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The Zak phase γ , the generalization of the Berry phase to Bloch wave functions in solids, is often used to
characterize inversion-symmetric one-dimensional (1D) topological insulators. Due to its dependence on the
real-space origin and unit cell, however, there is an ambiguity in its use in a bulk-boundary correspondence. Here,
we extract an origin-independent part of γ , the so-called intercellular Zak phase γ inter, and show that it is a bulk
quantity that unambiguously predicts the number of surface modes. Specifically, a neutral finite 1D tight-binding
system has ns = γ inter/π (mod 2) in-gap surface modes below the Fermi level if there exists a commensurate
inversion-symmetric bulk unit cell. We demonstrate this in two steps: First, we verify that ±eγ inter/2π (mod e)
equals the extra charge accumulation in the surface region in a terminated system of a translationally invariant
1D insulator, while the remnant part of γ , the intracellular Zak phase γ intra, corresponds to the electronic part
of the bulk’s unit-cell dipole moment. Second, we show that the extra charge accumulation is related to the
number of surface modes when the unit cell is inversion symmetric. We study several tight-binding models to
quantitatively check both the relation between the extra charge accumulation and the intercellular Zak phase, and
the bulk-boundary correspondence using the intercellular Zak phase.
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I. INTRODUCTION

The Berry phase is a geometric phase of eigenstates
obtained when cyclically varying external parameters [1]. For
a Hamiltonian H(R) that depends on the external parameters
R, the Berry phase is given by

γn = i

∮
C

〈n(R)|∇R|n(R)〉 · dR, (1)

where |n(R)〉 is the nth eigenvector and C is a closed loop in
the parameter space of R. In a Brillouin zone, as pointed out by
Zak [2], a natural choice for the cyclic parameter is the crystal
momentum k. The explicit form of the resulting Zak phase of
the nth band is

γn = i

∫
BZ

dk〈un,k|∂k|un,k〉, (2)

where BZ represents the one-dimensional (1D) Brillouin zone,
and un,k = √

Ne−ikxψn,k is the periodic part of the Bloch
function ψn,k . The total Zak phase γ is obtained by summing
γn over filled bands.

The Zak phase was endowed with a physical meaning
with the modern definition of the polarization P, introduced
by Vanderbilt and King-Smith [3,4]. The ambiguity of the
classical polarization, which depends on the shape of the unit-
cell boundary [5], was resolved by redefining the electronic
part of the polarization Pel as an integral of Wannier functions
over the whole space, rather than over a unit cell. With
this definition, one can accurately predict the bound surface
charge σ = P · n̂, with n̂ the surface orientation, measured
in capacitance experiments [6]. Furthermore, the electronic
polarization P el

⊥ along n̂ is related to the Zak phase (evaluated
along n̂ with k‖ kept fixed) via

P el
⊥ = Pel · n̂ = − e

(2π )3

∫
A

dk‖
Z∑

n=1

γn, (3)

where A is the two-dimensional (2D) Brillouin zone projected
to the 2D plane perpendicular to n̂, k‖ is the momen-

tum component in this plane, and Z the number of filled
bands.

In the currently active study of topological aspects of
materials [7–15], the Zak phase has been utilized as a
topological number to classify various genuine 1D topological
insulators, as well as effective ones, such as those obtained by
fixing one or two momenta of 2D or 3D Hamiltonians [16–34];
it was naturally extended to the concept of non-Abelian
Wilson loops in the multiband case and used for classifications
of topological insulators with inversion or nonsymmorphic
symmetries and topological crystalline insulators [35–40].
Furthermore, the Zak phase has been widely used for the Z2

classification of inversion-symmetric 1D systems where it is
quantized to 0 or π (mod 2π ) [2]. In this case, the conventional
bulk-boundary correspondence states that there are boundary
modes if the Zak phase is nontrivial, γ = π , while γ = 0 is
considered a trivial insulator without surface modes [17–22].

Recent work, however, pointed out that the Zak phase
depends on the gauge choice of choosing the origin of the real
space, and how one defines boundaries of the unit cell, although
it is invariant under gauge transformation of the form un,k →
eiφkun,k [25,30,31]. This means that the Zak phase itself is not
a well-defined topological number since it cannot characterize
the bulk uniquely. In an attempt to resolve this ambiguity,
Atala et al. [25] suggested that the difference of the Zak phase
between different states could be a proper topological number,
and Juan et al. [30] revised the Zak phase by adding a unit-
cell-dependent term such that the resultant Z2 number plays
the role of a gauge-invariant topological number. In spite of
these issues, the conventional bulk-boundary correspondence
using the Zak phase has been successfully applied in many
cases [17–22]. Furthermore, additional conditions for the
applicability of the correspondence to finite systems have
been given, such as that terminated edges should not break
the inversion symmetry of the bulk [41,42] or that the finite
system should be commensurate with the bulk’s unit cell [30].
However, the necessity of those assumptions has not been
demonstrated in general 1D systems, and we in fact find that
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FIG. 1. A schematic figure describing a general 1D system and its Wannier functions. Gray dashed boxes are the unit cells, which contain
atomic sites marked by filled and empty circles as an example. Each unit cell can in general have any number of atomic sites. The 1D bulk is
divided into left and right sides with respect to a given unit-cell boundary xb, which is marked by the red dashed line. We call these regions
the L and R regions. Wannier functions belong to the left or right side according to their centers. QR→L

n represents how much weight of right
side’s Wannier functions are in the left side, and vice versa for QL→R

n .

the conventional bulk-boundary correspondence using γ can
fail even in the presence of inversion symmetry both in the
bulk and terminated systems (cf. Sec. V B).

In this paper, we resolve these issues by providing a more
detailed analysis of the Zak phase, dealing with general 1D
tight-binding models. To this end, we split the Zak phase
into two terms, the intracellular and intercellular Zak phase
(this splitting was earlier introduced by Kudin et al. [43]),
and provide them with their proper physical interpretations.
The intracellular Zak phase γ intra describes the electronic part
of the classical polarization of the bulk’s unit cell, and the
intercellular Zak phase γ inter represents the difference between
the net weight of the Wannier functions in the left and right
sides of the 1D system with respect to a unit-cell boundary,
with their centers belonging to opposite sides as illustrated
in Fig. 1. We then show that in a terminated system this
interpretation of the intercellular Zak phase leads to an accurate
prediction of the extra charge accumulation (total charge
including ionic contributions) in the surface regions. This is the
essential result of our work, applicable to any translationally
invariant insulator, that provides a bulk-boundary correspon-
dence: There are ns = γ inter/π (mod 2) surface modes below
the Fermi level in a finite system if it is commensurate with an
inversion-symmetric unit cell and γ inter is evaluated from this
commensurate unit cell. Our bulk-boundary correspondence
resolves the above-mentioned subtle issues of the conventional
bulk-boundary correspondence because γ inter is independent
of real-space origin while its unit-cell dependence is included
in the commensurability condition.

The rest of the paper is organized as follows: In Secs. II
and III we provide the physical meaning of the intracellular
and intercellular Zak phases and show how they are related,
respectively, to the electronic part of the classical polarization
of the bulk and the extra charge accumulation in the surface
region. In Sec. IV, based on this physical interpretation
of the parts of the Zak phase, we develop a reformulated
bulk-boundary correspondence of one-dimensional systems
employing the intercellular Zak phase. In Sec. V we apply
our interpretation of the intercellular Zak phase and the

bulk-boundary correspondence to the Rice-Mele 1D chain
model and two 2D toy models which can be treated as
effective 1D systems by fixing one of the momenta. Finally,
discussions and concluding remarks are given in Sec. VI.

II. INTRACELLULAR AND INTERCELLULAR
ZAK PHASE

Let us consider a general translationally invariant one-
dimensional system described within the tight-binding approx-
imation. The system consists of Nb atomic sites per unit cell,
each with Ni

orb orbitals, including the spin degree of freedom
for spinful systems. The ionic charge at site i is Zie, and the
total ionic charge in the unit cell is Ze = ∑Nb

i=1 Zie. In order for
the insulating system to be neutral, there are then necessarily Z

fully filled bands below the Fermi level. Within the Born–von
Karman boundary condition ψ(x + Na) = ψ(x), the Bloch
eigenfunctions of this system take the form

ψn,k(x) = 1√
N

N∑
m

Nb∑
i=1

Ni
orb∑

ζ=1

α
n,i,ζ

k φi,ζ
m (x)eikma, (4)

where N is the number of unit cells, and m and n are the unit
cell and band index. Here,

φi,ζ
m (x) = φζ (x − ma − bia) (5)

is the ζ th atomic orbital centered at ma + bia which is the
position of the ith atomic site in the mth unit cell. Atomic
orbitals at the same site are orthonormal and the overlaps
between orbitals on different sites are assumed to be exponen-
tially vanishing in accordance with the tight-binding condition
[44]. The coefficients α

n,i,ζ

k are obtained from solving the
eigenvalue problem with the tight-binding Hamiltonian. We
choose the gauge in which every atomic orbital in the mth unit
cell has the same phase factor eikma in (4); the coefficients
α then satisfy the periodic boundary condition α

n,i,ζ

k+G = α
n,i,ζ

k ,
where G is a reciprocal lattice vector [43]. In another widely
used gauge, the phase factor for the orbitals at ma + bia is
instead given by eik(ma+bia) [22,25,36,39,40]. In this case, the
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same Bloch eigenfunction ψn,k(x) is obtained by replacing
the coefficient α

n,i,ζ

k with α̃
n,i,ζ

k = α
n,i,ζ

k e−ikbia , which satisfies
the twisted boundary condition α̃

n,i,ζ

k+G = α̃
n,i,ζ

k e−iGbia . While
both gauges yield the same Zak phase, since they describe
the same Bloch eigenfunction ψn,k(x), the former allows for a
natural separation of the Zak phase into the intracellular and
intercellular parts.

The Zak phase, following Kudin et al. [43], can be split into
two terms. The nth band Zak phase (2) is obtained from the
lattice periodic part of the Bloch functionw

un,k(x) =
√

Ne−ikxψn,k(x) (6)

which satisfies the orthonormality condition 〈un,k|un,k′ 〉 =∫



dx un,k(x)∗un,k′ (x) = δk,k′ [2]. The inner product
〈un,k|∂kun,k〉 in the Zak phase is defined as

〈un,k|∂kun,k〉 =
∫




dx u∗
n,k(x)

∂

∂k
un,k(x), (7)

with 
 a unit cell. Then, the Zak phase is split into the
intracellular and intercellular Zak phase as

γn = γ intra
n + γ inter

n , (8)

where

γ intra
n = N

∫
BZ

dk

∫



dx x|ψn,k(x)|2 − 2πm
, (9)

where m
 is the index of the unit cell 
, and

γ inter
n = i

Nb∑
i=1

Ni
orb∑

ζ=1

∫
BZ

dk α
n,i,ζ∗
k

∂

∂k
α

n,i,ζ

k . (10)

(See Appendix A for further details.) Note that γ intra
n depends

on the real-space origin while γ inter
n does not because α

n,i,ζ

k ,
being an element of the eigenvector of the momentum-space
representation of the Hamiltonian, is origin independent.

To give a physical interpretation of the Zak phases just
introduced, we start by relating the electronic part of the
classical polarization of the unit cell to the intracellular
Zak phase. We consider contributions from each filled band
separately. For the nth band, we have

P el
n,cl = 1

a

∫



dx xρel
bulk,n(x) (11)

= − e

a

∫



dx x
∑
k∈BZ

|ψn,k(x)|2 (12)

= −e

2π
γ intra

n − m
e, (13)

where ρel
bulk,n(x) is the electronic density corresponding to the

nth band. That is, P el
n,cl can be evaluated from the intracellular

Zak phase up to mod e.
Second, we give a physical interpretation of the intercellular

Zak phase. To this end, we employ the Wannier functions given
by

Wn,m(x) = 1√
N

∑
k∈BZ

ψn,k(x)e−ikma (14)

=
N∑
m′

Nb∑
i=1

Ni
orb∑

ζ=1

A
n,i,ζ

m′−mφ
i,ζ

m′ (x), (15)

where

A
n,i,ζ

m′−m = 1

N

∑
k∈BZ

eik(m′−m)aα
n,i,ζ

k . (16)

They satisfy the orthonormality condition 〈Wn,m|Wn′,m′ 〉 =
δn,n′δm,m′ . Note that in 1D the Wannier function Wn,m(x) is
in general guaranteed to be exponentially localized around a
position in the mth unit cell [45–47] while, in 2D and 3D, this
is true if and only if the Chern number of the band vanishes
[48,49]. Then, we express the nth band intercellular Zak phase,
via the inverse transformation of (16), as

γ inter
n = 2π

N∑
m

Nb∑
i=1

Ni
orb∑

ζ=1

m
∣∣An,i,ζ

m

∣∣2
. (17)

By fixing a point xb at the boundary between neighboring
unit cells, which we assume for concreteness to be between
the m = −1 and 0 unit cells, the system is split into the left
(L) and right (R) regions as depicted in Fig. 1. With these
definitions, the intercellular Zak phase can be split into two
parts as

γ inter
n = −γ R→L

n + γ L→R
n , (18)

where

γ R→L
n = −2π

−1∑
m=−∞

Nb∑
i=1

Ni
orb∑

ζ=1

m
∣∣An,i,ζ

m

∣∣2
(19)

= 2π

∞∑
m′=0

∫ xb

−∞
dx

∣∣Wn,m′ (x)
∣∣2

(20)

and

γ L→R
n = 2π

∞∑
m=0

Nb∑
i=1

Ni
orb∑

ζ=1

m
∣∣An,i,ζ

m

∣∣2
(21)

= 2π

−1∑
m′=−∞

∫ ∞

xb

dx|Wn,m′ (x)|2. (22)

Further details are given in Appendix A. From (20) and (22),
we note that

QR→L =
Z∑
n

QR→L
n = − e

2π

Z∑
n

γ R→L
n (23)

represents the total charge weight in the L region of all
Wannier functions with their centers belonging to the R region,
and vice versa for QL→R = −e/(2π )

∑Z
n γ L→R

n . Finally, their
difference in the L region is simply expressed by

QL = QR→L − QL→R = e

2π

Z∑
n=1

γ inter
n , (24)

where the sum is over the filled bands. In the R region, this
difference is just given by QR = −(e/2π )

∑Z
n=1 γ inter

n . Due
to the translational symmetry of the system, this result is
valid for any unit-cell boundary. Also, this quantity does not
depend on the position of the origin since the intercellular Zak

035421-3



JUN-WON RHIM, JAN BEHRENDS, AND JENS H. BARDARSON PHYSICAL REVIEW B 95, 035421 (2017)

noiger kluBnoiger ecafrus tfeL

(a)

(b)

noiger ecafrus thgiRnoiger kluB

FIG. 2. A schematic of the three regions (bulk, left, and right surface regions) of a finite 1D system with N unit cells. Classical bound
surface charges (QLS (RS)

cl = Pcl · n̂) and extra charge accumulations (QLS (RS)
acc ) in two surface regions are also illustrated schematically. The

system is terminated at x = 0 and xN . Boundaries between those three regions are represented by red dashed lines at x�L
and xN−�R

. Bulk unit
cells are drawn by gray dashed boxes and their indices are given below them. In each bulk unit cell, the dipole moment (Pcl) of the bulk unit
cell is drawn symbolically.

phase does not as mentioned previously. Note that, from the
point of view of the electronic density of the infinite system
without boundaries, every unit cell is neutral and there is no
extra charge in the L and R regions of the bulk illustrated
in Fig. 1. However, we want to eventually obtain the extra
charge accumulation around the surfaces when the system is
terminated as shown in Fig. 2; we demonstrate how it is related
to QR→L and QL→R in the next section.

III. EXTRA CHARGE ACCUMULATIONS
AROUND SURFACES

In this section, we consider a terminated system, divided
into three regions as illustrated in Fig. 2: the left surface region
(LS) from m = 1 to �L and the right surface (RS) region from
m = N − �R + 1 to N , separated by the bulk region (B) from
m = �L + 1 to N − �R . We choose �L, �R , and N all large
enough that there are no boundary effects in the bulk, and
all regions are commensurate with the bulk’s unit cell, namely,
they do not contain any partial unit cells. While the extra charge
accumulation in the surface region is defined as the additional
charge over the bulk’s charge distribution, it is equivalent to
the total charge including ions in this region because of the
commensurability condition and the neutrality of the bulk’s
unit cell. Finally, we assume that the finite system is also
insulating because otherwise partially filled degenerate states
at the Fermi level would yield ambiguity in evaluating physical
quantities depending on which states we choose to be occupied.
Then, we show that, if the surface region is commensurate with
the bulk’s unit cell, the extra charge accumulation QLS (RS)

acc in
the left (right) surface region of a neutral 1D insulator is given
by

QLS (RS)
acc = +(−)

e

2π
γ inter (mod e) (25)

where γ inter = ∑Z
n=1 γ inter

n is evaluated based on the commen-
surate unit cell.

The overall strategy for the demonstration of the relation
(25) is as follows. We prepare a set of orthonormal wave

functions that are related to the set of occupied eigenfunctions
of the finite system by a unitary transformation, following
Vanderbilt et al. [4]. All of these states are localized, i.e.,
Wannier type, such that their characteristic widths are much
smaller than sizes of the three regions. First, there are
exchanges of weights of the Wannier functions between the
surface and bulk regions across their boundary as expressed
by QL and QR in the previous section. Then, from the
orthonormality and localized feature of the prepared basis set,
we show that the total charge in the left and right surface
regions should be QL and QR modulo e.

The orthonormal localized wave functions that we employ
for the description of the terminated system are given by

ϕ = {
ϕLS

1 (x), . . . ,ϕLS
sL

(x),W1,mL
(x), . . . ,WZ,mR

(x),

ϕRS
1 (x), . . . ,ϕRS

sR
(x)

}T
. (26)

While the Wannier functions are the proper basis set for the
infinite system, after the termination we need to construct
this new set of basis wave functions that satisfy the open
boundary condition. ϕ span the same Hilbert space as the
M occupied eigenstates of the terminated system denoted
by ψ t.s.(x) = {ψ t.s.

1 (x), . . . ,ψ t.s.
M (x)}T [4]. First, we pick all

occupied Wannier functions from the unit cell mL (in the left
surface region) to mR (in the right surface region). The choice
of mL and mR is arbitrary but chosen to be far enough from
the surfaces so that corresponding Wannier functions satisfy
the boundary conditions with exponentially vanishing error.
We then replace the Wannier functions around the surfaces
with another set of wave functions that satisfy the open
boundary condition; these we denote by ϕLS

s (x) and ϕRS
s (x)

around the left and right boundary each. The set of wave
functions in (26) can always be made orthonormal through
the Gram-Schmidt orthonormalization process [4,50–52].

The charge density of the occupied electrons in the
terminated system is given by ρel

t.s.(x) = −eψ t.s.(x)†ψ t.s.(x).
Since ψ t.s.(x) and ϕ(x), as orthonormal bases, span the same
Hilbert space of occupied states, they are related by a unitary
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matrix, and the electronic charge is rewritten as

ρel
t.s.(x) = −eϕ(x)†ϕ(x) (27)

= −e

( sL∑
s

∣∣ϕLS
s (x)

∣∣2 +
sR∑
s

∣∣ϕRS
s (x)

∣∣2

+
Z∑

n=1

mR∑
m=mL

|Wn,m(x)|2
)

. (28)

The total charge in the left surface region, which is the extra
charge accumulation, is then evaluated as

QLS
acc =

∫ x�L

0
dx ρel

t.s.(x) + �LZe, (29)

where �LZe is the total ionic charge in the left surface region:
we assume that the left end of the system is at x = 0 and
xm = am is the position of the right boundary of the mth unit
cell. In this region, integrals of ϕRS

s (x)’s in (28) vanish, while
the sum of integrals of ϕLS

s (x)’s, which are well localized to
the right and left surface, is an integer number sL. Then, QLS

acc
becomes

QLS
acc = −e

∫ x�L

0
dx

Z∑
n=1

mR∑
m=mL

|Wn,m(x)|2 + qLe (30)

= −e

Z∑
n=1

�L∑
m=mL

∫ x�L

0
dx|Wn,m(x)|2

− e

Z∑
n=1

mR∑
m=�L+1

∫ x�L

0
dx|Wn,m(x)|2 + qLe, (31)

where qL = −sL + �LZ. Since all the Wannier functions are
normalized, we have the identity

Z∑
n=1

�L∑
m=mL

∫ x�L

0
dx|Wn,m(x)|2

= Z(�L − mL + 1) −
Z∑

n=1

�L∑
m=mL

∫ xN

x�L

dx|Wn,m(x)|2. (32)

This leads to the conclusion

QLS
acc = −e

2π

Z∑
n=1

(
γ R→L

n − γ L→R
n

) + q ′
Le (33)

= e

2π

Z∑
n=1

γ inter
n + q ′

Le, (34)

where q ′
L = qL − Z(�L − mL + 1) = −sL + Z(mL − 1).

When we apply (20) and (22) to (31) and (32), we take
mL → −∞, mR → ∞, x1 → −∞, and xN → ∞, which
is an approximation justified by the fact that the Wannier
functions are exponentially localized in space and that the
surface regions can be taken large enough. Also, the role of xb

in (20) and (22) is taken by x�L
in (31) and (32). In the same

way, the extra charge accumulation in the right surface region

is given by

QRS
acc = − e

2π

Z∑
n=1

γ inter
n + q ′

Re, (35)

where q ′
R = −sR + Z(N − mR). As in Ref. [4], we are not

interested in the integer numbers q ′
L and q ′

R which cannot
be determined from the bulk. Instead, we conclude that
the intercellular Zak phase can predict the extra charge
accumulation in the surface region modulo e as described in
(25).

Finally, we remark on the difference between the bound
surface charge and the extra charge accumulation. The bound
surface charge σ is a quantity measured in a capacitance
measurement and is related to the modern definition of the
polarization by σ = P · n̂, where n̂ is the surface orientation
[n̂ = − (+)x̂ for the left (right) edge in the 1D case] [4]. The
bound surface charge of the total charge density ρt.s.(x) of the
finite system is evaluated explicitly as [4,53,54]

σLS = 1

a

∫ xc

−∞
dx

∫ x+ a
2

x− a
2

dx ′ρt.s.(x
′) (36)

for the bound surface charge at the left edge, and

σRS = 1

a

∫ ∞

xd

dx

∫ x+ a
2

x− a
2

dx ′ρt.s.(x
′) (37)

at the right edge, where xc and xd are arbitrary positions in
the middle of the finite system far away from the surfaces.
As shown in Appendix B, σLS and σRS are independent of xc

and xd . To clearly compare the bound surface charge and the
extra charge accumulation, we choose them as xc = x�L

+ a/2
and xd = xN−�R

− a/2. Then, the left and right bound surface
charges become

σLS = −1

a

∫ x�L
+a

x�L

dx xρt.s.(x) +
∫ x�L

0
dx ρt.s.(x) (38)

and

σRS = 1

a

∫ xN−�R

xN−�R
−a

dx xρt.s.(x) +
∫ xN

xN−�R

dx ρt.s.(x). (39)

Derivations of the above are given in Appendix B. The first
terms of (38) and (39) are exactly Pcl · n̂ because x�L

and xN−�R

are far enough from the edges so that ρt.s.(x) can be considered
a bulk charge density. We call them the classical bound surface
charges Q

LS (RS)
cl because in classical electrodynamics they

are the bound surface charges in a dielectric material with a
uniform dipole distribution through the whole finite system.
On the other hand, the second terms of (38) and (39) are just
the total charge in the left and right surface regions, which
are equal to the extra charge accumulations in those regions
in the neutral systems. Consequently, we have shown that the
bound surface charge consists of two contributions, one from
the bulk’s dipole moment and the other from the extra charge
accumulation. This is consistent with the splitting of the Zak
phase into the intracellular and intercellular Zak phases. Also,
it indicates that the modern polarization is actually composed
of two kinds of polarizations: one is the classical one from the
bulk’s dipole moment and the other is polarization from the
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extra charge accumulations at opposite edges. This conclusion
is illustrated schematically in Fig. 2.

IV. BULK-BOUNDARY CORRESPONDENCE

Our general statement about the number of surface modes
in the gap of a finite 1D insulator with charge neutrality is as
follows: there are ns = γ inter/π (mod 2) surface modes below
the Fermi level if there is inversion symmetry both before
and after termination, and the finite system is commensurate
with the bulk unit cell used for the calculation of γ inter.
We justify our general statement in the light of the physical
interpretation of the intercellular Zak phase γ inter. As discussed
in the previous section, the intercellular Zak phase explains
the amount of the extra charge accumulation around the edge
which is closely related to the surface modes, while the
intracellular Zak phase, as a bulk dipole moment, has nothing
to do with the surface modes.

First, we note that if the bulk respects inversion symmetry,
γ inter is quantized to π . When the real-space origin is at one of
the inversion centers, the total Zak phase γ is quantized to π

while its intracellular part vanishes because the dipole moment
of the bulk unit cell is zero in this case. Therefore, γ inter = γ

is also quantized to π , and it is independent of the choice of
the origin as mentioned in Sec. II.

The surface modes are the eigenstates generated in the
bulk gaps as a result of the edge termination. As described in
the previous section, they are exponentially localized at one
of the edges. Due to inversion symmetry, if we have a surface
state localized at the left edge, we always find its counterpart
localized at the right edge with the same energy. The
degeneracy might increase if the system preserves additional
symmetries such as the time-reversal symmetry.

We proceed to the justification of our general statement by
examining two different cases. One is when the Fermi level
of the finite system is not at any of the surface modes, so that
the finite system is also an insulator. And, the other is the case
when the Fermi level is at the partially filled degenerate surface
modes.

First, let us consider the case when the finite system
is already insulating. Then, the only allowed value of the
total charge accumulations is QLS

acc = QRS
acc = 0 due to charge

neutrality and inversion symmetry. According to (25), the
intercellular Zak phase should be 0 (mod 2π ) in this case.
Since every surface mode has an inversion partner with the
same energy, there should be an even number of surface states
below the Fermi level. This means the general statement holds
for insulating phases with inversion symmetry.

Second, we consider the case when the Fermi level is
located at the surface modes. In this case, we cannot use the
results of the previous section since there we assume the finite
system is insulating. However, we can resolve this obstacle by
opening tiny gaps between degenerate surface modes without
changing the total number of surface modes in the bulk gap.
We assume that this can be done by applying local perturbative
potentials on both edges that break symmetries corresponding
to those degeneracies. For instance, different onsite potentials
at opposite edges would break the degeneracy responsible for
inversion symmetry. Similarly, a local Zeeman field could be
used to break spin degeneracy.

Let us investigate the dependence of the surface modes on
the tiny inversion-symmetry breaking, which is relevant for the
quantization of the extra charge accumulations on the edges
as explained below. This is achieved by applying an onsite
potential δ to the first unit cell and −δ to the N th unit cell of the
finite system where δ is nonzero but small compared with the
bulk gap. Then, the eigenstates at opposite edges have different
energies, and it is impossible to construct surface modes
localized to both edges simultaneously from them. As a result,
the eigenstate of each lifted surface mode is localized to only
one of the left and right edges. This implies that each surface
mode yields an integer charge QLS

Si ,acc = −e or QRS
Si ,acc = −e,

where Q
LS(RS)
Si ,acc is the contribution of the ith surface mode to

the extra charge accumulation in the left (right) surface region.
After taking into account the inversion-symmetry breaking,
we assume that other perturbative potentials would not affect
this property of the lifted surface modes.

On the other hand, the charge distribution calculated from
the bulk band continuum is insensitive against this kind of
local perturbation due to its bulk character [55]. So, the charge
distribution of the bulk band continuum maintains almost the
same form as the unperturbed inversion-symmetric system. In
the unperturbed inversion-symmetric system, the extra charge
accumulation from the bulk band continuum can only take
values of QLS

B,acc = QRS
B,acc = (p + 1/2)e or pe where p is an

integer because the total charge of the finite system should be
an integer multiple of e and the system has inversion symmetry.
Here, Q

LS (RS)
B,acc is the contribution of the bulk band continuum

to the extra charge accumulation in the left (right) surface
region. Note that although we slightly break the inversion
symmetry to make the system insulating, its presence in the
unperturbed system is essential for the constraint on Q

LS (RS)
B,acc .

If Q
LS (RS)
B,acc = (p + 1/2)e, the total charge accumulations

originating from surface modes on both sides should be∑
Ei<EF

(QLS
Si ,acc + QRS

Si ,acc) = −(2p + 1)e to maintain neutral-
ity. This means that there is an odd number of surface modes
below the Fermi level in the main gap where the Fermi level
lies because there were even number of occupied surface
modes in other gaps before breaking inversion symmetry,
and we have assumed that this number is unchanged by
the symmetry-breaking perturbations. Also, due to the same
reason, this implies that we have an odd number of surface
modes below the Fermi energy in the main gap before breaking
those symmetries. In the perspective of the intercellular Zak
phase, the fact that the extra charge accumulation Q

LS (RS)
B,acc +∑

Ei<EF
Q

LS (RS)
Si ,acc is a half-integer multiple of e implies that

the intercellular Zak phase should be a half-integer multiple
of 2π according to (25). In conclusion, the number of surface
modes is equal to γ inter/π mod 2 in this case.

In similar fashion, when Q
LS (RS)
B,acc = pe, the surface

modes’ extra charge accumulations on both edges should
be

∑
Ei<EF

(QLS
Si ,acc + QRS

Si ,acc) = −2pe to maintain charge
neutrality, implying that there are an even number of surface
modes in the main gap and that the intercellular Zak phase
is even. So, the number of surface modes is again equal to
γ inter/π mod 2 in this case.

Finally, we note that this bulk-boundary correspondence
can be restated by using the Zak phase when the real-space
origin is at an inversion center. This is because the intracellular
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Zak phase becomes zero (mod 2π ) according to (9), so that
the Zak phase is identical to the intercellular Zak phase in this
case.

V. EXAMPLES

In this section, we provide a few examples demonstrating
the general results of the earlier sections.

A. Rice-Mele 1D chain

In this section, we calculate the extra charge accumulation
in the Rice-Mele model [4,56] and show that it is accurately
predicted by the intercellular Zak phase and is different from
the bound surface charge. Also, for inversion-symmetric cases
of this model, we show that the bulk-boundary correspondence
works well.

The Rice-Mele model is given by

HRM =
∑
σ,j

εj c
†
σj cσj +

∑
σ,j

[Vj,j+1c
†
σj cσj+1 + H.c.], (40)

where σ and j are indices for the spin and the lattice sites.
For neutrality of the system at half-filling, we introduce spin
degeneracy. The tight-binding parameters are given by ε2p =
−, ε2p+1 = , V2p−1,2p = −t − δ, and V2p,2p+1 = −t + δ

where p is an integer. Note that there are two sites per unit cell.
When  = 0, the model reduces to the Su-Schrieffer-Heeger
model [57].

The Bloch wave function for HRM is described by

ψn,k(x) = 1√
N

N∑
m

eikm
[
αn,kφ

A
m(x) + βn,kφ

B
m(x)

]
, (41)

where

φA
m(x) = φ(x − m) and φB

m(x) = φ
(
x − m − 1

2

)
(42)

and φ(x) is the atomic wave function at the lattice sites. In this
section, we set a = 1 for convenience.

The intracellular and intercellular Zak phases are given by

γ intra
n,σ =

∫ 2π

0
dk

1

2
|βn,k|2 (43)

and

γ inter
n,σ = i

∫ 2π

0
dk

(
α∗

n,k

∂αn,k

∂k
+ β∗

n,k

∂βn,k

∂k

)
. (44)

Since there are no couplings between the two spin species,
we have γn,↑ = γn,↓. According to the results in Sec. II, the
classical polarization for a given unit cell is

Pcl = −e

2π

∑
σ

Z∑
n=1

γ intra
n,σ + e

2
(45)

and the extra charge accumulations at the edges are

QLS (RS)
acc = +(−)

e

2π

∑
σ

Z∑
n=1

γ inter
n,σ (mod 2e). (46)

Here, Z = 1 since we consider two spins independently.
We check this relation between QLS (RS)

acc and the intercel-
lular Zak phase numerically in Fig. 3(b) where the system

0 1 2 3 4 5 6
-2

-1

0

1

2

0 1 2 3 4 5 6-2

-1

0

1

2

(a)

(b)

FIG. 3. The comparison between the Zak phase, the intercellular
Zak phase, the bound surface charge, and the extra charge accu-
mulation of the Rice-Mele 1D chain model. Here, the tight-binding
parameters are given by t = 1,  = 0.6 cos θ , and δ = 0.6 sin θ . (a)
The red dashed curves are the calculations of γ /2π − 1/2 (mod 2e).
The blue dots are the bound surface charge at the left edge of the
terminated chain. (b) The red solid curves are the intercellular Zak
phase and the circular markers are the extra charge accumulation near
the left edge.

is parametrized by t = 1,  = 0.6 cos θ , and δ = 0.6 sin θ .
Also, for the bound surface charge (σ = P · n̂), we applied
the formulas [53,54] (36) and (37) and reproduced exactly the
results obtained by Vanderbilt et al. [4] as shown in Fig. 3(a).
The difference between those two quantities corresponds to the
classical bound surface charge σcl = Pcl · n̂ originating from
the dipole moment of the unit cell as we discussed in Sec. III.
Since the dipole moment vanishes when the unit cell respects
inversion symmetry, those two quantities become identical to
each other at θ = π/2 and 3π/2 where  = 0 as shown in
Fig. 3.

As in Fig. 3(b), the intercellular Zak phase becomes 2π

for θ = π/2 and zero for θ = 3π/2, which predicts an even
number of surface bands below the Fermi level according to
the bulk-boundary correspondence in the previous section. In
the finite system with an even number of sites, we find two
surface bands for θ = π/2 and no surface bands for θ = 3π/2
below the Fermi energy (data not shown), consistent with the
bulk-boundary correspondence. However, if we consider two
spins separately, we have more information. For each spin
species, the intercellular Zak phase is just the half of those
in Fig. 3(b), namely, π for θ = π/2 and zero for θ = 3π/2,
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FIG. 4. The lattice structure of the 2D toy model-I. The unit cell
used for the calculations of the intercellular Zak phases is the dashed
box. (b) The Brillouin zone of the given system. Four Dirac nodes
at ky = π/2 are marked by red dots. The Brillouin zone is divided
into several regions depending on the value of the Zak phase: γ = π

is gray and γ = 2π is white. (c) Band spectrum at ky = π/2. The
parameters used are t = ε0 = 0.5.

which implies there are an odd and even number of surface
states in each case. This means we must have surface modes
when θ = π/2 while one cannot determine the existence of
the surface bands when θ = 3π/2.

B. 2D toy model-I

Here, we suggest a 2D toy model as a counterexample for
the conventional bulk-boundary correspondence of the Zak
phase. From this, we clarify its right usage by emphasizing the
assumption of the existence of the commensurate bulk’s unit
cell. We also test whether the intercellular Zak phase predicts
the extra charge accumulation accurately or not.

Our toy model-I is illustrated in Fig. 4(a) and described by
the Hamiltonian

HI
2D =

∑
R,i

(εAa
†
i,Rai,R + εBb

†
i,Rbi,R)

+ t
∑
R,δx

(
a
†
2,R+δx

a1,R + b
†
2,R+δx

b1,R + H.c.
)

+ t
∑
R,δy

(
a
†
1,R+δy

b1,R − a
†
2,R+δy

b2,R + H.c.
)
, (47)

where R is the position vector of the unit cell, and δx = ±ax̂

and δy = ±aŷ are the nearest-neighbor vectors. There are
two orbitals at each site denoted by i = 1,2. The electron
hops between different orbitals along x and between the same
orbitals along y. Along the y direction, the signs of the hopping
parameter of the i = 1 and 2 orbitals are opposite.

For εA = −εB = ε0, the energy spectrum is given by

EI
2D(kx,ky) = ±{(ε0 ± 2t cos kx)2 + 4t2 cos2 ky} 1

2 , (48)

where a is set to be unity. The spectrum can become
gapless only at ky = π/2, where it becomes EI

2D(kx,π/2) =
±(ε0 ± 2t cos kx) which has four Dirac nodes at kx =
± cos−1(±ε0/2t) for 0 < ε0 < 2t as shown in Figs. 4(b) and
4(c) where t = ε0 = 0.5.

For the Zak phase analysis, we consider an effective 1D
Hamiltonian obtained by fixing the momentum kx . From this,
we can calculate the Zak phase by integrating the Berry
connection along ky . The results are presented in Fig. 4(b)
by the gray (γ = π ) and white (γ = 2π ) regions. Due to
reflection symmetry, which corresponds to inversion symmetry
in the effective Hamiltonian, we have quantized Zak phases.
Whenever we cross one of the Dirac nodes, the Zak phase
changes discontinuously by ±π .

Now, let us consider ribbon-shaped finite systems that
are finite in the y direction but infinite in the x direction.
We consider two kinds of ribbon geometries, which we call
Ribbon-I(A) and Ribbon-I(S) as illustrated in the insets of
Figs. 5(b) and 5(c). Ribbon-I(A) does not respect reflection
symmetry along the x axis while Ribbon-I(S) does. As a result,
only Ribbon-I(S) remains gapless without breaking the Dirac
nodes of the bulk.

According to the conventional bulk-boundary correspon-
dence, we expect Ribbon-I(S) to have surface modes at
kx’s in the gray or white region in Fig. 4(b) because both
the bulk and terminated system have reflection symmetry.
However, it turns out that there are no boundary modes in
the Brillouin zone for both ribbon geometries as shown in
Fig. 5. This is a good example of the wrong usage of the bulk-
boundary correspondence using the Zak phase. In the revised
correspondence given in the previous section, it requires the
commensurability between the finite system and the bulk’s
unit cell in addition to inversion symmetry. Ribbon-I(A) is
commensurate with the unit cell described in Fig. 4(a), but
does not respect mirror symmetry while Ribbon-I(S), which
is reflection symmetric, cannot be commensurate with any
bulk’s unit cell as it consists of an odd number of dimer lines.
Therefore, those two systems are actually beyond the scope of
the revised bulk-boundary correspondence.
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Ribbon-I(S)

Ribbon-I(A)

FIG. 5. (a) A schematic band dispersion of the terminated system
of the 2D toy model-I. The dashed box in (a) is highlighted in (b)
and (c) for different choices of the terminations, Ribbon-I(A) and
Ribbon-I(S) each whose lattice structures are depicted in the insets
of (b) and (c). Those ribbon geometries are infinite only along the x

axis. Their bottom and top surfaces are denoted by surfaces B and T .

We check that the intercellular Zak phase accurately
predicts the extra charge accumulation in the surface regions
in Fig. 6. From (25), the extra charge accumulation for a given
kx is given by

QB (T )
acc (kx) = ± e

2π

∑
n

γ inter
n (kx) (mod e), (49)

where B (T ) and the plus (minus) sign correspond to the
bottom (top) surface, and the sum is over occupied bands.
In the case of Ribbon-I(A), both bottom and top surfaces
are commensurate with a single unit cell and share the
same intercellular Zak phase. As a result, the extra charge
accumulations in the bottom and top surfaces show opposite

3 2 1 0 1 2 3
2

1

0

1

2

3 2 1 0 1 2 3
2

1

0

1

2

(a)

(b)

Ribbon-I(A)

Ribbon-I(S)

FIG. 6. The intercellular Zak phase (γ inter = ∑
n γ inter

n ) is plotted
by red solid curves as a function of kx and it is compared with the extra
charge accumulation which is represented by empty and filled circular
markers. In (a), the empty (filled) circles are 2πQB

acc/e (2πQT
acc/e)

of Ribbon-I(A). In (b), the filled circles represent the densities of the
extra charge accumulations on both sides of Ribbon-I(S). In this case,
the extra charge accumulations on both surfaces are the same due to
reflection symmetry.

signs to each other as shown in Fig. 6(a). On the other hand,
for Ribbon-I(S), the commensurate unit cell for the top surface
is the one obtained by shifting the commensurate unit cell for
the bottom by aŷ. We find that the intercellular Zak phases for
those unit cells have the same magnitude but opposite signs.
While the extra charge accumulations in the bottom and top
surfaces should be identical due to the mirror symmetry, it is
consistent with the above property of intercellular Zak phases.
This is described in Fig. 6(b).

C. 2D toy model-II

Finally, we study another 2D toy model which manifests the
vitalness of the conditions for the bulk-boundary correspon-
dence, such as inversion symmetry and insulating terminated
system. We again confirm that the extra charge accumulation in
the surface regions is captured by the intercellular Zak phase.

The toy model-II, depicted in Fig. 7(a), has a tight-binding
model given by

HII
2D =

∑
R

c†RH0cR +
∑
R,δx

c†R+δx
HxcR +

∑
R,δy

c†R+δy
HycR,

(50)
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FIG. 7. (a) The lattice structure of the 2D toy model-II. Two
unit-cell choices for the evaluation of the intercellular Zak phase are
shown by two dashed boxes. (b) The band structure at ky = 0 for
t = 0.5 and H0 = diag(0.5, − 1.5,2,0,0.5, − 1.5). Four Dirac points
are represented by red dots.

where c†R = (a†
1,R,a

†
2,R,b

†
1,R,b

†
2,R,c

†
1,R,c

†
2,R) consists of the

creation operators of the orbitals at A, B, and C sites. There
are two orbitals per site. The matrices are defined as H0 =
diag(εA,1,εA,2,εB,1,εB,2,εC,1,εC,2), Hx = 1 ⊗ (σx + σ z), and
Hy = (λ1 + λ6) ⊗ σz, where 1 is the 3 × 3 identity matrix,
σα is the Pauli matrix, and λi is the Gellman matrix. The
band structure at ky = 0 is depicted in Fig. 7(b). While there
are four Dirac points at ky = 0, as marked by red dots, it is
insulating otherwise. We consider this model because we can
investigate a finite system with both reflection symmetry and
commensurate bulk’s unit cell as shown below.

As in the previous 2D toy model-I, we consider the effective
1D Hamiltonian for a fixed kx and calculate the intercellular
Zak phases by integrating the Berry connection along the ky

axis. While γ inter depends on the choice of the unit cell, we
consider the two unit cells, called UC-II(A) and UC-II(S),
illustrated in Fig. 7(a). Here, we assume that εA,i = εC,i so
that UC-II(S) preserves reflection symmetry while UC-II(A)
does not. Calculations of γ inter are shown in Fig. 8 by red solid
curves along kx . The intercellular Zak phase of UC-II(S) is
quantized to a multiple of π due to the reflection symmetry
while it has continuous values for UC-II(A). For both cases,
the intercellular Zak phase shows the discrete jump at every
Dirac node as in the 2D toy model-I.

We consider two terminated systems called Ribbon-II(A)
and Ribbon-II(S), which are commensurate with UC-II(A)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3
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3
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0.5
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1.5

(a)

(b)

Ribbon-II(S)

Ribbon-II(A)

FIG. 8. Calculations of the intercellular Zak phases for (a) UC-
II(S) and (b) UC-II(A). They are compared with the extra charge
accumulations in the bottom surfaces of Ribbon-II(S) and Ribbon-
II(A) which are marked by empty circles. The positions of the Dirac
nodes are shown by vertical dashed lines. The shaded region in (a)
is where the bulk-boundary correspondence fails because the Fermi
level of the 1D effective Hamiltonian for given kx is located at the
edge of the bulk continuum as shown in Figs. 9(a) and 9(b).

and UC-II(S) each. As in the toy model-I, they are terminated
along the x axis. We plot the extra charge accumulations in
the bottom surface of those systems in Fig. 8. For the case
of Ribbon-II(S), we break the reflection symmetry slightly
so that one of the equivalent intercellular Zak phases π and
−π is selected to describe the extra charge accumulation
in the bottom surface. One can note that the extra charge
accumulation is well described by the intercellular Zak phase
for all values of kx except those in the shaded interval. This
failure in this region is because the condition that the finite
system is also insulating is violated. As shown in Fig. 9(b),
in the shaded region, the topmost band at half-filling joins
the conduction band continuum. Here, “half-filling” means
the effective 1D system at each kx is half-filled. Also, in
this region, the states on the topmost band are no longer
exponentially localized. On the other hand, in Ribbon-II(S),
one can see the extra charge accumulation perfectly agrees
with the intercellular Zak phase everywhere. This is because,
in this case, the topmost band at half-filling belongs to the
valence band continuum or is located in the middle of the
bulk gap and shows a finite gap with empty upper levels as
exhibited in Fig. 9(d). While the correspondence between the
intercellular Zak phase and the extra charge accumulation is

035421-10



BULK-BOUNDARY CORRESPONDENCE FROM THE . . . PHYSICAL REVIEW B 95, 035421 (2017)

FIG. 9. Energy spectra of Ribbon-II(S) and Ribbon-II(A) are
plotted in (a) and (c). A zoom into the region covered by the green
boxes is given in (b) and (c). The meaning of the vertical dashed
lines and the shaded regions is explained in Fig. 8. In (b) and (d), the
red curves are the topmost filled band of the effective 1D system for
given kx at half-filling. If the wave function of this band is localized
at the surface, we represent it by a solid curve. On the other hand, if
the eigenstate is bulklike, it is drawn with a dashed line.

inaccurate only around the Dirac nodes where the system is
metallic, one can reduce this inaccuracy to any desired value
by increasing the surface region.

Finally, applying the modified bulk-boundary correspon-
dence of Sec. IV, one can predict the number of surface bands
in the gap (even or odd) in the inversion-symmetric case. From
the intercellular Zak phase results in Fig. 8(a), one expects an
even number of surface bands for γ inter = 0 and an odd number
of them for γ inter = π below the Fermi level of the effective
1D system at each kx , except in the shaded region. As shown
in Fig. 9(b), the number of surface modes below the Fermi
level is two for kx < 1.468 and zero for kx > 2.0944, which
correspond to the intervals where the intercellular Zak phase is
zero. On the other hand, there is only one filled surface mode
in 1.468 < kx < 2.0944, except in the shaded part.

VI. CONCLUSIONS

In this work, we have demonstrated that the intercellular
Zak phase γ inter can predict whether the number of surface
modes below the Fermi level in 1D insulators is even or
odd, when the commensurate bulk unit cell respects inversion
symmetry. While the Zak phase itself cannot do this due to
its arbitrariness depending on the choice of the real-space

origin and the unit cell, we have shown that γ inter, as an
origin-independent quantity, can be exploited for this bulk-
boundary correspondence. Although γ inter also depends on the
unit-cell choice, it is not arbitrary once we select a unit cell that
is commensurate with the finite system. Our bulk-boundary
correspondence using γ inter was justified with a microscopic
interpretation of γ intra and γ inter. We explicitly showed that
γ intra is the electronic part of the bulk dipole moment of
the unit cell, and γ inter represents how much weight of the
Wannier functions is exchanged with respect to a unit-cell
boundary. When the system is terminated, γ intra is interpreted
as the classical bound surface charge, while γ inter is understood
as the extra charge accumulation around surfaces. Since the
number of surface modes is closely related to the extra charge
accumulation, we argue how it is related to γ inter when the
commensurate unit cell preserves inversion symmetry. If the
origin is at the inversion center, γ inter becomes identical to the
Zak phase, and our bulk-boundary correspondence reduces
to the conventional one. Thereby, our work also clarifies
the conditions under which the conventional bulk-boundary
correspondence using the Zak phase works.

We expect that the extra charge accumulation can be
measured by scanning quantum dot microscopy (SQDM)
[58]. SQDM offers three-dimensional images of electrostatic
potentials down to the subnanometer level from which one
could infer the total amount of its source charge. Since
the electric field caused by extra charge accumulations at
opposite edges of a long enough 1D chain can be considered
independent, the extra charge accumulation at one edge can
be obtained from the local electrostatic potential profile.
Therefore, SQDM could be the characterizing experiment for
the intercellular Zak phase like the capacitance measurement
for the Zak phase.
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APPENDIX A: INTRACELLULAR AND
INTERCELLULAR ZAK PHASES

When we calculate the Zak phase, the momentum derivative
operates on the exponential factor eik(ma−x) and the coefficient
α

n,i,ζ

k of the lattice periodic part of the Bloch function (6). That
is,

γn = i

∫
BZ

dk〈un,k|∂kun,k〉 (A1)

= i

∫
BZ

dk

〈
un,k

∣∣∣∣ ∑
m,i,ζ

α
n,i,ζ

k φi,ζ
m (x)(∂ke

ik(ma−x))

〉

+ i

∫
BZ

dk

〈
un,k

∣∣∣∣ ∑
m,i,ζ

(∂kα
n,i,ζ

k )φi,ζ
m (x)eik(ma−x)

〉
. (A2)

The first term is defined as the intracellular Zak phase and the
second as the intercellular Zak phase.
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First, the intracellular Zak phase is evaluated as follows:

γ intra
n = i

∫
BZ

dk

∫



dx

N∑
m,m′

Nb∑
i,i ′=1

Ni
orb∑

ζ,ζ ′=1

α
n,i,ζ∗
k φi,ζ

m (x)∗e−ik(ma−x)α
n,i ′,ζ ′
k φ

i ′,ζ ′
m′ (x)

∂eik(m′a−x)

∂k
(A3)

=
∫

BZ
dk

∫



dx

N∑
m,m′

Nb∑
i,i ′=1

Ni
orb∑

ζ,ζ ′=1

(x − m′a)αn,i,ζ∗
k α

n,i ′,ζ ′
k φi,ζ

m (x)∗φi ′,ζ ′
m′ (x)eik(m′−m)a (A4)

=
∫

BZ
dk

∫



dx x

N∑
m,m′

Nb∑
i,i ′=1

Ni
orb∑

ζ,ζ ′=1

α
n,i,ζ∗
k α

n,i ′,ζ ′
k φi,ζ

m (x)∗φi ′,ζ ′
m′ (x)eik(m′−m)a − m
a

∫
BZ

dk

Nb∑
i=1

Ni
orb∑

ζ=1

∣∣αn,i,ζ

k

∣∣2
(A5)

= N

∫
BZ

dk

∫



dx x

∣∣∣∣∣∣
1√
N

N∑
m

Nb∑
i=1

Ni
orb∑

ζ=1

α
n,i,ζ

k φi,ζ
m (x)eikma

∣∣∣∣∣∣
2

− 2πm
 (A6)

= N

∫
BZ

dk

∫



dx x|ψn,k(x)|2 − 2πm
, (A7)

where m
 is the index of the unit cell 
. From (A4) to (A5), we used the orthonormality condition of the Löwdin functions∫



dx φ
i,ζ
m (x)∗φi ′,ζ ′

m′ (x) = δm,m

δm′,m


δi,i ′δζ,ζ ′ . The second term of (A6) is obtained because the coefficients of the eigenstate for
every n and k are normalized.

Second, the intercellular Zak phase is calculated as

γ inter
n = i

∫
BZ

dk

∫



dx

N∑
m,m′

Nb∑
i,i ′=1

Ni
orb∑

ζ,ζ ′=1

α
n,i,ζ∗
k φi,ζ

m (x)∗e−ik(ma−x) ∂α
n,i ′,ζ ′
k

∂k
φ

i ′,ζ ′
m′ (x)eik(m′a−x) (A8)

= i

∫
BZ

dk

N∑
m,m′

Nb∑
i,i ′=1

Ni
orb∑

ζ,ζ ′=1

α
n,i,ζ∗
k e−ikma ∂α

n,i ′,ζ ′
k

∂k
eikm′aδm,m


δm′,m

δi,i ′δζ,ζ ′ (A9)

= i

Nb∑
i=1

Ni
orb∑

ζ=1

∫
BZ

dk α
n,i,ζ∗
k

∂

∂k
α

n,i,ζ

k . (A10)

The intercellular Zak phase is represented by the Wannier
coefficients A

n,i,ζ
m by using the inverse transformation of (16),

which is given by

α
n,i,ζ

k =
N∑
m

An,i,ζ
m e−ikma. (A11)

Substituting into Eq. (A10), we have

γ inter
n =

∑
i,ζ

∑
m,m′

∫
BZ

dk mAn,i,ζ∗
m A

n,i,ζ

m′ eik(m−m′)a (A12)

= 2π
∑
m

Nb∑
i

Ni
orb∑
ζ

m
∣∣An,i,ζ

m

∣∣2
, (A13)

where the summation ranges of i and ζ are the same as those
of (A10).

We further split γ inter
n into γ R→L

n and γ R→L
n , which satisfies

γ inter
n = −γ R→L

n + γ R→L
n , as follows:

γ R→L
n = −2π

−1∑
m=−∞

Nb∑
i=1

Ni
orb∑

ζ=1

m
∣∣An,i,ζ

m

∣∣2
(A14)

= 2π

∞∑
m′=0

−1∑
m=−∞

Nb∑
i=1

Ni
orb∑

ζ=1

∣∣An,i,ζ

m−m′
∣∣2

(A15)

= 2π

∞∑
m′=0

∫ xb

−∞
dx|Wn,m′ (x)|2 (A16)

and

γ L→R
n = 2π

∞∑
m=0

Nb∑
i=1

Ni
orb∑

ζ=1

m
∣∣An,i,ζ

m

∣∣2
(A17)

= 2π

−1∑
m′=−∞

∞∑
m=0

Nb∑
i=1

Ni
orb∑

ζ=1

∣∣An,i,ζ

m−m′
∣∣2

(A18)

= 2π

−1∑
m′=−∞

∫ ∞

xb

dx|Wn,m′ (x)|2, (A19)

where xb is the boundary between the m = −1 and the 0
unit cells. Although we specify the boundary xb, the result is
independent of it due to translational invariance, as it is clear
from the dependence on m − m′ in Eqs. (A15) and (A18).
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APPENDIX B: BOUND SURFACE CHARGE

In this section, we show that the bound surface charge can
be split into the classical bound surface charge and the extra
charge accumulation. The bound surface charge of the left
edge is given by

σLS = 1

a

∫ xc

−∞
dx

∫ x+ a
2

x− a
2

dx ′ρt.s.(x
′) =

∫ xc

−∞
dx ρ̄t.s.(x), (B1)

where ρt.s.(x) is the total charge density including both the elec-

tronic and ionic contributions ρ̄t.s.(x) = a−1
∫ x+ a

2
x− a

2
dx ′ρt.s.(x ′),

and xc is an arbitrary position in the finite system, far
away from the surfaces compared with the widths of the
ϕLS

l ’s.
First, note that σLS is independent of xc since

∂σLS

∂xc

= 1

a

∫ xc+ a
2

xc− a
2

dx ′ρt.s.(x) = ρ̄t.s.(xc) (B2)

vanishes when xc is far from the surfaces. The integral of the
charge density over one unit-cell length a is zero far from the
surfaces because our system is assumed to be neutral.

Second, the expression for the bound surface charge can
transformed as follows:

σLS = −
∫ xc

−∞
dx

dρ̄t.s.(x)

dx
x + ρ̄t.s.(x)x

∣∣∣xc

−∞
(B3)

= −1

a

∫ xc

−∞
dx

[
ρt.s.

(
x + a

2

)
− ρt.s.

(
x − a

2

)]
x (B4)

= −1

a

∫ xc+ a
2

xc− a
2

dx ρt.s.(x)x +
∫ xc− a

2

0
dx ρt.s.(x), (B5)

where x± = x ± a/2. We have used the fact that ρ̄t.s.(xc) =
ρ̄t.s.(−∞) = 0 in going from (B3) to (B4), and that ρt.s.(x) = 0
for x < 0 from (B4) to (B5). If xc = x�L

+ a/2, we have

σLS = −1

a

∫ x�L
+a

x�L

dx xρt.s.(x) +
∫ x�L

0
dx ρt.s.(x). (B6)

In the same way, the bound surface charge at the right edge
becomes

σRS = 1

a

∫ xN−�R

xN−�R
−a

dx xρt.s.(x) +
∫ xN

xN−�R

dx ρt.s.(x). (B7)

These are the expressions for the bound surface charges used
in (38) and (39) in Sec. III.
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[48] M. Kohmoto, Ann. Phys. (NY) 160, 343 (1985).
[49] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N.

Marzari, Phys. Rev. Lett. 98, 046402 (2007).
[50] W. Kohn and J. R. Onffroy, Phys. Rev. B 8, 2485 (1973).

[51] J. J. Rehr and W. Kohn, Phys. Rev. B 10, 448 (1974).
[52] C. Kallin and B. I. Halperin, Phys. Rev. B 29, 2175 (1984).
[53] A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734

(1988).
[54] K. N. Kudin, R. Car, and R. Resta, J. Chem. Phys. 127, 194902

(2007).
[55] J.-H. Park, G. Yang, J. Klinovaja, P. Stano, and D. Loss, Phys.

Rev. B 94, 075416 (2016).
[56] M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).
[57] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 (1979).
[58] C. Wagner, M. F. B. Green, P. Leinen, T. Deilmann, P. Krüger,
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[59] P. Löwdin, J. Chem. Phys. 18, 365 (1950).
[60] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

035421-14

http://arxiv.org/abs/arXiv:1602.06501
https://doi.org/10.1063/1.2743018
https://doi.org/10.1063/1.2743018
https://doi.org/10.1063/1.2743018
https://doi.org/10.1063/1.2743018
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1007/BF01206052
https://doi.org/10.1007/BF01206052
https://doi.org/10.1007/BF01206052
https://doi.org/10.1007/BF01206052
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1007/s00023-007-0326-8
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevB.8.2485
https://doi.org/10.1103/PhysRevB.8.2485
https://doi.org/10.1103/PhysRevB.8.2485
https://doi.org/10.1103/PhysRevB.8.2485
https://doi.org/10.1103/PhysRevB.10.448
https://doi.org/10.1103/PhysRevB.10.448
https://doi.org/10.1103/PhysRevB.10.448
https://doi.org/10.1103/PhysRevB.10.448
https://doi.org/10.1103/PhysRevB.29.2175
https://doi.org/10.1103/PhysRevB.29.2175
https://doi.org/10.1103/PhysRevB.29.2175
https://doi.org/10.1103/PhysRevB.29.2175
https://doi.org/10.1103/PhysRevLett.61.734
https://doi.org/10.1103/PhysRevLett.61.734
https://doi.org/10.1103/PhysRevLett.61.734
https://doi.org/10.1103/PhysRevLett.61.734
https://doi.org/10.1063/1.2799514
https://doi.org/10.1063/1.2799514
https://doi.org/10.1063/1.2799514
https://doi.org/10.1063/1.2799514
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.115.026101
https://doi.org/10.1103/PhysRevLett.115.026101
https://doi.org/10.1103/PhysRevLett.115.026101
https://doi.org/10.1103/PhysRevLett.115.026101
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1063/1.1747632
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498



