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Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and
the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry
enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of
the newly discovered pyrochlore QSL candidate Ce2Sn2O7, is a dipole-octupole doublet. The generic model for
these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding
quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While
the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the
symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar
U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the
Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the
experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.
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Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1–3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6–9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10–12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (�+

5 or �+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground
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state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. � is the CEF gap and was
fitted to be � = 50 ± 5 meV [14].
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSL phases are the induced
magnetic ordered phase via the spinon condensation. For h = 0, the spinons are condensed at kc = (0,0,0), and we choose the local moments
to order in the local ẑ direction. In (a), a large magnetic field near the vertical axis drives the spinon condensation at kc = π (1,1,1), and the
resulting order is depicted in the figure. This order smoothly connects to the order on the horizontal axis. The cases in (b) and (c) are similar,
except that in (b) the field on the vertical axis drives the condensation at kc = 2π (0,0,1), while in (c) kc = π (1,1,0) near the vertical axis. We
set the diamond lattice constant to unity.

an Anderson-Higgs’ transition and inducing the long-range
magnetic orders.

Generic model for DO doublets on the pyrochlore
lattice. Because of the peculiar symmetry properties of the
DO doublets, the most generic model that describes the
nearest-neighbor interaction between them is given as HDO =∑

〈ij〉[Jxτ
x
i τ x

j + Jyτ
y

i τ
y

j + Jzτ
z
i τ z

j + Jxz(τ
x
i τ z

j + τ z
i τ x

j )] [10].
Here the interaction is uniform on every bond despite the fact
that the DO doublet involves a significant contribution from
the orbital part due to the strong SOC [15–20], and the DO
doublet is modeled by an effective pseudospin-1/2 moment
τ . Both τ x and τ z transform as the dipole moments under the
space group symmetry, while the τ y component behaves as
an octupole moment [10]. It is this important difference that
leads to some of the unique properties of its U(1) QSL ground
states.

Due to the spatial uniformity of the generic model, we can
transform the model HDO into the XYZ model with

HXYZ =
∑

〈ij〉
J̃x τ̃

x
i τ̃ x

j + J̃y τ̃
y

i τ̃
y

j + J̃zτ̃
z
i τ̃ z

j , (1)

where τ̃ x and τ̃ z (J̃x and J̃z) are related to τ x and τ z (Jx and
Jz) by a rotation around the y direction in the pseudospin
space, and τ̃ y ≡ τ y,J̃y ≡ Jy . When one of the couplings,
J̃μ, is dominant and antiferromagnetic, the corresponding
pseudospin component, τ̃ μ, is regarded as the Ising component
of the model, and the ground state is a U(1) QSL in the
corresponding quantum spin ice regime. The dipolar U(1) QSL
is realized when the Ising component is the dipole moment τ̃ x

or τ̃ z, while the octupolar U(1) QSL is realized when the
Ising component is the octupole moment τ̃ y . In the compact
U(1) quantum electrodynamics description of the low energy
properties of the U(1) QSL [21,22], the Ising component is
identified as the emergent electric field [21]. Therefore, the
emergent electric field transforms very differently under the
lattice symmetry in dipolar and octupolar U(1) QSLs, making
these two U(1) QSLs symmetry enriched U(1) topological
order on the pyrochlore lattice [10].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions. Since the dipolar U(1) QSL has been discussed
many times in literature [10,23–31], we here focus on the
octupolar U(1) QSL of the octupolar quantum spin ice regime

where J̃y is dominant and antiferromagnetic. The octupolar
U(1) QSL is a new phase that is unique to the DO doublet
and cannot be found in any other doublets on the pyrochlore
lattice.

We consider the coupling of the DO doublet to the
external magnetic field. Remarkably, because τ̃ y is an octupole
moment, it does not couple to the magnetic field even though
it is time reversally odd. Only the dipolar component τ z

couples linearly to the external magnetic field. The resulting
model is

H =
∑

〈ij〉

∑

μ=x,y,z

J̃μτ̃
μ

i τ̃
μ

j −
∑

i

h (n̂ · ẑi) τ z
i , (2)

where n̂ is the direction of the magnetic field and ẑi is the z

direction of the local coordinate basis at the lattice site i [32].
This generic model describes all magnetic properties of the
DO doublets on the pyrochlore lattice.

As the generic model contains four parameters, it necessar-
ily brings some unnecessary complication into the problem.
To capture the essential physics, we here consider a simplified
version of the generic model in Eq. (2). The simplified model
is

Hsim =
∑

〈ij〉
Jyτ

y

i τ
y

j − J±(τ+
i τ−

j + H.c.) −
∑

i

h (n̂ · ẑi) τ z
i ,

(3)

where we define τ±
i = τ z

i ± iτ x
i and n̂ is the direction of the

external magnetic field. In the Ising limit with J± = 0 and
h = 0, the antiferromagnetic Jy favors the τ y components to
be in the ice manifold and requires a “two-plus two-minus”
ice constraint for the τ y configuration on each tetrahedron.
This octupolar ice manifold is extensively degenerate. With a
small and finite J± or h, the system can then tunnel quantum
mechanically within the octupolar ice manifold and form an
octupolar U(1) QSL. In this perturbative limit, the degenerate
perturbation theory yields an effective ring exchange model
with [32]

Hring = Jring

∑

�
[τ+

i τ−
j τ+

k τ−
l τ+

m τ−
n + H.c.], (4)

where “i,j,k,l,m,n” are six sites on the perimeter of the
elementary hexagon of the pyrochlore lattice, and the ring
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exchange Jring < 0 for J± > 0 and for either sign of h. Hring

does not involve defect tetrahedra that violate the ice constraint
and thus only describes the quantum fluctuation and dynamics
within the ice manifold. It is well known that the low energy
properties of Hring are described by the compact U(1) quantum
electrodynamics [21] of the U(1) QSL with gapless gauge
photon, and the spin-flip operator τ±

i is identified as the gauge
string within the ice manifold. We expect the simplified model
Hsim captures the generic properties of the octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from the
octupolar U(1) QSL phase and study its instability. For this
purpose, we include the spinon excitations (that are out of the
ice manifold) into the formulation. The perturbative analysis
and Hring, that focus on the ice manifold, do not capture the
spinons. We here implement a parton-gauge construction for
the octupolar U(1) QSL and formulate Hsim into a lattice gauge
theory with the spinons. Like many other parton construction,
we replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. [23,24] and
express the pseudospin operators as

τ+
i = �†

r�r′s
+
rr′ , τ

y

i = s
y

rr′ , (5)

where rr′ is the link that connects two neighboring tetrahedral
centers at r and r′, and the pyrochlore site i is shared by the
two tetrahedra. The centers of the tetrahedra form a diamond
lattice, and r (r′) belongs to the I (II) diamond sublattice. Here
srr′ is a spin-1/2 variable that corresponds to the emergent
gauge field, and �

†
r (�r) creates (annihilates) one spinon at

the diamond site r. The spinons carry the emergent electric
charge, and �

†
r and �r are raising and lowering operators of

the emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ηr

∑
μ τ

y
r,r+ηreμ

is imposed,
where ηr = 1 (−1) for the I (II) sublattice and the eμ’s are the
first neighbor vectors of the diamond lattice. Here Qr measures
the electric charge at r and satisfies

[�r,Qr] = �r, [�†
r,Qr] = −�†

r. (6)

The U(1) QSL of quantum spin ice is an example of
the string-net condensed phases [34]. In the U(1) QSL, τ±

i

creates the shortest open (gauge) string whose ends are spinon
particles. In the spin ice context, τ±

i creates two defect
tetrahedra that violate the “two-plus two-minus” ice constraint.
The parton-gauge construction captures this essential property,
and the model becomes

Hsim =
∑

r

JyQ
2
r

2
−

∑

r

∑

μ �=ν

J±�
†
r+ηreμ

�r+ηreν
s
−ηr
r,r+ηreμ

× s
+ηr
r,r+ηreν

−
∑

〈rr′〉

h

2
(n̂ · ẑi)(�

†
r�r′s

+
rr′ + H.c.). (7)

With the constraint, Eq. (7) is an exact reformulation of the
simplified model in Eq. (3). It describes the bosonic spinons
hopping on the diamond lattice. The spinons are minimally
coupled with the emergent U(1) gauge field. Remarkably, the
external magnetic field directly couples to the spinons and
does not couple to the emergent electric field. This is sharply
distinct from the dipolar U(1) QSL where the magnetic field
would also directly couple with the emergent electric field.

FIG. 3. Lower excitation edges of the spinon continuum in the
dynamic spin structure factor under (a) zero magnetic field, and field
along (b) [111], (c) [001], and (d) [110] directions. In the figure, we
set J± = 0.1 Jy . The inset of (a) is the Brillouin zone [33].

Inside the U(1) QSL, the spinons are fully gapped. The
external magnetic field allows the spinon to tunnel between the
neighbor tetrahedra that are located along the field direction.
As we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength, the
spinon gap is closed and the spinons are condensed with
〈�r〉 �= 0. Via the Anderson-Higgs’ mechanism, the U(1)
gauge field becomes massive and gapped. Note that this differs
from the Coulomb ferromagnet where the gauge field remains
gapless and deconfined [23]. The resulting proximate state
develops a long-range magnetic order. Therefore, this is an
Anderson-Higgs’ transition driven by the external magnetic
fields. This is a generic property of the octupolar U(1) QSL
and is not a specific property of the simplified model. This is
an example that an external probe drives an Anderson-Higgs’
transition in a physical system.

To solve the reformulated model in Eq. (7), we adopt the
gauge mean-field approximation [10,23–25]. In this approxi-
mation, we decouple the model into the spinon sector and the
gauge sector. Since Hring favors a zero background gauge flux
on each elementary hexagon of the diamond lattice, we solve
for the mean-field ground state within this sector [32]. The
magnetic dipolar order is obtained by evaluating

〈
τ z
i

〉 = 1
2 [〈τ+

i 〉 + 〈τ−
i 〉] (8)

= 1
2 [〈�†

r�r′ 〉〈s+
rr′ 〉 + H.c.], (9)

where 〈· · · 〉 is taken with respect to the ground state. Because
of the Zeeman coupling, 〈τ z

i 〉 is nonzero even in the U(1)
QSL phase where the spinons are not condensed. In the
proximate ordered state, the spinon condensate gives an
additional contribution that is the induced magnetic order. For
all three directions of the external magnetic field, even though
the spinons are condensed at finite momenta, the proximate
magnetic order preserves the translation symmetry.

The full phase diagrams and the field-induced proximate
magnetic orders are depicted in Fig. 2. The magnetic field
is found to be least effective in destructing the U(1) QSL
for the field along the [110] direction. This is because the
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TABLE I. List of the physical properties of different U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to the Kramers
doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d point group. Although the
dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their physical origins are rather different [32].

Different U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ∼ T 3 Gapped spinon continuum
Dipolar U(1) QSL for DO doublets Cv ∼ T 3 Both gapless gauge photon and gapped spinon continuum
Dipolar U(1) QSL for non-Kramers’ doublets [24] Cv ∼ T 3 Gapless gauge photon
Dipolar U(1) QSL for usual Kramers’ doublets [23] Cv ∼ T 3 Both gapless gauge photon and gapped spinon continuum

local ẑ direction of two sublattices are orthogonal to the [110]
direction, and the pseudospins on them do not couple to the
external field. The phase transition is found to be continuous
within the gauge mean-field theory and may turn weakly first
order after the fluctuations are included. Nevertheless, as the
spinon gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be more
pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors. A smoking gun confirmation of U(1) QSL is to directly
measure the gapless U(1) gauge photon and/or the spinon
continuum by inelastic neutron scattering (INS) measurement.
For the DO doublet, the neutron spin couples to the local
moment in the same way as the external magnetic field.
Therefore, for the octupolar U(1) QSL, the INS directly probes
the spinon excitation, and one would only observe the spinon
continuum instead of the gapless U(1) gauge photon. The latter
was proposed for the dipolar U(1) QSL. This is the sharp
difference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two branches
due to the two sublattice structure of the diamond lattice.
Specifically for the simplified model Hsim, the two spinon
branches are degenerate in the absence of the external magnetic
field because the spinons do not hop from one sublattice to
another. As shown in Eq. (7), however, the magnetic field
allows the spinons to tunnel between the sublattices and breaks
the degeneracy of the two spinon bands. The splitted spinon
bands are labeled by ω1(k) and ω2(k) [32].

The INS measures the dynamic spin structure factor
〈τ zτ z〉q,
, where q and 
 are the neutron momentum and
energy transfer, respectively. As τ z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair that
shares the neutron energy and momentum transfer. From
the conservation of the momentum and the energy, we
have

q = k1 + k2, (10)


(q) = ωi(k1) + ωj (k2), (11)

where i,j = 1,2 are the band indices, and k1 and k2 are the
momenta of the two spinons.

The lower excitation edge of the dynamic spin structure
factor encodes the minimum of the spinon excitation 
(q)
for each q. In Fig. 3, we plot the dispersion of the lower
spinon excitation edge along the high symmetric momentum
direction in the octupolar U(1) QSL for different external field
orientations. The field modifies the spinon dispersion and then

tunes the spinon excitation edge. As far as we are aware of, this
is a rare example that one can control the spinon excitations in
a QSL.

Discussion. Many DO doublet pyrochlores are actually
magnetically ordered [35–42], which makes the QSL candi-
date Ce2Sn2O7 rather unique. Ce2Sn2O7 has the Curie-Weiss
temperature �CW ≈ −0.25 K. It was argued in Ref. [14] that
an antiferromagnetic �CW cannot support a QSL in the spin ice
regime. This conclusion is certainly true for the usual Kramers’
doublet but is not the case for the DO doublets. For the DO
doublets, what �CW measures is Jz, not J̃z nor J̃x [32]. What
determines the phase diagram of HXYZ are J̃μ’s, not the sign
or value of the single parameter Jz. One cannot rule out the
possibility of the dipolar U(1) QSL in Ce2Sn2O7. Moreover,
the occurrence of octupolar U(1) QSL as a ground state of
HXYZ is actually insensitive to the sign of Jz. If the ground
state of Ce2Sn2O7 does not belong to any other QSLs, the
question then nails down to whether it is a dipolar U(1) QSL
or an octupolar U(1) QSL.

In Table I we list the thermodynamic and spectroscopic
properties of various U(1) QSLs. Clearly, thermodynamic
measurements cannot differentiate them because the low-
energy properties are all described by the compact U(1)
quantum electrodynamics. The INS measurement, however,
is a powerful technique to identify the dipolar U(1) QSL
and the octupolar U(1) QSL for the DO doublets. As
we wrote in Table I, the INS can observe both spinon
continuum and gapless gauge photon for the dipolar U(1)
QSL while only gapped spinon continuum can be detected
for the octupolar U(1) QSL. We further propose the field
driven Anderson-Higgs’ transition and the field-controlled
dynamic spin structure factor as the unique signatures of
the octupolar U(1) QSL. All these predictions can be
useful to identify the nature of the QSL ground state in
Ce2Sn2O7.

To summarize, we predict a field driven Anderson-Higgs’
transition of the octupolar U(1) QSL for the dipole-octupole
doublets on the pyrochlore lattice. Inside the U(1) QSL,
the lower excitation edges of the spinon continuum are
manipulated by the external magnetic fields. This result
provides a detectable experimental consequence in the INS
measurements. We expect our work will surely stimulate
the experimental studies of Ce2Sn2O7 and other pyrochlore
systems with dipole-octupole doublets.
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China.
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