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Poisson-like height distribution of Ag nanoislands on Si(111) 7×7
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The height distribution of Ag(111) islands grown on Si(111) 7×7 was studied using in situ x-ray reflectivity.
This noble metal-on-semiconductor system is of particular interest because the islands exhibit an unusual
minimum height that is imposed by the quantum confinement of the conduction electrons. For different coverages
and temperatures as well as annealing, it was found that the island heights exhibit a variance that is less than the
mean by a constant amount. We argue that this behavior is related to Poisson-like statistics with the imposition
of the minimum island height. A modified Poisson height distribution model is presented and shown to provide
a good description of the experimentally measured island height distributions. The results, which contribute to
a better understanding of the nanoscale growth behavior for an important noble metal, are discussed in terms of
mobility that leads to taller islands.
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I. INTRODUCTION

Nanoscale materials are of interest for many reasons,
including their utility due to their smallness of size or from
improved catalytic properties due to their large surface to
volume ratio; but intriguing new physical properties can arise
simply because of the nanoscale dimensions [1,2]. These new
properties can extend to novel growth phenomena that invoke
mechanisms beyond the conventional morphological evolution
during film growth [3]. A particularly interesting case concerns
nanoscale metallic islands that can exhibit height selection
due to the quantum confinement of the conduction electrons,
known as quantum size effects (QSE) [4–7]. Oscillatory
stability of the island heights on the monolayer scale, the
period of which is related to the Fermi wavelength, has been
observed during the growth of a number of metals [8–10]. The
influence of quantum effects on the growth behavior of metals
is important to understand both for fundamental reasons and
for new frontiers in nanotechnology where one must know
how to control the growth of metals on the nanoscale.

There has been considerable interest to understand the
mechanism by which Ag grows on Si(111) 7×7 because it
exhibits an intriguing minimum island height that does not
occur in the examples given above [11–15]. The growth of
Ag(111) islands differs in an important way from systems that
exhibit oscillatory island height stability because its Fermi
level is in a band gap along [111] so that there is no Fermi
wavelength to consider [16,17]. Recently, however, it was
noted [18] that the observed minimum island height of Ag(111)
can be explained from its thickness-dependent electronic
structure [19]. The minimum island height arises from electron
quantum confinement effects for very thin layers, albeit not
due to a Fermi wavelength so that there is no oscillatory
stability.

Ag(111) islands form only after the completion of a Ag
wetting layer that occurs during the initial growth on Si(111)
7×7, up to ∼0.4 ML coverage. The Ag wetting layer consists
of a discontinuous network of single atomic-layer islands that
reside within half-unit-cells of the Si(111) 7×7 reconstructed
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substrate surface [12,20]. Above ∼0.4 ML coverage, taller
Ag(111) islands begin to form [12] so that the Ag/Si system
grows in a Stranski-Krastanov (SK) growth mode. The
Ag(111) islands were initially believed to exhibit a minimum
height of two atomic layers on top of the wetting layer [11–14].
Recent x-ray scattering studies, however, revealed that the
islands dissolve the portion of the commensurate wetting layer
beneath the islands so that the minimum island height contains
three atomic layers of FCC Ag having an incommensurate
interface directly with the substrate [18]. Above 0.4 ML cov-
erage, it is observed that the atomic scale structure of the dis-
continuous wetting layer no longer changes or accumulates Ag
so that at the 0.4 ML saturation coverage there is a transition to
a macroscopic two-phase coexistance of incommensurate FCC
Ag(111) islands with the commensurate wetting layer [21].

Although much attention has been given to the minimum
island height observed during the growth of Ag(111) on Si,
the overall island height distribution has not been carefully
considered in the context of taller island heights, which are also
observed. For example, the minimum height of three layers is
found at a very low coverage just above saturation while a taller
average island height emerges with increasing coverage [21].
The island height distribution also depends on temperature: the
average island height and the width of the height distribution
are found to increase with increasing temperature, which is
due to the increased mobility at higher temperature [18]. The
height distribution of the islands has neither been considered
experimentally nor theoretically in a quantitative manner.

In this paper, we experimentally investigate the evolution of
the island height distribution with coverage, temperature, and
annealing. For all cases studied, it is found that the variance of
the island height distribution follows the mean height, except
for an “offset” that reflects the three-layer minimum height.
Although this behavior suggests a Poisson-like distribution, it
is not strictly a Poisson distribution and we present a modified
Poisson model that successfully explains the experimentally
observed distribution of island heights. By comparing the
model to the data it can be deduced that the kinetic barrier
for forming the first three atomic layers is lower than the
barrier for forming taller islands so that mobility limits the
formation of taller islands. These results provide a much
clearer picture of the energetic and kinetic considerations
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needed for understanding the growth of Ag islands on
Si(111) 7×7.

II. EXPERIMENTAL

X-ray scattering experiments were performed in situ in
ultrahigh vacuum using the surface scattering chamber (base
pressure of 1×10−10 Torr) on a PSI diffractometer located
at the 6IDC beam line at the Advanced Photon Source. The
photon energy was 16.2 keV and the specular reflectivity
data were collected in the horizontal scattering plane. The
momentum transfer of the specular reflectivity is described
in hexagonal coordinates (0,0,L)H , Q = 2πL

cH
, where cH =

9.407 Å, and [0,0,3]H = [1,1,1] is along the surface normal
direction.

Ag was deposited on a clean Si(111) 7×7 surface
using a thermal evaporator with a deposition rate of
∼1.1 ± 0.1 ML/min, where 1 ML is one monolayer of
Ag(111)(1 ML = 1.38×1015 atoms/cm2). The preparation of
the Si(111) 7×7 surface, calibration of the Ag deposition rate,
and other experimental conditions are described in Ref. [21].
Three series of data were collected in this study. Two series of
measurements were performed at a fixed coverage, 0.9 ML and
1.8 ML, for different deposition temperatures. One sample was
prepared with a coverage of 0.9 ML deposited at 150 K and
then subsequently measured at sequentially higher annealing
temperatures.

III. RESULTS

X-ray specular reflectivity was used to study the island
height distribution of Ag grown on Si(111) 7×7 for different
coverages, deposition temperatures, and annealing tempera-
tures. The results are shown in Fig. 1 for the three series of
data. Qualitatively, the reflectivity from N atomic layers of Ag
appears as an optical N -slit interference where the Ag Bragg
peaks appear as the principle maxima, located at L = 3.98
and 7.96, along with N − 2 interference fringes appearing in
between the principle maxima. The width of the Bragg peaks
is inversely proportional to N . From Fig. 1 it can be seen
that the minimum height is three layers, corresponding to one
interference fringe, whereas the average island height increases
with increasing coverage or temperature. It is noted that
measurements performed just slightly above the wetting layer
saturation coverage show the predominance of three-layer
islands, which is therefore the minimum island height [21].

The island height distribution pj , which is defined as the
fraction of the surface covered by islands having height j , was
determined quantitatively from a fit to the specular reflectivity
data using the model presented by Chen et al. [21]. The
majority of the surface is covered by the wetting layer, with
a surface fraction given by pwet, so that conserving the total
surface yields pwet + ∑

j=1 pj = 1. To analyze the population
of the islands, we consider a normalized island height
distribution p′

j , which we will refer to as the island population,
that describes the fraction of the islands having height j . It is
given by p′

j = pj∑
j=2 pj

with
∑

j=2 p′
j = 1, where we have used

the fact that omitting p1 in the normalization has a negligible
effect. Although the omission of p1 was necessary because
the commensurate wetting layer and one-layer-thick (j = 1)
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FIG. 1. Specular reflectivity measurements performed for differ-
ent growth conditions. The data have been offset vertically from
each other to provide clarity. (a) 1.8 ML of Ag deposited at the
given temperatures; arrows indicate the Ag(111) (red) and Ag(222)
(blue) Bragg positions. (b) 0.9 ML of Ag deposited at the given
temperatures; (c) 0.9 ML of Ag deposited at 150 K and annealed to
the given temperatures. The solid curves are the best fit to a model
[21] that allows the determination of the island height distribution.

incommensurate FCC Ag islands are not easily distinguished
by specular reflectivity, Chen et al. [21] demonstrated that
p1 is very small by using complementary crystal truncation
rod analysis so that omitting p1 in the normalization is
insignificant. The mean island height of the island population
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FIG. 2. The mean island height (circles) n̄ and the height variance
(squares) s2 of the island population that was determined from the
x-ray specular reflectivity data in Fig. 1. (a) 1.8 ML Ag deposited
at different temperatures. One measurement for 2.7 ML deposited at
360 K is also plotted with open symbols (its reflectivity data are not
shown in Fig. 1). It was not used in the determination of the line. (b)
0.9 ML Ag deposited at different temperatures and (c) annealing at
different temperatures for 0.9 ML Ag deposited at 150 K. In each of
(a), (b), and (c) one line was obtained by fitting n̄, and the other line
through the variance data has the same slope with the line shifted
downward by �.

is given as n̄ = ∑
jp′

j and the height variance of the island
population is given as s2 = ∑

j 2p′
j − n̄2.

Figure 2 shows the mean island height n̄ and the height
variance s2 of the island populations that were determined
from the data of Fig. 1. There are a number of important
features to notice in this result. The mean height is observed to
increase with both increasing temperature and coverage. It is
striking that the variance of the island population exactly tracks
the mean with a constant difference: s2 = n̄ − �, where � is a
number that is slightly less than three. To emphasize this point
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FIG. 3. The island population is plotted versus j for different
island population models Pj (solid curve) and compared with the
experimental data p′

j (circles) that was obtained from Fig. 1(c) for
0.9 ML Ag annealed to 340 K. The experimental values of n̄ = 3.33
and s2 = 0.97 are used to calculate the model curves. (a) Poisson
distribution; (b) binomial distribution; (c) Poisson distribution shifted
by �; (d) modified Poisson distribution, as discussed in the text.
Factorials in the distributions calculated in (a), (b), and (c) are
replaced with the Gamma function, j ! = �(j + 1), to generate
continuous curves, whereas the modified Poisson distribution in (d)
is calculated numerically at integer values and the plotted curve uses
an interpolation between discrete points.

in Fig. 2, the line through the variance has the same slope as the
line through the mean. One sample was measured for 2.7 ML
coverage, shown in Fig. 2(a), and it also follows the same trend
(its reflectivity is not given in Fig. 1). A consequence of this
relationship between mean and variance is that as the mean
approaches three layers, the variance approaches zero and the
island height distribution becomes very narrow. In fact, it can
be seen in Fig. 2(b) that when the island height approaches
three, neither the mean nor the variance continue to decrease
between 260 K and 150 K.

In order to interpret the experimental results, we examine
several model distributions Pj and compare them with the
experimentally determined island population p′

j in Fig. 3. The
linear relationship of the experimental mean and variance is
suggestive of Poisson statistics where the mean is equal to
the variance. Using the experimentally observed mean n̄, the
Poisson distribution is given as

Pj = n̄j e−n̄

j !
. (1)

It can be seen from Fig. 3(a) that the Poisson distribution
compares quite poorly with the experimental data: Although
the mean values agree, the Poisson distribution is far too broad
compared to the data because it neglects the narrowing of the
variance by an amount �.

It is apparent that having only a single parameter n̄ in the
Poisson distribution is insufficient to capture both the mean
and the variance of the data. Therefore, we also tested the
binomial distribution, which has the mean and variance as two
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independent parameters, and it is given as

Pj = M!

j !(M − j )!
pj (1 − p)M−j , (2)

where M is an integer and 0 � p � 1. Although the mean
is given as n̄ = Mp and the variance is s2 = Mp(1 − p), one
must be cautious in calculating M and p from the experimental
mean and variance if M is to be an integer. This constraint was
accomplished by first determining M = n̄

1−s2/n̄
rounded up to

the nearest integer, and then p was subsequently calculated

as p = n̄

M
. As shown in Fig. 3(b), using the experimental

values for both the mean and the variance allows the binomial
distribution to describe the data better than the Poisson
distribution; however, the shape of the binomial distribution is
not correct because the width of the distribution is too broad
and its height is too low.

Because of the linear relationship between the mean and
the variance that is exhibited in the experimental data of
Fig. 2, it is instructive to take a closer look at the Poisson
distribution. Utilizing the experimentally observed variance in
the distribution, rather than the mean, and then shifting the
distribution by � = n̄ − s2 to obtain the observed mean gives

Pj = (s2)j−�e−s2

�(j − � + 1)
. (3)

As shown in Fig. 3(c), the shifted Poisson distribution matches
the data quite well in its region of validity, j � �, because
using s2 rather than n̄ leads to a narrowing of the distribution.
The model, however, does not describe j < �.

We interpret these results to suggest that Poisson-like island
height fluctuations occur except that the fluctuations encounter
the three-layer minimum island height, which provides a lower
bound to the fluctuations. Indeed, the variance is reduced from
the mean by an amount �, which is slightly less than three.
With this insight, below we explore a model that modifies the
conventional Poisson distribution by favoring the growth of the
first three layers. As can be seen from Fig. 3(d), this modified
Poisson distribution model captures the essential features of
the experimental data: It describes the Poisson-like tails at high
j , and it attenuates the distribution at low j .

In contrast to the conventional derivation of the Poisson
distribution [22], which assumes all events occur with the
same probability, we consider that the probability per time
to increment the height of an island by one atomic layer λj

depends on the island height j . After a time increment of dt ,
the resulting probability to have the surface covered by islands
of height j is given as

Pj (t + dt) = Pj−1(t)λj−1dt + Pj (t)(1 − λjdt), (4)

where the first term is the probability to add one more layer on
top of islands having height j − 1, and the second term is the
probability that a layer is not added to islands having height j .
Solving the resulting differential equation, dPj (t)

dt
+ λjPj (t) =

λj−1Pj−1(t), leads to a recursive solution,

Pj (t) = e−λj t

∫ t

0
λj−1Pj−1(t ′)eλj t

′
dt ′. (5)

Given the boundary condition, Pj = 0 for j < 0, and the initial
condition that the Pj are normalized at t = 0, it can be shown

that the normalization holds for all time,
∑

j=0 Pj (t) = 1, as
well as P0(t) = e−λ0t . Further, it can be shown that the mean
is given by

n̄(t) =
∞∑

j=0

λj

∫ t

0
Pj (t ′)dt ′ =

∞∑
j=0

jPj (t), (6)

and the variance is

s2(t) = n̄(t) + 2
∞∑

j=0

jλj

∫ t

0
Pj (t ′)dt ′ − n̄2(t)

=
∞∑

j=0

j 2Pj (t) − n̄2(t). (7)

The limit where all λj = λ are the same leads to the
conventional Poisson distribution whereby the mean and
variance are equal, λt = n̄ = s2. The Poisson distribution has
been previously used in “hit and stick” models of epitaxial
growth where atoms cannot leave the terrace upon which they
were deposited [23]. It has been shown that Poisson statistics
apply to the homoepitaxial growth of Ag(111) where there
is a large barrier to diffusion over crystalline step edges so
that deposited atoms cannot leave their terraces [24,25]. In the
present modified Poisson distribution model, however, lateral
mobility is intrinsic to the model as the deposition increment
λjdt includes atoms that are both directly deposited onto an
island of height j as well as those that migrate to or from there.
Indeed, the contribution from deposition is absent in the case
of annealing.

Since the modified Poisson distribution contains many
parameters, we seek the minimal model with the least number
of parameters that can explain the experimental results. We
found that two parameters are sufficient to explain the data
where we use λj = λ0 for j � J and λj = λ for j > J with J
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comparison, the Poisson distribution (dashed curve) is also shown
for n̄ = s2 = 6.30. It can be seen that Pj is very small for j � J and
the variance is reduced from the mean by �.
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FIG. 5. The modified Poisson distribution model Pj (solid curve) is compared with the experimental island population p′
j (points) that

was determined from the x-ray specular reflectivity measurements. The model distribution was calculated using the experimentally determined
mean n̄ and variance s2. A cubic spline curve is used to connect discretely calculated points of the model distribution, except at small j , as
described in the text.

being an integer. For the three-layer minimum height observed
experimentally for Ag(111), we use J = 2. It was found that
λ0 < λ does not lead to an acceptable shape of the distribution
as compared with the data. Using more than two values for λj

can lead to parameter degeneracies for the same distribution
Pj , and this problem did not occur using two parameters.

The effect of changing J is explored in Fig. 4 for n̄ = 6.3
and fixed λ0/λ = 2.5. As can be seen, Pj is suppressed for
j � J . This effect leads to the variance decreasing from n̄

with increasing J because the model imposes a lower bound
to the height fluctuations. In the two parameter model, the
mean and variance can be simplified from Eqs. (6) and (7):

n̄(t) = λt + (λ0 − λ)
J∑

j=0

∫ t

0
Pj (t ′)dt ′, (8)

and,

s2(t) = n̄(t) + 2(λ0 − λ)
J∑

j=0

∫ t

0
jPj (t ′)dt ′

+ 2λ

∫ t

0
n̄(t ′)dt ′ − n̄2(t), (9)

where Pj (t) only enters for j � J so that it is taken from the
Poisson distribution in Eq. (1) with its mean replaced by λ0t .

Our calculations of Pj used two parameters, λt and λ0/λ,
and a given J . The integrations in Eq. (5) were first performed
symbolically using Mathematica [26] to obtain Pj (t) in
analytical form. Numeric values of the two parameters were
then assigned and the distribution was calculated. The Pj

were renormalized by
∑∞

j=2 Pj in order to compare with the
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TABLE I. Summary of the results. The mean and variance, n̄

and s2, were calculated from the experimental island population,
and these values were used to determine λt and λ0/λ according to
the modified Poisson distribution model, as discussed in the text.
The model distributions shown in Fig. 5 were calculated from these
values.

Coverage Temperature n̄ s2 λt λ0/λ

2.7 ML 360 K 6.39 3.30 5.13 2.0
1.8 ML 400 K 6.27 3.70 5.62 1.45
1.8 ML 360 K 5.13 2.90 3.76 1.9
1.8 ML 300 K 4.29 1.51 2.01 4.2
1.8 ML 260 K 3.12 0.40 0.42 14

deposition
0.9 ML 360 K 3.68 0.81 1.15 6.6
0.9 ML 320 K 3.25 0.71 0.79 6.8
0.9 ML 300 K 3.00 0.40 0.33 16
0.9 ML 260 K 2.78 0.17 0.056 80
0.9 ML 150 K 2.65 0.50 0.098 40
0.9 ML 400 K 3.55 1.25 1.51 3.5
0.9 ML 360 K 3.41 1.01 1.22 4.3

annealing
0.9 ML 340 K 3.34 0.97 1.11 4.6
0.9 ML 283 K 3.06 0.62 0.55 9.0

p′
j of the experimental island population data, although this

correction was negligible because the Pj are small for j < 2.
At the two highest temperatures for 1.8 ML, the experimental
distribution was not determined to sufficiently large j so that in
those cases both the experimental distribution and the model
were normalized by the sum of j points in the distribution
that exist in the experimental data. To generate the model
curves in Figs. 3(d), 4, and 5, a cubic spline was used to
make a continuous plot of the discrete Pj distribution. In the
low-j regions where the distribution drops quickly to zero,
the cubic spline creates artifactual oscillations so that a linear
interpolation was used in those regions.

The two-parameter modified Poisson distribution model,
with J = 2, is compared with the experimentally measured
distributions p′

j in Fig. 5. Rather than fitting the model
distribution to the experimental distribution, we performed
a more stringent test by calculating the model distribution
from the experimentally determined mean and variance: Using
Eqs. (8) and (9) with the experimental n̄ and s2, we numerically
solved for λt and λ0/λ which were then used to calculate the
model distribution.

As can be seen from Fig. 5, the agreement between the
modified Poisson distribution and the experimental data is
quite good. The modified Poisson model is particularly nec-
essary for cases of low n̄ where the distribution becomes very
narrow and the conventional Poisson or binomial distributions
will not match the data, as was demonstrated in Fig. 3. The
results are summarized in Table I.

IV. DISCUSSION

The experimentally observed island height distribution
exhibits a number of intriguing properties that are associated
with the underlying physics of the island growth. Because the
variance is equal to the mean minus a constant �, which is
a number that is slightly less than the three-layer minimum
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FIG. 6. The experimentally measured mean island height n̄ versus
inverse temperature for different coverages and for annealing. An
Arrhenius behavior is observed and the solid lines were obtained
from a fit to the data, as described in the text.

height, the variance becomes very small as the mean island
height approaches �. This property of the variance implies that
the three-layer minimum island height is a strong constraint
such that fluctuations cannot easily produce island heights
less than three layers. The effect is strikingly manifested in
Fig. 2(b) where both the mean and the variance saturate to their
minimum values for the 0.9 ML data between 150 K and 260 K.
Therefore, these observations suggest that a relatively large
electronic energy barrier prohibits the formation of islands
having less than three layers, but the formation of taller islands
is limited by mobility. Indeed, raising the temperature leads
to a taller mean island height with the variance reflecting the
fact that fluctuations are bounded from below at the three-layer
minimum.

The important role of thermal mobility is highlighted
by the observation of an Arrhenius behavior for the mean
island heights, as shown in Fig. 6. An activation barrier
Eb was determined for each of our three sets of data by

assuming that the mean island height is proportional to e
− Eb

kB T .
For 0.9 ML and 1.8 ML deposition, Eb was found to be
21.5 meV and 42.2 meV, respectively, and 12.5 meV for
0.9 ML annealing, with each having an uncertainty of ±5 meV.
The activation barrier is largest for the highest coverage
where the additional quantity of material is more difficult
to move. For 0.9 ML coverage, deposition and annealing
yield activation energies that differ by slightly less than two
error bars, although, the annealing data clearly have the lower
activation barrier as is apparent from Fig. 6. However, one
must be careful in interpreting the activation barrier when
comparing annealing with deposition because the two cases
do not have the same initial configuration. Low temperature
deposition necessarily leads to a higher island density and a
correspondingly smaller lateral island size, which establishes
a different initial morphology for the annealing measurements.
That morphology can inhibit island height changes during
annealing over a limited temperature range, and it would
effectively lead to a smaller apparent activation barrier. This
interpretation is consistent with early work that reported
smoother surfaces using a two-step deposition process where
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low-temperature deposition is followed by higher-temperature
annealing [11].

Our experimental results, therefore, indicate that ener-
getic as well as kinetic considerations are both necessary
for understanding the full range of the observed growth
morphology of Ag islands on Si(111) 7×7, which we now
describe. Ag/Si(111) 7×7 follows a SK growth mode where
the commensurate Ag wetting layer completely covers the
surface before the incommensurate FCC islands can form,
which happens because the wetting layer has a lower energy
per area than the islands. Amongst different island heights
compared at the same coverage, however, taller islands have a
lower energy per area than shorter islands due to the interfacial
surface tension. Therefore, in equilibrium SK growth would
lead to very tall islands coexisting with the wetting layer.
In practice, however, limited adatom mobility constrains
the vertical growth of islands so that raising the substrate
temperature or increasing the coverage will lead to a taller
average island height, as is observed experimentally in Fig. 6.
For Ag/Si(111) 7×7 this kinetic limitation is very strong
as the island heights in the studied temperature range are
typically less than ten atomic layers. However, there is an
additional consideration for Ag/Si(111) 7×7 that is indicated
by experiments: It is energetically expensive to create islands
having heights less than three atomic layers. This fact is
clearly revealed in the present work where the measured height
distributions are observed to decay below three atomic layers.
The energetically imposed three-layer minimum height is quite
robust as it can lead to a strikingly narrow height distribution
having a very small variance when the temperature or coverage
is reduced, as observed in Fig. 2. However, even the three-layer
minimum height condition will break down at sufficiently low
temperature when the mobility is severely limited. This effect
can be seen in Fig. 5 at 150 K, which is the lowest growth
temperature studied, where there is a significant population
of two-layer islands because of the kinetic limitation at
this temperature. Therefore, the temperature-dependent height
distribution of the Ag islands can be understood in the context

of SK growth and the unique energy landscape of Ag/Si(111)
7×7, which determines the mobility barriers.

In addition to the good agreement between the modified
Poisson distribution model and the experimental data shown
in Fig. 5, the model relates well to the physical interpretation of
the growth process, described above. With λ0 > λ and J = 2,
the three-layer islands will form more easily than the taller
islands, consistent with the above discussion. However, we
also find that the slower kinetics for forming the taller islands
is evident from our analysis performed in another important
way: We have investigated the temperature dependence of λ0/λ

from Table I and find that the activation barrier to form the
three-layer islands is indeed lower than the barrier for forming
the taller islands.

In conclusion, the height distribution of Ag(111) islands
grown on Si(111) 7×7 have a mean and variance that
exhibit a Poisson-like behavior. The minimum three-layer
height of Ag(111) islands imposes a significant narrowing
of the island height distribution at low coverage whereas the
distribution approaches the Poisson limit at higher coverage.
Quantum confinement of the conduction electrons determines
the minimum Ag(111) island height whereas the formation of
the taller islands is limited by mobility. The experimentally
measured island height distributions are well described by a
modified Poisson model that distinguishes the rate of forming
the minimum-height islands from that of the taller islands.
Because of its simplicity as a noble metal, these results
for Ag on Si(111) 7×7 provide a useful model system for
understanding the physical mechanisms that operate during
the growth of nanoscale metals on insulating substrates.
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