in the
regime of two decoupled sublattices t2  t1 one can simply write NA,− = NB,+ = 0. Finally, we get the expression of the GS
energy EGS and currents JAA,vj

in terms of these new quantities:

EGS = ε0N − 4t2 sin

(
zc

π

2

)∑
μ=±

μ(NA,μ − NB,μ) − 2t1

[
2 cos

(
πzc

2

)
+ 1

]∑
μ=±

√
NA,μNB,μ cos(θB,μ − θA,μ)

+ U

2

[
NA

(
NA

Nc

− 1

)
+ NB

(
NB

Nc

− 1

)]
+ U

Nc

(NA,+NA,− + NB,+NB,−), (B4)

JAA,v1 = JAA,v2 = −t2
NA

Nc

cos

(
zc

π

2

)
, JAA,v3 = 0. (B5)

We see that the t1 term pins to zero the difference between phases θB,+ − θA,+ and θB,− − θA,−. However, we are still free to
chose separately phases θ+ = θA,+ = θB,+ and θ− = θA,− = θB,−, which corresponds again to the presence of two Goldstone
modes.

We assume that the effect of interactions is weak enough so that we use the assumptions of Eq. (39), i.e., that the two-well
structure of the system is preserved. We, however, allow for the fact that interactions can change the value of zc and modify the
position of two minima at ±K c. In order to study in more detail this effect, we use the relations between operators â

†
K c

and â
†
−K c

,
based on properties of the unitary transformation (42), and write the GS energy in terms of N , N+, N− = N − N+, and zc only:

EGS = N

{
ε0 − 4t2 sin

(
zc

π

2

)
Y (zc)√

X2(zc) + Y 2(zc)
− t1

[
2 cos

(
zc

π

2

)
+ 1

]
X(zc)√

X2(zc) + Y 2(zc)

}

+ UN

[
n

2
+ Y 2(zc)

X2(zc) + Y 2(zc)

n

2
− 1

2

]
+ U

[
N+(N − N+)

Ns

][
X2(zc) − 2Y 2(zc)

X2(zc) + Y 2(zc)

]
, (B6)

where X(zc) and Y (zc) are defined as follows:

X(zc) = t1

[
1 + 2 cos

(
zc

π

2

)]
, Y (zc) = 4t2 sin

(
zc

π

2

)
. (B7)

The first effect of interactions in the FM consists of imposing constraints on the distribution of particles in two wells N+ and N−.

There are two distinct subregimes of the FM phase: For t c2 < t2 <

√
(17 + √

97)/24 t c2 the last term in Eq. (B6) is positive and
interactions force all particles to chose one particular well, such that N+ or N− becomes precisely equal to N . At the other side,

for t2 >

√
(17 + √

97)/24 t c2 the last term in Eq. (B6) is negative and the uniform distribution of particles N+ = N− = N/2 is
preferred. The second effect of interactions consists of moving the position of minima at ±K c. The contribution of interactions
to the GS energy close to the transition is

�E′
GS = NUn

8t2
2

9t2
1

(
zc

π

2

)2

+ N
Un

2

[
16

27

(
t2

t1

)2

− 256

81

(
t2

t1

)4](
zc

π

2

)4

. (B8)

If particles are not all located in one well, there appears an additional contribution,

�E′′
GS = −16U

3

N+(N − N+)

Ns

(
t2

t1

)2(
zc

π

2

)2

− 16U

27

N+(N − N+)

Ns

(
3t2

1 t2
2 − 16t4

2

t4
1

)(
zc

π

2

)4

. (B9)
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The second contribution �E′′
GS dominates when N+ = N− = N/2, resulting in the generation of an effective repulsion between

two wells.
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[116] A. Gómez-León and G. Platero, Floquet-Bloch Theory and
Topology in Periodically Driven Lattices, Phys. Rev. Lett. 110,
200403 (2013).

[117] M. Lababidi, I. I. Satija, and E. Zhao, Counter-Propagating
Edge Modes and Topological Phases of a Kicked Quantum
Hall System, Phys. Rev. Lett. 112, 026805 (2014).

[118] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. E. F.
Foa Torres, Floquet chiral edge states in graphene, Phys. Rev.
B 89, 121401 (2014).

[119] D. Carpentier, P. Delplace, M. Fruchart, and K. Gawedzki,
Topological Index for Periodically Driven Time-Reversal
Invariant 2D Systems, Phys. Rev. Lett. 114, 106806 (2015).

[120] F. Nathan and M. S. Rudner, Topological singularities and the
general classification of Floquet-Bloch systems, New J. Phys.
17, 125014 (2015).

[121] A. C. Potter, T. Morimoto, and A. Vishwanath, Topological
classification of interacting Floquet phases in one dimension,
Phys. Rev. X 6, 041001 (2016).

[122] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit,
Observation of photonic anomalous Floquet topological insu-
lators, arXiv:1605.03877.

[123] A. Kitaev, Periodic table for topological insulators and super-
conductors, AIP Conf. Proc. 1134, 22 (2009).

[124] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field
for photons by controlling the phase of dynamic modulation,
Nat. Photon. 6, 782 (2012).

[125] K. Fang, Z. Yu, and S. Fan, Photonic de Haas-van Alphen
effect, Opt. Express 21, 18216 (2013).

[126] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R.
Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth,
A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J.
O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher,
J. Wenner, T. White, E. Kapit, H. Neven, and J. Martinis, Chiral
ground-state currents of interacting photons in a synthetic
magnetic field, Nat. Phys. (2016).

[127] F. D. M. Haldane, Effective Harmonic-Fluid Approach to
Low-Energy Properties of One-Dimensional Quantum Fluids,
Phys. Rev. Lett. 47, 1840 (1981).

[128] A. Gogolin, A. Nersesyan, and A. Tsvelik, Bosonization and
Strongly Correlated Systems (Cambridge University Press,
Cambridge, 2004).

[129] T. Giamarchi, Quantum Physics in One Dimension, Interna-
tional Series of Monographs on Physics (Clarendon Press,
Oxford, 2003).

[130] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and
M. Rigol, One-dimensional bosons: From condensed matter
systems to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011).

[131] A. L. C. Hayward, A. M. Martin, and A. D. Greentree, Frac-
tional Quantum Hall Physics in Jaynes-Cummings-Hubbard
Lattices, Phys. Rev. Lett. 108, 223602 (2012).

[132] J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, Time-
reversal-symmetry breaking in circuit-QED-based photon lat-
tices, Phys. Rev. A 82, 043811 (2010).

[133] W. Zheng and H. Zhai, Floquet topological states in shaking
optical lattices, Phys. Rev. A 89, 061603 (2014).

[134] A. R. Kolovsky, Creating artificial magnetic fields for cold
atoms by photon-assisted tunneling, Europhys. Lett. 93, 20003
(2011).

[135] M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive
regime of circuit QED: Photon-dependent qubit dephasing and
relaxation rates, Phys. Rev. A 79, 013819 (2009).

[136] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J.
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