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Intraband memory function and memory-function conductivity formula in doped graphene
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The generalized self-consistent field method is used to describe intraband relaxation processes in a general
multiband electronic system with presumably weak residual electron-electron interactions. The resulting memory-
function conductivity formula is shown to have the same structure as the result of a more accurate approach based
on the quantum kinetic equation. The results are applied to heavily doped and lightly doped graphene. It is shown
that the scattering of conduction electron by phonons leads to the redistribution of the intraband conductivity
spectral weight over a wide frequency range, however, in a way consistent with the partial transverse conductivity
sum rule. The present form of the intraband memory function is found to describe correctly the scattering by
quantum fluctuations of the lattice, at variance with the semiclassical Boltzmann transport equations, where this
scattering channel is absent. This is shown to be of fundamental importance in quantitative understanding of the
reflectivity data measured in lightly doped graphene as well as in different low-dimensional strongly correlated
electronic systems, such as the cuprate superconductors.
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I. INTRODUCTION

In condensed matter physics, important information can
be obtained about interactions in the electronic subsystem by
analyzing relaxation processes associated with the scattering
of conduction electrons by static disorder, by phonons, and
by other electrons. One of the central questions regarding the
relaxation processes is to explain temperature and retardation
effects in simple physical terms by using simple enough
self-consistent kinetic equations. The memory function is
the common name for the k- and ω-dependent relaxation
function in such self-consistent kinetic equations [1–7]. The
relaxation rate is its imaginary part at zero frequency. The
memory function is usually introduced to describe intraband
relaxation processes in the dynamical conductivity tensor, in
the Raman response functions, as well as in different transport
coefficients. It is well known that even in weakly interacting
systems the explanation of experimental observations requires
a unified diagrammatic representation for the so-called
self-energy contributions to the response function in question
and the related vertex corrections [6,8,9]. Moreover, it is easily
seen that the more complicated the electronic system is, the
longer is the list of requirements that the response functions
and the relaxation functions in question must satisfy. The
causality principle, the law of conservation of energy, and the
charge continuity equation are all of fundamental importance
in understanding the relaxation processes. Consequently,
they play an important role in analyzing measured transport
coefficients and measured reflectivity and Raman scattering
spectra by means of such self-consistent kinetic equations.

The stosszahl ansatz in Boltzmann transport equations
represents the simplest way to explain qualitatively the temper-
ature dependence of the intraband relaxation rate [1,10–12].
The part of the relaxation rate associated with the scattering
by phonons is proportional to the Bose-Einstain distribution
function and the 1/2 term associated with corresponding
quantum fluctuations of the lattice is missing. As a result,
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the Boltzmann transport equations have serious deficiencies in
describing the retardation effects, in particular those associated
with the scattering by optical phonons and by other high-
energy boson modes.

The generalized Drude formula is the primary tool for
investigating retardation effects. It is usually assumed to be a
model independent method of analyzing measured reflectivity
and Raman scattering spectra in terms of the ω-dependent
memory function Mα(ω) [13–18]. However, in most cases of
general interest the extraction of Mα(ω) from experimental
data depends on details in the boson mediated electron-electron
interactions, on general properties of the crystal potential,
as well as on the very nature of the local field effects.
Consequently, such an analysis is usually incomplete and often
inadequate. Therefore, to study the interband conductivity, or
the excitations across the charge-density-wave (CDW), spin-
density-wave (SDW), or superconducting Bardeen-Cooper-
Schrieffer (BCS) gap or pseudogap, we need general enough
self-consistent kinetic equations and much more sophisticated
procedures for solving these equations than that usually used
to derive the generalized Drude formula.

Lightly doped graphene is an important weakly interacting
two-band system in which the threshold energy for interband
electron-hole excitations is of the order of optical phonon ener-
gies, the optical phonon energies are quite large, and the intra-
band and interband contributions to the dynamical conductiv-
ity tensor are expected to be decoupled from each other [19,20].
The structure of the dynamical conductivity is similar to that of
typical CDW/SDW pseudogaped systems, and, consequently,
lightly doped graphene is a convenient model system for reex-
amining different open questions regarding electrodynamics
of conduction electrons in such multiband electronic systems.

In this paper we use the generalized self-consistent field
method [usually called the generalized random-phase approx-
imation (RPA)] to derive the memory-function conductivity
formula for the intraband conductivity and to determine the
structure of the intraband memory function in heavily doped
and lightly doped graphene. The results are compared to
both the results of the common variational method for the
dc conductivity [10] and to the results of a more accurate
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approach based on the quantum kinetic equation [6,21]. It is
shown that the scattering by phonons leads to the redistribution
of the conductivity spectral weight over a wide energy range in
a way consistent with the partial transverse conductivity sum
rule. The intraband memory function has the same structure as
that obtained by means of the quantum kinetic equation.

The paper is organized as follows. In Sec. II we briefly
describe all elements in the total Hamiltonian for conduction
electrons in a general multiband case. To make the reading of
the paper easier, we give in Secs. III and IV an overview of both
the macroscopic identity relations among the exact elements
of the real-time RPA irreducible 4 × 4 response tensor and the
microscopic version of the same identity relations. The partial
effective mass theorem and the related transverse conductivity
sum rule are shown to play an essential role in determining the
proper structure of the memory-function conductivity formula.
This transverse conductivity sum rule can also be useful in
reexamining gauge invariance of the conductivity formula
obtained by means of the common current-current approach
[22–24] or by different charge-charge approaches [25,26]. In
Secs. IV and V we discuss general properties of the generalized
self-consistent RPA equations and the quantum transport
equations. These two equations are used in Sec. VI to derive
the intraband memory-function conductivity formula and the
leading contributions to the intraband memory function. The
relation between the memory-function conductivity formula
and the generalized Drude conductivity formula is briefly
discussed in Sec. VII. In Sec. VIII, the numerical results
for the real and imaginary parts of the intraband memory
function are presented for heavily doped graphene for typical
values of the model parameters. In Sec. IX we consider
the two-band conductivity in lightly doped graphene. In this
section the emphasis is on the appropriate parametrization
of the low-energy intraband conductivity tensor and on the
connection between the effective generalized Drude formula
obtained in this way and the aforementioned partial transverse
conductivity sum rule. Section X contains concluding remarks.

II. MODEL HAMILTONIAN

In electronic systems with multiple bands in the vicinity
of the Fermi level, conduction electrons are described by the
Hamiltonian [6]

H = H el
0 + H

ph
0 + H ′

1a + H ′
1b + H ′

2 + H ext. (1)

The bare electronic contribution

H el
0 =

∑
Lkσ

[
ε0
L(k) + μ

]
c
†
Lkσ cLkσ (2)

represents noninteracting electrons in such a multiband case.
Here ε0

L(k) is the bare electron dispersion measured with
respect to the chemical potential μ in the band labeled by
the band index L. H

ph
0 is the bare phonon Hamiltonian

H
ph
0 =

∑
λq′

1

2Mλ

[p†
λq′pλq′ + (Mλωλq′)2u

†
λq′uλq′] (3)

given in terms of the phonon field uλq′ , and the conjugate field
pλq′ , ωλq′ is the bare phonon frequency, λ is the phonon branch
index, and Mλ is the corresponding effective ion mass.

The electron-phonon coupling Hamiltonian can be shown
in the following way:

H ′
1a =

∑
λLL′

∑
kq′σ

GL′L
λ (k+, k)√

N
(bλq′ + b

†
λ−q′ )c

†
L′k+q′σ cLkσ , (4)

where uλq′ = √
(�/2Mλωλq′)(bλq′ + b

†
λ−q′) and k+ = k + q′.

This expression includes the scattering by acoustic and optical
phonons. On the other hand, the scattering by static disorder
is given by

H ′
1b =

∑
LL′

∑
kq′σ

V L′L(k+, k)c†L′k+q′σ cLkσ . (5)

Finally, the electron-electron interaction Hamiltonian

H ′
2 = 1

2V

∑
LL′L1L

′
1

∑
kk′q

∑
σσ ′

ϕ
L′L1L

′
1L

σσ ′ (q)

× c
†
L′k+qσ c

†
L1k′σ ′cL′

1k′+qσ ′cLkσ (6)

describes all nonretarded electron-electron interactions.
The coupling between conduction electrons and external

electromagnetic fields is obtained by the gauge-invariant tight-
binding minimal substitution [21,27–30]. The result is H ext =
H ext

1 + H ext
2 , where

H ext
1 =

∑
q

V ext(q)ρ̂(−q) − 1

c

∑
qα

Aext
α (q)Ĵα(−q),

(7)

H ext
2 = e2

2mc2

∑
qq′αβ

Aext
α (q − q′)Aext

β (q′)γ̂αβ(−q; 2)

(α,β = x,y,z in a general three-dimensional case). Here
V ext(q, ω) and Aext(q, ω) are, respectively, the Fourier trans-
forms of the external scalar and vector potentials, while the
corresponding screened potentials are labeled by V tot(r,t) and
Atot(r,t). The total charge density operator in the coupling
Hamiltonian (7) is

ρ̂(q) ≡ Ĵ0(q) =
∑
LL′

∑
kσ

eqLL′
(k,k+)c†Lkσ cL′k+qσ . (8)

The structures of the corresponding current density operator
Ĵα(q) and the bare diamagnetic density operator γ̂αβ(q; 2)
are similar. Finally, eqLL′

(k,k+) ≡ JLL′
0 (k,k+), JLL′

α (k,k+)
and γ LL′

αβ (k, k+; 2) are the bare vertex functions in question.
Hereafter, the dispersions ε0

L(k) and all these vertex functions
are taken as known functions (for doped graphene see, for
example, Ref. [21]).

III. KUBO FORMULA FOR CONDUCTIVITY TENSOR

Electrodynamic properties of multiband electronic systems
are naturally described in terms of the screened dynamical
conductivity tensor

σ̃αβ(q, ω) = β

∫ ∞

0
dt eiωt 1

V
〈Ĵβ(−q,0); Ĵα(q,t)〉. (9)

This relation is known as the Kubo formula for conductiv-
ity [1]. The conductivity tensor σαβ(q, ω) is simply the RPA
irreducible part of σ̃αβ(q, ω). In those multiband electronic
systems in which Lorentz local field effects are absent (the
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two-band model for π electrons in graphene from Sec. VIII
being an example), the result is

σαβ(q, ω) = β

∫ ∞

0
dt eiωt 1

V
〈Ĵβ (−q,0); Ĵα(q,t)〉irred. (10)

This form of σαβ(q, ω) holds in the single-band case as well,
because there are no local field effects in this case.

One usually uses the definition relation (10) and the two
basic relations from macroscopic electrodynamics,

E(r,t) = −∂V tot(r,t)
∂r

− 1

c

∂Atot(r,t)
∂t

, (11)

∇ · J(r,t) + ∂ρ(r,t)
∂t

= 0, (12)

to show σαβ(q, ω) in terms of the elements of the real-time
RPA irreducible 4 × 4 response tensor

V πμν(q,t) = − i

�
θ (t)〈[Ĵμ(q,t),Ĵν(−q, 0)]〉irred (13)

(μ,ν = 0,x,y in graphene, and μ,ν = 0,x,y,z in a general
three-dimensional case) and the real-time current-dipole corre-
lation function παβ̃(q,t), rather than in terms of the correlation
functions 〈Ĵβ(−q,0); Ĵα(q,t)〉irred. The result is [1,5]

π00(q, ω) = 1

ω

∑
β

π0β(q, ω)qβ = 1

iω

∑
αβ

qασαβ(q, ω)qβ,

(14)

iπα0(q, ω) = i

ω

∑
β

[παβ(q, ω) − παβ(q)]qβ

=
∑

β

σαβ(q, ω)qβ, (15)

σαβ(q, ω) = παβ̃(q, ω). (16)

Here we have introduced the notation Ĵα̃(q) = −P̂α(q), where
P̂α(q) is the dipole density operator and P LL′

α (k,k+) is the
corresponding dipole vertex function [21]. Equation (14), for
example, shows that the conductivity tensor σαβ(q, ω), divided
by iω, is nothing but the second-order coefficient in the Taylor
expansion of the charge-charge correlation function π00(q, ω)
with respect to qα .

In the simplest case with longitudinal electromag-
netic fields, where q = qαêα , the conductivity tensor from
Eqs. (14)–(16) becomes

σαα(q, ω) = i

qα

πα0(q, ω) = iω

q2
α

π00(q, ω) = παα̃(q, ω),

σαα(q, ω) = i

ω
[παα(q, ω) − παα(q)]. (17)

Since σαα(q, ω) is a nonsingular function of q and ω for all q
and ω, the elements of the 4 × 4 response tensor are expected
to have the properties

π00(q, ω) ∝ q2
α, π0α(q, ω) ∝ qα, Im{παα(q, ω)} ∝ ω.

(18)

These relations are the usual starting point for hydrody-
namic formulation of electrodynamics of conduction elec-

trons [2,3,31]. They prove useful in systematic microscopic
studies of σαα(q, ω) as well [6,32].

For transverse electromagnetic fields polarized along the α

axis, we can write

σαα(q, ω) = παα̃(q, ω) = i

ω
[παα(q, ω) − παα(q)]. (19)

After performing the Kramers-Kronig analysis [1], the trans-
verse conductivity sum rule becomes a function of the static
current-current correlation function παα(q),

4
∫ ∞

−∞
dω Re{σαα(q,ω)} = −4ππαα(q). (20)

From the multiband version of the Ward identity relation [5],
it follows that

−4ππαα(q) = 4πe2

m
ntot

αα(q). (21)

The quantity

ntot
αα(q) =

∑
LL′

1

V

∑
kσ

m

e2

∣∣JLL′
α (k, k+)

∣∣2

ε0
L′L(k+, k)

[nL(k) − nL′(k+)]

= nintra
αα (q) + ninter

αα (q) (22)

in Eq. (21) is the total effective number of charge carriers,
which comprises the intraband contribution nintra

αα (q) (L = L′)
and the interband contribution ninter

αα (q) (L 	= L′) [32].
For long wavelengths, the effective number nintra

αα (q)
can be rewritten in the alternative form, in terms of the
dimensionless reciprocal effective mass tensor γ LL

αα (k) =
(m/�

2)∂2ε0
L(k)/∂k2

α . In this limit, the total effective number
ntot

αα(q ≈ 0) becomes

ntot
αα(q ≈ 0) = 1

V

∑
Lkσ

γ LL
αα (k; 2)nL(k), (23)

where [5,21,29]

γ LL
αα (k; 2) = γ LL

αα (k) + m

e2

∑
L′(	=L)

2
∣∣JLL′

α (k)
∣∣2

ε0
L′L(k, k)

. (24)

Therefore, the sum rule (20) is in accordance with the partial
effective mass theorem (24) linking the bare diamagnetic
vertex γ LL

αα (k, k+; 2) ≈ γ LL
αα (k; 2) with the reciprocal effec-

tive mass tensor γ LL
αα (k) and the interband current vertices

JLL′
α (k, k+) ≈ JLL′

α (k).
In Eqs. (22) and (23), nL(k) is the momentum distribution

function defined by

nL(k) = 1

β�

∑
iωn

GL(k,iωn) =
∫ ∞

−∞

dε

2π
AL(k,ε)f (ε). (25)

Here f (ε) is the Fermi-Dirac distribution function, GL(k, iωn)
is the single-electron Green’s function, and AL(k, ε) is the
corresponding spectral function. GL(k,iωn) is the Matsubara
Fourier transform of GL(k,τ ) = −〈Tτ [cLkσ (τ )c†Lkσ (0)]〉.

The sum rule (20) must not be confused with the usual form
of the transverse conductivity sum rule, which can be found in
the literature [8,11]. The latter represents the generalization of
Eq. (20) to the case with infinite number of valence bands. In
this case, the effective number ntot

αα(q) reduces to the nominal
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FIG. 1. The Bethe-Salpeter expression for the 4 × 4 current-
current correlation function πμν(q,iνn) [6,9,27]. The bold solid lines
represent the exact single-electron Green’s functions and the shaded
rectangle represents the exact RPA irreducible four-point interaction.

concentration of conduction electrons n [γ LL
αα (k; 2) = 1 for the

conduction band, in this case].
The partial version of the sum rule holds for any electronic

system with a finite number of valence bands which is
decoupled from the rest of the band structure. Evidently
the partial transverse conductivity sum rule is much more
useful in investigations of tight-binding systems with a few
bands [where ntot

αα(q) is usually very different from n] than its
common textbook version. In this case, the left-hand side and
the right-hand side of Eq. (20) can be calculated independently
providing the direct test of the conductivity formula used in
the calculations.

IV. THEORETICAL APPROACHES

A. Bethe-Salpeter equations

In realistic electronic systems with multiple bands, the
microscopic structure of the conductivity tensor σαβ(q, ω) is
usually determined by using the Matsubara finite-temperature
formalism [8,9,33,34]. In this approach, the correlation func-
tions πμν(q,ω) from Eqs. (14)–(16) are obtained by analytical
continuation of πμν(q, iνn) (iνn → ω + iη), where πμν(q, iνn)
is the Matsubara Fourier transform of

πμν(q,τ ) = − 1

�V
〈Tτ [Ĵμ(q,τ )Ĵν(−q,0)]〉irred. (26)

According to Fig. 1, πμν(q,iνn) is shown in terms
of the exact single-electron Green’s function GL(k,iωn)
and the exact RPA irreducible four-point interaction
UL1L

′L′
1L(k+, k′, k′

+, k, iωn+, iωm, iωm+, iωn). The single-
electron Green’s function GL(k, iωn) satisfies the Dyson
equation, and the RPA irreducible four-point interaction

the corresponding Bethe-Salpeter equation [8,9,33,34]. For
many purposes, it is helpful to rewrite this Bethe-Salpeter
expression for πμν(q, iνn) in terms of GL(k, iωn) and the ex-
act renormalized vertex function �L′L

ν (k+, k, iωn+, iωn). The
Bethe-Salpeter equation for �L′L

ν (k+, k,iωn+,iωn) is closely
related to that for the RPA irreducible four-point interaction.
Finally, it is also possible to show πμν(q,iνn) as a function
of GL(k,iωn) and �LL′

ν (k, k+,iωn,iωn+), the quantity which is
usually called the auxiliary electron-hole propagator [6,21,32],
the three-point electron-hole propagator, or the three-point
susceptibility [35].

As long as these building blocks of πμν(q,iνn) are exact,
all Kubo-Ward relations from the previous section are ex-
actly fulfilled. This means that, in this case, the correlation
functions πμν(q,iνn) have a form which is gauge invariant
by definition, and the charge continuity equation is exactly
satisfied. However, any approximation used to determine the
structures of GL(k,iωn) and �LL′

ν (k, k+,iωn,iωn+) leads to
some extent to the violation of the charge continuity equation.
As a consequence, we are usually forced to take care of the
charge continuity equation explicitly when solving the Dyson
and Bethe-Salpeter equations.

B. Generalized self-consistent RPA equations

In weakly interacting systems we can also use the alterna-
tive approach which represents an obvious generalization of
the common self-consistent RPA equation. In this approach
we consider the Heisenberg equation for the density operator
c
†
Lkσ cL′k+qσ [5,36],

i�
∂

∂t
c
†
Lkσ cL′k+qσ = [c†Lkσ cL′k+qσ ,H ]. (27)

In the general case, the Hamiltonian H is given by Eq. (1).
Therefore, we can use this approach to study the scattering of
conduction electrons by static disorder, by phonons, as well as
by other electrons. For example, for the relaxation processes
associated with the scattering by phonons, a straightforward
calculation leads to[

�ω + ε0
LL′(k, k+) + iη

]
c
†
Lkσ cL′k+qσ

= −(n̂Lkσ − n̂L′k+qσ )P L′L
α (k+, k)Eα(q,ω)

+ [c†Lkσ cL′k+qσ ,H ′
1a] (28)

[ε0
LL′(k, k+) = ε0

L(k) − ε0
L′(k+)]. Here Eα(r,t) is again the

macroscopic electric field, the P L′L
α (k+, k) are the intraband

and interband dipole vertex functions, and n̂Lkσ = c
†
Lkσ cLkσ .

To obtain the self-consistent structure of these equations,
we have to determine the right-hand side expressions in the
equations

i�
∂

∂t
{(bλk+q−k′ + b

†
λk′−k−q)c†Lkσ cL′k′σ } = [(bλk+q−k′ + b

†
λk−k−q)c†Lkσ cL′k′σ ,H ],

(29)

i�
∂

∂t
{(bλk′−k + b

†
λk−k′)c

†
Lk′σ cL′k+qσ } = [(bλk′−k + b

†
λk−k′)c

†
Lk′σ cL′k+qσ ,H ],

and retain only the contributions proportional either to c
†
Lkσ cL′k+qσ or to c

†
Lk′σ cL′k′+qσ . The former contributions will be referred

to as the self-energy contributions and the latter ones as the vertex corrections. When the electron does not change the band
when it is scattered by phonons and GLL

λ (k, k′) ≈ Gλ(k, k′), then the result is the self-consistent equation for the induced density
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〈c†Lkσ cL′k+qσ 〉ω of the form

[�ω + ε0
LL′(k, k+) + iη]〈c†Lkσ cL′k+qσ 〉ω = [nL′(k+) − nL(k)]P L′L

α (k+, k)Eα(q,ω) + λ2
∑
λk′

|Gλ(k, k′)|2
N

× [SLL′(k, k′,ω)〈c†Lkσ cL′k+qσ 〉ω − SLL′(k′, k,ω)〈c†Lk′σ cL′k′+qσ 〉ω]. (30)

Here

SLL′(k,k′,ω) =
∑
s=±1

f b(ωλk−k′) + f
[
sε0

L′(k′)
]

�ω + iη + ε0
LL′(k, k′) + s�ωλk−k′

+
∑
s=±1

f b(ωλk−k′) + f
[−sε0

L(k′)
]

�ω + iη + ε0
LL′(k′, k) + s�ωλk−k′

(31)

is a useful abbreviation.
It must be recalled that 〈c†Lkσ cL′k+qσ 〉ω ≡ δnLL′

(k, q, ω)
is the nonequilibrium part of the nonequilibrium distribution
function in question nLL′

(k,q,ω) [5,36]. Therefore, the in-
duced current density can be shown in terms of the current-
dipole correlation function παα̃(q, ω) in the following way:

Jα(q, ω) = παα̃(q, ω)Eα(q,ω)

= 1

V

∑
LL′

∑
kσ

J LL′
α (k, k+)〈c†Lkσ cL′k+qσ 〉ω

= 1

V

∑
LL′

∑
kσ

J LL′
α (k, k+)δnLL′

(k,q,ω). (32)

Similarly, the induced charge density is given by

J0(q, ω) = 1

V

∑
LL′

∑
kσ

J LL′
0 (k, k+)δnLL′

(k,q,ω). (33)

V. BETHE-SALPETER EXPRESSIONS FOR π intra
μν (q, iνn)

Let us now restrict our attention to a single-band case and
explain how the simultaneous treatment of the Dyson equa-
tion, the Bethe-Salpeter equations, and the charge continuity
equation mentioned in Sec. IV A works in typical approximate
schemes. In this paper the correlation functions πμν(q,iνn) are
shown in terms of G(k,iωn) and �ν(k, k+,iωn,iωn+), and in-
stead of the Bethe-Salpeter equation for �ν(k, k+,iωn,iωn+),
we use the corresponding quantum kinetic equation

[i�νn + ε0(k, k+)]�ν(k, k+,iωn,iωn+)

= 1

�
[G(k, iωn) − G(k+,iωn+)]Jν(k+, k) − λ2[��(k, iωn)

− ��(k+,iωn+)]�ν(k, k+,iωn,iωn+) − λ2 1

�
[G(k, iωn)

−G(k+,iωn+)]
∑
k′σ ′

1

β

∑
iωm

�ν(k′, k′
+,iωm,iωm+)

×U (k+, k′, k′
+,k, iωn+,iωm,iωm+,iωn) (34)

[ε0(k, k+) = ε0(k) − ε0(k+)]. This equation is equivalent to
the original Bethe-Salpeter equation, and also represents the
generalization of the intraband part of the self-consistent
equation (30). This equation is an integral equation of a
complicated kind. For simplicity we omit here an explicit
reference to the conduction band index.

According to the first expression in the third row of Fig. 1,
the correlation functions πμν(q, iνn) can be shown in the
following way [6,9,27]:

πμν(q,iνn) = 1

V

∑
kσ

Jμ(k, k+)
1

β�2

∑
iωn

G(k, iωn)G(k+,iωn+)

×�ν(k+, k, iωn+,iωn) (35)

= 1

V

∑
kσ

Jμ(k, k+)
1

β

∑
iωn

�ν(k, k+,iωn,iωn+). (36)

The relation between the renormalized vertex func-
tion �ν(k+, k, iωn+,iωn) and the electron-hole propagator
�ν(k, k+,iωn,iωn+) is thus

�ν(k, k+,iωn,iωn+) = 1

�2
G(k, iωn)G(k+,iωn+)

×�ν(k+, k, iωn+,iωn). (37)

On the other hand, the second expression in the third row leads
to

πμν(q,iνn) = 1

V

∑
kσ

1

β

∑
iωn

�μ(k+, k, iωn+, iωn)Jν(k+, k).

(38)

For long wavelengths, the charge vertex J0(k+, k) ≈ e

is a constant and the current vertex Jα(k+, k) ≈ evα(k) is
proportional to the electron group velocity vα(k). This means
that the electron-hole propagator �ν(k, k+,iωn,iωn+) can be
shown as a sum of four contributions of different symmetries,

�ν(k, k+,iωn,iωn+) =
∑

μ′=0,x,y,z

�ν[μ′](k, k+,iωn,iωn+), (39)

where �ν[μ′](k, k+,iωn,iωn+) ∝ Jμ′(k+, k) ≈ Jμ′(k), result-
ing in

πμν(q,iνn) = 1

V

∑
kσ

Jμ(k, k+)
1

β

∑
iωn

�ν[μ](k, k+,iωn,iωn+)

= 1

V

∑
kσ

1

β

∑
iωn

�μ[ν](k+, k, iωn+, iωn)Jν(k+, k).

(40)
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Evidently for electromagnetic fields polarized along the α axis,
there are only two components in Eq. (39), i.e.,

�ν(k, k+,iωn,iωn+) =
∑

μ′=0,α

�ν[μ′](k, k+,iωn,iωn+). (41)

First important consequence of Eq. (40) is that the charge
continuity equation from Eq. (14) can be shown in the
following way:

1

V

∑
kσ

∑
μ=0,x,y,z

qμJμ(k, k+)�0[μ](k, k+,ω) = 0. (42)

Here �ν(k, k+,ω) is the analytically continued form of

�ν(k, k+,iνn) = 1

β

∑
iωn

�ν(k, k+,iωn,iωn+), (43)

and the qμ are the components of the four-component wave
vector q = (ω,q). Similarly, the charge continuity equation
from Eq. (15) leads to

1

V

∑
kσ

∑
μ=0,x,y,z

qμJμ(k, k+)�α[μ](k, k+,ω)

= 1

V

∑
kσ

∑
β=x,y,z

qβJβ(k, k+)�α[β](k, k+,0). (44)

Finally, it is important to notice that the same symmetry based
analysis holds for the intraband contributions in Sec. IV B as
well. The relation between the two notations is the following:

δn(k, q,ω) = i

qα

�0(k, k+,ω)Eα(q,ω). (45)

In the Landau theory of Fermi liquids [11,36], electrody-
namic properties of conduction electrons are described by the
conductivity tensor

σαα(q, ω) = i

qα

πα0(q, ω) ≡ παα̃(q, ω)

= 1

V

∑
kσ

Jα(k, k+)
i

qα

�0[α](k, k+,ω). (46)

Here �0[α](k, k+,ω) is the solution of the Landau-Silin
kinetic equation, which is a simplified version of Eqs. (30)
and (34) [6,36]. In this theory, the main simplification is in
the way vertex corrections are taken into account. Namely, for
electromagnetic fields polarized along the α axis, we can insert
the assumption (41) into Eq. (34), separate all contributions
which are odd functions of kα from the even contributions, and
use the ansatz for the sum of the second and third term on the
right-hand side of the kinetic equation which makes the sum
of the even contributions identical to the charge continuity
equation (42). In this way, Eq. (34) reduces to two coupled
equations for �0[0](k, k+,ω) and �0[α](k, k+,ω); the first one
is the charge continuity equation and the second one is the
transport equation [5,11]. After retaining only the leading
contributions to the self-energy �(k, iωn) and the related
contributions to the irreducible four-point interaction, we
obtain the well-known textbook expression for σαα(q, ω). This
conductivity formula is known to describe well the Thomas-
Fermi static screening, the collective modes of the electronic
subsystem, as well as the dc and dynamical conductivity.

Let us now present the formal derivation of both the
memory-function conductivity formula [Eq. (51)] and its
simplified form in which the issue of the Thomas-Fermi
static screening is taken aside [Eq. (54)]. These expressions
reduce to the well-known Fermi-liquid expressions when the
memory function Mα(k, ω) is approximated by its imaginary
part Mi

α(k, ω) ≈ �α(k) [here �α(k) is the usual notation for
the relaxation rate, which depends on k and on the polarization
index α].

VI. MEMORY-FUNCTION CONDUCTIVITY FORMULA

The present derivation of the memory-function conductivity
formula follows the same general path as the textbook
derivation of the transport coefficients in the Fermi liquid
theory [11]. We consider the quantum kinetic equation for
�0(k, k+,iωn,iωn+) in the presence of the electromagnetic
field polarized along the α axis, and use the ansatz

−λ2
��(k, k+,iωn,iωn+)�0[α](k, k+,iωn,iωn+) (47)

for the sum of the last two terms on the right-hand side of the
equation. In this way, this integral equation transforms into an
ordinary equation

[i�νn + ε0(k, k+)]�0(k, k+,iωn,iωn+)

+ ��(k, k+,iωn,iωn+)�0[α](k, k+,iωn,iωn+)

= 1

�
[G(k, iωn) − G(k+,iωn+)]J0(k+, k). (48)

It is easily seen that summation over k and iωn leads
to Eq. (42). Therefore, the ansatz (47) is consistent with
the charge continuity equation. Here �(k, k+,iωn, iωn+) =
�̃(k, iωn) − �̃(k+,iωn+) is the electron-hole self-energy and
the unknown quantity �̃(k, iωn) is the modified single-electron
self-energy.

The next level of approximation is to replace the
electron-hole self-energy �(k, k+,iωn,iωn+) by the quantity
which depends only on the difference of two electron
frequencies and on the direction of the wave vector q = qαêα

[that is, �(k, k+,iωn,iωn+) ≈ Mα(k, iνn)]. Then the kinetic
equation becomes

[i�νn + ε0(k, k+)]�0(k, k+,iωn,iωn+)

+ �Mα(k, iνn)�0[α](k, k+,iωn,iωn+)

= 1

�
[G(k, iωn) − G(k+,iωn+)]J0(k+, k). (49)

Summation over iωn is straightforward now. After
using the momentum distribution function n(k) from
Eq. (25) and the electron-hole propagator �0(k, k+,ω) =∑

μ′=0,α �0[μ′](k, k+,ω) from Eq. (43), we obtain

qαvα(k)�0[0](k, k+,ω) − [ω + Mα(k, ω)]�0[α](k, k+,ω)

+ e

�
[n(k) − n(k+)]

= ω�0[0](k, k+,ω) − qαvα(k)�0[α](k, k+,ω). (50)
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This equation is decomposed into the odd contributions
and the even contributions. The right-hand side and the
left-hand side expressions must vanish independently, and
we obtain two equations, which can be easily solved, for
example, for �0[α](k, k+,ω). By substituting this expression
for �0[α](k, k+,ω) into the definition relation (46), we obtain
the memory-function conductivity formula

σαα(q, ω) = 1

V

∑
kσ

i�|Jα(k, k+)|2 n(k) − n(k+)

ε0(k+, k)

× �ω

�ω[�ω + �Mα(k, ω)] − ε2
0(k, k+)

. (51)

The function Mα(k, ω) is usually called the memory function.
In the static limit, the result is the static Thomas-Fermi

dielectric susceptibility

−4ππ00(q) = 4πe2 1

V

∑
kσ

n(k) − n(k+)

ε0(k+, k)
≡ k2

TF, (52)

which is proportional to the density of states at the Fermi level

ρ(μ) = 1

V

∑
kσ

(
− ∂n(k)

∂ε0(k)

)
, (53)

as well as to the square of the Thomas-Fermi wave vector kTF.
In the Drude limit (�ω)2 � ε2

0(k, k+), on the other hand, the
result is

σαα(q,ω) = ie2

m

1

V

∑
kσ

(
− ∂n(k)

∂ε0(k)

)
mv2

α(k)

ω + λ2Mα(k, ω)

= ie2

m

1

V

∑
kσ

mv2
α(k)

(
− ∂n(k)

∂ε0(k)

)

× 1

ω + iη

(
1 − λ2 Mα(k, ω)

ω
+ · · ·

)
. (54)

It must be emphasized that in the Drude limit the same result
follows after using the approximation �0(k, k+,iωn,iωn+) ≈
�0[α](k, k+,iωn,iωn+) in Eq. (49). This type of approximation
is widely used in the textbook discussions of the transport
equations [10,11,36].

It is also important to notice that the λ0 term in Eq. (54)
describes the ideal conductivity, i.e., Re{σ (0)

αα (q,ω)} ∝ δ(ω),
and that the corresponding integrated spectral weight is in
agreement with the intraband part of the sum rule (20). The
corrections, starting with the λ2 term, lead to the redistribution
of the spectral weight over a wide frequency range (see
Sec. VIII A).

A. Low-order perturbation theory

The usual way to determine the structure of the memory
function Mα(k, ω) is to compare the expansion of the conduc-
tivity tensor (54) in powers of λ2 with the usual (low-order)
perturbation expansion of πα0(k, τ ) from Eq. (26) in powers
of λ′ [6,32]. Here λ′ is the perturbation parameter in the
perturbation H ′ = λ′H ′

1 + (λ′)2H ′
2, and H ′

1 = H ′
1a + H ′

1b.
The evaluation of Mα(k, ω) is very difficult in general.

However, to obtain the leading terms from the common Fermi
liquid theory, it suffices to work out the diagrams shown in

4A1 4B 1

4C 1 4D1

Jν Jμ Jν Jμ

JμJμ

Jν Jν

...

2A 2B2

JJ μν JJ μν

JJ μν JJ μν

2A1

JJ μν

0

FIG. 2. The expansion of the correlation function πμν(q,iνn)
in powers of λ′ [λ′ is the perturbation parameter in H ′ = λ′H ′

1 +
(λ′)2H ′

2] [5,6].

Fig. 2 and identify the function Mα(k, ω), which is now a
complex function of ω. The results are [5,6]

�M [2]
α (k, ω) = − 1

N

∑
λk′

|Gλ(k, k′)|2
(

1 − vα(k′)
vα(k)

)

×
∑
s=±1

∑
s ′=±1

s ′{f b(s ′ωλk−k′)+f [sε0(k′)]}
�ω+iη+sε0(k, k′)+s ′�ωλk−k′

= − 1

N

∑
λk′

|Gλ(k, k′)|2
(

1 − vα(k′)
vα(k)

)

×
∑
s=±1

∑
s ′=±1

f b(ωλk−k′)+f [ss ′ε0(k′)]
�ω+iη+sε0(k, k′)+s ′�ωλk−k′

= − 1

N

∑
λk′

|G̃λ(k, k′)|2S(k, k′,ω) (55)

and

�M [4]
α (k, ω) = −

∑
k′qσ ′

|ϕσσ ′(q)|2
V 2

1

vα(k)
[vα(k) + vα(k′

+)

− vα(k′) − vα(k+)]{f [ε0(k′)] − f [ε0(k′
+)]}

×
∑
s=±1

f b[ω(k′
+, k′)] + f [ε0(k+)]

�ω + iη + sε0(k, k′) + sε0(k′+, k+)

(56)

for the scattering by phonons and by other electrons [the
indices [2] and [4] stand for (λ′)2 and (λ′)4, respectively].
Here f b(ω) is the Bose-Einstein distribution function, and
�ω(k, k′) = ε0(k) − ε0(k′). It should be noted that the (H ′

1b)2

contribution originating from the scattering by static disorder
is described by Eq. (55) as well. The result for these scattering
processes (labeled by the index λ = 0) is found by taking
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the limit ω0k′−k → 0 and |G0(k, k′)|2 ∑
s ′ s ′f b(s ′ω0k′−k) →

|V (k, k′)|2.
As shown in Refs. [6,37], this form of the memory

function Mα(k, iνn) can be obtained from �(k, k+,iωn,iωn+)
by measuring the energy of the electron in �̃(k+,iωn+) [hole
in �̃(k, iωn)] with respect to the energy of hole (electron), and
not with respect to the chemical potential μ; that is

Mα(k, iνn) = �̃[k, ε0(k+)/� − iνn] − �̃[k+,ε0(k)/� + iνn].

(57)

This relation, together with Eqs. (55) and (56), illustrates how
the modified self-energy �̃(k, iωn) is related to the single-
electron self-energy �(k, iωn). For example, for the scattering
by phonons, the (λ′)2 term follows after replacing the coupling
constant |Gλ(k, k′)|2 in

��[2](k, ω) = 1

N

∑
λk′

|Gλ(k, k′)|2

×
∑
s=±1

f b(ωλk′−k) + f [sε0(k′)]
�ω + iη − ε0(k′) + μ + s�ωλk′−k

(58)

by |G̃λ(k, k′)|2 = |Gλ(k, k′)|2[1 − vα(k′)/vα(k)] and the
chemical potential μ in the denominator by ε0(k).

The extra factor [1 − vα(k′)/vα(k)] in Eq. (55) causes a
reduction of the forward scattering contributions (k′ ≈ k) in
�̃(k, iωn) with respect to �(k, iωn). A direct consequence
of this effect is the fact that the intraband memory-function
conductivity formula is characterized by two different damping
energies; the first one, �i(k, ω) in n(k), describes the lifetime
of the electron, and the second one, �̃i(k, ω) in Im{Mα(k, ω)},
the corresponding relaxation time, with �i(k, ω) > �̃i(k, ω).

The extra factor [vα(k) + vα(k′
+) − vα(k′) −

vα(k+)]/vα(k) in M [4]
α (k, ω) has even stronger effect.

Evidently in the electron-electron scattering channel, not
only the forward scattering contributions but also the
normal backward scattering contributions drop out of the
function Mα(k, ω). Only the umklapp backward scattering
contributions remain.

B. Self-consistent RPA approach

To understand the significance of the memory function
Mα(k, ω) in the language of the generalized self-consistent
RPA equations, let us consider the same case as in Sec. IV B.
We must solve the integral equation

[�ω + ε0(k, k+) + iη]δn(k, q,ω)

= [n(k+) − n(k)]Pα(k+, k)Eα(q,ω) +
∑
λk′

|Gλ(k, k′)|2
N

× [S(k, k′,ω)δn(k, q,ω) − S(k′,k, ω)δn(k′,q,ω)],(59)

and insert the resulting expression for δn(k, q,ω) into Eq. (32)
or (33). This problem is known as the Holstein theory for
the dynamical conductivity of normal metals (see Sec. IV in
Ref. [4]).

First, it is important to realize that multiplication of Eq. (59)
by J0(k, k+) ≈ e and summation over k leads to the charge

continuity equation from Eq. (14). This means that the charge
continuity equation is satisfied in this case at least on average.

Multiplication by Jα(k, k+) ≈ evα(k) and summation over
k leads to∑

kσ

evα(k)δn(k, q,ω)=
∑
kσ

evα(k)

(
δn(0)(k, q,ω)−δn(k, q,ω)

× λ2 �Mα(k, ω)

�ω + ε0(k, k+) + iη

)
, (60)

where

δn(0)(k, q,ω) = n(k+) − n(k)

�ω + ε0(k, k+) + iη
Pα(k+, k)Eα(q,ω),

(61)

Pα(k+, k) = −ie/qα , and

�Mα(k, ω) ≈ − 1

N

∑
λk′

|G̃λ(k, k′)|2S(k, k′,ω). (62)

Equation (60) can most easily be solved if we show the
nonequilibrium distribution function δn(k, q,ω) in the form

δn(k, q,ω) =
∞∑

n=0

λ2nδn(2n)(k, q,ω), (63)

and recognize a simple recursion relation for the coefficients
δn(2n)(k, q,ω),

δn(2n+2)(k, q,ω) = − �Mα(k, ω)

�ω + ε0(k, k+) + iη
δn(2n)(k, q,ω).

(64)

The result for the conductivity tensor is again the memory-
function conductivity formula (54).

Not surprisingly, the same result follows from Eq. (59) if
the sum of the last two terms on the right-hand side of the
equation is replaced by∑

λk′

|G̃(k, k′)|2
N

S(k, k′,ω)δn[α](k, q,ω). (65)

This ansatz is equivalent to Eq. (47).

VII. GENERALIZED DRUDE MODEL

When the memory function Mα(k, ω) in Eq. (54) is replaced
by its average over the Fermi surface,

Mα(ω) = 1

nintra
αα

1

V

∑
kσ

mv2
α(k)

(
− ∂n(k)

∂ε0(k)

)
Mα(k, ω), (66)

then we obtain the generalized Drude conductivity formula [6]

σαα(ω) = ie2

m

nintra
αα

ω + iη

(
1 − λ2 Mα(ω)

ω
+ · · ·

)
= ie2

m

nintra
αα

ω + λ2Mα(ω)
. (67)

Here

nintra
αα = 1

V

∑
kσ

mv2
α(k)

(
− ∂n(k)

∂ε0(k)

)
(68)
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is the intraband contribution to the effective number of charge
carriers (22). Evidently in weakly interacting isotropic or
nearly isotropic systems the dependence of Mα(k, ω) on k
can be neglected. In this case, there is no difference between
the two conductivity formulas. To obtain Mα(ω) in this case,
it is sufficient to calculate Mα(k, ω) at an appropriate point at
the Fermi surface; Mα(ω) ≈ Mα(kF,ω).

An alternative derivation of the generalized Drude conduc-
tivity formula is given in the Appendix. The results for the
imaginary parts of M [2]

α (ω) and M [4]
α (ω) obtained in this way

are directly related to the results of the common variational
approach for the relaxation rates [3,10]. These two expressions
represent an oversimplified (semiclassical) form of Eqs. (55)
and (56). Most importantly, the f [ss ′ε0(k′)] term from the
numerator of Eq. (55) is missing. For example, this means
that the scattering by soft phonons is characterized by the
factor f b(ωλq′) + 1/2 in Eq. (55) and by the factor f b(ωλq′)
in Eq. (A11). The problem of missing 1/2 is typical of the
semiclassical approaches in which the relaxation processes
are described in terms of the collision integral.

VIII. INTRABAND MEMORY FUNCTION IN HEAVILY
DOPED GRAPHENE

It is useful first to show the dc limit of the two-band con-
ductivity formula from Ref. [32] calculated in the relaxation-
time approximation. The intraband part is given by Eq. (54)
with Mα(k, ω) ≈ i�1. The results are shown in Fig. 3 in
the doping range −0.014 < V0n < 0.014 (corresponding to
−0.5 < EF < 0.5 eV), for both the intraband relaxation rate
��1 and the interband relaxation rate ��2 equal to 5 meV,
and for nL(k) = fL(k) ≡ f [ε0

L(k)] (V0 is here the primitive
cell volume). It is obvious that for |EF| > 0.1 the intraband
contribution to σαα(ω) is well separated from the interband
contribution, and, consequently, σ dc

αα ≈ σ dc,intra
αα .

-0.4 -0.2 0 0.2 0.4
Fermi energy (eV)

0

20

40

60

80

100

120

σ xx
dc

 (π
e2 /2

h)

T = 50 K
300

0

0.1

0.2

0.3

0.4

0.5

σ xx
dc

,in
te

r  (π
e2 /2

h)

FIG. 3. The dependence of the two-band dc conductivity σ dc
αα

from Ref. [32] on the Fermi energy EF (≡μ) in the Dirac cone
approximation at T = 50 and 300 K. The solid and dashed lines
represent the results of the current-dipole conductivity formula in
the relaxation time approximation, for ��1 = ��2 = 5 meV and
nL(k) = fL(k). The interband contribution is also shown.

Therefore, in the heavily doped regime in graphene (for the
Fermi energy |EF| of the order of 0.5 eV or larger), the low-
energy conductivity σαα(q,ω) can be represented by Eq. (54)
[or by Eq. (67), in the leading approximation]. In this case,
the dispersion of conduction electrons is ε0(k) = ε0

π∗ (k) in the
electron doped case and ε0(k) = ε0

π (k) in the hole doped case,
where [20]

ε0
π∗,π (k) = ±t

√
3 + 2 cos kxa + 4 cos

kxa

2
cos

√
3kya

2
− μ,

(69)

and t is the first neighbor hopping integral.

A. Transverse conductivity sum rule

The dynamical intraband conductivity Re{σαα(q,ω)} from
Eq. (54) calculated in the approximation used in Fig. 3,
Mα(kF,ω) ≈ i�1, is illustrated in Fig. 4 by the solid line.
The integrated spectral weight is again in accordance with the
partial transverse conductivity sum rule (20). Namely, in this
case Re{σαα(q,ω)} is nothing but the sum of simple Lorentz
functions Im{1/(ω + i�1)} multiplied by a function of k in
which n(k) ≈ f (k), and, consequently, integration over ω is
trivial.

The dashed line represents Re{σαα(q,ω)} in the case in
which the scattering by acoustic phonons and by other elec-
trons is taken aside. The resulting memory function comprises
two contributions Mλ

α (k, ω), where the index λ = LE,HE
stands for the scattering by static disorder and by optical
phonons, respectively. The phonon frequency is taken to be
�ωop(q) ≈ �ωop = 0.2 eV and the electron-phonon coupling
function is |Gop(k, k′)|2 ≈ |Gop|2 = 0.5 eV2, resulting in
�Im{Mα(kF,0)} = 15 meV again. The integrated spectral

0 0.05 0.1 0.15 0.2 0.25
energy (eV)

0

0.2

0.4

0.6

0.8

1

R
e{

σ xx
} 

/ σ
xx

dc

disorder
disorder + phonons

0 0.1 0.2 0.3 0.4
energy (eV)

0
0.02
0.04
0.06
0.08

0.1

R
e{

σ xx
} 

/ σ
xx

dc

FIG. 4. The real part of the intraband conductivity (54) calculated
beyond the Dirac cone approximation for EF = 0.5 eV and T =
50 K. Solid line: The scattering by static disorder described by
�Im{Mα(kF,ω)} ≈ �Im{Mα(kF,0)} = ��1 = 15 meV. Dashed line:
The scattering by disorder and optical phonons, �Im{Mα(kF,ω)} =
�Im{MHE

α (kF,ω)} + ��̃1, with |Gop|2 = 0.5 eV2, �ωop = 0.2 eV, and
��̃1 = 7.5 meV [�Im{Mα(kF,0)} = 15 meV, again]. The adiabatic
parameter η = ��i is taken to be η = 20 meV, and kF = (kx,0),

kx = 1.799 Å
−1

.
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weight is the same as in the first case. This characteristic of
the dynamical conductivity is typical of the memory-function
approaches. The ω-dependent memory function Mα(kF,ω)
leads to the redistribution of the (intraband) conductivity
spectral weight over a wide energy range (up to 5 eV in Fig. 4).
However, the integrated spectral weight is not changed. This is
the first important conclusion regarding the memory-function
Mα(ω) from the generalized Drude formula.

B. Hartree-Fock approximation

In order to make the numerical calculations easier, the pa-
rameter η in M [2]

α (kF,ω) from Fig. 4 is taken to be η = 20 meV.
It is not hard to see that the physics behind such a parameter η is
simple. Namely, in the leading approximation, the recollection
of higher-order contributions to Mα(k, ω) corresponds to the
replacement of the bare electron propagators in the diagrams
2A1, 2A2, and 2B in Fig. 2 by the renormalized propagators.
In the spectral representation, this leads to the well-known
Hartree-Fock approximation for Mα(k, ω),

�MH-F
α (k, ω) = 1

N

∑
λk′

|Gλ(k, k′)|2
(

1 − vα(k′)
vα(k)

)

×
∫ ∞

−∞

dε′

2π

∫ ∞

−∞

dω′

2π
A(k′,ε′)B0

λ(k′ − k, ω′)

× f b(ω′) + f (ε′)
�ω + iη − ε′ + �ω′ . (70)

Here B0
λ(q′,ω′) is the bare phonon spectral function defined by

D0
λ(q′,iνm) =

∫ ∞

−∞

dω′

2π

B0
λ(q′,ω′)

iνm − ω′ , (71)

and D0
λ(q′,iνm) is the bare phonon Green’s function. The next

step in improving the expression (70) might be simply to
replace D0

λ(q′,iνm) by the renormalized phonon propagator
Dλ(q′,iνm). This is the GW approximation for Mα(k, ω).
The comparison of Eq. (55), in which η is replaced by the
phenomenological parameter ��i , with Eq. (70) shows that
Im{�H-F(k, ω)} ≈ −�i , i.e., 1/�i can be understood as the
phenomenological electron lifetime from A(k, ε).

C. ω-dependent effective mass

The most common form of the generalized Drude formula
used in weakly interacting isotropic systems is the follow-
ing [13,16]:

σ (ω) = ie2

m(ω)

n

ω + i/τ (ω)
. (72)

Here n is the nominal concentration of conduction elec-
trons/holes, τ (ω) is the ω-dependent relaxation time, and
m(ω) = m[1 + λ(ω)] is the ω-dependent effective mass. In
weakly interacting anisotropic systems, it can be rewritten in
the form

σαα(ω) = ie2

mαα(ω)

nintra
αα

ω + i/τα(ω)
, (73)

with mαα(ω) = m[1 + λα(ω)]. The comparison
with Eq. (54) shows that λα(ω) ≈ λα(kF,ω). Here
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FIG. 5. The real and imaginary parts of the memory function
MLE[2]

α (kF,ω) as a function of temperature, for kF = (kx,0), kx =
1.799 Å

−1
, t = 2.52 eV, EF = 0.5 eV, |Cac|2 = 0.025 eV2, �ωac = 30

meV, and η = 10 meV.

λα(k, ω) = Re{Mα(k, ω)}/ω is the usual notation for
the dimensionless electron-phonon coupling constant.

In order to illustrate the dependence of λα(ω) in heavily
doped graphene on the model parameters, we show in Figs. 5
and 6 the real and imaginary parts of MLE

α (kF,ω) (scattering
by acoustic phonons) and MHE

α (kF,ω) (scattering by optical
phonons) for typical values of the model parameters. The
phonon dispersions are approximated by �ωac(q) ≈ �ωacqa,
�ωop(q) ≈ �ωop and the electron-phonon coupling functions
are assumed to be Gac(k, k+) ≈ Cacqa, Gop(k, k+) ≈ Gop.
For the values of the parameters used in Figs. 5 and 6, we obtain
λ = λα(kF,0) ≈ 0.5, resulting in m(0) = 1.5m (the same value
of λ is obtained for the case shown in Fig. 4). These two
figures show that λ = λLE + λHE is largely unaffected by both
temperature and the damping energy η = ��i .
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FIG. 6. The real and imaginary parts of the memory function
MHE[2]

α (kF,ω) as a function of the parameter η = ��i , for kF = (kx,0),

kx = 1.799 Å
−1

, t = 2.52 eV, EF = 0.5 eV, |Gop|2 = 0.25 eV2,
�ωop = 0.2 eV, and T = 50 K.
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FIG. 7. The real part of the two-band dynamical conductivity
in lightly doped graphene, for EF = 0.175 eV and T = 50 K. The
scattering by static disorder is described by ��̃1 = 1.6 meV, the
scattering by acoustic and optical phonons by �Im{MLE

α (kF,ω)} and
�Im{MHE

α (kF,ω)}, and ��2 = 20 meV is the interband relaxation rate.
The parameters in the memory function are the same as in Figs. 5

and 6, with kF = (kx,0), kx = 1.736 Å
−1

. Experimental results, taken
at T = 40 K, are from Ref. [19].

IX. LIGHTLY DOPED GRAPHENE

Lightly doped graphene is an interesting example of
multiband electronic systems in which the ratio between
the threshold energy for interband electron-hole excitations
(2EF) and the energy of optical phonons [�ωop(q) ≈ �ωop]
can be easily tuned by the electric field effect [19,38,39].
For the scattering by phonon modes, we can introduce the
interband memory functions MLL′

α (k, ω), L 	= L′, by using
the procedure illustrated in Sec. VI B. These functions
are expected to have the ω dependence similar to the ω

dependence of the intraband memory functions MLL
α (k, ω).

According to Figs. 5 and 6, this means that in the interband
relaxation-time approximation, Im{MLL′

α (k, ω)} ≈ �2, there
will be two different regimes depending upon whether 2EF >

�ωop (�2 � �1 in this case) or 2EF � �ωop (where �2 ≈ �1).
However, to better understand the relaxation processes in the
interband channel, we have to include in the self-consistent
RPA equation (30) the scattering by other electrons as well. The
detailed discussion of this question will be given in a separate
presentation [40].

Here we are focused on the interband relaxation-time
approximation, for �1 � �2. Figure 7 shows the two-band
dynamical conductivity in such a case (EF = 0.175 eV).
The scattering by other electrons is taken aside and the
relaxation processes in the interband channel are treated in
the relaxation-time approximation. The scattering by acoustic
and optical phonons is described in the same way as in Figs. 5
and 6 (with η = 10 meV).

This figure shows that if we are interested in low-energy
electrodynamic properties of conduction electrons in systems
in which the threshold energy for interband electron-hole
excitations is of the order of the optical phonon frequencies
(or other high-frequency boson modes), we have to subtract

from experimental spectra both the interband contributions
and the high-energy part of the intraband memory function.
The resulting low-energy part of σαα(q,ω) can be shown in the
form

σ LE
αα (q,ω) ≈ ie2

m

1

V

∑
kσ

mv2
α(k)

(
− ∂n(k)

∂ε0(k)

)
1

αHE(k)

× 1

ω + MLE
α (k, ω)/αHE(k)

, (74)

where αHE(k) = 1 + λHE
α (k, 0).

The same form of σ LE
αα (q,ω) is expected for coherent

low-energy conductivity of various low-dimensional strongly
correlated electronic systems, such as the cuprate super-
conductors [13,17,41]. In all such cases, we can perform
the memory-function analysis based on the function (74),
estimate both αHE(k) and the frequency dependence of the
real and imaginary parts of MLE

α (k, ω) [or their averages
over the Fermi surface αHE and MLE

α (ω)], and identify the
most intense low-energy scattering channels. Such an analysis
must be completed with temperature measurements of the
transport coefficients, in the first place, the dc resistivity ρdc ≈
1/σ LE

αα (q,ω=0). Therefore, to understand the low-energy
physics in such systems, we have to examine carefully all
scattering channels in the intraband and interband memory
functions.

X. CONCLUSION

In this article we have presented the generalization of
the common self-consistent RPA equation to re-derive the
memory-function conductivity formula in a general weakly
interacting multiband electronic system. The generalized RPA
equations are shown to be integral equations which can be
easily solved by iteration. The resulting conductivity formula
and the structure of k- and ω-dependent intraband memory
function turn out to be the same as that obtained by using
a more general approach based and the quantum kinetic
equations.

The results are applied to heavily doped and lightly doped
graphene. It is shown that the scattering of conduction elec-
trons by phonons leads to the redistribution of the intraband
spectral weight over a wide energy range, in a way consistent
with the partial transverse conductivity sum rule. It is also
shown that the present form of the intraband memory function
includes the scattering by quantum fluctuations of the lattice,
at variance with the standard semiclassical expressions for
the intraband relaxation rate, where this scattering channel is
absent. Finally, it is illustrated how the effective generalized
Drude formula can be used to study low-energy dynamical
conductivity in multiband electronic systems in which the
threshold energy for the interband electron-hole excitations is
of the order of the optical phonon energies. This simplified
conductivity formula is expected to be of importance in
analyzing coherent contributions to the intraband conductivity
in different strongly correlated electronic systems, such as the
cuprate superconductors.
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APPENDIX: COMMON MEMORY-FUNCTION APPROACH

In order to re-derive the generalized Drude conductivity
formula from Ref. [3], we consider the microscopic real-time
RPA irreducible current-current correlation function παα(q,t)
from Eq. (13). The integration by parts with respect to time of
the Fourier transform παα(q,ω) gives [5]

παα(q,ω) = − 1

(�ω)2

1

V
[�αα(ω) − �αα(0)], (A1)

where

�αα(ω) = 〈〈[Ĵα(q),H ]; [Ĵα(−q),H ]〉〉irred
ω . (A2)

After inserting

[Ĵα(q),H ] ≈ [Ĵα(q),H ′] = [Ĵα(q),H ′
1 + H ′

2] (A3)

in Eq. (A2), we obtain the (H ′)2 contribution to the dynamical
conductivity σαα(q,ω). It is given by the Kubo formula (17)
in which the current-current correlation function παα(q,ω) is
replaced by its high-energy contribution

π (2)
αα (q,ω) = − 1

(�ω)2

1

V

[
�(2)

αα(ω) − �(2)
αα(0)

]
, (A4)

with

�(2)
αα(ω) = 〈〈[Ĵα(q),H ′]; [Ĵα(−q),H ′]〉〉irred

ω . (A5)

Therefore, the common memory-function approach leads to
the generalized Drude formula from the main text, Eq. (67), in
which Mα(ω) is given by

�Mα(ω) = 1

nintra
αα

m

e2�ω

1

V

[
�(2)

αα(ω) − �(2)
αα(0)

]
. (A6)

For example, for H ′ = H ′
1a , a straightforward calculation

gives [3]

�M [2]
α (ω) = 1

nintra
αα

1

V

∑
kσ

mv2
α(k)(−)

1

N

∑
λk′

(
1 − vα(k′)

vα(k)

)2

|Gλ(k, k′)|2 1

ε0(k, k′) + �ωλq′

×
∑
s=±1

s[(1 + f b)(1 − f )f ′ − f b(1 − f ′)f ]

s(�ω + iη) + ε0(k, k′) + �ωλq′
, (A7)

where f = f (k), f ′ = f (k′), and f b = f b(ωλq′). After using the microscopic reversibility principle, this expression transforms
into

�M [2]
α (ω) = 1

nintra
αα

1

V

∑
kσ

mv2
α(k)(−)

1

N

∑
λk′

β(1 − f ′)f
(

1 − vα(k′)
vα(k)

)2

|Gλ(k, k′)|2
∑
s=±1

sf b(ωλq′)

s(�ω + iη) + ε0(k, k′) + �ωλq′
. (A8)

Similarly, for H ′ = H ′
2, we obtain

�M [4]
α (ω) = 1

nintra
αα

1

V

∑
kσ

mv2
α(k)

∑
k′q

|ϕ(q)|2
V 2

1

vα(k)
[vα(k) + vα(k′

+) − vα(k′) − vα(k+)]

×
∑
s=±1

2s

ε0(k, k′) + ε0(k′+, k+)

(1 − f+)(1 − f ′)f ′
+f − (1 − f )(1 − f ′

+)f ′f+
�ω + iη + sε0(k, k′) + sε0(k′+, k+)

, (A9)

where f+ = f (k+) and f ′
+ = f (k′

+).
It is easily seen that Eq. (A8) is directly related to the result of the variational approach for the relaxation rate �/τtr [3,10]:

�

τtr
= 1

nintra
αα

1

V

∑
kσ

mv2
α(k)

1

N

∑
λk′

β(1 − f ′)f
(

1 − vα(k′)
vα(k)

)2

|Gλ(k, k′)|2f b(ωνq′)2πδ[ε0(k, k′) + �ωλq′]. (A10)

After using the thematic simplification β(1 − f ′)f ≈ −∂f (k)/∂ε0(k) in Eq. (A8) and the relation (66), we obtain the following
expression for the k-dependent memory function:

�M [2]
α (k, ω) = − 1

N

∑
λk′

|Gλ(k, k′)|2
(

1 − vα(k′)
vα(k)

) ∑
s=±1

∑
s ′=±1

f b(ωλk−k′)

�ω + iη + sε0(k, k′) + s ′�ωλk−k′
.

(A11)

The term f [ss ′ε0(k′)] from Eq. (55) is missing in both of these
two standard textbook expressions.

Another disadvantage of the common memory-function
approach is that the memory function (A6) is second order

035403-12



INTRABAND MEMORY FUNCTION AND MEMORY-FUNCTION . . . PHYSICAL REVIEW B 95, 035403 (2017)

in perturbation H ′. Consequently, to study the phenomena
such as the SDW instability [15] or the BCS instabil-
ity [17] of the electronic subsystem, the scattering by soft
phonons [14], or by intraband plasmon modes, we have
to go beyond this approximation. It is thus necessary to

develop high-order perturbation theory for the electron-hole
self-energy which recollects the most singular contribu-
tions in a systematic way. The Green’s function method
presented in Sec. VI represents one possible way to do
this.

[1] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II
(Springer, Berlin, 1995).

[2] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and
Correlation Functions (Benjamin, London, 1975).
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and T. Giamarchi, Phys. Rev. B 58, 1261 (1998).
[16] D. N. Basov, D. van der Marel, M. Dressel, and K. Haule, Rev.

Mod. Phys. 83, 471 (2011).
[17] S. I. Mirzaei, D. Stickler, J. N. Hancock, C. Berthod, A. Georges,

E. van Heumen, M. K. Chan, X. Zhao, Y. Li, M. Greven, N.
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