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We present an analytical and numerical investigation of the spectral and transport properties of a quadruple
quantum-dot (QQD) structure which is one of the popular low-dimensional systems in the context of fundamental
quantum physics study, future electronic applications, and quantum calculations. The density of states, occupation
numbers, and conductance of the structure were analyzed using the nonequilibrium Green’s functions in the
tight-binding approach and the equation-of-motion method. In particular the anisotropy of hopping integrals
and on-site electron energies as well as the effects of the finite intra- and interdot Coulomb interactions were
investigated. It was found out that the anisotropy of the kinetic processes in the system leads to the Fano-Feshbach
asymmetrical peak. We demonstrated that the conductance of the QQD device has a wide insulating band with
steep edges separating triple-peak structures if the intradot Coulomb interactions are taken into account. The
interdot Coulomb correlations between the central QDs result in the broadening of this band and the occurrence of
an additional band with low conductance due to the Fano antiresonances. It was shown that in this case the
conductance of the anisotropic QQD device can be dramatically changed by tuning the anisotropy of on-site
electron energies.
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I. INTRODUCTION

Low-dimensional systems attract significant attention from
researchers with both the possibility to study fundamental
quantum physics and potential applications in nanoelectronics.
One of the basic objects there are quantum dots (QDs).
Different, often coexisting processes such as the Kondo, Fano,
and Aharonov-Bohm effects as well as the Hubbard model
physics are probed in the systems of QDs [1–3]. In the
single-electron regime these structures are proposed to be
utilized as spin qubits [4,5]. In addition, it was shown that
they can act as rectifiers, spin filters, and valves [6].

Among QD-based structures, the arrays containing three
and more QDs have been actively studied only recently
due to more difficult experimental realization [7,8]. The
structures consisting of four QDs, quadruple quantum-dot
(QQD) structures, were explored in different geometries. A
nanosecond-time-scale spin transfer of individual electrons
across the serially connected QQD device was reported in [9].
In a squarelike configuration such an operation was demon-
strated on a closed path inside the QQD system [10]. In the
same system with three electrons Nagaoka’s ferromagnetism
was observed [11,12], the features of the spin exchange of
four electrons were studied [13,14], and a self-contained
quantum refrigerator was investigated [15]. It is important
to emphasize that for all geometries the intra- and interdot
Coulomb repulsion is a key factor influencing the spectrum
and transport properties [16,17].

The most common situation for quantum transport mea-
surements of the QQD structure is when left and right
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metal contacts are coupled with two QDs so that the other
two QDs are situated in the central part (see Fig. 1). The
investigation of the Fano, Aharonov-Bohm, and Aharonov-
Casher interference effects in the Landauer formalism for
this geometry earlier was restricted by the extreme cases of
either strong Coulomb interaction (the Kondo regime) or the
absence of it [18,19]. Meanwhile, it was shown in [19] that
the QQD device subjected to the Rashba spin-orbit coupling
acts as a spin filter. A similar behavior without the Rashba
spin-orbit interaction and the Aharonov-Bohm effect was
demonstrated for a multiple-QD network, the simplest case
of which is the QQD [20]. In the last work the influence
of the Coulomb interaction on the conductance was limited
by the corresponding intradot term in the Hamiltonian. Thus
the transport and spectral properties of the QQD structure in
a more general regime when both the finite intra-, U , and
interdot, V , Coulomb interactions and the anisotropy effects
are taken into account have not been considered yet. The
anisotropy implies the difference of the hopping integrals in
the QQD or on-site carrier energies (due to, e.g., gate fields,
Vg1 and Vg2) which takes place in experiments.

Here it is important to note that the introduction of the
anisotropy allows us to effectively consider the QQD structure
as the two-band Hubbard system. Let us recall that usually
the electron polaron effect (EPE) is present in multiband
strongly correlated electron systems with substantially differ-
ent electron bandwidths such as uranium-based heavy-fermion
systems and other systems in mixed valence regimes [21–24]
which can be described for example by the two-band Hubbard
model with one narrow band (in the case of sufficiently strong
interband Hubbard interaction V ) [25,26] or the Anderson
model (AM) [27] with one-particle hybridization (t0 in
our case) and two-particle Hubbard interaction between s-p
electrons of the light band and (heavy) electrons of localized
f-d levels. In the two-band Hubbard model EPE is usually
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FIG. 1. The QQD structure between metallic leads.

connected with the additional polaronic narrowing of the heavy
particles’ bandwidth due to the dressing of the heavy particles
in the virtual cloud of soft electron-hole pairs of the light
particles. Similarly in the AM the EPE leads to the additional
narrowing of the hybridization matrix element t12. Note that
in the QQD scheme (Fig. 1) t12 corresponds to the electron
hopping t2 from the 1QD to 3QD or correspondingly to the
(reverse) hopping from the 3QD to the 4QD. Consequently in
all our calculations we should effectively replace t2 by t ′2 � t2
in the case of strong EPE produced by large values of V or t0.
Thus in numerical analysis we will suppose that the anisotropy
is induced by both specific design of the structure and the
above-mentioned many-body effects.

Note that the physics of EPE is closely connected with the
well-known results of Kondo and Nozieres et al. on infrared
divergences in the description of the Brownian motion of a
heavy particle in a Fermi liquid of light particles [28,29] (see
also the important results of Kagan and Prokof’ev [30,31])
as well as with the results on the infrared Mahan type [32]
divergences for the problem of x-ray photoemission from
the deep electron levels [33] and with the famous results of
Anderson [34] on the orthogonality catastrophe for the 1D
chain of N electrons in the presence of one impurity in the
system.

In all the cases both in uranium-based heavy-fermion
systems [25,26] and in other mixed valence systems such
as manganite silicides, for example [35], EPE in the infinite
geometry leads to anomalous resistivity characteristics in
3D and especially in 2D (layered) systems. Note that the
manifestations of EPE are also very interesting in the restricted
geometry of the tunnel junction (see the pioneering results of
Matveev and Larkin [36]) when we consider a charge sector
of intradot Coulomb correlations [37,38] and strong interdot
Hubbard correlations between electrons in the central part (2-
and 3QDs). As we will show in this case there should be
additional Fano-Feshbach [39,40] resonances in the tunneling
conductance and an effective one-particle density of states for
the junction.

Here it is important to note an additional analogy between
our system and the systems with impurities and defects. In real
situations which are considered in the physics of electrical cur-
rents in dielectrics and semiconductors we are usually dealing
with a small number of deep two-level traps surrounded by
a large number of shallow traps with one level. In particular,
a similar system, where deep two-level traps are randomly
distributed between shallow one-level traps, is described in the
well-known paper of Bishop’s group [41] in connection with

the physics of the radiation-induced conductivity (important
for space applications) and more standard electron-phonon (or
more exactly Holstein type configurational) polaron effects
in molecularly doped polymers. In these terms our QQD
structure can be treated as the simplest model with one central
deep two-level trap (2- and 3QDs) in the surrounding of
two shallow one-level traps (1- and 4QDs) in the restricted
geometry of the junction, where, for the sake of simplicity,
we neglect the peculiarities of the hopping conductivity on the
Miller-Abrahams lattice.

In this article, on the basis of the nonequilibrium Green’s
function technique and the tight-binding approximation we
studied spectral and transport characteristics of the QQD struc-
ture in which the intra- and interdot Coulomb correlations as
well as the anisotropy effects take place. The interdot Coulomb
interaction was considered between the QDs in the central
part (see Fig. 1). In order to define the role of the Coulomb
interactions in the formation of the transport properties beyond
the mean-field approximation the decoupling scheme of You
and Zheng [42,43] was adapted.

The paper has been organized into six sections. The model
Hamiltonian is described in Sec. II. The nonequilibrium
Green’s function technique in the tight-binding approximation
is presented in Sec. III. The analytical derivation of the
retarded Green’s functions of the QQD taking into account
the Coulomb interactions is presented in Sec. IV. The results
concerning the transport without the Coulomb interactions are
presented in Sec. V. The influence of the Coulomb interactions
is considered in Sec. VI. Conclusions are given in Sec. VII.

II. THE MODEL HAMILTONIAN

Let us consider electron quantum transport in the QQD
structure depicted in Fig. 1. The system consists of three parts
which are metallic leads and the structure between them. The
Hamiltonian of the system is

Ĥ = ĤL + ĤR + ĤD + ĤT . (1)

The first two terms characterize the leads,

ĤL(R) =
∑
kσ

(
ξkσ ∓ eV

2

)
c+
L(R)kσ cL(R)kσ , (2)

where c+
L(R)kσ is the creation operator in the left (right) lead

with quantum number k, spin σ , and spin-dependent energy
ξkσ = εkσ − μ; μ is the chemical potential of the system. It is
supposed that the voltage ±V/2 is applied to the left (right)
lead.

The third term describes the QQD structure,

ĤD =
4∑

σ ;j=1

ξjσ a+
jσ ajσ + U

4∑
j=1

nj↑nj↓

+V
∑
σσ ′

n2σ n3σ ′ +
∑

σ

[t1(a+
1σ + a+

4σ )a2σ

+ t2(a+
1σ + a+

4σ )a3σ + t0a
+
2σ a3σ + H.c.], (3)

where ajσ annihilates the electron with spin σ and energy
ξjσ = εjσ − μ on the j th QD; ti , i = 0,1,2 is a hopping
matrix element between the QDs; U is the intensity of the
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intradot Coulomb interaction; V is the intensity of the interdot
Coulomb interaction between the electrons in the central
part (the 2nd and 3rd QDs). It is worth noting that such a
specific type of the QQD structure with only one interdot
Coulomb interaction can be experimentally received by using
the conducting back gates near the peripheral QDs (1- and
4QDs) which would screen their charges [44].

The interaction between the leads and the QQD structure is
determined by the last summand in (1),

ĤT = tL
∑
kσ

c+
Lkσ a1σ + tR

∑
kσ

c+
Rkσ a4σ + H.c., (4)

where tL(R) is a hopping matrix element between the left (right)
lead and the 1st (4th) QD. Since the bias voltage is treated
exactly it is convenient to perform a unitary transformation,
Û = exp{ ieV t

2

∑
kσ (nRkσ − nLkσ )} [45], to insert it into the

tunnel Hamiltonian,

ĤT = TL(t)
∑
kσ

c+
Lkσ a1σ + TR(t)

∑
kσ

c+
Rkσ a4σ + H.c., (5)

where TL(R)(t) = tL(R)e
∓ ieV

2 t .

III. CURRENT AND NONEQUILIBRIUM GREEN’S
FUNCTIONS IN THE TIGHT-BINDING APPROACH

To analyze transport properties of the system we utilize the
nonequilibrium Green’s function method in the tight-binding
approximation [46–48]. Let us rewrite the Hamiltonian (1) in
terms of the operators ψ̂L(R)k and ψ̂D:

ψ̂L(R)k = (cL(R)k↑cL(R)k↓)T ,ψ̂D = (a1↑a1↓ . . . a4↑a4↓)T .

Then

ĤL(R) =
∑

k

ψ̂+
L(R)kξ̂kψ̂L(R)k,ĤD = ψ̂+

D ĥDψ̂D, (6)

ĤT = TL(t)
∑

k

ψ̂+
LkP̂1ψ̂D + TR(t)

∑
k

ψ̂+
RkP̂4ψ̂D + H.c.,

(7)

where

ĥD =

⎛
⎜⎜⎝

ξ̂1 t̂1 t̂2 0̂
t̂1 ξ̂2 t̂0 t̂1
t̂2 t̂0 ξ̂3 t̂2
0̂ t̂1 t̂2 ξ̂4

⎞
⎟⎟⎠, (8)

t̂i = diag(ti),̂ξl = diag(ξl↑,ξl↓),l = k,1, . . . ,4. (9)

The operators P̂1 = (Î 0̂) and P̂4 = (̂0Î ) project matrices on
the subspace related to the 1st and 4th QD, respectively. They
consist of the 2 × 2 unitary matrix, Î , and the zero block, 0̂.

An electrical current operator in the left lead is determined
by the corresponding charge change per time unit, ÎL = eṄL,
where NL = ∑

kσ c+
Lkσ cLkσ is the carrier number operator in

the left lead. Using the equation of motion for Heisenberg
operators 〈ÎL〉 becomes

〈ÎL〉 ≡ IL = ie
∑

k

〈T +
L ψ̂+

DP̂ +
1 ψ̂Lk − TLψ̂+

LkP̂1ψ̂D〉. (10)

Let us introduce the nonequilibrium matrix Green’s functions
as

Ĝab
nm(τ,τ ′) = −i〈T̂Cψ̂n(τ ) ⊗ ψ̂+

m (τ ′)〉,n,m = k,D. (11)

Their time evolution is considered on the Keldysh contour, C.
The indexes a,b = +,− denote the branches of the Keldysh
contour, C+ and C−. Then the current is expressed as

IL = 2e
∑

k

Tr[Re{T +
L (t)Ĝ+−

Lk,1(t,t)}], (12)

where Ĝ+−
Lk,1(t,t) = −i〈T̂Cψ̂Lk(t) ⊗ [P̂1ψ̂D(t)]+SC〉0 is a

mixed lesser Green’s function. In the last definition the
averaging is made over the states of the system without
interaction (7). As a result the scattering matrix, SC =
T̂C exp{−i

∫
C

dτĤT (τ )}, appears. Since the Hamiltonian of
the device, ĤD , is formally the free-particle one, the rules
for the second quantization operators can be utilized at the
diagrammatic expansion of Ĝ+−

Lk,1(t,t). Hence the current is
written as

IL = 2e

∫
C

dτ1Tr
[
Re

{
�̂+a

L (t − τ1)P̂1Ĝ
a−
D (τ1 − t)P̂ +

1

}]
,

(13)

where �̂ab
L (τ − τ ′) = T +

L (τ )̂gab
Lk(τ − τ ′)TL(τ ′) is the self-

energy function characterizing the influence of the left lead
on the structure; ĝab

Lk(τ − τ ′) is the one-electron Green’s
function of the left lead. Taking into account the relations
Ĝ−−

nm = Ĝ+−
nm − Ĝa

nm, �̂++
L = �̂r

L + �̂+−
L (the indexes r and a

mean “retarded” and “advanced” correspondingly) and using
the Fourier transform, we obtain

IL = 2e

∫ +∞

−∞

dω

2π
Tr

[
Re

{
�̂r

LP̂1Ĝ
+−
D P̂ +

1 + �̂+−
L P̂1Ĝ

a
DP̂ +

1

}]
.

(14)

The Dyson and Keldysh equations for the full retarded and
lesser Green’s functions of the structure are

Ĝr
D = (

(ω + iδ)Î − ĥD − P̂ +
1 �̂r

LP̂1 − P̂ +
4 �̂r

RP̂4
)−1

,

Ĝ+−
D = Ĝr (P̂ +

1 �̂+−
L P̂1 + P̂ +

4 �̂+−
R P̂4)Ĝa, (15)

Ĝa
D = (

Ĝr
D

)+
.

The retarded and lesser self-energy functions are given by

�̂r
L(R) = − i

2
diag(�L(R)↑,�L(R)↓),

(16)

�̂+−
L(R) = if

(
ω ± eV

2

)
diag(�L(R)↑,�L(R)↓),

where �L(R)σ (ω) = πt2
L(R)ρL(R)σ (ω) is the coupling strength

between the structure and the left (right) lead characterized
by its density of states ρL(R)σ (ω) = ∑

k δ(ω − ξkσ ); f (ω ±
eV
2 ) is the Fermi distribution function. In this study the

leads are paramagnetic metals and treated in the wideband
limit, i.e., �L(R)σ = constant. After substituting (16) into (14)
and using the relation i(Ĝr

D − Ĝa
D) = Ĝr

D(�LP̂ +
1 P̂1 +

�RP̂ +
4 P̂4)Ĝa

D [48] the final general expression describing
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the current can be written as follows:

IL = e

∫ +∞

−∞

dω

2π
Tr[T̂ (ω)][f (ω − eV/2) − f (ω + eV/2)],

(17)

where T̂ (ω) = �L�RĜr
14(Ĝr

14)+ is the matrix transmission
coefficient; Ĝr

14 = P̂1Ĝ
r
DP̂ +

4 . Note that an expression similar
to (17) for current proportional to an effective transmission
coefficient can be obtained for multilevel structures by exact
diagonalization in the atomic representation [49,50].

In further numerical calculations the system will be con-
sidered at low temperatures. Moreover, in this study we will
be interested in the behavior of the differential conductance,
G = dIL/dV , as a function of the gate voltage, εD (hereinafter
we suppose that εjσ = εD), at low bias (the so-called linear
regime). Consequently, expanding f (ω ± eV/2) into the
Taylor series and taking into account −df (ω)/dω ≈ δ(ω) we
get the Landauer-Buttiker formula

G = G0Tr[T̂ (εD,ω = 0)], (18)

where G0 = e2/h is the conductance quantum. The total
density of states (TDOS) is given by

ρ = i

2π
Tr

[
Gr

D − Ga
D

]
. (19)

IV. THE RETARDED GREEN’S FUNCTION OF THE QQD
STRUCTURE WITH THE COULOMB INTERACTIONS

In this section we describe the effects of Coulomb in-
teractions on the transport properties of the QQD structure.
In order to achieve this we employ the equation-of-motion
technique for the retarded Green’s functions, Gr

iσjσ ′(ω) =
〈〈aiσ |a+

jσ ′ 〉〉, which are the Fourier transform of Gr
iσjσ ′ (t,t ′) =

−i�(t − t ′)〈{aiσ (t),a+
jσ ′ (t ′)}〉. The equation for Gr

iσjσ ′(ω) is

z〈〈aiσ |a+
jσ ′ 〉〉 = 〈{aiσ ,a+

jσ ′ }〉 + 〈〈[aiσ ,Ĥ ]|a+
jσ ′ 〉〉, (20)

where z = ω + iδ and Ĥ has the form (1). Since the 2nd and
3rd QDs are identical in the considered system we denote them
by the indexes α and α. The indexes of the 1st and 4th QDs
are β and β for the same reason. As a result the equation for
〈〈aασ |a+

ασ 〉〉, 〈〈aβσ |a+
ασ 〉〉, and 〈〈cL(R)kσ |a+

ασ 〉〉 are

(z − ξα)〈〈aασ |a+
ασ 〉〉

= 1 + U 〈〈nασ aασ |a+
ασ 〉〉 + V (〈〈nασ aασ |a+

ασ 〉〉
+ 〈〈nασ aασ |a+

ασ 〉〉) + t0〈〈aασ |a+
ασ 〉〉 + t(α)(〈〈aβσ |a+

ασ 〉〉
+ 〈〈aβσ |a+

ασ 〉〉),(z − ξβ)〈〈aβσ |a+
ασ 〉〉

= U 〈〈nβσ aβσ |a+
ασ 〉〉 + t(α)〈〈aασ |a+

ασ 〉〉
+ t(α)〈〈aασ |a+

ασ 〉〉 + t(β)
∑

k

〈〈cL(R)kσ |a+
ασ 〉〉,

(z − ξkσ )〈〈cL(R)kσ |a+
ασ 〉〉 = t(β)〈〈aβσ |a+

ασ 〉〉, (21)

where t(α = 2) ≡ t1, t(α = 3) ≡ t2, t(β = 1) ≡ tL,
t(β = 4) ≡ tR . In the above equations, besides the
first-order Green’s functions, which we are interested
in, the second-order Green’s functions 〈〈nασ aασ |a+

ασ 〉〉,

〈〈nασ aασ |a+
ασ 〉〉, 〈〈nασ aασ |a+

ασ 〉〉, 〈〈nβσ aβσ |a+
ασ 〉〉 appear. The

equations for them generate third-order Green’s functions,
and so on. To receive the closed set of equations the
decoupling scheme of You and Zheng [42,43,51] is used. This
approximation is valid for temperatures higher than the Kondo
temperature [52]. In this truncation procedure the intra- and
interdot Coulomb correlations are taken into account beyond
the Hartree-Fock approximation while spin-flip processes are
neglected.

Solving the final system (A1), presented in the Appendix,
and using the notations of [51], we get in the non-magnetic
case, 〈niσ 〉 = 〈niσ 〉, 〈a+

iσ ajσ 〉 = 〈a+
iσ ajσ 〉, the following ex-

pressions for the matrix elements of Ĝr
D ,

Gr
αα = Cα

(
DαDβ − 2t2(α)CαCβ + i

2�CβDα

)
X1 − 2X2 + iY

,

Gr
αα = CαCα

(
t0Dβ + 2t(α)t(α)Cβ + i

2�t0Cβ

)
X1 − 2X2 + iY

,

Gr
αβ = CαCβ(t(α)Dα + t0t(α)Cα)

X1 − 2X2 + iY
, (22)

Gr
ββ = Cβ(X1 − X2 + iY )(

Dβ + i
2�Cβ

)
(X1 − 2X2 + iY )

,

Gr

ββ
= CβX2(

Dβ + i
2�Cβ

)
(X1 − 2X2 + iY )

,

where

Dα = bα1bα2bασ3bασ4,Dβ = bβ1bβ2,

Cβ = bβ2 + U 〈nβσ 〉,Cα = Cα1 + Cα2,

Cα1 = bασ4(bα2bασ3 + Ubασ3〈nασ 〉 + 2V bα2〈nασ 〉),
Cα2 = UV (bα2 + bασ3)(2〈nασ 〉〈nασ 〉 − 〈a+

ασ aασ 〉2), (23)

X1 = Dβ

(
DαDα − t2

0 CαCα

)
,

X2 = Cβ[t2(α)CαDα + t2(α)CαDα + 2t0t(α)t(α)CαCα],

Y = 1
2�Cβ

(
DαDα − t2

0 CαCα

)
.

The occupation numbers and correlators are found self-
consistently using the kinetic equations in equilibrium:

〈niσ 〉 = − 1

π

∫
dωf (ω)Im

[
Gr

ii(ω)
]
,

〈a+
iσ ajσ 〉 = − 1

π

∫
dωf (ω)Im

[
Gr

ji(ω)
]
,i,j = α,β. (24)

For the sake of simplicity we will analyze a symmetrical
transport situation and use �L = �R = t in energy units. In
this article we consider the strong-coupling regime, t = t1.

V. TRANSPORT PROPERTIES OF THE QQD DEVICE
WITHOUT THE COULOMB INTERACTIONS

A. Isotropic QQD

We start the analysis with the case when the couplings
between the left (right) QD and both QDs in the middle part
are the same, t1 = t2 = 1 [53], and the temperature is close to
zero, kBT = 10−6t .
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FIG. 2. The conductance and TDOS of the isotropic QQD: (a) t0 = � = 0; (b) t0 = 1,� = 0; (c) t0 = 0,� = 1; (d) t0 = 1,� = 1.

The simplest transport situation occurs if all levels have
the same energy, ξ1σ = ξ2σ = ξ3σ = ξ4σ = εD , and t0 = 0.
The function G(εD) is depicted in Fig. 2(a). The triple-peak
structure (TPS) of the conductance can be easily understood
since the system can be treated as the one consisting of
two arms each composed of three coupled QDs. The corre-
sponding TDOS has maxima at the same positions of εD .
Additionally, the bound state in continuum (BIC) appears
at εD = 0 [54,55]—the sharp peak with nearly zero width
due to the iδ term in Ĝr

D (15). The position of the BIC
depends on t0. In particular it shifts toward higher energies
when t0 increases [see TDOS in Fig. 2(b)]. Simultaneously
the conductance spectrum does not contain corresponding
features that are exactly the BIC’s properties. In contrast to [53]
we show that there is more than one way to make a finite
lifetime of this state for such a system. The first of these
is to realize two nonequivalent transport channels by means
of the energy shift �, ξ2(3)σ = εD ± � [53]. As a result the
destructive interference of the electronic waves propagating
along these two paths gives rise to the Fano antiresonance [39]
in the conductance spectrum and the resonance with finite
width in the TDOS at εD = 0 [see Fig. 2(c)]. If t0 
= 0 the Fano
antiresonance transforms to the Fano-Feshbach asymmetrical
peak in the conductance spectrum in Fig. 2(d).

B. Anisotropic QQD

Let us consider the transport regime where the couplings
between the QDs, t1,t2,t0, are different and t1 � t2,t0. Such
an anisotropy is more convenient for real systems and the

inequality between parameters can be even enhanced by the
EPE. When t0 = � = 0 the conductance behaves similarly to
the isotropic case [compare Figs. 2(a) and 3(a)]. This can be
explained by the fact that changing the t2 implies variation
of the heights of the corresponding tunnel barriers only and
does not affect the phase of the wave propagating along the
bottom path. Thus, the interference of the waves passing in
the two arms of the QQD structure leads to the conductance
which differs from the isotropic one only quantitatively. If
t0 
= 0 numerical calculations show that the anisotropy is the
new mechanism leading to the Fano-Feshbach resonance along
with the above-described one [53]. The simple explanation of
this effect is based on the interpretation of the 2nd and 3rd
QDs as an artificial molecule, a dimer [56,57]. The dimer
has bonding and antibonding eigenstates which in general
couple to other part of the system unequally. Then a more
broadened level is treated as a continuum or nonresonant
channel whereas a less broadened level plays the role of
a discrete level or resonant channel in the original Fano
picture [39]. The phase of the wave function in the nonresonant
channel changes slightly as the energy passes an interval ∼�,
where � is the broadening of the discrete level. However,
the phase in the resonant channel shifts by ∼π at the same
energy interval. Consequently, the Fano-Feshbach resonant
asymmetrical peak appears as a result of constructive and
destructive interference at this energy range around the discrete
level. Following [56] in the case of � = 0, the coupling with
one of the molecular states is absent without the anisotropy,
t1 = t2, and there is no Fano-Feshbach effect [see Fig. 2(b)].
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FIG. 3. The conductance and TDOS of the anisotropic QQD, t2 = 0.1: (a) t0 = � = 0; (b) t0 = 0.2,� = 0; (c) t0 = 0,� = ±1;
(d) t0 = 0.2,� = ±1; (e) t0 = 0,� = ±0.2; (f) t0 = 0.2,� = ±0.2.

In the opposite case the anisotropy induces the corresponding
antiresonance as depicted in Fig. 3(b). If � 
= 0 the coupling
with both bonding and antibonding states does not equal zero
even though t1 = t2 and the Fano-Feshbach resonance occurs
[see Figs. 2(c), 2(d)] [57]. The anisotropy in this case leads
to the change of the shape and width of the resonance and
its dependence on the sign of � [see solid and dashed curves
in Figs. 3(c)–3(f) for � = ±1, respectively]. Specifically, the
significant difference is observed in Fig. 3(d) where the wide
resonance corresponds to ξ2σ < ξ3σ and the very narrow one
to ξ2σ > ξ3σ . The symmetry of the Fano-Feshbach resonance
position is broken if t0 
= 0.

C. Temperature effects

If the temperature is comparable with the spacing between
energy levels of the structure, i.e., kBT ∼ �,t2,t0, the conduc-

tance can be calculated as

G = −G0

∫ +∞

−∞
dωTr[T̂ (ω)]

∂f

∂ω
. (25)

The temperature influence on the conductance is depicted in
Fig. 4. If kBT � �,t2,t0, the smearing of the conductance, for
example, the Fano-Feshbach asymmetrical peak, is not strong
(kBT = 0.01, dotted line). The dependence gradually becomes
the Lorentzian-like curve with increasing kBT .

VI. THE EFFECTS OF THE COULOMB INTERACTIONS

A. Isotropic QQD

The effect of the intradot, U , and interdot, V , Coulomb
interactions on the conductance spectrum is displayed in detail
in Figs. 5(a) and 5(b), respectively. The strong Coulomb
repulsion of the electrons with different spin projections in
each QD gives rise to the splitting of the TPS [dotted line in
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FIG. 4. The temperature effects on the conductance of the
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Fig. 5(a)] and the appearance of the well-defined insulating
band between two TPSs where G is close to zero [dash-dotted
line in Fig. 5(a)]. It is clearly seen that the band forms without
making the energy difference, �, which is influenced by
external gate fields, and requires lesser quantity of QDs in
comparison with [20,58]. Taking into account the interdot
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FIG. 5. The influence of the Coulomb interactions in the QQD
on the conductance: (a) the effect of the intradot interactions, U ;
(b) the effect of the interdot interaction, V ; kBT = 0.01.

Coulomb interaction of the electrons in the middle part results
in the splitting of the central peak in both TPSs as depicted in
Fig. 5(b) by the example of the left TPS. It is worth noticing
that the increase of V gives rise to the Fano antiresonance
and the appearance of the sufficiently wide band with low
conductance (G ∼ 0.1 at εD = −7 to −5.5).

The TPS splitting effect is not symmetrical. The modifica-
tion of the left and right TPSs is different for V 
= 0 [solid line
in Fig. 6(a)]. The right TPS splitting leads to the broadening of
the insulating band due to significant suppression of the first
peak. If U,V 
= 0 and the carrier hopping between the 2nd
and 3rd QDs is activated, the widths of the low-conductance
band and insulating band become even larger as depicted
in Fig. 6(b). As has already been discussed above, the
nonzero energy shift � induces the Fano antiresonance or the
asymmetrical peak in the central part of the TPS [dotted line
in Fig. 6(c)]. This antiresonance is doubled for U 
= 0,V = 0
(dash-dotted line) and the low-conductance bands in both TPSs
appear without the interdot Coulomb correlations (the regions
εD = −8 to −6.5 and εD = 0.5 to 1.5). Finally, V 
= 0 results
in two additional antiresonances (solid line) by analogy with
the case � = 0. As a prominent result in the right TPS the
antiresonance, G � 0, without the correlations (dotted line)
is replaced by the resonance around εD = 0, G � 1, with the
correlations (solid line). If t0,� = 1 one more antiresonance
appears at the left TPS and the one disappears at the right TPS
[solid line in Fig. 6(d)].

The described behavior of the conductance is determined
by the corresponding features of the occupation numbers. It
can be easily illustrated in the simplest regime, t0 = � = 0.
In the absence of all the Coulomb interactions the gate voltage
dependencies of the side, n1,4σ , and the central, n2,3σ , QD
occupations have three steps at the same positions as the
resonances in the TPS [see dashed and solid lines in Fig. 7(a)].
If the intradot correlations are taken into account this staircase
obtains three more steps at a distance U [Fig. 7(b)]. The
interdot Coulomb interaction leads to the splitting of each
central step of n2,3σ around εD = −5,0 [Fig. 7(c)] [42].
Importantly, the extensive areas where the occupations do
not change correspond to the insulating and low-conductance
bands in Figs. 5 and 6(a). In particular, the insulating band
appears at the half-filling region. Lastly, the weak influence
of the Coulomb correlations on the conductance at the high
gate fields (εD � 1) is explained by the low occupation of the
QQD’s levels.

Since this work deals with the quantum transport in the
strong-coupling regime it is important to discuss briefly possi-
ble manifestation of the Kondo effect. The rough estimation of
the Kondo temperature, TK , using the one for single quantum
dot [52] gives comparable values with kBT and even higher
values of TK . At the same time, we suppose � = t1 and the
consistent consideration of spin correlations in the system
should include antiferromagnetic interactions, J ∼ t2

1 /U or
J ∼ t2

1 /�, between the electrons in the QQD structure. This
problem has been well known for a long time, since Doniach’s
work [59]. In mesoscopics as was already shown for a double
quantum dot such a competition can completely suppress the
Kondo resonance at half filling [60]. The question of the
interplay between these two regimes is beyond the scope of
this work and seems to be very intriguing for future analysis.
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FIG. 6. The conductance of the isotropic QQD, kBT = 0.01: (a) t0 = � = 0; (b) t0 = 1,� = 0; (c) t0 = 0,� = 1; (d) t0 = 1,� = 1.
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B. Anisotropic QQD

When the anisotropy of the hopping integrals takes place
the effect of the interdot tunneling in the central part on the
conductance is not strong in comparison with the isotropic
situation: the low-conductance band at the left TPS in Fig. 8(b)
becomes narrower. The influence of the Coulomb correlations
results in the same features. However, the combination of the
Coulomb interactions with the energy shift � can dramatically
change the conductance [compare dash-dotted and solid lines
in Figs. 8(c), 8(d)]. We can clearly see that the big insulating
band occurs with a small conductance peak emerging in the
middle as a result of the significant suppression of the left TPS.
It can be qualitatively attributed to the higher occupation of
the 3QD (� > 0) and weaker kinetic processes in the bottom
arm (1QD-3QD-4QD) leading to the enhancement of the Fano
destructive interference due to V . At the same time, before
the half filling the right TPS is less modified in consequence
of the low total occupation of the QQD structure at high
fields. Thus the EPE, which is expected in the system with the
heavy and light carriers due to the strong interdot Coulomb
interaction V and/or the hybridization between them t0, and
gate fields can considerably modify the conductance by the
significant suppression of the TPS. Note that for all the values
of � satisfying the inequality 2t1 > � the overlap between
the effective heavy and light bands remains and we are in the
situation suitable for the EPE [25].

VII. CONCLUSION

We have considered the spectral and transport properties
of the QQD structure at low temperatures, low bias, and the

strong-coupling regime. The treatment of the problem was
based on the nonequilibrium Green’s functions and the tight-
binding approximation. It is found that there is more than
one way to observe the Fano effect in the system. The first
of these has already been mentioned and consists of making
two nonequivalent paths for electron waves by the energy shift
� [53]. Additionally we showed that the anisotropy of the
kinetic processes in the system, t1 
= t2, leads to the Fano-
Feshbach asymmetrical peak for t0 
= 0 even though � = 0.
The effect is explained in terms of resonant interaction between
the bonding and antibonding states in the system. This scenario
of the Fano effect seems to be more attractive for experimental
observation since it does not need a gate field. The anisotropy
results in the dependence of the shape and width of the Fano-
Feshbach resonance on the sign of � as well. In our system
the anisotropy models the joint effect of both adjustable tunnel
barriers and the EPE-like physics. The last can be induced by
the strong interdot Coulomb interaction V of the heavy and
light carriers and/or their hybridization t0.

The problem of the influence of the Coulomb correlations
on quantum transport in the QQD device was solved using
the equation-of-motion technique for the retarded Green’s
functions. We applied the decoupling scheme of You and
Zheng [42,43] which allows us to take into account the intra-
and interdot Coulomb correlations beyond the Hartree-Fock
approximation in nonmagnetic case. We demonstrated that
the QQD structure has a wide region of zero conductance with
steep edges separating two TPSs if the intradot Coulomb inter-
actions in each dot are allowed. This effect has been considered
earlier for more sophisticated QD-based devices [20,58]. The
interdot Coulomb correlations between the central QDs results
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in the broadening of this band and the occurrence of the
band with low conductance in the left TPS due to the Fano
antiresonances. When the hopping between the central QDs is
also permitted the bands become even wider. Furthermore, the
conductance of the anisotropic QQD device can be remarkably
modified by changing � if the interdot Coulomb repulsion is
taken into account.
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APPENDIX

In this appendix, the final system of equations for the
retarded Green’s functions of the QQD structure with the
Coulomb correlations is presented,

〈〈aασ |a+
ασ 〉〉 = (gασ − Kασ )(1 + t0〈〈aασ |a+

ασ 〉〉
+ t(α)[〈〈aβσ |a+

ασ 〉〉 + 〈〈aβσ |a+
ασ 〉〉]),

〈〈aβσ |a+
ασ 〉〉 = g

(0)
βσ

1 − �βg
(0)
βσ

[t(α)〈〈aασ |a+
ασ 〉〉

+ t(α)〈〈aασ |a+
ασ 〉〉], (A1)

where

Kασ = UV 〈a+
ασ aασ 〉2

bα1bασ4

(
1

bα2
+ 1

bασ3

)
,

gασ = g(0)
ασ + V

bα1

[
g(1)

ασ + g(2)
ασ + U

bα2
g(3)

ασ

]
,

g(0)
ασ = 1 − 〈nασ 〉

bα1
+ 〈nασ 〉

bα2
,

g(1)
ασ = (1 − 〈nασ 〉)〈nασ 〉

bασ3
+ 〈nασ 〉〈nασ 〉

bασ4
,

g(2)
ασ = (1 − 〈nασ 〉)〈nασ 〉

bασ3
+ 〈nασ 〉〈nασ 〉

bασ4
, (A2)

g(3)
ασ = 〈nασ 〉〈nασ 〉

bασ4
+ 〈nασ 〉〈nασ 〉

bασ4
,

g
(0)
βσ = g

(0)
α→β,σ ,�β = −i

t

2
,

bα1 = z − ξα,bα2 = bα1 − U,

bασ3 = bα1 − V (1 + 〈nασ 〉),bασ4 = bασ3 − U.
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