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Plasmonic shock waves and solitons in a nanoring
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We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces
the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the
vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase
of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the
strongly nonlinear plasma shock waves. These excitations produce a series of the well-resolved peaks at the THz
frequencies. We demonstrate that the plasmonic wave dispersion transforms the shock waves into solitons. The
predicted effects should enable multiple applications in a wide frequency range (from the microwave to terahertz
band) using optically controlled ultralow-loss electric, photonic, and magnetic devices.
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I. INTRODUCTION

The feature size of modern electronic and photonic devices
has dropped down to 10 nm. At such scales plasmonic
excitations become a salient feature determining the device
performance. This explains a recent surge of interest in
plasmonics [1–7], the field which has to be further explored
from the fundamental physics point of view [7].

Much of plasmonic physics can be captured by the hydro-
dynamic approach that is becoming increasingly relevant for
electronic and spintronic devices due to the rapidly improving
quality of nanostructures. The first theories and measurements
of the hydrodynamic effects on charge transport date to the
early work by Gurzhi [8] and by Jong and Molenkamp [9].
In recent years the field received revived attention driven
by the development of high-mobility nanostructures [10–18]
and graphene [19–24] where the electron-electron collision-
dominated transport regime can be reached.

The interest in nonlinear plasmon waves was stimulated in
early 1990s by exploring the analogy between the “shallow
water” hydrodynamics and that of the electron liquid in
two-dimensional (2D) gated systems. It was shown that
the electron liquid in these systems could become unstable
with respect to the excitations of tunable plasma oscillations
[25]. Many other beautiful hydrodynamic phenomena such as
choking of electron flow [26], nonlinear rectification of plasma
waves [27,28], and formation of plasmonic shock waves [29]
have been subsequently proposed. Possible applications of
these phenomena to plasma-wave electronics were intensely
discussed (see the reviews [30,31]). In particular, much
attention has been paid recently to the generation of plasmonic
oscillations in the field-effect transistors (FETs) for realizing
tunable THz emitters or detectors [30,31].

The detector responsivity is enhanced dramatically in the
presence of dc current [32]. It can be also enhanced by
making artificial periodic structures such as FET arrays and
periodically grated gates [33–37]. Such plasmonic crystals
have already demonstrated excellent performance as THz
detectors [38–42] in good agreement with theory [43–46].

Moreover, THz emission from grating gate structures has been
also recently reported [47,48].

Having a nonzero dc photovoltaic response in a single FET
requires an inversion asymmetry which may be created by
boundary conditions [25]. Plasmonic crystals would require
an inversion asymmetry within the unit cell of a crystal. Such
an asymmetry can be induced by a ratchet effect (see the
review paper [49] and the references therein). The latter is also
strongly enhanced by plasmons [50].

Here we explore another system enabling a greatly en-
hanced coupling between THz radiation and plasmonic exci-
tations: a ballistic nanoring. Such a system has a number of
advantages compared to a single FET. First of all, an inversion
asymmetry is not required in this case because of the nanoring
multiconnected geometry [51–58].

More importantly, we now predict that the plasmonic
resonances in a high-quality nanoring can be much sharper
as compared to a FET. Indeed, the dissipation in contacts and
the coupling to ungated regions in the FET leads to essential
weakening of plasmonic resonances. In a nanoring these
deleterious effects may be fully avoided while the coupling
can be further enhanced by fabricating arrays of identical
nanorings.

In Fig. 1 we illustrate possible realizations of nanorings and
nanoring arrays. A quasi-one-dimensional (1D) ring can be
fabricated from 2D or 3D metals or semiconductors as shown
in Figs. 1(a) and 1(b), respectively. The arrays of nanorings
made of these materials are depicted schematically in Figs. 1(c)
and 1(d).

Plasmonic excitations in both 2D and 3D types of nanorings
are nearly identical due to similar electrostatic properties of
these quasi-1D systems. Still, it is much easier to produce clean
rings made of 2D semiconductor materials. Such rings can be
fabricated with the use of standard semiconductor technology:
by growing a narrow 2D semiconductor on a substrate followed
by patterning a nanoring or an array of nanorings. One can also
use a gate electrode (or an array of gate electrodes) to control
electron concentration in the nanoring.
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FIG. 1. Three-dimensional (a) and two-dimensional (b) quantum
nanorings. Three-dimensional ring-stacked arrays (c) and two-
dimensional arrays of rings (d) on a substrate.

Below we demonstrate that sharp plasmonic resonances
can be excited in semiconductor GaAs or GaN nanorings
within a wide range of sizes and carrier concentrations
assuming realistic values of electron mobility and a reasonable
temperature range. Similar effects can be observed in rings
made of graphene and in systems of different geometry such
as self-assembled nanorods or nanodisks. The difference in
the latter case would only concern somewhat more complex
electrostatics of such systems.

We predict that excitation of plasmonic waves by circularly
polarized radiation leads to a resonant optical rectification
effect: a large diamagnetic circulating dc current that manifests
itself as a magnetic moment of the nanoring. When radia-
tion intensity exceeds a critical value, the plasmonic waves
transform into shock waves (SWs) that might further develop
into multiple solitons (a similar effect was recently predicted
for nonlinear waves in the Luttinger liquid [59,60]). In this
regime, the system is functioning as an efficient emitter of
high-frequency radiation harmonics. One possible application
of the plasmonic SWs is to transform circularly polarized
resonant GHz waves into a number of well-resolved peaks
at THz frequencies.

Circulating current in a nanoring gives rise to the inverse
Faraday effect (IFE), which is the excitation of helicity-
sensitive magnetic moment by a circularly polarized light
[61–64]. The IFE has been widely discussed in connection with
ultrafast-magnetization dynamics [63–66]. The phenomenon
is closely related to the quantum IFE in nanorings [51–58] and
in a chaotic cavity [67] as well as to the optical analog of the
Aharonov-Bohm effect for excitons in a semiconductor quan-
tum ring [68]. Remarkably, the plasmonic IFE described below
is based on a quasiclassical mechanism and, consequently, is
orders of magnitude stronger than the corresponding quantum
phenomenon.

We would like to stress that the closed rings that we
consider have an important advantage as compared to the
ring-split resonators (see Ref. [69] and reference therein). The
latter can create large values of optically induced alternating
magnetic field but cannot conduct circulating dc current, and,
consequently, do not produce a constant magnetic field. In
contrast, excitation of a closed ring by a circularly polarized
radiation may produce a sizable constant magnetic field (of
the order of 1Gauss for a single nanoring). Similar phenomena
should occur in metallic films perforated with hole arrays [64].

II. MODEL

In this paper, we discuss excitations of plasmonic reso-
nances in a single nanoring. Generalization for the case of ring
array is straightforward. We consider two basic setups: (i) a
nanoring of radius R made of a 3D wire with a diameter 2a

[see Fig. 1(a)] and (ii) a nanoring of the same radius made of a
2D strip with the width 2a [see Fig. 1(b)]. We assume that the
nanorings are subject to a circularly polarized electromagnetic
radiation with electric field parallel to the ring plane. The
radiation wavelength is assumed to be much larger than R,
so that electric field is homogeneous within the ring size.
At the same time we naturally assume R � a � λF, where
λF is the electron Fermi wavelength. In this case, the ring is
multichannel and can be described quasiclassically, while at
the same time it can be considered as a quasi-1D wire from
the electrostatics point of view. Under these assumptions, the
electric field induced by plasma waves can be expressed in
terms of linear electron concentration (concentration per unit
length) for both types of rings.

Plasmonic resonances take place in high-quality multichan-
nel nanorings where electron-electron collisions dominate over
scattering off phonons and impurities. The latter condition may
be formulated as τee � τtr, where τee is the electron-electron
collision time, while τtr stands for the transport scattering
time. The condition ensures the validity of the hydrodynamic
approach.

The hydrodynamic equations, describing electron liquid in
a multichannel nanoring, can be derived in a standard way
from kinetic equation assuming that the electron distribution
function depends only on hydrodynamic parameters, i.e., on
the local electron density, local velocity, and local temperature.
The derivation (for the case of 2D systems) can be found, e.g.,
in Ref. [50]. Neglecting heating effects (see. Ref. [50]) and
integrating the hydrodynamic equations derived in Ref. [50]
over the ring cross section, one arrives at the hydrodynamic
equations for the linear electron concentration N and the
hydrodynamic velocity V ,

∂N

∂t
+ ∂(NV )

∂x
= 0, (1)

∂V

∂t
+ V

∂V

∂x
− η

∂2V

∂x2
= −γV − ∂�

∂x
+ eE0

mε
sin θ, (2)

where x is the coordinate along the ring, E0 is the amplitude
and ω is the frequency of circularly polarized radiation, η is
the kinematic viscosity of electron liquid, m is the effective
electron mass, γ = 1/τtr is the friction due to scattering off
impurities and phonons, ε is the dielectric constant, and the
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angle θ is defined as

θ = x/R − ωt. (3)

For a ring made of 3D material, the derivation is fully
analogous and yields the same system of equations.

The electrostatics of a thin nanoring is solved by the
following potential (see Appendix A):

�= e2

mε

[
(N−N0)� + d2 ∂2N

∂x2

]
=s2

[
n+ d2

�

∂2n

∂x2

]
, (4)

where � = ln(d2/a2), N0 is the linear (1D) charge concentra-
tion in equilibrium, d is the screening radius (a � d � R),

n = (N − N0)/N0 (5)

is the relative dimensionless concentration, and

s =
√

e2N0�

mε
(6)

is the plasma wave velocity, which might be tunable by the
gate voltage.

Two possible experimental realizations of the nanoring
discussed above give rise to N0 = πa2n3D for the 3D wire
and N0 = 2an2D for the 2D wire, where n3D (n2D) is the
equilibrium value of the 3D (2D) electron concentration. One
should also specify the dielectric constant entering Eqs. (4) and
(6). For rings made of 3D wires, ε is given by the dielectric
constant of the material in which the ring is embedded. For
a ring made from the 2D strip, sandwiched between two
materials having dielectric constants ε1 and ε2, the effective
dielectric constant is given by ε = (ε1 + ε2)/2. For example,
for a 2D ungated ring placed on the surface between vacuum
(or air) and substrate with the dielectric constant ε1 one gets
ε = (ε1 + 1)/2.

In Eq. (4), we neglect the pressure of the electron liquid
assuming that s is large as compared to the Fermi velocity. We
also neglect all thermoelectric forces (as compared to ∂�/∂x)
thus decoupling Eqs. (1) and (2) from the heat equation [50].
Finally, we neglect the dependence of η on N (setting η(N ) ≈
η[N0]) and regard N to be smooth on the scale of d, thus
keeping the main logarithmic contribution to the Coulomb
potential and the leading correction to it (see Appendix A). The
latter describes a weak plasmonic dispersion. The remaining
subtlety concerns boundary conditions at the surface of the
ring. The frequently used no-slip condition, V = 0, would
result in the Poiseuille flow and, consequently, in a relatively
large resistance caused by viscosity. On the other hand, recent
technology allows for fabricating quantum wires and rings
of an extremely high quality. This implies that the friction
originating at the surface of the ring might be certainly too low
to drive the ring into the Poiseuille regime. In our derivation
of Eq. (1), we fully neglect this boundary-induced friction
thus making N and V depend only on x. A more general
case of arbitrary strong surface friction is briefly discussed in
Appendix B.

III. LINEAR REGIME

When the radiation intensity is small, Eqs. (1) and (2) can
be linearized. In the absence of radiation and for η = γ =

0, plasma waves propagating in a ring have a simple linear
spectrum

ω(k) = sk, (7)

where s is given by Eq. (6) [here we neglect the small
dispersion due to the second term in the square brackets in
Eq. (4)]. The wave vectors are quantized:

kn = n/R, (8)

where n is the integer number (n �= 0). Finite friction γ and
viscosity η would lead to damping of plasma waves that is
similar to damping effects in FETs [25].

A weak external radiation field impinging on the ring
couples to the electronic fluid and excites linear plasmonic
oscillations with the fundamental frequency

ω0 = s

R
= a

R

√
πe2�n3D

mε
. (9)

For a circularly polarized radiation, the oscillations are
rectified to produce the dc circulating current that peaks at
the plasmonic resonant frequencies:

Idc = e〈NV 〉, (10)

where the brackets stand for the time average. The direction of
the current is determined by the radiation helicity (below we
put ω > 0):

Idc(ω) = −Idc(−ω). (11)

We now introduce the rescaled quantities

J = Idc/eN0R, v = V/R, (12)

 = η/R2, β = ω2
0d

2/�ωR2, (13)

which we respectively refer to as current, velocity, viscosity,
and dispersion.

Solving the linearized equations, we find in the resonance
approximation, i.e., for δ = ω0 − ω � ω0, that

v = ωn = eE0

mRε
Im

eiθ

 + γ + i(2δ − β)
, (14)

J =〈nv〉= 1

2ω

(
eE0

mRε

)2 1

( + γ )2 + (2δ − β)2
, (15)

where β ≈ ω0d
2/�R2 for δ � ω0. Thus, the dc response has a

Lorentzian shape that peaks at the plasmonic frequency with a
small dispersion-induced shift β and is broadened by disorder
and viscosity.

The key condition for observation of sharp plasmonic
resonance is a sufficiently high quality factor. This factor
is determined by viscosity, dispersion, and disorder (and/or
phonon) scattering. The resonances are sharp provided that
ω0/ � 1, ω0/β � 1, and ω0τtr � 1. Since the plasma wave
frequency ω0 decreases with the ring radius R, the conditions
above yield the upper bound for R. The low bound for the ring
radius (at fixed ratio R/a) is determined by the Fermi wave
length since the ring has to support a large number of quantum
channels. (In a single channel ring one should take into
account Luttinger liquid effects, but the qualitative predictions
of our theory will be still valid. A more formal analysis of
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FIG. 2. Numerical solution of Eqs. (1) and (2) showing velocity v

and concentration n ≈ v/ω profiles for different values of F [(a)–(d)].
Solid and dashed lines in (a) and (b) correspond to positive and
negative sign choice in Eq. (27). At F = Fcr these solutions touch
each other (b). Critical amplitude Fcr corresponds to a formation of
the SW front. Panels (c) and (d) illustrate the numerical solution
for F > Fcr that experiences a jump between positive and negative
branches [the two solutions of Eq. (27) are indicated with the dashed
lines]. Panels (e) and (f) show the dependence of the current J and
the dissipated power P on F for β = 0 and  → 0.

the Luttinger liquid rings may be developed along the lines
of Refs. [59,60].) In Sec. V, we demonstrate that all three
parameters ω0/,ω0/β, and ω0τtr might be simultaneously
large (of the order of 10–100) for realistic semiconductor rings
with a large number of quantum channels.

IV. NONLINEAR REGIME

For larger radiation intensities, the nonlinear terms in
Eqs. (1) and (2) become increasingly important. Figures 2
and 3 show the results of the numerical analysis of Eqs. (1)
and (2) using a finite-element method (see Appendix C). We
find that, at sufficiently long times, the solution is stationary in
the rotating reference frame. No chaotic or turbulent behavior
is obtained. The results obtained numerically at long times
can be reproduced analytically by analyzing the automodel
solutions with n = n(θ ), v = v(θ ) that satisfy the neutrality
condition 〈n〉 = 0, where the angular brackets now stand for
the averaging over the angle θ . In this case, Eq. (2) imposes
the constraint

〈v〉 = 0. (16)

One may integrate Eq. (1) with the help of the constraint to
obtain

J = −ωn + (1 + n)v. (17)

FIG. 3. Evolution of the solution of Eqs. (1) and (2) that demon-
strates the emergence of solitons at the SW front with increasing
dispersion coefficient β at F � Fcr and  � √

F : (a) β � β0, (b)
β � β0, (c) β ∼ , (d) /δτ � β � . The number of solitons N

as a phase diagram in the dispersion-viscosity plane (e) and the
dependence of N on the dispersion parameter β (f).

For sufficiently small velocities, v � ω, one finds the charge
density

n = (J − v)/(v − ω) ≈ v/ω + v2/ω2 − J/ω, (18)

which is substituted into Eq. (1) to obtain a useful equation

∂

∂θ

[
2vδ+ 3

2
v2−

∂v

∂θ
+ β

∂2v

∂θ2

]
= −γ v+ eE0

mRε
sin θ (19)
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FIG. 4. The effective potential (black lines) and solutions (red
lines) of Eq. (22) for β � β0 (a) and for β0 < β <  (b) for F > Fcr.

that holds in the resonant approximation. The electric current
J is found from the solution of Eq. (19) as

J = 〈nv〉 ≈ 〈v2〉/ω. (20)

Since both the viscosity and disorder suppress resonant
behavior in a similar fashion [see Eq. (15)], we consider,
for simplicity, the case γ = 0. [Importantly, the limit γ → 0
should be taken with care, since any small but finite γ

guarantees the constraint 〈v〉 = 0 that follows immediately
from averaging Eq. (19) over the angle θ . In what follows we
neglect the term γ v in Eq. (19) but respect the constraint.] We
integrate Eq. (19) over the angle and introduce the variables

q = 3v/2 + δ, F = 3eE0/2mRε, (21)

to find

βq̈ + q̇ = q2
0 − q2 − F cos τ (τ = −θ ), (22)

where

q2
0 = 〈q2〉 (23)

is the integration constant, which has to be found self-
consistently, and q̇ ≡ dq/dτ . Equation (22) coincides with
the Newton equation of motion for a particle with the “mass”
β oscillating in a classical cubic potential

U (q) = q3/3 − q2
0q (24)

under the action of both the external dynamic force −F cos τ

and the “friction force” −q̇. The motion is further constrained
by two conditions,

q(τ ) = q(τ + 2π ), (25)

〈q〉 = δ. (26)

The potential U (q) has two stationary points (see Fig. 4):
q = q0 (stable minimum) and q = −q0 (unstable maximum)
with the corresponding energies given by U (q0) = −2q3

0/3
and U (−q0) = 2q3

0/3. For small values of F , the particle
undergoes linear oscillations around the stable point. Expand-
ing q2

0 − q2 ≈ 2q0(q0 − q) on the right-hand side of Eq. (22)
and solving the corresponding linear equation one readily
reproduces Eq. (14). In this case, q0 ≈ δ.

Let us fix δ at a certain value and increase F to drive the
system into a nonlinear regime. First, we assume that both
viscosity and dispersion are absent ( = β = 0). In this case

Eq. (22) has two solutions

q(τ ) = ±q̃0(τ ), q̃0(τ ) =
√

q2
0 − F cos τ , (27)

where q̃0(τ ) stands for a position of extremum of the dynamic
potential

Ũ = U (q) + Fq cos τ = q3/3 − q̃2
0q. (28)

Since 〈q〉 = δ, the choice of the right solution is fixed by the
sign of δ. To be specific we let δ > 0 below. Upon angle-
averaging the dependence of q0 on F and δ is given implicitly
by

δ =
∫

dτ

2π

√
q2

0 − F cos τ . (29)

This equation has a solution only for F < Fcr, where

Fcr = π2δ2/8. (30)

The linear regime is reproduced in the limit F � Fcr (see
Appendix D 1). The corresponding solution for v(θ ) is shown
by a solid line in Fig. 2(a). The dashed line corresponds to the
choice of minus sign in Eq. (27). For F > Fcr the result of
Eq. (29) breaks down and the velocity profile is discontinuous
(detailed calculation is relegated to Appendix D 1); i.e., a step
(SW front) appears at a certain point τ = τ0. The amplitude of
the step is given by 2q̃0(τ0), where

cos(τ0/2) =
√

Fcr/F , q̃0(τ0) =
√

2(F − Fcr). (31)

Note that the amplitude of the SW front increases mono-
tonically with F and is given by

√
8F in the limit F �

Fcr. In this limit, the front is located at τ0 ≈ π [see
Fig. 2(d)].

A. Finite viscosity

Let us now switch to the case of a finite viscosity while
still assuming that β = 0. Viscosity tends to regularize the
discontinuity in the solution in such a way that the SW front
is smeared out on a finite time scale:

δτ = /2q̃0(τ0) ∼ /
√

F − Fcr. (32)

The corresponding motion in the effective potential is illus-
trated in Fig. 4(a). During the time interval δτ a particle
propagates from the unstable point to a stable one under
the action of the friction force specified in the Eq. (22). For
sufficiently small viscosity, δτ � 1, one can let F cos τ ≈
F cos τ0 within the front width. In this limit Eq. (22) is solved
exactly with the result

q(τ ) =
√

2(F −Fcr) tanh[
√

2(F −Fcr)(τ −τ0)/], (33)

which demonstrates that the smeared step is well described by
the SW solution.

A simple analysis in the limit  → 0 yields the electric
current J and the dissipated power

P = e〈NV E0 sin θ〉 (34)

035418-5



KOSHELEV, KACHOROVSKII, TITOV, AND SHUR PHYSICAL REVIEW B 95, 035418 (2017)

per unit volume [see Figs. 2(e) and 2(f)]. In particular, we find

F < Fcr : J = π2F 2

144ωFcr
, P ≡ 0, (35)

F > Fcr : J = 4

9ω

(
F − 8Fcr

π2

)
, P =C(F − Fcr)

3
2 , (36)

where C = 16
√

2mN0/81π is independent of viscosity. Re-
markably, the current remains finite even for  = γ = 0, which
implies that it has a diamagnetic nature. Even more interesting,
the power P remains finite above the threshold, F > Fcr. In
this regime, the energy dissipation occurs at the front of the
SW in the region where the SW width is of the order of  and
is proportional to v∂2v/∂θ2 ∝ 1/. As a result the viscosity
 drops out from the expression for the total dissipation [70].
It is worth stressing that the strong-coupling result of Eq. (36)
is essentially nonperturbative.

When SW does emerge, the behavior of vn qualitatively
changes. This can be seen directly from the Fourier transform

v =
∑

n

vn exp(inθ ). (37)

For F < Fcr, the high-order harmonics decay exponentially
with n as vn ∝ exp(−an), where a ∝ Fcr − F at F → Fcr

(this estimate holds with an exponential precision). Exactly
at the threshold, one finds vn ∝ 1/n2, while for F > Fcr,
the decay of harmonics vn is very slow, vn ∝ 1/n, which is
a consequence of the steplike behavior of the solution [see
Figs. 2(c) and 2(d)]. This power-law dependence is valid for
n < 1/δτ . Higher harmonics are exponentially suppressed due
to the finite front width of the SW. Hence, the generation of
SW leads to a large increase of the excited harmonics and,
consequently, to power dissipation.

With increasing viscosity  the SW front smears out and the
nonlinear oscillations are fully suppressed. The latter evolve
into linear ones for  � √

F . The exact solution to Eq. (22)
for arbitrary  (but β = γ = 0) is presented in Appendix D 2.

B. Generation of solitons due to the dispersion
of plasma velocity

Let us now assume that F > Fcr. We fix  at sufficiently
small value (such that δτ � 1) and study what happens
with increasing the dispersion coefficient β. The solution is
illustrated in Figs. 3(a)–3(d). We see that dispersion leads to a
formation of solitons on the SW front. This process can again
be understood by analyzing the mechanical analogy described
above.

Since β is responsible for the “inertia” term in Eq. (22) it is
responsible for the transformation of a decaying solution [see
Fig. 4(a)] into an oscillatory one [see Fig. 4(b)]. For a finite but
sufficiently small β (β � ), the SW front remains sharp so
that one can still assume F cos τ ≈ F cos τ0 within the front
width. Then, the characteristic scales of the problem can be
understood from the analysis of Eq. (22) linearized near the
stable point,

βδ̈q + δ̇q + (/δτ )δq = 0, (38)

where δq = q − q̃0(τ0). By looking for the solution in the form
δq ∝ exp[λτ ] we find

λ = −(/2β)(1 ±
√

1 − β/β0), (39)

where β0 = δτ/4 � .
For β � β0, we find two exponentially decaying solutions.

The slowest decay corresponds to λ ≈ −1/δτ . In this solution
the dispersion does not play an essential role as can be seen
from Fig. 3(a) (for simplicity, in Fig. 3 we consider F � Fcr).
We note that finite viscosity broadens the SW front on the scale
of δτ .

One can also see that the solitons start to build up for β >

β0. Indeed, in this case, the exponent λ acquires an imaginary
part hence the oscillations appear on top of the smeared wave
front as shown in Fig. 3(b). (Note that similar effects also
arise in the Luttinger liquids due to the same reason [59,60]).
For the case β0 � β � , we find two rapidly oscillating and
slowly decaying solutions. The number of oscillations during
the decay from unstable to stable point (the number of solitons
N ) can be estimated as the ratio of imaginary part of λ to its
real part that yields

N ∼
√

β/β0. (40)

The number N increases with increasing β until β ∼  [see
Fig. 3(c)].

When β becomes larger than  both solutions do not decay
for the whole oscillation period of the external force, 0 < τ <

2π . As the result, the viscosity can be fully neglected in the
limit β � . In this case the transition from unstable point to
stable one is governed by an adiabatically slow variation of
the potential. The number of oscillations in this limit can be
estimated as

N ∼ Imλ ∼ /
√

ββ0. (41)

The result of this equation is illustrated in Fig. 3(d). This
analysis suggests that the maximal value of solitons is achieved
for  ∼ β with

Nmax ∼
√

/β0 ∝ 1/
√

δτ . (42)

Different regimes are summarized in Fig. 3(e) in the
coordinates (,β). The dependence of N on β is plotted in
Fig. 3(f). A more detailed analytical study in the limit β � 

is presented in Appendix E.

V. DISCUSSION

Let us discuss the application of the model developed to
realistic nanorings. The plasmonic resonances predicted above
can be observed in 3D and 2D semiconductor and metallic
rings as well as in ring arrays (see Fig. 1). In particular, 2D
rings, which are depicted in Fig. 1(b), can be fabricated by
growing the standard 2D semiconductor or graphene layers
followed by patterning gated or ungated nanorings or nanoring
arrays. The estimates below show that the conditions needed
for observing both linear and nonlinear plasmonic resonances
can be easily met for a typical semiconductor at realistic
temperatures. Let us present the detailed estimates for 2D
GaAs and GaN nanorings. The main difference between these
materials is due to the different effective masses: m = 0.067
(in the units of electron mass) for GaAs and m = 0.2 for GaN.
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tr

FIG. 5. Dependence of parameter τee/τtr on the electron concen-
tration for GaAs and GaN structures with different mobilities.

To be more specific let us choose the geometry relations

a = R/10, d = R/3, (43)

for the rings with 10−5 cm < R < 10−4 cm and 1011 cm−2 <

n2D < 1012 cm−2 assuming that T = 30 K. For simplicity,
we restrict ourselves to the ungated case such that the ring is
placed on the surface between the air and a substrate with a
dielectric constant ε1 which is close to the dielectric constant
of the 2D layer. In this case ε = (ε1 + 1)/2. Below we shall
use ε = 6.3 for GaAs rings and ε = 5 for GaN rings.

The parameter that ensures the validity of the hydrodynamic
approach is the ratio of the electron-electron collision time to
the momentum relaxation time, τee/τtr. In the hydrodynamic
regime (electron collision dominated) this parameter is small.
The rough estimate of the collision time is given by �/τee ∼
T 2/EF [72]. Expressing momentum relaxation time via the
electron mobility and Fermi energy via electron concentration,
we find τee/τtr ∼ πe�

3n2D/(m2T 2μ). In Fig. 5, we plot this
parameter as a function of n2D for two values of mobility:
μ = 105 cm2/V s and μ = 5 × 105 cm2/V s. Larger value of
the mobility is still well below a record mobility for 2D GaAs
structures at such temperatures. We see that the condition
τee/τtr < 1 is satisfied even for the case of sufficiently low
mobility value and the condition τee/τtr < 1 is satisfied for
both materials in the whole range of available electron
concentration.

The main advantage of the proposed system is a high
operation speed that is defined by a particularly large value
of the typical plasma wave velocity as compared to electron
velocity. For rings prepared on the basis of 2D materials,
the ratio s/vF does not depend on electron concentration,
s/vF =

√
e2a�m/(πε�2) [here we used Eq. (6)]. Having in

mind Eq. (43), one readily finds the dependence of the ratio
s/vF on the ring size (see Fig. 6). It can be seen that for chosen
parameters, the condition s/vF > 1 is satisfied.

The dependence of the fundamental plasma frequency on
the electron concentration is shown in Fig. 7. In the chosen
interval of the electron concentrations and the ring sizes, the

FIG. 6. Ratio of the plasma wave velocity to the Fermi velocity
for a 2D gas as a function of the nanoring radius.

plasmonic frequency is in the terahertz range. Hence, the
proposed ring-based devices are very attractive for possible
applications in terahertz electronics and optics.

To discuss possible experimental realizations let us estimate
nanoring quality factors. It follows from Eq. (13) that in a
vicinity of the resonance, ω − ω0 � ω0, the ratio ω0/β is
determined by a geometrical factor,

ω0

β
 R2�

d2
≈ 25, (44)

where the result of Eq. (43) is taken into account. The viscosity
in this regime is estimated as

 = η

R2
∼ v2

Fτee

R2
∼ 2π2

�
5n2

2D

R2m3T 2
, (45)

hence the viscosity-related quality factor turns out to be large
to the extent that the viscosity does not suppress plasma
resonances. Indeed, the solid lines in Fig. 8 show the viscosity-
related quality factor ω0/ as a function of the electron

1-
2-
3-
4- 1

2

3
4

FIG. 7. Dependence of the fundamental plasma frequency on the
electron concentration for nanorings of different sizes.
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FIG. 8. Viscosity-related quality factor plasmonic resonance as
a function of electron concentration for the nanorings of different
sizes. Dashed line corresponds to the case  = β, where the number
of solitons in the nonlinear regime is maximized. Above this line
all nonlinear solutions correspond to multiple solitons [see also
Fig. 3(e)].

concentration for nanorings of different sizes. The dashed
line corresponds to the case  = β, where the number of
solitons N is maximal. Above this line all nonlinear solutions
would correspond to the regime of multiple solitons [see also
Fig. 3(e)]. The shock wave solutions take place in the region
that is well below this line.

In order to demonstrate that momentum relaxation due
to disorder and phonons does not destroy the plasmonic
resonances, we plot in Fig. 9 the corresponding quality
factor ω0τtr as a function of the electron concentration. In
this plot we substitute a relatively low value of electron

tr

FIG. 9. Quality factor of plasmonic resonance related to phonon
and impurity scattering as a function of the electron concentration
for nanorings of different sizes made of material with the mobility
μ = 105 cm2/V s.

FIG. 10. Characteristic value of radiation-induced electric field
that is determined by the condition

√
F =  (solid lines) and by

the condition
√

F = β (dashed line) as a function of the electron
concentration. For a given R the nonlinear regime corresponds to
values of the field that are above both the solid and the dashed lines.

mobility, μ = 105 cm2/V s. Still, even for such a value, the
disorder-related quality factor remains sufficiently large for
typical electron concentrations. Since the quality factor is
simply proportional to the mobility, the use of samples with
higher mobility, e.g., μ = 5 × 105 cm2/Vs (which is still well
below the record mobility value for 2D GaAs) would lead to
the fivefold enhancement in the quality factor as compared to
the numbers presented in Fig. 9. Thus, for realistic parameters
of a semiconductor nanoring, the combined quality factor of
the plasmonic resonance is certainly large enough to make the
proposed physics plausible.

Before closing the section let us briefly discuss the
conditions that need to be met in order to observe the nonlinear
regime. Exactly at the resonance (δ = 0) the nonlinear behav-
ior occurs for

√
F > {,β} [see Fig. 3(e)]. These conditions

can be, respectively, rewritten as

eE0 > 2mRε2/3, (46)

eE0 > 2mRεβ2/3  2mRε(ω0/25)2/3, (47)

where we took advantage of the result of Eq. (44). With the
help of Eqs. (9) and (45) we obtain a characteristic field that
is required to observe the nonlinear regime, Enonlinear

0 . This
field must be larger than the fields on the right-hand sides
of the inequalities (47) and (47). The nonlinear plasmonic
excitations, i.e., the solitons and the SWs, are therefore
expected to form for E0 > Enonlinear

0 .
The right-hand side of inequality (47) is plotted in Fig. 10

with the solid lines as a function of the electron concentration
in a nanoring. Similarly, the right-hand side of Eq. (47) is
plotted in the same figure with the dashed line [one can check,
indeed, that in view of Eq. (43), the right-hand side of Eq. (47)
does not depend on the ring radius R]. Thus, for a given R, the
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nonlinear regime takes place for the fields E0 that stay above
both the solid and the dashed line.

Let us consider, for example, a GaAs ring with the radius
R = 10−4 cm (curve 3 in Fig. 10). Intersection of this curve
with the dashed line occurs at the concentration n∗

2D ≈ 0.25 ×
1012 cm−2. The nonlinear regime is, therefore, realized for the
values of E0 that are above the dashed line, provided n < n∗

2D.
In this regime β >  hence our theory predicts multiple soliton
solutions. We see that the corresponding value of Enonlinear

0 is
sufficiently small and can be achieved in experiment.

For n > n∗
2D the nonlinear regime is realized for the values

of E0 that are larger than the values given by curve 3 in Fig. 10.
In this case, β <  hence our theory predicts the SW solutions
as well as solitons developed at the front of the shock wave
[see Fig. 3(e)]. The value of Enonlinear

0 in this case is larger
or about the value 102–103 V/cm (depending on the electron
concentration). Such a value can be easily reached in modern
sources of GHz and THz radiation.

We should also mention that the nonlinear regimes dis-
cussed above are even easier to realize with the pulsed source
of radiation (the minimum pulse width is only limited by the
period of the electromagnetic wave). Since the dc current
and the induced magnetic moment arise due to rectification
of alternating electric field the entire analysis applies to this
regime of operation as well [71]. Thus, even for nanorings
made of GaAs of smaller radii (see curve 1 in Fig. 10), the
nonlinear regime can be realized provided that the electron
concentration is not too large.

Finally, we should estimate the magnetic field induced by
the current circulating in the ring. For the GaAs ring with
n2D = 1012 cm−2 and R = 10−5 cm subject to radiation with
E0 = 104 V/cm we find the circulating dc current that is given
by 1.5 μA and the magnetic field in the center of the ring that
is given by 0.1 G.

VI. CONCLUSION

To conclude, we demonstrate that a circularly polarized
radiation may induce a strong diamagnetic dc current in a
nanoring, which is dramatically enhanced in the vicinity of
plasmonic resonances. When the amplitude of external field
exceeds a critical value Fcr, shock waves and/or solitons are
formed. In this regime the current and magnetic moment grow
linearly with the amplitude of the external field and a large
number of the THz-frequency harmonics can be generated by
the device. We demonstrate that the effect can be observed in
nanorings made of 2D semiconductors in the standard range
of electron concentrations and for realistic ring sizes. The
quality factor of the resonances can be as high as 10–100.
The amplitude of the exciting wave driving the system into
the nonlinear regime is shown to be not too large, of the order of
10–103 V/cm. The effects can be easily scaled up by preparing
the arrays of nearly identical nanorings.

The discovered enhancement of the diamagnetic current by
plasmonic resonances should enable numerous applications
of ballistic nanorings and nanoring arrays including, but not
limited to, the electric field control of magnetic forces and the
new ways to construct highly efficient low-loss switches that
operate in a wide range of frequencies from microwave to the
upper bound of the THz range.
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APPENDIX A: ELECTROSTATIC POTENTIAL

We start by deriving Eq. (4) of the main text. Let us
consider electrostatic force (per unit mass) created by electrons
distributed along the ring with the concentration N = N (x).
We assume that the Coulomb interaction is screened on the
scale d such that d � R. Then, in the limit of infinitely thin
wire, the force per unit mass acting on the electric flow at the
point x can be written as −∂�/∂x, where

� = e2

mε

∫
dx ′[N (x ′) − N0]

exp(−|x − x ′|/d)

|x − x ′| . (A1)

The integral entering Eq. (A1) diverges logarithmically at
x ′ → x. This divergency is regularized by taking into account
a finite width a (a � d) of the ring. Assuming that N (x)
changes slowly on the scale d we may cast the electron
concentration in the form N (x ′) ≈ N (x) + N ′(x)(x − x ′) +
(1/2)N ′′(x)(x − x ′)2. Substituting this equation into Eq. (A1)
and performing (with logarithmic precision) the integration
over x ′ we arrive at Eq. (4) of the main text.

APPENDIX B: LINEAR SOLUTION FOR FINITE
FRICTION AT THE SURFACE

In this section, we briefly discuss the effect of the surface
friction in the linear regime, i.e., for the linear plasmonic
excitations.

The surface friction leads to an inhomogeneous distribution
of the velocity and concentration in the radial direction. In the
resonance approximation, linearized velocity can be written as
v = v1(r) exp(iθ ) + H.c., where v1 yields the equation

v1[i(2δ − β) +  + γ ] − 
R2

r

∂

∂r

(
r
∂v1

∂r

)
= eE0

2imRε
.

(B1)

Here r is the radial coordinate such that 0 < r < a. Since our
calculations have illustrative character, we do not distinguish
here between bulk and shear viscosity, characterizing the
electron liquid by a single viscosity coefficient . We further
assume that the friction force is proportional to the velocity
and can be modeled by a delta-function potential on the surface
of the ring, Vf δ(r − a), where f is a certain coefficient. In
this model we find the boundary condition to Eq. (B1) as

∂v1

∂r

∣∣∣∣
r=a

= −kv1, (B2)

where k = f/η. For sufficiently large radius R such that
a2|i(2δ − β) +  + γ |/R2 � 1, the solution to Eq. (B1)
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with the boundary condition of Eq. (B2) reads

v1 ≈ eE0

2imRε

1 + k(a2 − r2)/2a

̃ + γ + i(2δ − β)
, (B3)

where  = (1 + 2kR2/a). For the limit

k � a

R2
, (B4)

or, equivalently, for f � a, we restore Eq. (14) of the main
text. Hence, the inequality (B4) represents a criterium for
neglecting the friction force. For lager values of k the friction
would modify our results. As far as a/R2 � k � 1/a the
modification is simply reduced to replacing  in Eq. (14) with
a large constant ̃ � . For even larger values, k � 1/a, one
obtains the dynamical Poiseuille flow in which velocity goes
to zero on the nanoring surface.

APPENDIX C: NUMERICAL SOLUTION
OF HYDRODYNAMIC EQUATIONS

In this section, we analyze the most general case of
nonstationary hydrodynamic equations in the presence of dis-
persion, viscosity, and disorder-induced friction. In the rotating
reference frame (t ′ = t and θ = ϕ − ωt), these equations read

∂n

∂t ′
+ ∂

∂θ
[(1 + n)v − ωn] = 0, (C1)

∂v

∂t ′
+ ∂

∂θ

[
v2

2
−vω+ω2

0n−
∂v

∂θ
+β

∂2v

∂θ2

]

= −γ v+ eE0

mR
sin θ. (C2)

For the resonance approximation, δ � ω0, the solution to these
equations is very close to a stationary solution in the rotating
reference frame. In the other words, we may assume that
derivatives ∂/∂t ′ are on the order of δ and, therefore, are small
compared to ω. Then, Eqs. (C1) and (C2) can be somewhat
simplified. As the first step we rewrite Eq. (C1) as

∂n

∂θ
= 1

ω

[
∂n

∂t ′
+ ∂(1 + n)v

∂θ

]
. (C3)

In the next step we substitute n ≈ v/ω into the right-hand side
of this equation. As a result, we obtain a closed nonstationary
equation for the velocity

2
∂v

∂t ′
+ ∂

∂θ

[
3

2
v2+2δv−

∂v

∂θ
+β

∂2v

∂θ2

]
= −γ v+ eE0

mR
sin θ,

(C4)

which is easily solved by the standard built-in realization of
the finite-element method in Mathematica. For sufficiently
small γ and for  � √

F, β � √
F we find the solution to

be stationary in the rotating reference frame at sufficiently
long times. This reproduces the results that are shown in Figs. 2
and 3. Also, in the limit β0 < β <  the numerical simulations
yield the values of α and ε0, which are in a very good agreement
with those found analytically [see Eq. (E8) below].

APPENDIX D: EXACT SOLUTIONS

1. Exact solution at F � Fcr and F > Fcr for γ = � = β = 0

The linear regime is analyzed by expanding Eqs. (27) and
(29) in F . Simple analysis yields

q0 ≈ δ + F 2

16δ3
, q ≈ δ − F cos τ

2δ
. (D1)

Substituting v = 2(q − δ)/3 we get

v ≈ −F cos θ

3δ
, (D2)

which should be compared to Eq. (14) of the main text for
γ =  = β = 0.

With increasing value of F the absolute value of q0 also
increases. When F reaches the critical point F = Fcr the value
of q0 is given by |q0| = √

F = √
Fcr. At this point the positive

and the negative solutions of Eq. (27) read

q(τ ) = ±
√

2F

∣∣∣∣ sin

(
τ

2

)∣∣∣∣ = ±π

2

∣∣∣∣δ sin

(
τ

2

)∣∣∣∣, (D3)

while the velocity is given by

v = 2δ

3

(
π

2

∣∣∣∣ sin
θ

2

∣∣∣∣ − 1

)
, for F = Fcr. (D4)

It is evident from Eq. (D3) that at F = Fcr the positive and
the negative solutions touch each other at the points τ = 0 and
τ = 2π . At these points one finds q̃0 = 0 and the positions of
extrema coincide, hence there appears a possibility to jump
between the two solutions from the stable point to the unstable
one. With F increasing above Fcr the Eq. (29) of the main text
no longer has any continuous solution. Therefore, for F > Fcr,
one should search for a solution that is discontinuous: q =
−q̃0(τ ) for 0 < τ < τ0 and q = q̃0(τ ) for τ0 < τ < 2π . At the
discontinuity point τ = τ0 there exists a jump from the positive
solution to the negative one. The negative solution changes
back to the positive one at τ = 2π so that the periodicity
condition is fulfilled.

The discontinuity position is fixed by the condition 〈q〉 = δ

that is written as

−
∫ τ0

0
dτ q̃0(τ ) +

∫ 2π

τ0

dτ q̃0(τ ) = δ. (D5)

Integrating the latter one finds Eq. (31) of the main text.
For F > Fcr the velocity reads

v = 2

3

{√
2F sin(θ/2) − δ, 0 < θ < θ0,

−√
2F sin(θ/2) − δ, θ0 < θ < 2π,

(D6)

where the angle θ0 = −τ0 obeys the relation cos(θ0/2) =√
Fcr/F .

2. Exact solution for γ = β = 0 and arbitrary �

In the absence of dispersion (β = 0) Eq. (22) simplifies to

q̇ = q2
0 − q2 − F cos τ. (D7)

With the help of new variables

z = τ/2, q = 

2y

dy

dz
, (D8)
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we rewrite Eq. (D7) in the canonical form of the Mathieu
equation

∂2y

∂ϕ2
+ [a − 2Q cos (2ϕ)]y = 0, (D9)

where a = −4〈q2〉/2 and Q = −2F/2.
The constraint 〈q〉 = δ can be rewritten in terms of the

function y(z) as y(π ) = exp (2πδ/)y(0). Thus, we get

μ(a,Q) = 2iδ/, (D10)

where μ(a,Q) is the Mathieu characteristic exponent. The
parameter a is not a free external parameter but, in fact, has
to be found self-consistently by calculating the average 〈q2〉.
Instead of direct calculation of the average one may simply use
Eq. (D10), which implicitly defines the dependence a(Q,δ).

Following this route one can express y in terms of the
solution of the Mathieu equation as follows:

y(z) = G[a(Q,δ),Q,z]

= MCos[a(Q,δ),Q,z] − iMSin[a(Q,δ),Q,z], (D11)

where MCos and MSin are Mathieu cosine and sine, respec-
tively. Using Eq. (D11) one can readily express the velocity v

in terms of the angle θ as

v(θ ) = −2

3
δ + 2

3

∂ ln{G[a(−2F/2,δ),− 2F/2,− θ/2]}
∂θ

.

(D12)

The numerical analysis of this equation allows one to repro-
duce various regimes shown in Figs. 2 and 3. In the limit  → 0
we recover analytical solutions obtained above [see Eqs. (D2),
(D4), and (D6)].

APPENDIX E: DESCRIPTION OF SOLITONS
IN THE LIMIT β � �

For β �  the viscosity can be fully neglected. Let
us consider the electron dynamics assuming for simplicity
that δ = 0 and, as a consequence, Fcr = 0. In this case
δτ  /

√
F and β0  2/

√
F . We assume that  � √

F

hence δτ � 1. If the potential Ũ (q) were static the elec-
tron energy would conserve. In fact, the potential slowly
changes due to the variation of q̃0, so that electron under-
goes fast oscillations with the frequency of the order of
/

√
ββ0 ∼ √

/βδτ ∼ F 1/4/β1/2, while its energy changes
adiabatically.

Let us discuss this process in more detail. First, we consider
what happens on the short time scales that are much shorter
than the period of the external force. We introduce a dimension-
less coordinate z and the energy ε: E = (2q̃2

0/3)ε, q = q̃0z.
Stable and unstable points of the potential correspond to
ε = −1 and ε = 1, respectively. Frequency of the electron
oscillations in the potential depends on ε: ω = √

2q̃0/β�(ε)
where

2π

�(ε)
= 2

∫ z2

z1

dz

H (ε,z)


{
2π, ε = −1,

− ln(1 − ε), ε → 1.
(E1)

Here H (ε,z) =
√

2ε/3 + z − z3/3 and z1,2 = z1,2(ε) are the
turning points of the potential. The averaged value of the

FIG. 11. Dependence of ε on τ for  < β.

electron coordinate reads 〈q〉ω = q̃0f (ε), where

f (ε) =
∫ z2

z1
dzzH−1(ε,z)∫ z2

z1
dzH−1(ε,z)

{
1, ε = −1,

−1, ε = 1,
(E2)

and 〈· · · 〉ω stands for the averaging over the fast oscillations
with the frequency ω(ε). Simple numerical analysis shows
that f (ε) is very well approximated by f (ε) ≈ −1 + 26/7(1 −
ε)1/7.

Next, we study slow dynamics caused by a time dependence
of q̃0. In this case it is useful to define an adiabatic invariant
J (ε) = ∮

pdq = J (1)j (ε), where J (1) = (24
√

2/5)
√

βq̃
5/2
0

and

j (ε) = 5

12

∫ z2

z1

dzH (ε,z) 
{

5π(1+ε)
36 , ε → −1,

1, ε = 1.
(E3)

Numerically one can approximate j (ε) ≈ (1 + ε)/2.
We parametrize q0 = AF , where A is a dimensionless

constant hence q̃0 ≈ √
F

√
A − cos(τ ). We also parametrize

the energy at the time τ = π as ε0. From the conservation of the
adiabatic invariant we, therefore, conclude that the dependence
of energy on time is implicitly given by the following equation:

[A − cos(τ )]5/4j (ε) = [A + 1]5/4j (ε0). (E4)

The dependence of ε on τ that follows from Eq. (E4) is shown
in Fig. 11.

At τ ≈ π ± α the energy approaches the limiting value
ε = 1 and sticks to this point because �(1) = 0 [see Eq. (E1)].
In this regime the value of q is given by −q̃0. From Eq. (E4),
we find the relation between α and j (ε0) as

j (ε0) ≈
[
A + cos(α)

A + 1

]5/4

. (E5)

At this point we have to take advantage of the constraint 〈q〉 =
0. To find the value of 〈q〉 one should average 〈q〉ω over slow
oscillations of the external field. This yields the following
condition:

∫ π+α

π

dτ q̃0(τ )f [ε(τ )] +
∫ 2π

π+α

dτ [−q̃0(τ )] = 0, (E6)
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FIG. 12. Numerical simulation of oscillations of q for  < β (red
solid lines). Analytically calculated smooth envelopes are shown by
dashed lines.

which allows one to determine α. In particular, replacing
the functions f (ε) and j (ε) in Eqs. (E4) and (E6) with
the corresponding approximative formulas, one arrives at the

following equation for α:
∫ α

0
dx

√
A + cos x

{
− 1 + 2

(
1 −

[
A + cos(α)

A + 1

]5/4)1/7}

=
∫ π

α

dx
√

A + cos x. (E7)

Once the value of α is found one can use Eq. (E5) to determine
ε0. Parameter A can be obtained from the numerical solution of
hydrodynamical equations, A � 1. Simple numerical analysis
of Eq. (E6) yields

α ≈ 1.3, ε0 ≈ 0.13. (E8)

The qualitative behavior of the function q(τ ) is illustrated in
Fig. 12.

The values given in Eq. (E7) appear to be in a very good
agreement with the solution obtained by direct numerical
simulation of the original hydrodynamic equations.
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