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Of late there has been a surge of interest in localized phonon polariton resonators which allow for the
subdiffraction confinement of light in the midinfrared spectral region by coupling to optical phonons at the surface
of polar dielectrics. Resonators are generally etched on deep substrates which support propagative surface phonon
polariton resonances. Recent experimental work has shown that understanding the coupling between localized
and propagative surface phonon polaritons in these systems is vital to correctly describing the system resonances.
In this paper we comprehensively investigate resonators composed of arrays of cylindrical SiC resonators on
SiC substrates. Our bottom-up approach, starting from the resonances of single, free-standing cylinders and
isolated substrates, and exploiting both numerical and analytical techniques, allows us to develop a consistent
understanding of the parameter space of those resonators, putting on firmer ground this blossoming technology.
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I. INTRODUCTION

Subdiffraction confinement of light is a necessity for
miniaturization of optical devices and can be achieved by
coupling photons to charged particles at interfaces over which
the real part of the dielectric function changes sign. Predomi-
nantly free electrons, well described by a Drude-like dielectric
function, are utilized [1]. As the Drude dielectric function is
negative below the plasma frequency such materials provide
broadband localization of light in modes termed surface
plasmon polaritons, although this comes at the cost of high
loss due to electron scattering. More recently subdiffraction
confinement by coupling to crystal vibrations in the form of
optical phonons in polar dielectrics has been demonstrated [2].
These materials have a negative dielectric function between
the longitudinal and transverse optical phonon frequencies, in
aregion called the Reststrahlen band, and as the anharmonicity
driven optical phonon damping occurs two orders of magnitude
slower than electron damping in metals the resultant modes
are comparatively long lived [3]. These modes are called
surface phonon polaritons [4] and have morphology-dependent
characteristics which allow for the tuning of modal frequencies
and field profiles [5]. Their energies lie between the mid- and
far-infrared, dependent on material choice, meaning these sys-
tems can make excellent narrow-band thermal sources [6,7].
Most recently, fabrication advancements have allowed the
construction of user-defined cylindrical SiC nanoresonators
on SiC substrates, which exhibit quality factors in excess of
the theoretical limit for plasmonic resonators [8,9]. Only a
few months ago the strong coupling between localized modes
of user-defined cylindrical resonators and propagative surface
phonon polaritons sustained by the substrate planar interface
was demonstrated [10], highlighting how the resonant coupling
between localized and propagative modes has to be taken
into account to correctly describe the optical response of such
systems. Surface phonon polaritons have also been utilized for
a number of other applications like sensing [2], superlensing
[11], near-field optics [12], and enhanced energy transfer
between nanoparticles [13]. Surface phonon polaritons offer
great promise as a test bed for integrated, midinfrared quantum
photonics as a result of their long modal lifetimes and relative
simplicity of fabrication.
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To allow a fast development of this blossoming research
field, in this paper we develop, using both analytical and
numerical methods, a consistent understanding of the phonon
polariton resonances of periodic arrays of cylindrical SiC
resonators, of the kind that have been used in recent ground-
breaking works [8—10]. The relative simple geometry of such
samples allows us to methodically explore its parameter space,
gaining both a quantitative understanding of those resonators,
which can directly be experimentally exploited, and precious
insight into the underlying physics, which can underpin
investigations into to novel and more complex structures.

In a bottom-up approach we start our investigation in Sec. II
by considering resonances of a free-standing cylindrical SiC
resonator, analyzing how both the resonant frequencies and
a number of figures of merit change with morphology. In
Sec. III we consider the effect of a SiC substrate sitting
below the cylinder, analyzing how the presence of phonon
polaritons on the substrate surface modifies the resonant
frequencies. Finally in Sec. IV we consider an array of
cylindrical resonators over a substrate, where both the folding
of surface modes due to the periodic patterning and the dipolar
interaction between different pillars lead to the appearance of
strongly dispersive features.

II. FREE-STANDING CYLINDRICAL SiC RESONATOR

A single cylindrical resonator is characterized by two
geometric parameters: its height 2 and its diameter d. In
the asymptotic limit 7 — oo the system is exactly described
by Mie-like theories and the resonator supports a predictable
series of modes characterized by polarization and azimuthal
phase dependency [14]. For finite /#, Fabry-Pérot modes are
supported along the length of the cylinder [15]. We are here
interested in the modes of cylindrical SiC resonators with
deeply subwavelength 7 and d which have recently been
observed in reflectance measurements [8,10]. This system has
no closed form analytical solution so we simulate numerically
by finite element methods, using the RF module of COMSOL
Multiphysics.

The SiC resonators are nonconservative systems with com-
plex modal frequencies @,, representing loss through energy
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FIG. 1. (a) Real part of the resonant frequency of the longitudinal mode as a function of diameter at 2 = 0.8 um height (circles) and as a
function of height at d = 0.8 um diameter (squares). (b) Quality factor of the longitudinal mode as a function of diameter at 0.8 wm height
(circles) and as a function of height at 0.8 um diameter (squares). Inset shows the surface charge distribution p of the longitudinal mode for a
cylinder of height # = 0.8 um and diameter d = 1 pum. (c) Purcell enhancement of the longitudinal mode as a function of diameter at 0.8 um
height (circles) and as a function of height at 0.8 um diameter (squares). (d) Mode volume of the longitudinal mode in units of the free space
mode volume Ag as a function of diameter at 0.8 pm height (circles) and as a function of height at 0.8 xm diameter (squares).

leakage from the system. Even if intrinsic material losses
are neglected, this leads to a non-Hermitian time-evolution
operator for the isolated cylinder [16,17]. The modes of the
system must thus be described in the formalism of quasinormal
modes [18]. This is especially important when calculating the
mode volume through the usual definition based on the systems
electromagnetic energy

_ [e®E@®)|*d’r
 2€0n?|E(tna)l* |

where ¢p is the vacuum permittivity, n the environment
refractive index, €(r) is the permittivity of the resonator and
E(r) is the electric field of the mode with peak value E(rp.x). In
systems possessing a complex modal frequency @,, the fields
diverge as |r| — oo resulting in divergence of the integral
[19,20]. In addition the Kramers-Kronig consistency of the
dielectric function means that loss necessarily results in a
dispersive dielectric function, which leads to an alteration of
the integral to account for energy in the matter [21]. These
problems are solved by explicit calculation of the system
quasinormal modes [18,22] which are normalized rigorously
utilizing perfectly matched layers [23]. As described in
Appendix A the quasinormal modes of the system are calcu-
lated utilizing the commercial finite element solver COMSOL
Multiphysics to find the poles of the system response following
the methods of Bai et al. [22].

ey

For an electric field polarized parallel to the cylinder axis,
the lowest lying mode has the surface charge distribution
shown in the inset of Fig. 1(b). It corresponds to the
fundamental Fabry-Pérot resonance of the TM; mode of
the cylinder. This mode was first predicted for long silver
nanowires by Takahara et al. [24] and corresponds in our
case to the fundamental longitudinal dipolar resonance of
the cylinder. This has been discussed extensively for SiC
cylinders on substrates by Caldwell et al. where it is termed the
monopolar mode [8,9]. We investigated the resonant frequency
of this mode over the two-dimensional parameter space, with
results shown in Fig. 1(a). The cylinder height is varied at
a constant diameter d = 0.8 um, and the diameter is varied
at a constant height 7 = 0.8 um, as schematically shown
in the inset of Fig. 1(a). In the small diameter limit the
resonant frequency tends to that of an infinite wire given
by €(w) — —o0 at wro = 797/cm. As the cylinder diameter
is increased the resonance tends toward an asymptote at
~934 /cm, slightly blue shifted from the Frohlich resonance at
Re[e(w)] = —2. The quality factor over this range as shown
in Fig. 1(b) is fairly flat because the length scale of the mode
is unchanged. In the limit of vanishing height the longitudinal
resonance should lie at the longitudinal optical (LO) phonon
frequency wro = 972/cm where €(w) = 0. Over the range
shown in Fig. 1(a) a monotonous shift away from the LO
phonon frequency is observed as expected for a Fabry-Pérot
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FIG. 2. (a) Dispersion of the surface phonon polariton mode supported by a vacuum/SiC interface is indicated by the black dashed line,
the light cone by the red solid line, and the asymptotic surface phonon polariton frequency at wspnp by a blue dot-dashed line. The density of
states is sketched on the right of the plot, peaking at wspyp. (b) Shift caused by the coupling on the resonator modes. The uncoupled modes
are the surface phonon polariton (SPhP) and the lowest lying four m = 1 modes of the resonator labeled M;, i = 1 — 4. These interact to form
coupled modes labeled P;. The charge distributions of the four modes are indicated, the M, corresponds to the transverse dipole and M, to
a transverse quadrupole resonance. (c) The transverse mode shifts as a cylindrical resonator of height 0.8 um and diameter 1 ©m is lowered

onto a substrate.

resonance along the cylinder length being proportional to
1/h. At around 7 = 5 um the mode leaves the Reststrahlen
band and the character of the resonance changes from a
subdiffraction localized phonon polariton to a that of a
high-index dielectric resonator. This transition is accompanied
by the drop in the quality factor observed in Fig. 1(b). The
Purcell enhancement is evaluated for an emitter 5 nm from
the cylinder edge; the results are shown in Fig. 1(c), and the
procedure used to calculate it, taking care of the effect of
losses, is outlined in Appendix A. Mode volumes are given
in Fig. 1(d). Smaller resonators allow a tighter confinement
of the field and correspondingly larger Purcell enhancements,
exceeding 10° in the small resonator limit. The dip in the height
scanned data at 7 = 4 um occurs as the mode energy crosses
the transverse optic (TO) phonon energy, being evanescent in
nature for smaller heights and diffraction limited for larger.
This section has focused on the longitudinal mode which
is azimuthally invariant, meaning its azimuthal mode number
m = 0. Modes with higher azimuthal mode numbers are sup-
ported with angular dependance ¢'™? where ¢ is the azimuthal
angle. In Appendix B we include a similar study for the lowest
lying m = 1 mode which will be referred to as the transverse
dipolar mode in accordance with Caldwell er al. [8] and
consists of parallel dipoles excited at each cylinder end facet. In
this case Purcell enhancements exceeding 10° are achievable
due to tighter confinement of the mode at the cylinder vertices.
For each azimuthal number m higher order modes are also
supported with differing phase changes along the long axis.

III. CYLINDRICAL SiC RESONATOR ON A SiC
SUBSTRATE

In the previous section we considered the resonances of a
single SiC cylinder in vacuum. The following step toward a

consistent description of real resonators is to consider the effect
of placing the cylinders on a SiC substrate. A planar, optically
thick SiC substrate in vacuum supports a propagating surface
phonon polariton (SPhP) with dispersion

k=2 [ €@ @
= eV e@+1°

where k| is the in-plane wave vector, €(w) is the dispersive
dielectric function of the substrate, and c is the speed of light.
The dispersion is plotted in Fig. 2(a), where it is clearly
visible that in the nonretarded regime the majority of the
oscillator strength lies at the asymptotic frequency wsphp =

1+4€9
l+€x

this section we consider cylinders of diameter d = 1 um and
height 7 = 0.8 wm. For these parameters the bright transverse
and longitudinal resonances lie at lower energies than the
asymptote of the surface mode wspyp.

While the cylinder-substrate separation is large enough,
cylinder and substrate modes are good approximations for
the modes of the coupled system. This ceases to be true for
submicron distances, when the overlap of the resonator and
surface modes cannot be neglected. Their resulting coupling
leads to repulsion between the different modes, which shift as
illustrated schematically in Fig. 2(b). To illustrate this process
we carry out finite element simulations of the first four m = 1
modes of SiC cylinders discussed in Sec. I, separated from
a substrate by a gap of width g. The relevant surface charge
distribution for the different uncoupled modes of the cylinder
are sketched on the left of Fig. 2(c), where M is the transverse
dipolar mode, and M,, M3, and M, are the following higher
lying m = 1 modes. We plot the real parts of the resonant
frequency in Fig. 2(c). As the resonator-substrate separation g
vanishes, all the modes lying below the asymptotic frequency

wTO ~ 951 /cm. For definiteness in the remainder of
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FIG. 3. (a) Tight binding dispersion of the monopolar mode for
a range of array periods from 5 to 7 um. (b) Dispersion of the first
folded surface phonon polariton branch at a SiC/vacuum interface,
illustrated by the colored lines for array pitches between 5 and 7 pm.
The edge of the first Brillouin zone is illustrated by the dashed vertical
line for period 5 um, while the horizontal dashed lines show the
borders of the Reststrahlen band.

wsppp are observed to red shift while those above blue shift.
This is as expected for modes which interact with a delocalized
surface mode at wsppp [25].

IV. ARRAY OF CYLINDRICAL SiC RESONATORS ON A
SiC SUBSTRATE

When the substrate is periodically patterned, a more in-
depth analysis is needed as the normal modes of the system
will now be given by Bloch waves delocalized over the
array. On one hand this can lead to dispersive features in
the dispersion of the localized phonon polaritons, due to
dipolar coupling between the different cylinders. Such an
effect can be captured by a tight binding model, which we
already described in Ref. [10]. This procedure, whose details
can be found in Appendix C, lead to frequencies for the
monopolar and transverse dipolar modes dependent upon
the in-plane wave vector. While this effect is important for
the monopolar mode, as shown in Fig. 3(a), it is negligible
for the transverse modes. This can be understood noticing
that, as shown in Ref. [8], the charge imbalance of the
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transverse modes is localized in the cylinders whereas the
monopolar mode induces a charge imbalance between the
cylinders and the substrate, thus efficiently coupling
the cylinders between them. In the following we will assume
that all transverse modes are dispersionless for the array
periods considered.

On the other hand the periodicity of the array causes the
dispersion of the surface modes bound to the substrate to be
folded back into the first Brillouin zone of the lattice, thus
existing at experimentally accessible wave vectors within the
light cone. This folding as a function of array periodicity is
illustrated in Fig. 3(b) for square arrays of varying period.
Such a tunability can bring the localized and surface modes in
resonance, and their coupling cannot be reduced to a simple
shift as in the previous section, but it becomes necessary to
consider the hybridization of the different bare modes. To
do this we use an extension of the Hopfield theory we used
in Ref. [10]. Notice that while we recently also developed
an extension of the Hopfield theory to inhomogeneous, lossy
media [26], capable of giving a description of the resonances
without adjustable parameters, and including losses in a more
consistent and fundamental way, here we prefer to rely on
numerical simulations to fit the coupling parameters and to
use real frequencies instead of complex ones, calculating
linewidths only in a second step, as this method is more trans-
parent and readily applicable to the design and optimization
of resonator samples. Our approximate results will then be
compared with numerical simulations performed using the
quasinormal mode theory described in Appendix A.

When only a single branch of the folded SPhP lies in
the neighborhood of the resonator lower laying modes, the
system, neglecting losses, may be described by a Hamiltonian
composed of two terms. The first

Ho=h Z[a)ﬁl &i\\&k” + a)”IQJ(H l;ku +wt25l” 51(” + wf(uc?ll” C?k”],
Ky

3

describes the uncoupled modes, where k| is the in-plane wave
vector, a){?” is the real part of the dispersive frequency of
the monopolar mode obtained by the tight-binding approach
described in Appendix C, »'' and «'? the real parts of the

frequencies of the two lowest transverse m = 1 modes, wj the

real part of the surface mode from Eq. (2), and dkH , lng , 6kH , dk“
are the respective annihilation operators obeying bosonic
commutation rules. The second term describes instead the
coupling between surface and resonator modes

Hine =1 Y _[fo(@}, dw, +dJ ax,) + go(by, dw, + dj bi,)

Ky

+ho(él, dy, + di &), )

where fy, g0, and h are the coupling rates of the monopole and
lowest two transverse modes, respectively, with the quasires-
onant surface branch. The rotating-wave approximation has
been used, as the condition fo, go, ho <K @i, o', w2, oy,

is safely satisfied, with a coupling to frequency ratio of
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the order of 1072 [10]. The normal modes of the coupled
system H = Hy + Hine can be expressed in the form of linear
superpositions of the bare modes

Y liu = m;(n ax, + ”Lu bi, + 0{<|\ Gk, + pi;u i ®)

where the Hopfield coefficients mf(”, n{(“, of(u pf;" can be
found solving the eigenproblem
m,{(u

: n
[Mku - a)}(u] OEZH =0, (6)
I

piﬂ\

where My, is the Hopfield matrix

w?u 0 0 fo
0 o' 0
My, = 0 0 2 i((; ) @)

w
oo &  ho

and the eigenvalue wf(u is here to be interpreted as the real

part of the ith quasinormal mode frequency d){(u. Results for
array periods 6, 6.5, and 7 um, are shown in Figs. 4(a)-4(c),
where the symbols represent the real part of the complex quasi-
mode frequencies obtained through the numerical procedure
described in Appendix A, and the solid lines are obtained by
solving Eq. (6) and fitting for o', @', fy, g0, ho, and the o and
¢ parameters described in Appendix C. The plots are truncated
before the edge of the first Brillouin zone to avoid inclusion of
additional SPhP branches.

Excellent agreement is achieved between the two ap-
proaches. The peak Rabi frequency calculated is 15.84/cm,
representing ~2% of the bare mode energy. The calculated
frequencies for the highest energy polariton branch are
systematically lower in the fitted data; this is due to coupling of
the surface mode to higher energy, closely spaced resonances
near the asymptotic SPhP frequency which have been omitted
for simplicity from the Hopfield diagonalization. The Hopfield
coefficients weighting the bare components of the four coupled
modes are shown in Figs. 5(a)-5(d) for an array period of
6 um, from which it is clear that a substantial hybridization
between the different modes occurs.

As the polaritonic modes are linear superpositions of the
bare modes, their linewidths are expected to vary predictably
as sums of the linewidths of the bare modes weighted by the
square of the Hopfield coefficients [27]. The linewidth of the
ith coupled mode can thus be written in terms of the linewidths
of the bare modes I'y! ,F]’(ﬁ ,Fﬁ, and Ty and of the Hopfield
coefficients as

Fli(\l = |m{(H |2Fl’:\ + |n{(\l |2Fl[(ﬁ + |0{(H |2FI,(QH’ + |p£‘|\ |2F§H’ (8)

which can be fitted to the imaginary part of the modal fre-
quency calculated using the approach detailed in Appendix A.
Numerical results for array periods 6, 6.5, and 7 um are given
by the symbols in Fig. 6. The dispersive surface mode linewidth
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FIG. 4. Resonances of the pillar array coupled to the substrate as
a function of the in-plane wave vector for array periods (a) 6 um,
(b) 6.5 um, and (c) 7 um. The symbols represent the real parts
of the frequencies of the four coupled eigenmodes calculated using
quasimode theory as from Appendix A. The solid lines are instead
the fits obtained solving Eq. (6). Each plot is truncated to restrict
to the first Brillouin zone. Dotted lines represent the dispersions of
the bare mode. Panel (a) is overlaid on a reflectance map calculated
by finite element simulations to demonstrate the accuracy of the
numerical methods employed.

is taken from Eq. (2) and the known dielectric function. Fits are
carried out for the two transverse linewidths I, Ty’ and for
the monopolar linewidth. The monopole linewidth is dispersive
and fits to a phenomenological a + bk||* relationship, verified
by fitting to the dispersive monopole linewidth in the absence
of the substrate. The results are given by the solid lines in Fig. 6.
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Surprisingly good agreement between theory and numerics is
achieved despite the simplicity of the model.
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FIG. 6. Normal mode linewidths for array periods (a) 6 um,
(b) 6.5 um, and (c) 7 wm. Symbols indicate numerical values. Lines
indicate theoretical fits calculated utilizing Eq. (8). Each plot is
truncated to restrict to the first Brillouin zone.

V. CONCLUSION

We have investigated the morphology- and substrate-
dependant phonon polariton resonances of cylindrical SiC
nanoresonators by quasinormal modal analysis. Starting from
the resonances of a single, free-standing cylinder, and then
considering the impact of resonant coupling with surface
phonon polariton modes sustained by the substrate, we were
able to develop a complete and consistent understanding of
those resonators. The present work will allow the easy design
of novel samples with bespoke resonances, and it shines light
on the nature of the hybrid localized-surface resonances, which
will permit further investigations to explore different geometry
and sample materials.
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APPENDIX A: QUASINORMAL MODE THEORY

Under fairly general assumptions [17], the electromagnetic
fields radiated by an emitter in the resonator Y(r,w) =
(E(r,w),H(r,w)) can be linearly expanded onto a discrete set
of quasinormal modes Y;(r) = (E;(r),H;(r))

T =Y a@Ti), (A1)

where «;(w) is a complex coefficient describing the relative
contribution of the ith mode, and it has a pole at the complex
modal frequency &;. The quasinormal modes of the system are
found using an iterative procedure to fit to a Pade approximated
pole-like response function in the complex frequency plane,
the iterative procedure is carried out utilizing the COMSOL
Multiphysics FEM solver iteratively driven by a MATLAB code
adapted from that distributed by Bai et al. [22].
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On calculating the complex modal frequencies of the
system we can immediately calculate the quality factor

o - Reto )
m[a; |

as well as any other quantity of interest. In the neighborhood

of the complex frequency &; it is an excellent approximation

that the field scattered by the resonator is linearly proportional

to the field of the quasinormal mode. It is therefore possible to

calculate the mode volume through the equation

I(we(r,w))

J[E: - Heg5eP R — H, - SR

Vi = =
2¢eon(rgip)*[Ei(rapp) - u)?

’

(A3)

where the proportionality constants cancel from the numerator
and denominator and the fields are evaluated very close to the
complex resonant frequency. The emitter is located at rg;,. We
truncate the simulation domain utilizing perfectly matched
layers (PMLs) which convert outgoing radiative loss at the
simulation boundary to dissipative loss in the PML domain
providing a rigorous normalization [23].

The dispersive dielectric function of the matter is defined
by the fitting parameters of Pitman [28] for 3C-SiC to the
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FIG. 7. (a) Real part of the resonant frequency of the dipolar transverse mode as a function of diameter at # = 0.8 pum (circles) and as a
function of height at d = 0.8 um (squares). (b) Quality factor of the dipolar transverse mode as a function of diameter at # = 0.8 pum (circles)
and as a function of height at d = 0.8 um (squares). Inset shows the surface charge distribution p of the dipolar transverse mode for a cylinder
of h = 0.8 umand d = 1 um. (c) Purcell enhancement of the dipolar transverse mode as a function of diameter at h=0.8 pm (circles) and as
a function of height at d= 0.8 pum diameter (squares). (d) Mode volume of the dipolar transverse mode in units of the free space mode volume
Ag as a function of diameter at # = 0.8 um (circles) and as a function of height at d = 0.8 um (squares).
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functional form

2 o
() = €oo + — @Lo(€0 ~ €xo) (Ad)
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This was used over an interpolated dielectric function to
allow analytic continuation to the complex frequency plane.
In passing from the standard definition of the mode volume
to Eq. (A3), material dispersion is accounted for by taking
the derivatives of the system dielectric function and the
permeability. These derivatives are especially important in
polar dielectric systems where the inflection of the dielectric
function occurs entirely over the narrow bandwidth of the
Reststrahlen band. The ratio of the dielectric function €(w)
in Eq. (A4) and the derivative wde(w)/dw exceeds unity
throughout the Reststrahlen band, often lying between 10
and 100. This means that the contribution from the electric
field energy in the polar dielectric increases by one to two
orders of magnitude resulting in a substantial decrease in the
achievable field confinements compared to the rudimentary
Eq. (1), sometimes falling by up to two orders of magnitude.
Physically this result arises from energy lying in the potential
energy of the oscillating ions rather than in the electric field as
illustrated in Fig. 1(b) [3].

Finally the Purcell enhancement for the ith mode may be
calculated from the equation [18]

r 3 (o)’ ;
Fpoe =3 (20) pe| £,
F() 472\ n Vl

where I'(I'g) are the decay rates of a dipole in the presence of
the resonator (in free space), n is the refractive index at the
dipole location, X is the free space wavelength, Q; and V; are
as defined in the previous equations, and the real part of the
ratio Q;/V; is taken.

(A5)

APPENDIX B: TRANSVERSE DIPOLAR MODE

The resonant frequency of the dipolar transverse mode is
investigated over the two-dimensional parameter space in
Fig. 7(a). Squares correspond to a diameter scanats = 0.8 um
and circles to a height scan at d = 0.8 um. A red shift in
the resonant frequency with increased diameter is observed,
this occurs due to increased screening between charges at
each cylinder edge. This increased screening pushes the mode
frequency toward the transverse optical phonon frequency with
an accompanying drop in quality factor, shown in Fig. 7(b)
as observed for the monopolar mode in Fig. 1(b). In the
large height limit 4 > 1 wm the resonant frequency reaches an
asymptote as the dipoles at the end facets decouple; scanning
the height weakly affects the quality factor as the mode is
strongly localized at the cylinder end facets.

The surface charge distribution is illustrated on the inset in
Fig. 7(a). The Purcell enhancement of the transverse mode is
plotted in Fig. 7(c). Strong increases are observed in smaller
geometries, exceeding 10° as d — 0.1 um. These Purcell
enhancements correspond to ultrasmall mode volumes less
than 10’4)\8 as shown in Fig. 7(d).
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APPENDIX C: PERIODIC RESONATOR ARRAYS

To achieve experimentally measurable observables it is
necessary to measure arrays of resonators. In this paper we
are restricted to square arrays of resonators. The modes of
the coupled array is taken as a linear combination of the
individual resonators quasinormal modes E;(r) along a straight
line parallel to the illumination wave vector which is taken
parallel to an array principal axis. The dispersion of the mode
of the periodic system may be approximated by the solution
calculated in Ref. [29] for lossless systems in the tight binding
approximation as

wy, = ' (1 - TJ/ + (B1 — y1)cos (k||R)>, (C1)

where a){(” is the dispersive frequency, k| is the in-plane wave

vector, ' is the frequency of the isolated resonator mode, and
Ay, Bi, y1 are as defined in Ref. [29].

The strength of inter-resonator coupling is investigated for
square arrays of cylinders in vacuum and on a substrate.
The cylinders are of height 0.8 wm and diameter 1 wm. The
inter-resonator gap is varied to assess the coupling at the
k; = O point. Symbols in Fig. 8 represent the real frequencies
calculated from the pole fitting algorithm, lines represent fits
to the results assuming a simple 1/7° dipole-dipole coupling.
In each case the longitudinal mode and lowest lying transverse
mode are studied. The longitudinal mode blue shifts as the
inter-resonator gap is decreased; this is because the dipoles
are orientated in the same direction along the cylinder long
axis, repulsing each other. Conversely the transverse mode
red shifts as the inter-resonator gap is decreased, because

v i
g 900 :
= A i
)
5 A i
5 A
880 - A i
A
A A |
AN A A A
860 1 " 1 " 1 " 1 " 1 " 1 " 4 " A
| 2 3 4 5 6 7 8

Inter-resonator Gap (pm)

FIG. 8. Symbols represent the real resonant frequencies calcu-
lated from the pole fitting algorithm at the k; =0 point for a
square array of cylinders of height 0.8 um and diameter 1 pum.
Purple squares (green circles) represent the longitudinal (lowest
transverse) mode in free cylinders. Blue triangles (red inverted
triangles) represent the longitudinal (lowest transverse) mode for
cylinders in contact with an SiC substrate. The overlapping lines
represent a fit with a simple dipole-dipole coupling model.
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dipoles facing each other on neighboring cylinders are aligned
in opposite directions and they attract each other. Larger shifts
are observed for the resonators on substrate, this is because
the substrate is highly reflective in the Reststrahlen band and
more radiative emission from each resonator propagates to the
next. From Fig. 8 it is also clear that the monopolar mode
is much more dispersive than the transverse one. This is a

PHYSICAL REVIEW B 95, 035313 (2017)

general feature because the monopolar mode generates a flow
of charge between the pillars and the interpillar surfaces [8],
increasing the coupling. For this reason, in the fitting procedure
outlined in the text, we only considered the dispersion of the
monopolar mode, leading to the two fitting parameters o =
o™(1 — Ay/2)and ¢ = @™ (B1 — y1), With @™ the frequency
of the monopolar mode in the single cylinder.
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