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Effect of flexural phonons on the hole states in single-layer black phosphorus
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Flexural thermal fluctuations in crystalline membranes affect the band structure of the carriers, which leads
to an exponential density-of-states (DOS) tail beyond the unperturbed band edge. We present a theoretical
description of this tail for a particular case of holes in single-layer black phosphorus, a material which exhibits an
extremely anisotropic quasi-one-dimensional dispersion (my/mx � 1) and, as a result, an enhanced Van Hove
singularity at the valence band top. The material parameters are determined by ab initio calculations and then
are used for quantitative estimation of the effect of two-phonon (flexural) processes have on the charge carrier
DOS. It is shown that unlike the isotropic case, the physics is determined by the phonons with wave vectors of
the order of q∗, where q∗ determines the crossover between harmonic and anharmonic behavior of the flexural
phonons. The spectral density of the holes in single-layer black phosphorus at finite temperatures is calculated.
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Few-layer black phosphorus attracts a lot of attention
now as a prospective two-dimensional (2D) semiconducting
material with a tunable energy gap [1–5]. Being, as other 2D
materials, an atomic-thick crystalline membrane, it is affected
by thermal flexural fluctuations which results in anomalous
structural and mechanical properties at finite temperatures
[6–14]. It was suggested [15] that these thermal fluctuations
can essentially influence on the states of charge carriers in 2D
semiconductors and even lead to an autolocalization, that is,
formation of a self-trapped state (flexuron). That general con-
sideration assumed an isotropic electronic spectrum whereas
black phosphorus is highly anisotropic, with dramatically
different effective masses, my/mx � 1. Especially, in the
hole-doped case the situation is quite peculiar, with a formation
of Van Hove singularity near the top of the valence band,
which is essentially enhanced by mass anisotropy [16]. One
can expect that the holes in single-layer black phosphorus (also
called phosphorene) are quasi-one-dimensional quasiparticles
and thus are strong candidates for a pronounced effect of
localization due to interaction with bosonic modes.

In general, deformation of the lattice in 2D materials results
in distortion of the carrier dispersion. For different types of
deformations this effect can be accounted for by different
phonon modes interacting with fermionic charge carriers.
The interaction parameters then can be determined either
from experiment or from different theoretical approaches.
In 2D materials like graphene or black phosphorus, it is a
well-justified approach to separate in-plane from out-of-plane,
or flexural phonon modes for not too small wave vectors [12].
On the other hand, for smaller wave vectors, these modes begin
to interact, which results in changing of the functional form of
the correlation function dependence on the wave vector [9–12].
This will be discussed in more detail below, in particular for
the anisotropic case.

In what follows, we calculate the spectral function and the
density of hole states (DOS) in black phosphorus renormalized
due to the interaction with flexural phonons. To this end, we
use the diagrammatic approach and calculate the hole self-
energy using the Ward identity as a low momentum transfer
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approximation for the vertex. This seems to be the minimal
model that allows one to get an exponential DOS tail and is thus
a more suitable approach than, e.g., the self-consistent Born
approximation. This approximation was earlier suggested in
a context of magnetic semiconductors near the critical point
[17]. Its relation to the path-integral approach used in Ref. [15]
is discussed in Ref. [18].

The fermionic Hamiltonian is given by

Ĥe =
∑

p

εpc
†
pcp +

∫
drV eff(r)c†rcr. (1)

Here, c†p,r, cp,r are the creation and annihilation operators of the
fermions with momentum p (at point r), εp is the dispersion
of the fermions, and V eff(r) is the effective potential acting
on them due to lattice distortion. For flexural deformations
in systems with symmetry plane (or gliding plane as in case
of black phosphorus), the effective potential is quadratic in
gradients of the lattice atoms shift h(r) in the direction,
perpendicular to the sample plane (x,y) [15,19]:

V eff(r) = gx

(
∂h

∂x

)2

+ gy

(
∂h

∂y

)2

=
∑
q1,q2

hq1hq2 (gxq1xq2x + gyq1yq2y)eir(q1+q2). (2)

The mixed xy term is suppressed for the orthorhombic
symmetry and we disregard it in our consideration. hq is the
Fourier transform of the flexural lattice displacement field.

Correlators of the h field are found from the elasticity theory
equations for membranes. For isotropic membranes the well-
known result is [9–12,15]

〈hqh−q〉 =
{

T
�q4 for q > q∗,

T
�q4−ηq∗η for q < q∗.

(3)

Here, 〈. . . 〉 denotes Gibbs averaging, T is the temperature,
� is the material constant, determining the flexural rigidity
of the membrane, η is the critical exponent (η ≈ 0.82 in the
self-consistent screening approximation [9] and η ≈ 0.85 in
Monte Carlo simulations for graphene [12]) and q∗ is the
characteristic wave vector, such that for q < q∗ the interplay
between flexural and in-plane deformations becomes crucial
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and softens the flexural modes. Neglecting this effect would
lead to unphysical low wave-vector divergence in 〈(V eff)2〉. In
the isotropic case q∗ is given by

q∗ =
√

3T Y

16π�2
, (4)

where Y is the Young modulus [6].
Before we proceed, note that averaging of V eff yields a

constant that just shifts the whole fermionic band and has no
nontrivial effects. To account for those we have to calculate
the second cumulant of the bosonic field K2(q) = 〈(V eff)2〉q −
〈(V eff)〉2

q. Then, neglecting higher cumulants, we can write for
the fermionic self-energy

�(E,p) =
∫

d2q

(2π )2
γ (p − q,p,q,E)K2(q)G(E,p − q)),

(5)

where G is the fermion’s Green’s function, γ is the three-leg
vertex, and E is the energy of the fermion (cf. Refs. [17,18]).
The approximation γ = 1 corresponds to the self-consistent
Born approximation which is supposed to be enough for
positive energies (that is, within the band). To take into account
also the fluctuation DOS tail, vertex corrections should be
taken into account. At this stage, we argue that for energies far
enough from the band edge only small momentum transfers
play a role [17,18], so that we neglect momentum dependence
of the vertex and of the self-energy and use the Ward identity
for the vertex:

γ (p,p,0,E) = 1 − ∂�

∂E
, (6)

ending up with the following closed differential equation for
the self-energy:

�(E) =
(

1 − ∂�

∂E

)∫
d2q

(2π )2

K2(q)

E − εq − �(E)
. (7)

Now we go on to estimate K2(q) for the anisotropic case,
which is a question of its own significance. For q > q∗, it has
been done recently in Ref. [20], so here we do the calculations
for small wave vectors.

A consistent theory of anisotropic membranes is to our
knowledge not yet fully developed, so in this paper we make
plausible assumptions for the low-q behavior of the cumulant
〈hqh−q〉 providing their consistence with Eq. (3). Following
the reasoning of Ref. [20], we model the anisotropy of the
bending rigidity by writing for large q:

〈hqh−q〉 = T(
�

1/2
x q2

x + �
1/2
y q2

y

)2 . (8)

As a next step, we rescale the x and y components of the wave
vector introducing q ′

x,y = qx,y�
1/4
x,y , and write

〈hqh−q〉 =
{

T
q ′4 for q ′ > q ′∗

T
q ′4−ηq ′∗η for q ′ < q ′∗ (9)

with q ′ = (q ′2
x + q ′2

y )1/2, (q ′∗)2 = 3T (YxYy)1/2/(16π (�x�y)3/4)
and Yx,y is the Young moduli in x,y directions. Finally,

introducing ax,y = gx,y�
−1/2
x,y , we obtain for K2(q):

K2(q) = 2

(�x�y)1/4

∫
d2k′

(2π )2

[
ax

(
k′2
x − q ′2

x

4

)

+ ay

(
k′2
y − q ′2

y

4

)]2〈
hk+ q

2
h−k− q

2

〉〈
h q

2 −khk− q
2

〉
.

(10)

To get this expression, we take V eff given by Eq. (2) and
calculate the Fourier transform of 〈V eff(r1)V eff(r2)〉 over
r1 − r2, which is done using the Wick’s theorem to decouple
the average of the product of four hq’s. The latter corresponds
to the self-consistent screening approximation [9]. The
resulting 〈hh〉 correlators carry the momenta k ± q/2. Finally,
the rescaling of the components of q, k is made as described
above to get q′ and k′, respectively.

As the conditions q ′ < q ′∗, q > q ′∗ are rather crossovers
than strict boundaries, we can within the same accuracy split
the k′ integral into two parts (1) k′ < q ′∗ and (2) k′ > q ′∗.
For the first one, we take the anharmonic expression for
the 〈hqh−q〉 correlators, and for the second part we use the
harmonic one. Moreover, we limit ourselves to calculating
only the leading terms in q ′/q ′∗, so for k′ > q ′∗ we just neglect
the q ′ dependence to obtain the contribution to K2:

K2(q) ←− 2T 2

(�x�y)1/4

∫
k′>q ′∗

d2k′

(2π )2

(
axk

′2
x + ayk

′2
y

)2

k′8

= T 2
(
3a2

x + 2axay + 3a2
y

)
16π (�x�y)1/4(q ′∗)2

(11)

The integration over k′ < q ′∗ is more involved, as we have
to keep the q′ dependence of the integrand, which leads to
anisotropic contributions. Here, apart from the leading term
∝(q ′/q ′∗)2η−2, we also keep the subleading term ∝(q ′/q ′∗)0,
as for η = 0.85 they are numerically of the same order of
magnitude for not extremely small q ′. Evaluating the integral
[22] and adding it up with the contribution given by Eq. (11),
we arrive at

K2(q) = T 241−η

2π (�x�y)1/4(q ′∗)2ηq ′2−2η

(
cos (4α)(ax − ay)2 0.062 + cos (2α)

(
a2

x − a2
y

)
0.54 + (ax + ay)2 1.59 + (ax − ay)2 1.03

)

− T 2
(
3a2

x + 2axay + 3a2
y

)
16π (�x�y)1/4(q ′∗)2

η

1 − η
. (12)

Here the numerical factors in the parentheses are results of numerical integration, for which the specific value for η = 0.85 was
used; α is the polar angle of the q′ vector (not the q vector!).
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The case q ′ > q ′∗ has been considered in Ref. [20]. The
result is

K2(q) = T 2

4π (�x�y)1/4q ′2

×
(

cos (4α)
(ax − ay)2

2
+ cos (2α)

(
a2

x − a2
y

)
ln

γ q ′

q ′∗

+ (
a2

x + a2
y

)
ln

γ q ′

q ′∗ + (ax + ay)2

4

)
, (13)

where γ � 1 is some number determined by details of 〈hqh−q〉
behavior for q ∼ q∗.

After obtaining the above expressions for K2, our imme-
diate goal is to evaluate the integral in Eq. (7). As it has
been mentioned above, the dispersion of the holes in black
phosphorus is quasi-one-dimensional. It has been evaluated
using ab initio numerical methods in our previous work [20]
and can be approximated in atomic units by

εq = 2.9q2
x + 0.05q2

y + 13.2q4
y . (14)

In these units, the averaged q∗ ≈ 0.015 for room temperature.
Note that if the coefficient at q2

y were exactly zero we would
have an enhanced Van Hove singularity in the bare density of
states ∝E−1/4 at the band edge, instead of a step in generic 2D
case.

As it will be shown below, the integral in Eq. (7) is
determined by q ∼ q∗. For these values, the first term in the
dispersion dominates, so we can take

εq = q2
x

2mx

. (15)

We perform the same variable change q → q′ and introduce
ε = −E + �(E) > 0 to rewrite our equation as

ε + E = ∂ε

∂E

∫ ∞

0

∫ 2π

0

q ′dq ′dα

(2π )2(�x�y)1/4

K2(q)

ε + q ′2 cos2 α

2mx�
1/2
x

, (16)

with α being the polar angle of q′.
Consider first q ′ < q ′∗. As∫ 2π

0

dα

1 + a cos2 α
= 2π√

1 + a
(17)

and K2 ∝ (q ′)2η−2 with η = 0.85 > 0.5, we easily confirm,
that for small ε the q ′ integral is determined by the upper limit
q ′∗. Analogously, for q ′ > q ′∗, the q ′ integral is determined
by the lower limit, as K2 ∝ (q ′)−2. Note that for conventional
2D-dispersion, this reasoning does not work and the integral
acquires its value on q ′ → 0 for ε < (q∗)2/2m.

Estimation of the integral for E � q2/2mx allows us to
recast Eq. (16) as

ε + E = ∂ε

∂E

(Tβ)3/2

ε1/2
, (18)

where β is a dimensionless constant, depending on material
constants. Using the numerical values from the first-principles

calculations [20] (Yx = 1.31 eV/Å
2
, Yy = 5.68 eV/Å

2
, �x =

1.29 eV, �y = 5.62 eV, gx = 2.11 eV, gy = 0.89 eV, mx =
0.17me, me being the free electron mass) it can be estimated
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FIG. 1. DOS per unit cell per spin for T = 100, 200, 300, and
400 K. For reference, the DOS corresponding to bare dispersion
without the inclusion of the flexuron tail is shown. The Van Hove
singularity in the latter manifests the aforementioned quasi-one-
dimensionality of the holes in black phosphorus. It is to a large extent
smeared by the flexural modes. Zero energy corresponds to the top
of the valence band at T = 0 K.

that β ≈ 0.20 [22]. Introducing

ε(E) = βT

[
f

(
E

Tβ

)]2

, (19)

we arrive at the Ricatti equation for the function f (x)

2f ′ = f 2 + x. (20)

At this point, we note that the inequality βT �
(q ′∗)2/2mx�

1/2 ≈ 0.65T holds reasonably well, what justifies
the above calculations.

The last equation can be turned into a linear one by
the substitution f (x) = −2ψ ′(x)/ψ(x). The corresponding
equation reads

4ψ ′′(x) + xψ(x) = 0, (21)

which is the Airy equation. Thus the general solution for f (x)
is given by

f (x) = 21/3 Ai′(−x/41/3) + z Bi′(−x/41/3)

Ai(−x/41/3) + z Bi(−x/41/3)
. (22)

Here, Ai and Bi are the Airy functions and z is an arbitrary
complex constant, which can be determined by assuring
we get correct density of states for E → +∞, or in other
words ε(E) → −E − i0 [17]. Using the asymptotic behavior
of the Airy functions it can be checked that for z = −i,
f 2(x) ≈ −x − i/

√
x for large positive x which yields the

correct behavior for ε.
Now it is straightforward to calculate the DOS:

ρ(E) = − 1

π

∫
d2k

(2π )2
� 1

−βTf 2
(

E
βT

) − εk
, (23)

with εk taken from the ab initio GW calculations [21]. The
result for different temperature is shown in Fig. 1. The spectral
function

A(k,E) = − 1

π
� 1

−βTf 2
(

E
βT

) − εk
(24)

for room temperature is shown in Fig. 2.
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FIG. 2. Spectral function A(k,E) (shown by color) calculated
at T = 300 K along �-X (left) and � -Y (right) directions of the
Brillouin zone. Note the different scale for the two plots.

According to the results presented on these figures the effect
of flexural phonons on the density of states near the top of the

valence band (the bottom of the band in hole representation)
is quite noticeable and can be probed by conventional spec-
troscopic tools like angle-resolved photoemission or scanning
probe microscopy and other tunneling methods. Quasi-one-
dimensional character of the charge carrier dispersion makes
hole-doped black phosphorus the best candidate to study these
effects. Such experiments would be of a great interest, as
an electronic probe of complicated physics of fluctuating
anisotropic membranes.
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