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Frequency-dependent magneto-optical conductivity in the generalized «-75 model
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We have studied a generalized three-band crossing model in 2D, the generalized «-T5 lattice, ranging from the
pseudospin-1 Dirac equation through a quadratic+flat band touching to the pseudospin-1/2 Dirac equation. A
general method is presented to determine the operator form of the Green’s function, being gauge and representation
independent. This yields the Landau level structure in a quantizing magnetic field and the longitudinal and
transversal magneto-optical conductivities of the underlying system. Although the magneto-optical selection
rules allow for many transitions between Landau levels, the dominant one stems from exciting a particle from/to
the flat band to/from a propagating band. The Hall conductivity from each valley is rational (not quantized at
all), in agreement with Berry phase considerations, though their sum is always integer quantized.
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I. INTRODUCTION

Since the first isolation of graphene [1] in 2004 and the
theoretical prediction and experimental realization of topolog-
ical insulators [2,3], the Dirac equation and its variants have
started to attract almost unprecedented attention in condensed
matter and related fields. The peculiar spinor structure of the
Dirac equation, which, e.g., stems from the two sublattices
of the 2D honeycomb lattice in graphene, gives rise to many
topology related phenomena such as a Berry phase [1] of 7,
unusual Landau quantization in a magnetic field and the related
unconventional quantum Hall effect [4], just to mention a few
immediate consequences.

The 2D massless Dirac equation possesses the deceivingly
simple form as

0 p-
Hs_1p =vpS-p=vp , (D
p+ 0

where v is the Fermi velocity of the underlying system and
plays the role of the effective speed of light, p = (p.,py)
is the 2D momentum, p; = p, £ ip, and S stands for the
spin-1/2 Pauli matrices, which represent the sublattice degree
of freedom in this instance. Shortly after the discovery of
graphene, this equation was generalized, still in 2D, to arbitrary
pseudospin-S, known as the Dirac-Weyl equation with S now
representing the (25 + 1) x (25 + 1) matrix representations
of the SU(2) algebra, and several lattices have been proposed,
hosting these Weyl fermions [5-9].

Similarly to other spin-S problems, cases with integer and
half-integer spin differ from each other. The ensuing spectrum
consists of coaxial Dirac cones, crossing each other at the same
Dirac point, and for integer spins, an additional dispersionless
flat band also shows up and crosses the Dirac point.

The simplest integer spin case is the pseudospin-1 Weyl
equation. It has a 3 x 3 matrix structure as

0 p- O
Hy_y=vr|lps 0 p_|, (2)
O P+ 0
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and in comparison to Eq. (1), many more new terms can be
added to this and masses can be opened in several distinct
ways [10]. As detailed below, Eq. (2) can be realized in the dice
or T3 lattice, composed of two 2D honeycomb lattices, which
share one sublattice and is sketched in Fig. 1. Experimentally,
the dice lattice can be realized from a trilayer structure of the
face-centred cubic lattice, grown in the [111] direction [10].

Recently, a novel variant of the 73 lattice structure was
proposed, coined as the o-T5 model, suggested first by Raoux
et al. [12]. Due to the three nonequivalent lattice sites of
the T3 lattice, two nearest-neighbor hopping integrals are
possible, which, however, need not be equal to each other. The
generalized «-T3 model is described alternatively by a lattice
consisting of three layers of triangular lattices with basis atoms
A, B, and C and with only intersublattice hoppings between
adjacent layers shown in Fig. 1. By tuning a parameter «, which
measures the relative strength of the two hopping integrals,
one can interpolate continuously from the S = 1/2 case with a
completely decoupled flat band to the perfect S = 1 situation,
i.e., from the physics of Eq. (1) to Eq. (2). The three-band
tight-binding Hamiltonian in the basis A, B, and C is given
by [7,10,13,14]

0 1 f (k) 0
1 fr(k) €0 n fk) |, 3)
0 n f*(k) 0

Hyice =

where #; and t, are the hopping amplitudes between adjacent
triangular lattice, and it has further been generalized by
adding [11,14] an on-site energy term €p in the middle
layer, arising from, e.g., a real chemical potential, while
fk) =14 2exp(i3kya/2) cos(v/3kea/2) with k = (ky,ky)
and a is the nearest-neighbor distance in the dice lattice
(the distance between sites A and B), and * denotes the
complex conjugation. In the original formulation of the model,
1/t = tan(¢p) = o was used for parametrization, but we
prefer to use the two hopping amplitudes instead. Although
the spectrum itself is independent from «, the Berry phase
depends continuously on it.
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FIG. 1. The dice lattice with #; and #, hopping amplitude along
the red dashed and blue solid lines. The on-site energy of the sixfold
connected site B is €y. There are three atoms A, B, and C in each
unit cell.

The € term changes the spectrum of the model, and results
in a parabolic band touching a flat band, and an additional
decoupled parabolic band, as sketched in Fig. 2. The touching
parabolic and flat band realizes essentially the same physics
as bilayer graphene, which possesses two touching parabola,
as was emphasized in Ref. [14]. Then, tuning also the hopping
integrals 71 », the strength of the coupling between the touching
parabolic and flat band can be continuously tuned. In turn,
this allows us to study single and bilayer graphene physics as
well as the pseudospin-1 Dirac-Weyl equation within the same
model.

Linearizing the function f(k) around the K=
(27/3+/3a,2m/3a) point in the Brillouin zone we have
f(K + k)~ (3a/2)(k, —iky). Then, the linearized form of
the Hamiltonian (3) for low-energy states (around the K point)
reads

0 tk_ 0
3a
Hg = > hhky € nbk_|, 4
0 t2 k+ O

where ky+ = k, £ ik,. The eigenenergies are

€0 Eg )
Ei(k) = 3 + Z + Usz, (5)

where vr = 3av/t? + t3/2. The resulting dispersion relation
is plotted in Fig. 2.

XV

FIG. 2. The energy dispersion is sketched in the low-energy limit
of the generalized «-75 model, Eq. (5) for €y = 0 (left) and ¢, > 0.

Ey(k) =0,
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Similarly, around the K" = —K point we have f(K' + k) ~
—(3a/2)(ky + iky) and thus, the Hamiltonian (3) for K’ valley
can be obtained by a unitary transformation with matrix U and
a replacement of the parameters as

and (11,12) — (—lz, — tl)- (6)

S~

I
—_ O O
S = O
S O =

Note thatin case of | = 1, and €y = 0 the contribution from the
two valleys are identical, however, if either of these conditions
are not met, this is not the case. Using the above U, one can
easily calculate any operator or Green’s function in valley K’
from those in valley K, as we do so later on in Eq. (11).

When the on-site energy €y = 0 (Fig. 2), there are two
special cases for this generalized model: (i) for #; = t,, this
equation reduces to the pseudospin-1 Dirac-Weyl model of
Eq. (2) (see Refs. [12,15]) and (ii) for £, = 0 and #; 7 O (or the
other way round) then it corresponds to the pseudospin-1/2
Dirac equation of Eq. (1) (i.e., the graphene) and contains a
completely detached flat band.

For ¢y # 0, on the other hand, the model contains two
parabolic bands, separated by a band gap of size |¢y|, and
an additional flat band appear, touching the bottom or the top
of one of the parabolic bands [14], depending on the sign of the
local on-site energy term, as follows from Eq. (5) (see Fig. 2).

The pseudospin-1 Dirac-Weyl equation also describes the
low-energy excitations in a Lieb lattice, and has been realized
using photonic waveguides [16—18]. Recently, the DC Hall
response and the optical conductivity without magnetic field
of the «-T5 lattice were studied in Ref. [15] without the local
on-site energy term ¢.

In this paper, we study the effect of quantizing magnetic
field on Eq. (4). After determining the spectrum we present
a novel method, which is based on the operator form of the
Green’s function of the system, which is independent from the
chosen gauge or representation (i.e., position or momentum).
To demonstrate the versatility of our method, we calculate the
magneto-optical response of the generalized «-T3 lattice, and
reproduce known results along the way for graphene and the
pseudospin-1 case with ease.

II. THE OPERATOR OF THE GREEN’S FUNCTION FOR
THE GENERALIZED «-73 MODEL

To obtain the magneto-optical conductivity tensor o (w)
in magnetic field perpendicular to the plane of the dice
lattice, one needs to calculate the Landau levels (LLs). As
a standard procedure, replacing the canonical momentum by
a gauge-invariant quantity Ak — IT = Ak + |e|A one finds
the commutation relation [I1,,T1,] = —ih*/1%, where Iz =

/% is the magnetic length scale, and A is the vector
potential such that B =V x A. By introducing the bosonic
creation-annihilation operators & = hl_\B/E (IT, —iIly)anda’ =

711\3/5 (IT, +iI1,) we have [a,a'] = 1, and the Hamiltonian in
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Eq. (4) becomes
0 Bia 0
pat e«  pal, (7N
0 pBat o
where B = (3¢/~2)t1/15 and By = (3c/N2)1,/1p are the
rescaled hopping elements #; and #,, respectively.

Inspecting the Hamiltonian we assume that the eigenstate
is of the form

In.¢) = (Ciln = 1),Cr2ln),Ce 5ln + 1), ®)

H =

where |n) is an eigenstate of the number operator N = afa
with n =0,1,2,..., while the band index is denoted by
¢ =0,%£1, and C;; with i =1,2,3 are coefficients to be
determined from the eigenvalue problem of Hamiltonian (7).
The Landau levels E; and the corresponding states are given
in Appendix A. The Landau levels are different at the K’
valley but can be obtained from the above eigenvalues by the
following replacement (B, 8) — (—B2, — B1)-

Now, we derive the Green’s function defined by G(z) =
(z — H)~'. In contrast to the usual way where the Green’s
function is given in position representation, we give the
operator form of the Green’s function which is independent
of any representation. We would like to emphasize that
the operator form of the Green’s function provides a great
simplification in the calculation of different physical quantities
involving the Green’s function such as the magneto-optical
conductivity. Usually, such quantities are expressed in terms

J
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of a trace of the product of the Green’s function and other
operators [in this work see Eq. (10b) as an example]. Now
an accepted procedure is to use the position representation of
the Green’s function. However, this approach involves com-
plicated analytical calculations. Indeed, for example Gusynin
and Sharapov recently have used the position representation
of the proper-time expression for the electron propagator for
graphene [19,20] and bilayer graphene [21] in homogeneous
magnetic field to calculate the magneto-optical conductivity.
Using the Schwinger proper-time method [22] they derive
the Fourier transform of the translation invariant part of the
Green'’s function for single and bilayer graphene and presented
arather lengthy and complicated derivation to obtain the trace
in the expression of the magneto-optical conductivity tensor.
Finally, the evaluation of this trace including integrals of the
generalized Laguerre polynomials requires further efforts to
obtain analytical results. As we demonstrate below in contrast
to this approach our results, namely the operator form of the
Green’s function gives an elegant way to calculate the trace
using only the usual algebra of the creation and annihilation
operators. We easily carried out the whole calculation for
graphene using our method and found the same results
presented in Refs. [19,20].

To show how effective our method is in this work, we
calculate the magneto-optical conductivity tensor for the
generalized «-73 model. To this end, we need the operator
of the Green’s function. After a lengthy but straightforward
analytical calculation, we found for the K valley (for details
see Appendix B):

HI+B W+ Dfx@N+ D] Brafx(z.N) BB a2 fr(z.N — 1)
Gr(2) = Bra fx(z, N +1) 2fx(z,N) Brafx(z, N —1) : (9a)
Bl 412 fye (2. + 1) Bral fxzN)  L[I+ 85N fx@N — D]
where  fx(z,N) = [z* — ez — B{ N — B3 (N + 1)]_1, (9b)

while N = afa is the number operator, and I is the identity
operator. The operator of the Green’s function for the K’
valley can be obtained by the transformation (6). We should
emphasize that fx(z,N) is an operator but can easily be
calculated in the Fock representation. Note that studying the
poles of the Green’s function we find the same Landau levels
that are given in Appendix A.

III. MAGNETO-OPTICAL CONDUCTIVITY

Using the Kubo formula [23] the magneto-optical conduc-
tivity tensor in the bubble approximation can be obtained from
the operator of the Green’s function given by Eq. (9) in the
following way:

Mp(5) — Map(0)

Oup (“5) = %.

(10a)
ikyT

where —
2l

> Tr(juGlion + iva)

=—00

Hap(ivm) =

x jpG(iwy)). (10b)

(

Here, I, is the current-current correlation function (o, 8 =
x,y), wp = 2k + 1)wkgT are the fermionic Matsubara fre-
quencies (here kg is the Boltzmann constant, 7 is the
temperature and k is an integer) and v, = 2mmkgT are
bosonic Matsubara frequencies (m is an integer). The trace
can be obtained using the eigenstates of the Landau levels
given in Appendix A. The sum over the fermionic Matsubara
frequencies w; in (10b) can be performed by the usual
summation method [23]. Finally, the current density operator

i=3% ag{,( with Hamiltonian (4) at the K valley is given by
; 08 0 ol 0 - 0
. elp . telp
b=—7|81 0 B, jy=—7|8 0 =5, (1D
V2h 0 B O V/2h 0 B 0

while at the K’ valley it is given by the transformation (6).

Then, the frequency-dependent magneto-optical conduc-
tivity tensor o (w) can be calculated from Eq. (10a) using the
usual analytic continuation [23] iv,, — @ + in in the current-
current correlation function I,g(iv) given by Eq. (10b), where
n is the inverse life time of the particle.
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IV. RESULTS: THE MAGNETO-OPTICAL CONDUCTIVITY

In this section, we present our results for the magneto-
optical conductivity. The analytical calculation can be carried
out in a straightforward way using the algebra of the creation
and annihilation operators. Our results show explicitly the
different contributions to the conductivity corresponding to
the interband and intraband transitions between the flat
band and a cone, and between cones in each valley. Below
the dependence of the conductivity on the frequency, the
temperature, the magnetic field and the Fermi energy will
be discussed. Moreover, from these results we shall establish
the selection rules for the possible optical excitations between
Landau levels. In addition, once the Green’s functions are
calculated within our formalism, any response function follows
straightforwardly, not just the conductivities. First, we consider
the longitudinal conductivity.

A. The longitudinal conductivity

The total longitudinal conductivity can be written as
the sum of terms corresponding to intraband and interband
transitions. After a lengthy but straightforward analytical
calculation, we find

— E K.t K.t K.¢
Oxx (w) - (O-xx,f_c + O-)c,vc.c—c,imer + Jxx,c—c,intra)
r=+
2 2
+(Bi < B3). (12)
K.t K.Z K.Z
where Gxx. ¢ xx,c—c,inter> and o‘xx,cfc,intra are the

contributions to the total longitudinal conductivity from
the interband transitions between the flat band and a cone,
the interband transitions between cones, and the intraband
transitions (within the cones) in the K valley, respectively and
are given in Appendix C. The contribution to the conductivity
from the K’ valley is given by the second term in (12)
indicated by the replacement g7 <> B3.

J
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FIG. 3. Allowed transitions for different values of the Fermi
energy.

To see the allowed transitions between different Landau
levels we consider the three contributions to the conductivity
given by Eq. (12). The first term corresponds to the transition
from flat band (¢ = 0) to cone (¢ = 1) and at zero temperature
the difference of the two Fermi functions becomes nonzero if
the Landau level indices n of the two energy levels differ
exactly by one. For finite temperature in principle other types
of transitions are also allowed but much smaller than the ones
mentioned above. The other selection rules can be obtained
from the second and third terms in the expression of the
conductivity.

The magnitude of the contribution corresponding to a
transition with energy E ~ hw at frequency w is approxi-
mately the prefactor of the term m (for not too small
values of the magnetic field and for u,® > 0). In particular,
for the transitions from the flat band to the cone band this
is

24 g2 (m+DB} mp3
2 (Pt P+ g El_E._
Reow(w = Ej /)~ - L T ) | (132)
which in case of 8, = 3, reads as
2% 4m?* +4m — 5
Reo (0 = Ef /) ~ = P dm” +4m =5 (13b)
nhE;; 4m? + 4m — 3
For the amplitudes of transitions between the cone bands { = —1 and ¢ = +1, one finds
_ & com + (B Es + BIE,")’
Reov(@ = (Eyyy = B/~ — (_2 > _*;) T (Bl B). (4
n (=% (Em —En )(Em+1 - Em+1)( - EmEm+1)(Em - Em+1)
which in case of 8| = 3, takes the form
23 1 D2 D —/@m+1D2m +3
Reoy( = (E+,, — Ephy~ 00 L m D@m+ 1) V@2m + 1)2m + 3) (14b)
nh En—E, 2m + DH(2m + 3)

It is easy to check that the contributions of the transitions from flat to cone bands are significantly larger than the ones
corresponding to cone to cone interband transitions when #; = #, (or more generally, when the two hoppings are sufficiently close
to each other which is the case in Fig. 4). However, as soon as, e.g., t, = 0, the conventional graphene case is recovered without
any flat band, and only cone to cone transitions remain present. In summary, in Figs. 3 and 4, we illustrate the allowed transitions
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for different Fermi energies. Figure 4 shows the conductivities
as a function of the frequency Q2 = hw for three different
chemical potential 1.

For u = 50 K, the transition [n = 1,{ =0) - [n =0, =
1) gives the two largest peaks in the conductivity corre-
sponding to the two valleys. While in case of u =500 K
the transition |n =0,{ = 1) — |n = 1,{ = 1) provides the
largest peaks in the conductivity. Finally, for u = 700 K, the
Landau level indices change as n = 1 — n = 2 for K valley

J
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and n =0 — n =1 for K’ valley but the quantum number
¢ = 1 does not change.

Finally, we discuss the dependence of magneto-optical
conductivity on external field. It is clear that for B — oo
the conductivity should vanish since the distance between the
Landau levels tend to infinity. The formula for the low-field
limit is obtained by introducing the variable Q2 = E;} — €(/2
and replacing the summation over n into a integral as
follows:

l’lp(O) - I’lp(%o + Q)

O—XX -

h 60/2

_2ies = O [(9)7 492 cos29) ne(§ — Q) —ne(§ +9)
52 _ 492

+ sin2(2¢)[
£ (3+9)

where tan¢ = t,/t;. In case of ¢ = /4 (i.e., when t; = ;)
and ¢p = 0, Eq. (15) transforms into Eq. (21) of Ref. [10] and
in case of ¢ = /2 (graphene) and €y = 0 into Eq. (13) of
Ref. [20].

As far as intermediate magnetic fields are concerned, the
height of the peaks and their positions can be determined
from the results given by Egs. (C1). For simplicity, here
we only consider the case 8; = B. In fact, the pattern for
general hopping amplitudes is rather cumbersome as peak
energies corresponding to different transitions might coincide
(approximately) and producing a higher peak together (see
Fig. 5), even for very small values of the scattering rate. Let
us consider the case when 0 < 1 < Ej so that we do not
have to deal with the single intraband transition. It is also
allowed to neglect cone-to-cone interband peaks according to
the arguments above. However, we should be careful when
we consider the low-field limits since in this case the main
contribution to the peaks in the conductivity results from
more than one transitions between the LLs. The value of
the real part of the longitudinal conductivity tends to the low
magnetic field limit that can be determined from the integral in
Eq. (15).

Therefore main characteristics of the oscillation of the
longitudinal conductivity as a function of the magnetic field
is mainly governed by the transitions between the flat band
to cone levels. For a fixed value of frequency w, the mth
peak (starting from the left-hand side in Fig. 5) occurs at

B,;l/ 2= %«/ 2m + 1, where y = B1/vB independent of the
magnetic field. So the distance between peaks decreases as the
difference of the square root of two neighboring odd numbers.
The amplitude of the oscillations is given by Egs. (13a)
and (13b), which implies that for large enough magnetic field

the peaks in the longitudinal conductivity tends to
2 .2
B,
Reoy(w = Ejf /)~ — L2, (16)
nh o

which is proportional to the position of the peaks B,,.

B. The transversal conductivity

Similarly to the case of longitudinal conductivity the
transversal conductivity (off-diagonal component of the

082 Q2

-Q) anp(%Jrsz)”’ )

conductivity tensor o) can also be written as the sum of
terms corresponding to intraband and interband transitions.
After a lengthy but straightforward analytical calculation,
we find

_ K. K.; K.¢
ny(w) = Z (ny,ffc + Oxy,c—c,inter + O—xy,cfc,intra)
==+

+ (Bf < B3). a7

where oX¢ okt and oX¢

xy, f—c> Yxy,c—c,inter> xy,c—c,intra are the contribu-
tions to the total transversal conductivity from the interband
transitions between the flat band and a cone, the interband
transitions between cones, and the intraband transitions (within
the cones) in the K valley, respectively and are given in
Appendix C. The contribution to conductivity from the K’
valley is given by the second term in (17) indicated by the
replacement ,312 < ,322.

Figure 6 shows the Hall conductivity (the imaginary part
of the off-diagonal component of the conductivity tensor) as
a function the frequency for different chemical potential (in
panel a) and for different hopping amplitudes (in panel b).
When 0 < o < EJ in a valley (blue solid line) then there
is no intraband transition so peaks in the conductivity result
only from flat band to cone and cone to cone transitions. In this
case, there is a negative peak (around 2 ~ 400 K in the figure)
corresponding to the transition |n = 1,{ =0) — |[n =0,{ =
1). All the other peaks corresponding to other flat band to cone
transitions are positive. Small negative peaks (around Q2 ~
300 K in the figure) due to interband cone to cone transitions
are also present. However, if Ej < u < E (red dashed line),
then the aforementioned negative peak from flat band to cone
transition disappears, while another negative peak appears due
to an intraband transition.

The height of a peak at frequency w corresponding to a
transition with energy E =~ hw is approximately the weight
factor of the term m (again, for not too small values
of the magnetic field and for i, > 0). The heights of positive
peaks (flat band to cone transitions) fall rapidly in both cases
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FIG. 4. The real part of the longitudinal conductivity (in units of
€2/ h) as a function of the frequency w (in units of K) for Fermi energy
@ = 500 K [blue line, (a)] which is in the gap, © = 730 K [black line,
(b)] which lies between the Landau levels n = 0 and n = 1 in the K
valley and in the gap in the K’ valley, and n = 850 K [red line, (c)],
which is between the Landau levels n = 0 and n = 1 for both valleys.
The parameters are T = 10 K, ¢y = 500, 8, =350 K, B, =450 K,
and n = 5 K. For the first few peaks, the corresponding transitions
are assigned in the form of |n,¢) — |n',¢’).
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FIG. 5. The real part of the longitudinal conductivity (in units of
€2/ h) as a function of the inverse square root of magnetic field B (here
B is in units of T) for (a) 1 = B, = 400 K+/B, (b) B; = 300 K/B
and B, =400 K /B for the blue solid line, ¢y = 100 K for the red
dotted line. The parameters are 7 = 10 K, u =50 K, v =200 K,
n =5 K, and ¢y = 0 in both cases.

in terms of the frequency according to

Imo,y(w = E,\ /)

2 2 mp3 (m+DB}
~ 82 ’32 B 'Bl + E;—]Ezr;—l B E$+1E;+]-1 + (/32 < ,32)
nh E} - E, R
(18a)
which in case of 8; = B, reads as
202 2 1
Imoyy(w = E} /) ~ — hi m (18b)

nhE} 4m? +4m — 3’

It is also worth noting that when fB; # B, then the
first negative flat band to cone peak splits into two peaks
(corresponding to K and K’ valleys, respectively) as shown
in Fig. 6(a) around Q2 ~ 250 K. If the difference between the
two hopping amplitudes are large enough then it might occur
that one of these two peaks becomes positive as can be seen in
Fig. 7 exactly at Q2 = 300 K.
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Similarly, it is easy to check that the peaks corresponding to cone-to-cone interband and intraband transitions are always

negative. The heights of peaks for interband cone-to-cone transitions (hw = E,, +

t(m + D(BIEn + BIE m+1)2

\—E,=E}—E, ) are

2
_ e
Imo, (0 = (E},, — E;)/h) ~ —i ; G
and for intraband transitions

Imo,,(w = (E,, — E,)/h) ~ —

— Ex)(

e’ (m+ D(BLE} + B E m+1)2

—+ (Bl B) 19

m+1 Em-H)( E{ Em+l)(E’§’ - Emil)

m+1 n_h(EJr

Finally, we consider the transversal conductivity in the dc
limit (w = 0) and at zero temperature. In this case we obtain
the usual Hall conductivity. From Eq. (C2), we can find the
contribution from the K and K’ valleys as

p B — B SN
= FO)-2Y FX), @1
o (ﬂ1+ﬁz ©= ; ) (212)

K’ e’ :32 /31 - K’
= — S F(0) -2 F*l, 21b

@

—  u=50K

u=850K

Ty

Im oy hfe®

-20

-30
0

500 1000 1500
w [K]
40
(b)
— =0, }=423K
200 e Bi=pr=423K
| W[/
-20
4% 200 100 600 800 1000 1200 1200
w[K]

FIG. 6. The imaginary part of the transversal conductivity (in
units of e?/ k) as a function of the frequency Q = iw/ kg (in units of
K) (a) for Fermi energy i = 50 K lying between the flat band and
the first LL (blue solid line) and « = 500 K which is between the
first and second LL (red dashed line), (b) for © = 50 K and for two
sets of hopping parameters: ¢, = ; = 0, 2 = 423 K corresponding
to graphene with B = 1 T magnetic field (blue solid line), and €y =
0, B1 = B, = 423 K related to the Dirac-Weyl model for s=1 (red
dashed line). The parameters are 7=10 K and n=5 K in both cases.

E;rz)(Em+] - m+1)(EnJg

2 2
O EL—ED + (Bf < B3). (20)

(

where FX = np(E}) + np(E;) and E are the energy levels
for the K valley, and FX' is the same as FX with energy
levels for the K’ valley. Our valley resolved results for ¢y =
0 differ from those in Ref. [15], obtained using the Streda
formula. although the total, K + K’ contributions do agree.
Note that the Streda formula calculation also fails to reproduce
the half-integer quantized Hall response of graphene though.
Here the spin degeneracy is taken into account. Thus the total
contributions from K and K’ valleys can be rewritten as

L 228
(i, B.T) =k + oK = - =Y (Ff+FF). @)
n=0

The Hall conductivity as a function of the Fermi energy at
zero temperature and in DC limit is plotted in Figs. 8 and 9.
The insets in this figure show the individual contributions
from the two valleys to the conductivity. It can be shown
that the conductivity is zero when p is in the narrower energy
interval {E, ,Ear } corresponding to the K and K’ valleys.
For parameters used in the figure this is || < 8;. Moreover,
the conductivity has a change 2e?/h at all the other Landau
levels. For €y # 0, the Hall conductivity looses its symmetry
with respect to u = 0. Our results for €y = 0 agree with those
on Ref. [24].

We now show that this Hall conductivity can be related
to the Berry phase. Indeed, when the temperature is zero and
the Fermi energy lies between the flat band and first LL then
the sums in Eq. (21) becomes zero and F(0) = 2. Then the

Im oy h/d2
|
S

—_ B1=380K, B=420K
-20

------- Si=300K, $,=500 K

00 550 600 650 700 750 800
w[K]

FIG. 7. The imaginary part of the transversal conductivity (in
units of e?/ h) as a function of the frequency Q = hw/ kg (in units of
K), for hopping amplitudes €y = 0, 8; = 380 K, §, = 420 K (blue
solid line), and for ¢y = 0, 8; = 300K, B, = 500 K (red dashed line).
The parameters are 7 = 10 Kand n =5 K.
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FIG. 8. The transversal conductivity (in units of ¢?/h) in dc
limit (w = 0) as a function of the Fermi energy. Insets (upper right
and lower left) show the contributions from the K and K’ valleys,
respectively. The parameters are 7 =0.01 K, n =5 K, ¢ =0,
B1 =300K, and B, = 500 K.

conductivity becomes

2 2 p2 2
eh-b_, % cos2¢),  (23)

’
O,K,K —

Y h B+ 83
where ¢ is given by tan¢ = #, /¢, and the spin degeneracy is
included. This results is in agreement with the Berry phases
obtained in Refs. [12,15]. It is interesting to note that the valley
resolved Hall response is not only fractional but can also be
rational without any electron-electron interactions, albeit the
sum of the two valleys, the total Hall response is always integer
quantized.

V. CONCLUSIONS

In this work, the magneto-optical conductivity in the
generalized «-T5 model is calculated. In this generalized form

20F"

15 7. s K

Oxy h/e?
=

|
i
=

oy e

—10¢F

oo s00 500 1000

-15¢ T :
—1000 —-500 0 500 1000 1500

FIG. 9. The transversal conductivity (in units of >/ ) in dc limit
(w = 0) as a function of the Fermi energy (spin degeneracy factor
included!). Insets (upper right and lower left) show the contributions
from the K and K’ valleys, respectively. The parameters are 7 =
0.01 K, n=5K, ¢ =600K, 8 =300 K, 8, =500 K for the red
dotted line and €y = 600 K, 8; = B, = 412 K for the blue solid line,
so that 87 + B2 has the same value for the two cases.
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we assumed that the on-site energy €, of the sixfold connected
site can be nonzero. Using the Kubo formula expressed with
Green’s function, the magneto-optical conductivity tensor is
calculated as functions of frequency, external field, temper-
ature and Fermi energy. To this end, we introduce a new
analytical procedure to determine the Green’s function in
an operator form independent of any representation. When
the Green’s function is given in position representation the
evaluation of the trace in the Kubo formula is a quite
cumbersome analytical calculation. The advantage of our
approach is that the Kubo formula can be calculated in simple
way using only the algebra of the creation and annihilation
operators. To demonstrate the theoretical method mentioned
above, the calculations are also carried out for graphene and
it is shown that the results obtained from our method are in
agreement with those known in the literature.

From our general result for the transversal conductivity we
derived an analytic expression for the Hall-conductivity in dc
limit. We show that the Hall conductivity at zero temperature
agrees with that obtained from the Berry phase calculated
in earlier works. Moreover, the Hall conductivity is integer
quantized and the steps of quanta depend continuously on the
hopping parameters between adjacent layers.

We believe that our predictions for the magneto-optical
conductivity can be tested experimentally with cold atoms in
an optical lattice. Furthermore, our algorithm is an efficient and
universal approach and thus easily applicable to other systems.
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APPENDIX A: EIGENVALUES AND EIGENSTATES
OF THE SYSTEMS

In this section, we present the eigenvalues and the eigen-
states of the Hamiltonian (7) (around the K valley). The
Schrodinger equation reads as

Hin,¢) = EfIn,¢), (AD)
where Ey and |n,Z) is the energy eigenvalue and the cor-
responding eigenstate, respectively, and » = 0,1,2,... and
¢ = —1,0, + 1 denote the Fock number and the band index,
respectively. To solve this equation, we look for a solution
of the form given by Eq. (8). The results are summarized in
Table I.

APPENDIX B: CALCULATION OF THE
GREEN’S FUNCTION

To obtain the operator of the Green’s function for the
Hamiltonian H given by Eq. (7), we partitioned the operator

z— H as
Z —,3151 0

z—H=|-ga" z—¢ | —pa z(é g). (B1)
0 —Ba | z
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TABLE I. Landau levels and eigenstates for valley K. Each levels are labeled by the Fock number n and a band index ¢. The normalization

1
factors are ¢ = (B2n + B3 (n + 1) + (ES)*) "2 for ¢ = £ and 0

— (B0 + B2n+ 1) for ¢ = 0.

n’c Eﬁ |I’l,§)

n>0,¢ ==l B =2 40/(2) +pin+ B+ D) v (Biv/ln — 1), EE' n), fov/n + Tin + 1)
n>0.0=0 E0=0 y2(—Pov/m + Tn = 1),0,B1/aln + 1))
n=0,¢=+1 Ef' =2 40/(2) + 82 i1(0.E5710). ol 1))
n=0,=0 EO =0 (0,0,j0p"

Then we apply the general formula for the inverse of a 2x2
partitioned matrix
)

A B *‘_
(¢ n) =
(B2)

where S = D — CA~'B and the operators A and S can be
inverted. This is often called in the literature the Banachiewicz
inversion formula [25,26].

The inverse of operator A defined in (B1) can also be
calculated from formula (B2) and after a simple algebra we
find

—A'BS—

<A1 + A 'BSlcA!
S—l

—S~lcA!

Al — ((Z —€) pz,N + 1)

> Bira p(z,N) 7 (B3)
Brat pz,N + 1)

2 p(z,N)

where p(z,N) = (2% — €0z — ,8121\7)71 and N =a'a is the
number operator. Now using (B3) and the general formula (B2)
the matrix elements of the inverse of matrix in (B1) can be
calculated analytically, and we find

_slcal = (.81,32 A'zf( N+ 1, ﬂz&Tf(z N))

(B4c)
A"+ AT'BS AT
_ (B E s 0] paseR) o
prafz,N +1) @) )
where f(z,N) = [22 — €0z — B? N — B2 (N + 1)]_1
Here we have made use of the following identities:
af@N)=feN+Dal, (BS)
a' f@N) = f@N ~Da. (B6)

Finally, substituting the terms given by Egs. (B4) into Eq. (B2),
we obtain the operator of the Green’s function G(z) =
(z — H)™" as given by Eq. (9). For the case of K’ valley, the
Green’s function can be obtained by the transformation (6).

APPENDIX C: EXPRESSIONS FOR THE LONGITUDINAL
AND TRANSVERSAL CONDUCTIVITIES

1
-1 _ = N
5= z ( + 5 NI, N 1)) (B4a) Using the operator form of the Green’s function given by
. Eq. (9) and the current operators (11), and performing the Mat-
Bl g2 (2, N — 1) S : i
—A'BS! = © (B4b)  subara summation in (10b) the magneto-optical conductivity
Braf(z,N —1) can be calculated analytically. Then the longitudinal conduc-
tivity is given by Eq. (12) in which the different terms reads
|
< BB e e
El E,
xx C(w) n+l En n—15n—1 + ) nF(O)—I’lF E,{ , (Cla)
f hn:O E,f—En{ E—Eﬁ E—i—Efl [ ( 1)]
¢ *4“ 2
UK,C - (CL)) ﬁi (f’l+1)(,312E +1322 n+l)
XXx,c—c,Inter — —
h n=0 (E'i —En )(E5+1 - En+l)( E{En+1)(EC En-il)
1 1 ) —¢
X — ng En — Nfg Efl 5 (Clb)
o S e pue )  LCRAR(0)
2
e’ i (n + 1)(51E; +B3E 1)
UXXL‘ lera(a)) h (E;— _ E )(E{ E )(Eg—E )(E( E{)
n=0 n n+1 n+1 n+1 n+1 n
1 1 ) ¢
X ng Eé —ngp(E, , (Clc)
o izl | I )
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Similar calculations leads to the Hall conductivity given by Eq. (17) in which the different terms are

2 & B — Bt + nﬁz - E(YH_IE)/S] 1
o) = " 2_; E{—E{ HH £ - Ej _§+E,€>[HF(O)_nF(E5)]’ (G20
(@) = zi (n+ D(BTER + FRE,))
xrc c,inter —
o —~ (ES — E;5)(EL,, — EJ5) (- ESES)(ES — EJL)
1
x ne(E,f,) —ne(E%)], (C2b)
(“E; o e () ()
2 o0 1 2E(
Gx}c clmra(w) Z 3 (nj_ )(ﬂ +ﬁ§ ’;+1) 7 R
n=0 (E” —E, )(En—H En+1)(E En+1)(En+l E")
1
ES) —np(ES, )], C2
x <E+E§ Ei+1 E E§+En+1>[nl:( ”) nF( n+1)] ( C)

where np(E) = 1/(e'E=#/*sT) 4 1) is the Fermi distribution function, y is the Fermi energy, and £ = hw + in.
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