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Intrinsic exciton-state mixing and nonlinear optical properties in transition
metal dichalcogenide monolayers
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Optical properties of transition metal dichalcogenides monolayers are controlled by Wannier-Mott excitons
forming a series of 1s,2s,2p, . . . hydrogen-like states. We develop the theory of the excited excitonic states
energy spectrum fine structure. We predict that p- and s-shell excitons are mixed due to the specific D3h point
symmetry of the transition metal dichalcogenide monolayers. Hence, both s- and p-shell excitons are active in
both single- and two-photon processes, providing an efficient mechanism of second harmonic generation. The
corresponding contribution to the nonlinear susceptibility is calculated.
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I. INTRODUCTION

Transition metal dichalcogenide monolayers (TMD MLs)
such as MoS2, MoSe2, WS2, WSe2, etc., are prototypical
two-dimensional (2D) semiconductors with direct band gaps
of the order of 2 eV at the Brillouin zone edges [1–5].
Optical properties of these systems are mainly governed by
the Coulomb correlated electron-hole pairs, excitons [6,7].
Due to relatively large effective masses of the electrons and
holes and rather weak screening of the Coulomb interaction
in 2D systems [8,9], excitons are highly stable in TMD MLs:
The predicted [10–14] and observed [15–20] exciton binding
energies amount to ∼500 meV. The oscillator strengths of
excitons in TMD MLs are also much higher as compared
with conventional 2D structures based, e.g., on GaAs [21–25].
Just like the direct Coulomb interaction, the electron-hole
exchange interaction in TMD MLs is also stronger than in
conventional semiconductors [26–29]. It controls the spin and
valley dynamics of excitons in a wide range of temperatures
[30]; see for review Ref. [31] and references therein.

Excitons also play a crucial role in nonlinear optical
properties, particularly, in two-photon absorption and second
harmonic generation in 2D TMD [16,18,20,32–34]. The
nonlinear susceptibility is enhanced in the vicinity of excitonic
resonances due to redistribution of the oscillator strength from
a continuum to bound electron-hole pair states [20,34,35]. It
is usually assumed that the s-shell exciton states are active in
single-photon processes, while p-shell excitons are optically
active in two-photon processes [36,37]. The energies of the
ground, 1s, and excited 2s,2p, . . . excitonic states strongly
differ from the hydrogenic series due to unusual screening in
TMD MLs [17]. Moreover, for the same reason, in TMD MLs
the “accidental” Coulomb degeneracy of excited excitonic
states is lifted. As a result, the fine structure of the excited, e.g.,
2p-exciton, states in TMD MLs has become topical nowadays,
in particular, in view of possible manifestations of the Berry
curvature effect [38,39].
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Here we demonstrate that the s- and p-shell excitonic states
are mixed in TMD monolayers. We present a detailed theory
of the fine structure of excited excitonic states in TMD MLs,
including the symmetry analysis and the microscopic theory.
The microscopic mechanisms of the mixing are uncovered
and a detailed model is developed within the k · p formalism.
The mixing is shown to be quite substantial; for example, the
coupling constant of 2s- and 2p-shell states is estimated to
be in the range from tenths to several meV. In particular, the
mixing makes s-shell states active in the two-photon absorp-
tion and also contributes to the second harmonic generation
in TMD MLs. The excitonic contributions to the two-photon
absorption and nonlinear susceptibility responsible for the
second harmonic generation are calculated.

II. SYMMETRY ANALYSIS

The exciton basic wave functions in semiconductors can
be recast as products of the two-particle envelope and Bloch
functions. For the exciton freely propagating in the TMD
ML plane with the center-of-mass wave vector K , the wave
function � reads [31]

�K ;ν,μ(ρe,ρh) = exp (i K R)�ν(ρ)Uμ(ρe,ρh). (1)

The exciton state is characterized by quantum numbers
ν = 1s,2s,2p, . . . denoting the hydrogen-like relative motion
states and μ enumerating the band states, �ν(ρ) is the
relative motion wave function, and Uμ(ρe,ρh) is the two-
particle Bloch function. Here ρe, ρh are the electron and
hole in-plane coordinates, respectively, ρ = ρe − ρh is the
relative coordinate, R = (meρe + mhρh)/(me + mh) is the
center-of-mass position vector, me (mh) are the electron (hole)
effective masses, and the normalization area is set to unity. In
what follows we focus on the states with K = 0 and restrict
ourselves with optically active Bloch states denoted as μ = ±1
(active in σ± polarizations, respectively) or, alternatively, as
μ = x,y, where x and y denote orientation of oscillating dipole
moment in the Cartesian coordinate frame with the in-plane
axes x, y and the normal to the TMD ML z. The “dark”
excitons with opposite spins of the electron and the hole which
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FIG. 1. Top view of atomic arrangement in a TMD ML. Yellow
circles show positions of the transition metal atoms, blue circles show
the projection of chalcogen atoms on the horizontal plane. Green lines
are guides showing nonequivalent triangles responsible for the overall
D3h point symmetry of the ML.

are weakly optically active in the polarization perpendicular
to the ML plane are disregarded [26,40,41].

The point symmetry of the TMD ML is D3h, in the chosen
coordinate frame z is the threefold rotation axis and y is (one of
three) twofold in-plane rotation axes, the horizontal reflection
plane σh ‖ (xy), one of three vertical reflection planes is σv ‖
(yz), and two remaining planes can be obtained from σv by
the rotation through the angles ±2π/3 around the z axis. The
set of axes and atomic arrangement is illustrated in Fig. 1. In
accordance with the general theory, the exciton eigenstates in
a TMD ML transform according to irreducible representations
of the D3h point group [36].

The symmetry of the exciton basic state is, in accor-
dance with Eq. (1), described by the product of irreducible
representations corresponding to the relative motion wave
function and Bloch function. Notably, the symmetry of the
two-dimensional envelope function �ν(ρ) can be either A′

1 or
�1 in the notations of Ref. [42] (the identical representation,
s shell) or E′ or �6 (the in-plane vector components,
p shells). In fact, all other 2D hydrogen-like states transform
by reducible representations that are combinations of those
two; for instance, d-shell excitonic states (with the angular
momentum z component being ±2) transform according to
E′, because in the D3h point symmetry the pair of coordinates
(x,y) transform exactly as the second-order combinations
(2xy,x2 − y2). The Bloch functionsUx,y of the optically active
states transform according to the two-dimensional irreducible
representation E′. Hence, accounting for the Bloch function,
the s-shell excitons transform according to the irreducible
two-dimensional representation

Ds = A′
1 × E′ = E′, (2)

while p-shell excitonic states transform according to the
reducible representation

Dp = E′ × E′ = A′
1 + A′

2 + E′. (3)

FIG. 2. Sketch of the 2s- and 2p-shell exciton fine structure. The
splitting between the 2p quadruplet and 2s doublet (accounting for
the Bloch functions orbital degeneracy) arises due to the specific
screening of the Coulomb interaction in TMD MLs. The splitting of
the 2p quadruplet arises in D3h point symmetry and the 2p (E′) states
are mixed with the 2s (E′) states. The order of lines is arbitrary and
the splittings are shown not to scale.

Equation (3) demonstrates that, accounting for the point
symmetry of the TMD ML, the p-shell quadruplet is split
into two nondegenerate sublevels (A′

1, A′
2) and the twofold

degenerate level E′ with the eigenfunctions (the normalization
constants are omitted for brevity)

A′
1 : �px

Ux + �py
Uy, (4a)

A′
2 : �px

Uy − �py
Ux, (4b)

E′(1) : �px
Uy + �py

Ux, (4c)

E′(2) : �px
Ux − �py

Uy. (4d)

The splitting between the 2p states transforming according
to E′ and (A′

1 + A′
2) was discussed in Refs. [37–39,43]. It

has been demonstrated on the basis of effective Hamiltonian
analysis [38,39] and microscopic calculations [43] that the
2p states with angular momentum components ±1, �p±1 ∝
�px

± i�py
are split within a given valley, while the time-

reversal symmetry implies the equality of �p±1 and �p∓1 states
in K+ and K− valleys, respectively. Equation (4) demonstrates
that the doublet (A′

1 + A′
2) is further split in TMD MLs. This

splitting between A′
1 and A′

2 as well as the mixing between
s-shell and p-shell states (see below) was not addressed.
The fine structure of p-shell exciton states is illustrated in
Fig. 2 for the particular example of 2p excitons. The basic
functions (4) can be represented in an alternative form in the
basis of states with a given angular momentum z component
±1 as �p+1U−1 ± �p−1U+1, where the top (bottom) sign
corresponds to an A′

1 (A′
2) irreducible representation, and as

�p+1U+1, �p−1U−1 for two basic functions of the E′ irreducible
representation. The latter functions formally correspond to the
total angular momentum component being ±2 and, since the
threefold rotation leaves third angular harmonics invariant,
these functions transform exactly as the states with the
angular momentum components ∓1, respectively. The states
A′

1 and A′
2 are, respectively, symmetrized and antisymmetrized

combinations of the basic functions with the total angular
momentum component being 0.

Moreover, it follows from Eqs. (2) and (3) that the s-shell
excitonic states and the combination of Eqs. (4c) and (4d) of
the p-shell states transform according to the same irreducible
representation E′ of the D3h point group. Therefore, the
mixing of these states is possible. In particular, the p-shell
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state combination �px
Ux − �py

Uy mixes with �sUy and the
�px

Uy + �py
Ux mixes with �sUx . In the basis of the states

with given components of the total angular momentum, the
mixing involves the pairs

�p+1U+1 ↔ �sU−1, �p−1U−1 ↔ �sU+1. (5)

This mixing makes p-shell states optically active. Note that
this mixing is absent in the axially symmetric approximation.
For given principal quantum numbers n and m of the s- and
p-shell states, the mixing is described by a single parameter
βnm. To illustrate this mixing in more detail we focus on
the states with the principal quantum numbers n = m = 2.
We note that for purely Coulomb potential the 2s and 2p

levels are degenerate. This so-called “accidental” degeneracy
is lifted for the effective electron-hole interaction potential in
the TMD ML, which accounts for specifics of the screening.
The spin-orbit interaction as well as nonparabolicity of the
single-particle energy spectrum can also contribute to the s-p
exciton splitting [37–39,44]. To the best of our knowledge this
expected splitting has not been measured so far. The effective
Hamiltonian of 2s/2p excitons can be represented by

H2X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E2s 0 0 0 β 0
0 E2s 0 0 0 β

0 0 E
(A′

1)
2p 0 0 0

0 0 0 E
(A′

2)
2p 0 0

β 0 0 0 EE′
2p 0

0 β 0 0 0 EE′
2p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Here the basic functions are chosen in the following order:
2s; E′(1), 2s; E′(2), 2p; A′

1, 2p; A′
2, 2p; E′(1) 2p; E′(2). The

diagonal energies E2s , E
A′

1
2p , etc., denote exciton energies

neglecting the s-p mixing (but, e.g., accounting for lifting
of the Coulomb degeneracy and p±1 states splitting within a
given valley), and β ≡ β22 is the mixing parameter. Obviously,
the effective Hamiltonians for the multiplets with different
principal quantum numbers have the same form with different
values of parameters; the mixing is symmetry allowed between
any n and m.

III. MICROSCOPIC ORIGIN OF s- p EXCITON MIXING

In this section we develop the microscopic model of the s-p
exciton mixing. The splitting of s-shell and p-shell excitonic
states for the given principal quantum number n has been
discussed in the literature in detail; see Ref. [37] and references
therein. The E′ doublet of p-shell states and the two states A′

1,
A′

2 are split as a result of the k · p interaction and the band
mixing [38,39]. This splitting as well as the splitting between
A′

1 and A′
2 p-shell excitons (studied for axially symmetric

quantum dots in Ref. [45]) is allowed in the axially symmetric
model and it does not rely on specific features of the TMD
symmetry and band structure. In contrast, the mixing of the
p- and s-shell states requires accounting for the symmetry
reduction from the axial down to the threefold symmetry. Note
that in TMD MLs the bright exciton Bloch function involves
the electron state in the K± valley and the hole state in the K∓
valley; see Ref. [31] and the text below for details. Therefore,
since the mixing involves the pairs, Eq. (5), where the electron
and hole in the initial and final states should swap valleys,

the coupling between p- and s-shell excitons is a combined
effect of the k · p mixing of the energy bands and the electron-
hole interaction. Both the short- and long-range parts of the
electron-hole exchange interaction may enable simultaneous
intervalley transfer of the electron and the hole [26,27]. Below
we calculate two contributions to the mixing parameter β =
βs + βl related to both exchange interaction mechanisms: the
short-range contribution, βs , in Sec. III B and the long-range
one, βl , in Sec. III C.

In what follows we present the model of the exciton mixing
based on the following steps. First, we introduce the envelope
functions �ν(ρ), which can be calculated within the effective
mass method as, e.g., in Ref. [17]. Second, we take into account
the first-order k · p mixing between the different bands, which
results in the mixing of the s- and p-shell excitonic states
within a given valley (Sec. III A). Third, the short- and long-
range parts of the exchange interaction are taken into account
to derive the mixing between the excitons in different valleys
(Secs. III B and III C). Hereafter we rely on the following
relation between characteristic energies in the system:

Eg 	 Eb 	 δl 	 Eexch. (7)

Here Eg is the free particle band gap, Eb is the exciton binding
energy, and δl is the energy splitting of the excitonic states
with the same principle quantum number and different angular
momentum components (e.g., 2s/2p splitting) related to band
nonparabolicity, spin-orbit interaction, and deviation of the
electron-hole interaction from the pure Coulomb 1/ρ law.
Eexch is the characteristic energy of the exchange electron-hole
interaction in the exciton. The condition (7) allows one to
introduce rigorously the Coulomb interaction in the first-order
k · p scheme. We note, however, that in TMD MLs the exciton
binding energy is just a fraction (typically 1/3 to 1/4) of the
band gap; therefore, in some cases, the higher-order effects
due to the Coulomb interaction should be taken into account.
These and other effects related to large exciton binding energy,
e.g., a collapse of the ground state [46], are beyond the scope
of this work.

A. Exciton wave function

We are interested in the excitons formed by the single-
particle Bloch states in the vicinity of the K± edges of the
Brillouin zone. Neglecting the Coulomb-interaction induced
band mixing, the two-particle Bloch functionUμ(ρe,ρh) can be
presented as a product of the electron and hole Bloch functions.
For the excitonic state active in σ+ polarization, μ = +1, the
electron Bloch state corresponds to the conduction band c in
the K+ valley and the hole state in the valence band v in the K−
valley, because the hole state is obtained from the empty state
in the valence band by the time-reversal operation [31,36].
Within the k · p model the Coulomb interaction induces the
admixture of the remote bands due to the real space localization
of the envelope function and, correspondingly, its spread in
the reciprocal, k-space. We resort to the standard k · p model
presented in Refs. [47–49] which adequately describes the
D3h point symmetry of the TMD ML and includes several
nearest bands in agreement with density functional theory
(DFT) calculations. Disregarding spin and neglecting the
spin-orbit interaction, we choose the basis functions for the
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bands c + 2,c,v,v − 3 (see Ref. [48] for notation) in the K+
valley as follows:

U (+)
c+2 = X − iY√

2
, U (+)

c = X + iY√
2

,

U (+)
v = S, U (+)

v−3 = X − iY√
2

. (8)

Here the subscript refers to the band, the superscript denotes
the valley, and the arguments are omitted for brevity; the
functions X and Y transform as the coordinates x and
y, respectively; the function S is invariant. One can see
that the valence band, v, is invariant under the point-group
transformations of the TMD ML, the conduction band, c,
transforms as the state with angular momentum z component
being equal to +1, and the remote valence and conduction
bands, v − 3 and c + 2, respectively, transform as states with
angular momentum component −1. The K− valley states
are related to the K+ states by the time-reversal operation,
therefore the orbital Bloch functions in K− valley can be
obtained by the complex conjugation of the functions in
Eq. (8). The effective Hamiltonian for the K+ valley in the
electron representation has the following form:

H+ =

⎛
⎜⎜⎜⎝

Ec+2 γ6k− γ4k+ 0

γ ∗
6 k+ Ec γ3k− γ5k+

γ ∗
4 k− γ ∗

3 k+ Ev γ2k−
0 γ ∗

5 k− γ ∗
2 k+ Ev−3

⎞
⎟⎟⎟⎠, (9)

and in the K− valley the Hamiltonian is obtained by the
substitution [48]

γi → γ ∗
i , k± → −k∓. (10)

Here γ2, . . . ,γ6 are the constants related to the interband matrix
elements of the momentum operator, and k± = kx ± iky are the
cyclic components of the wave vector operator k = −i∂/∂ρe

reckoned from the Brillouin zone edge. The diagonal terms
∝ k2 caused by the free-electron dispersion and distant band
contributions are disregarded. Note that if we choose all
orbitals S,X ,Y to be real, then all γ parameters are purely
imaginary. The Hamiltonian in the hole representation is
obtained from Eq. (9) by the time-reversal operation; see
Ref. [50] for details.

In the first order in the k · p mixing of the conduction and
valence bands with the c + 2 and v − 3 bands, we obtain the
wave functions of the excitons �0;ν;±1 in the form

�0;ν;±1 = �ν(ρ)U±(ρe,ρh) + [k̂∓�ν(ρ)]W∓(ρe,ρh) + · · · .

(11)
Here “· · · ” denotes omitted terms related to the k · p mixing
of the c and v bands as well as to the distant bands beyond the
c + 2, v − 3 (these terms are not important for the following),

[k̂∓�ν(ρ)] = −i(∂/∂x ∓ i∂/∂y)�ν(ρ),

the two-particle Bloch functions are

U±(ρe,ρh) = U (±)
c (ρe)Ũ (∓)

v (ρh), (12)

where the tilde on top means that the Bloch function is
taken in the hole representation [31,36,50], and the auxiliary
combinations of Bloch functions are derived within the

first-order perturbation theory as

W−(ρe,ρh) =
(

γ6U (+)
c+2(ρe)

Ec − Ec+2
+ γ ∗

5 U
(+)
v−3(ρe)

Ec − Ev−3

)
Ũ (−)

v (ρh)

+U (+)
c (ρe)

(
γ ∗

4 Ũ
(−)
c+2(ρh)

Ev − Ec+2
+ γ2Ũ (−)

v−3(ρh)

Ev − Ev−3

)
,

(13a)

W+(ρe,ρh) = −
(

γ ∗
6 U

(−)
c+2(ρe)

Ec − Ec+2
+ γ5U (−)

v−3(ρe)

Ec − Ev−3

)
Ũ (+)

v (ρh)

−U (−)
c (ρe)

(
γ4Ũ (+)

c+2(ρh)

Ev − Ec+2
+ γ ∗

2 Ũ
(+)
v−3(ρh)

Ev − Ev−3

)
.

(13b)

Note that the first lines of Eqs. (13a), (13b) result from
the k · p mixing of the electron states while the second
lines in Eqs. (13a), (13b) result from the k · p mixing of
the hole states; see Appendix for details of the derivation.
The functions W± transform, under operations from the D3h

point group, as functions with angular momentum components
±1. Equation (11) illustrates that the states with the angular
momentum components ±1 and ∓2 are indistinguishable in
D3h point symmetry. This expression already describes the
mixing of excitonic states with different parity, particularly, s-
and p-shell states within the same valley. Note that inclusion
of other bands, beyond those included in Eq. (8) for the K+
valley and similar ones for K−, yield similar additional terms
in auxiliary functions, Eq. (13). From a symmetry point of
view these contributions reduce to those taken into account
already. Inclusion of these disregarded bands would simply
renormalize the mixing constants evaluated below, but not
impact our results qualitatively. Moreover, the mixing between
the valence and conduction band produces the splitting of p+
and p− states within the same valley [38,39], while the mixing
of s and p excitons occurs due to the admixture of c + 2, v − 3
bands.

The mixing is schematically shown in Fig. 3 by the
example of the 2p+ exciton formed from the electron in the
K+ valley, �0;2p+;+1 [panel (a)], and the 2s exciton formed
from the electron in the K− valley, �0;2s;−1 [panel (b)].
The mixing of the conduction band with the c + 2 band is
shown and the modification of the envelopes �2p+ → �s and
�2s → �p+ described by Eq. (11) is sketched. We stress that
symmetry-wise the functions demonstrated in panels (a) and
(b) are equivalent.

B. Short-range interaction

Our ultimate goal is to describe the mixing of the �0;2p+,+1

and �0;2s,−1, where the electrons belong to different valleys.
Such mixing can be enabled by the electron-hole Coulomb
interaction. Particularly, its short range part is responsible
for the simultaneous intervalley transfer of individual charge
carriers forming an exciton. Indeed, as it follows from Eqs. (13)
the exciton Bloch functions combinations W± transform
exactly as U± exciton Bloch functions under all D3h point
group transformations. We present the effective Hamiltonian
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v

c

c+2
(b)

v

c

c+2
(a)

FIG. 3. Schematic illustration of the exciton-state mixing within
the same valley, Eqs. (11) and (13). We used here the hole
representation for the valence band states. (a) The admixture of the
s-shell state to 2p+ state in K+ in �0;2p+;+1. (b) The admixture of the
p+ state to the s-shell state in the K− valley, �0;2s;−1. Black circles
denote electron states, green circles denote hole states, and blue solid
and dashed lines denote the envelope functions: an “8”-like shape
for the p shell and elliptical for the s shell. Vertical arrows denote
the matrix elements of k · p Hamiltonians H± between c and c + 2
states.

of the short-range electron-hole interaction in the standard
form [36]:

Hsr = δ(ρe − ρh) E0a
2
0 V̂ , (14)

where the Dirac δ function, δ(ρe − ρh), acts on the smooth
envelopes, E0 and a0 are the “atomic” energy scale and the
lattice constant, respectively, and the dimensionless matrix
V̂ acts in the basis of two-particle Bloch functions. It has
nonzero elements between the exciton Bloch functions of
the same symmetry, e.g., 〈U (−)

c+2Ũ (+)
v |V̂ |U (+)

c Ũ (−)
v 〉. Also, taking

into account the spin and the spin-orbit interaction, the short-
range exchange between the electron and the hole enables
simultaneous flip-flop of the electron and hole spins giving
rise to the mixing of s-shell and p-shell excitons of the
A series.

The calculation shows that the s-p exciton mixing constant
β in the Hamiltonian (6) reads

βs = E0a
3
0�

∗
2s(0)�′

2p(0)Bs, (15)

where we introduced the notations

�′
2p(ρ) =

(
∂

∂x
− i

∂

∂y

)
�2p+ =

(
∂

∂x
+ i

∂

∂y

)
�2p− , (16)

and the dimensionless parameter

Bs = − 1

a0

(
γ6〈U (−)

c Ũ (+)
v |V̂ |U (+)

c+2Ũ (−)
v 〉

Ec − Ec+2

+ γ ∗
5 〈U (−)

c Ũ (+)
v |V̂ |U (+)

v−3Ũ (−)
v 〉

Ec − Ev−3

+γ ∗
4 〈U (−)

c Ũ (+)
v |V̂ |U (+)

c Ũ (−)
c+2〉

Ev − Ec+2

+ γ2〈U (−)
c Ũ (+)

v |V̂ |U (+)
c Ũ (−)

v−3〉
Ev − Ev−3

)
. (17)

Physically, the parameter Bs accounts for the trigonality on
the level of Bloch functions. For estimates we obtain from
Eq. (15) the short-range contribution to the mixing constant
βs ∼ E0(a0/aB)3Bs , where aB is the exciton Bohr radius. As
a result, for E0 = 1 eV, a0 = 3 Å, aB = 15 Å, we have βs in
the range from several tenths to several meV for Bs ranging
from 0.1 to 1. In the same way one may roughly estimate
that the short-range contribution to the s-shell exciton energy,
∼E0(a0/aB )2 is on the order of 10 meV, in reasonable
agreement with microscopic calculations [29,40].

C. Exciton oscillator strengths and the long-range
exchange interaction

As stated above, the s-p mixing can have a second
contribution due to the long-range exchange interaction. The s-
shell excitons formed with electrons in K± valley are optically
active in σ± polarizations [51,52]. These selection rules are
described by the dipole moment operator. The reduced matrix
elements of the light-matter interaction, −(d̂±e∓), where
d̂± = (d̂x ± id̂y)/

√
2, e± = (ex ± iey)/

√
2 are the circular

components of the dipole moment operator and of polarization
vector, respectively, can be recast as

〈�0;ns;+1| − (d̂+e−)|0〉 = − i
√

2e

Ens

�∗
ns(0)γ3e−, (18a)

〈�0;ns;−1| − (d̂−e+)|0〉 = + i
√

2e

Ens

�∗
ns(0)γ ∗

3 e+, (18b)

where Eν is excitation energy of νth exciton. It follows
from Eqs. (11) and (13) that the p±-shell excitons formed
with electrons in K± valley are also optically active, but
in the opposite, σ∓, polarizations. The matrix elements of
the dipole moment operator evaluated in the first-order in
k · p interaction with remote c + 2, v − 3 bands take the
form

〈�0;np+;+1| − (d̂−e+)|0〉 = − i
√

2e

Enp

[�′
np(0)]∗γ3A, (19a)

〈�0;np−;−1| − (d̂+e−)|0〉 = + i
√

2e

Enp

[�′
np(0)]∗γ ∗

3 A∗, (19b)
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where

A = 1

iγ3

(
γ4γ

∗
6

Ec+2 − Ec

+ γ4γ
∗
6

Ec+2 − Ev

− γ5γ
∗
2

Ev − Ev−3
− γ5γ

∗
2

Ec − Ev−3

)
. (20)

Note that inclusion of other distant energy bands would result
in additional contributions to the parameter A in Eq. (20).
Equations (19) can be conveniently derived taking into account
the interband matrix elements of the dipole moment operator
contain both k-independent and k-linear terms as

− (d · e)(+) = − i
√

2eγ3

Eg

(e− + iAk+e+), (21a)

−(d · e)(−) = + i
√

2eγ ∗
3

Eg

(e+ + iA∗k−e−), (21b)

where the superscript (±) denotes the valley where the
interband transition takes place.

Hence, for example, both the 2s-shell exciton formed with
the electron in the K+ valley and the 2p−-shell exciton
formed with the electron in the K− valley are active in the
same polarization. As a result, these state become mixed
via the electromagnetic field induced by the excitons. Mi-
croscopically, this mixing can be attributed to the long-range
exchange interaction between the electron and hole forming
the exciton [26,31]. Below we evaluate the mixing both in the
electrodynamical and quantum-mechanical approaches and
discuss its specifics as compared with the short-range exchange
contribution presented above.

For completeness, we note that the s-p exciton mixing
due to the short-range interaction, Eq. (15), also produces the
nonzero oscillator strength of p-shell excitons. The ratio of
the absolute values of matrix elements for excitation of 2p-
and 2s-excitons can be estimated as |βs/(E2p − E2s)| for the
short-range mechanism and as |A|/aB ∼ a0/aB for the k · p
interaction with remote bands. Both ratios are ∼0.1 depending
on the material and environment.

In the framework of the electrodynamical approach we
evaluate the interaction of the exciton with the induced
electromagnetic field. As before, we focus on 2s- and 2p-shell
states. It is instructive to consider the excitons propagating
with the wave vector K ‖ x in the TMD ML plane excited
by the plane wave with the frequency ω, the wave vector
components qx = K , qy = 0, qz =

√
(nω/c)2 − K2, and the

field components E0
x,y ; n is the effective refraction index of

the TMD ML. The exciton-induced field is found from the
Maxwell equations [26,31,36]:

Ex = E0
x + qz

q
iG

(
|γ3�2s |2

ω2s − ω − i�
+ |Aγ3�

′
2p|2

ω2p − ω − i�

)
Ex,

(22a)

Ey = E0
y + q

qz

iG

(
|γ3�2s |2

ω2s − ω − i�
+ |Aγ3�

′
2p|2

ω2p − ω − i�

)
Ey,

(22b)

where to shorten the notations the argument ρ = 0 is omitted,
ων = Eν/h̄, � is the nonradiative damping of the exciton (its
difference for the s- and p-shell excitons is disregarded),
q = nω/c, and G is the factor depending of the dielectric
surrounding of the TMD ML; it can be expressed via the
electromagnetic Greens function. Formally, the mechanical
exciton energies in Eqs. (22) should include the contributions
of the short-range exchange interaction which already mixes
the s- and p-shell states. The analysis of the interference of
the short- and long-range exchange mechanisms is beyond the
scope of the present paper. From the consistency requirement
of Eqs. (22) we obtain the following equations for the exciton
eigenfrequencies:

(ω2p − i� − λα�0,2p)(ω2s − i� − λα�0,2s) = −λ2
α�0,2s�0,2p,

(23)
where the subscript α = x,y, the factors λx = qz/q, λy =
q/qz, and we introduced the radiative decay rates of the 2s-
and 2p-shell excitons as

�0,2s = G|γ3�2s |2, �0,2p = G|γ3A�′
2p|2. (24)

Note that the parameter G is real and positive, and 0 <

�0,2p � �0,2s , the latter inequality holds because with the k · p
approach the |A|/aB � 1.

Equation (23) demonstrates that the coupling between
s- and p-shell excitons is “dissipative” for the states with
wave vectors within the light cone, K < nω/c. Formally
this is because for real qz the right-hand side of Eq. (23) is
negative and the coupling constants βl,α = iλαh̄

√
�0,2s�0,2p

are imaginary. Physically, the excitons with K < nω/c emit
propagating electromagnetic waves, which results in the
exciton damping; correspondingly, the mixing between the
2s and 2p excitons is also associated with their damping. This
is quite similar to the situation of the polarization-dependent
renormalization of the exciton radiative damping for the s-shell
exciton states within the light cone [26,31].

The situation is different for the excitonic states outside the
light cone where K > nω/c. Such excitons do not emit prop-
agating electromagnetic waves and s-p shell state coupling is
produced by the curlless (longitudinal) electromagnetic field.
Hence, the coupling constants βα are real and the maximal
coupling is achieved for the longitudinal exciton, α = x:

βl,x = ch̄K

nω
�0,2s

|A�′
2p|

|�2s | , βl,y � βl,x, (25)

where we assumed K 	 nω/c. Note that if the excitons are
localized as a whole by a shallow in-plane potential the mixing
constant can be estimated by means of Eq. (25) replacing K

by the inverse localization length [45].
Equation (25) can be also derived quantum mechanically

taking into account the long-range exchange interaction
between the electron and the hole. To that end, let us first
consider the interband scattering of two electrons from the
states ckc and vkv to the states vk′

v and ck′
c. The matrix element

of this process is given by

Vexch = 〈
U (+)

c,k′
c
(ρ2)U (−)

v,k′
v
(ρ1)

∣∣Vc

∣∣U (−)
c,kc

(ρ1)U (+)
v,kv

(ρ2)
〉
, (26)

where Vc = Vc(ρ1 − ρ2) is the Coulomb interaction between
the electrons. This matrix element differs from the matrix
element of the direct interaction by a substitution ρ1 ↔ ρ2
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in the initial or final state. The specifics of the TMD ML is that
the interacting electrons are in different valleys. In contrast to
Eqs. (14) and (17), here we are interested in the long-range
part of the Coulomb interaction, which allows us to rearrange
Eq. (26) as

Vexch = 〈
U (+)

c,k′
c

∣∣U (+)
v,kv

〉〈
U (−)

v,k′
v

∣∣U (−)
c,kc

〉
Vc(kc − k′

v)δkc−k′
v,k′

c−kv
,

(27)

where

Vc(K ) = 2πe2

n2K
, (28)

is the Fourier image of the Coulomb interaction in 2D. Note
that the screening of the long-range exchange interaction is
realized by the high-frequency dielectric constant [26]. The
overlap integrals of the Bloch functions are nonzero if the
k · p mixing of the conduction and valence bands is taken into
account in the first order, cf. Eq. (13):

〈
U (+)

c,k′
c

∣∣U (+)
v,kv

〉 = γ3

Eg

[
K− + iAK+

(k′
c + kv)+

2

]
, (29a)

〈
U (−)

v,k′
v

∣∣U (−)
c,kc

〉 = − γ3

Eg

[
K− + iAK+

(k′
c + kv)+

2

]
, (29b)

with K = k′
c − kv = kc − k′

v . Evaluation of Eq. (26) by virtue
of Eqs. (27) and (29) and transformation to the electron-hole
representation yields Eq. (25). Note that to obtain the general
expression for the 2s-2p exciton mixing for the whole range
of wave vectors including those within the light cone, one has
to take into account the retardation of the Coulomb interaction
[53]. To that end it is sufficient to use, instead of Eq. (28), the
general form of the retarded potential taken at z = 0,

Vc =
∫ ∞

−∞

dkz

2π

4πe2

n2
[
K2 + k2

z − (nω/c)2
]

= 2πe2

n2
√

K2 − (nω/c)2
.

For the states within the light cone, K → 0, the efficiency
of the dissipative s-p mixing can be estimated according
to Eqs. (23) and (24) as |βl| ∼ h̄�0s |A|/aB ∼ h̄�0sa0/aB ∼
0.1–1 meV depending on the particular material [54] and
dielectric environment, which is close to the estimates in
Sec. III B for the short-range mixing mechanism. The coupling
constant is enhanced by the factor K/(nω/c) > 1 for the states
outside of the light cone; see Eq. (25).

IV. NONLINEAR OPTICAL PROPERTIES OF
EXCITONS IN TMD MLs

In this section we address the consequences of the threefold
symmetry of the TMD ML, particularly, the intrinsic exciton
mixing on the excitonic nonlinear optical properties; namely,
in the two-photon absorption and in the second harmonic
generation. It is commonly accepted that the s-shell exciton
states are active in single-photon absorption, while p-shell
states are active in the two-photon processes [37]. The lack
of spatial inversion in TMD MLs enables single-photon

ground state ground state

(b)(a)

FIG. 4. Demonstration of the two-photon activity of the 1s

exciton due to k-linear terms in the interband dipole matrix element,
Eq. (21). In this mechanism the mixing of excitons is not required.
Panels (a) and (b) show the exciton states with the electron in the K−
and K+ valley, respectively.

excitation of p-shell excitons and two-photon excitation of s-
shell excitons. There are two mechanisms of the selection rules
modification: (i) k-linear terms in the interband dipole matrix
elements, Eqs. (21), and (ii) the mixing of excitonic states
of different parity described by the parameter β in Eq. (6).
As a result, each s-shell and p-shell exciton state become
simultaneously single- and two-photon active, resulting in
the second harmonic generation. Below we consider both
mechanisms of the nonlinear excitonic response.

A. Modification of the dipole matrix elements
due to k-linear terms

The physical origin of the two-photon excitation of s-
shell excitons is illustrated in Fig. 4 for the particular case
of the 1s exciton. In this two-stage process the single-
photon excitation of the 2p exciton takes place owing to
k-linear terms in Eq. (21). The second photon absorption
goes through the interexciton transition [37,55], which changes
the envelope function parity 〈ns|x ∓ iy|mp±〉 �= 0. Hence,
the s-shell excitonic states �0;ns;+1 are excited by two σ−
polarized photons, while the states �0;ns;−1 are excited by two
σ+ polarized photons.

Taking into account that the k-linear terms in the interband
matrix element result from the k · p interaction with remote
c + 2 and v − 3 bands, one can see that the two-photon
excitation of s-shell excitons takes place via two “allowed”
transitions, i.e., v → c + 2 and c + 2 → c or v → v − 3 and
v − 3 → c. Under the assumptions that the exciton binding en-
ergy Eb � Eg and that Ev − Ev−3,Ec+2 − Ec 	 Eg , the two-
photon transition matrix element can be calculated neglecting
the Coulomb interaction and averaging over the exciton wave
function afterwards. The composite matrix element of the
two-photon transition takes the form [56]

M (2) =
( e

ω

)2 ∑
m

(E · v̂)cm(E · v̂)mv

Em − Ev − h̄ω
, (30)

where the summation takes place over intermediate states
(m = c + 2 and v − 3 for the c → v transition), v̂ is the
velocity operator, and E is the complex amplitude of the
electric field in the incident wave. For the c → v two-photon
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transition at the K+ point one has from Eq. (30), neglecting
h̄ω = Eg/2 as compared with Ev − Ev−3,Ec+2 − Ec,

M (2,+) =
( e

ω

)2 iγ3

h̄
AE2

σ− , (31)

where Eσ∓ are the corresponding circular components of the
incident field and A is given by Eq. (20). In agreement with
the fact that both steps are “allowed,” the composite matrix
element, Eq. (31), is independent of the wave vector. As a
result, s-shell excitons with even envelope functions can be
excited in the two-photon process. Similarly to the case of
the direct interband transitions, the matrix element of the two-
photon excitation of the ns exciton state is given by Eq. (31)
multiplied by �∗

ns(0) (the normalization area is set to 1):

M (2,+)
ns =

( e

ω

)2 iγ3

h̄
A�∗

ns(0)E2
σ− . (32)

Analogously, one can derive the expression for the matrix
element M (2,−)

ns of the two-photon excitation by σ+ polarized
light; it differs from Eq. (32) by the replacement of Eσ− by
Eσ+ and the complex conjugation of the product iγ3A.

The possibility of the two-photon excitation of ns states
leads to the electro-dipole second harmonic generation [57].
Phenomenologically, the second harmonic generation in D3h

point symmetry is described by the relation [20,58–60]

P (2ω)
x = 2χ (2)ExEy, P (2ω)

y = χ (2)
(
E2

x − E2
y

)
, (33)

Here χ (2) is the only allowed component of the second-
order susceptibility at the normal incidence. For the sake of
simplicity we focus on the experimentally relevant case of the
second harmonic generation at the 1s exciton. Making use of
Eqs. (32) and (18) we arrive at the following expression for
the susceptibility χ (2) related with k-linear terms in the dipole
matrix elements:

χ
(2)
k,1s = −e3|�1s(0)|2

ω2ω1s

A

∣∣∣γ3

h̄

∣∣∣2 1

2ω − ω1s + i�1s

, (34)

where �1s is the damping of the 1s exciton state. Clearly, χ (2)
k,1s

has a resonance at ω = ω1s/2 where the double frequency
corresponds to the 1s exciton frequency, in which case the real
part of the denominator 2ω − ω1s + i�1s vanishes. Analogous
expressions for the second-order susceptibility can be derived
for ω in the vicinity of any s-shell excitonic resonance.

We note that the two-photon excitation of the p-shell
excitons does not require a lack of an inversion center and
takes place via a combination of the “allowed” interband
and “forbidden” intraband transitions [37,55,61]. Taking into
account that the intraband matrix elements of the velocity
operator read vcc = h̄k/mc, vvv = h̄k/mv , where mc,v are the
effective masses of the electron in the conduction and valence
bands, respectively, and 1/mc − 1/mv = 1/μ where μ is the
reduced electron-hole mass, we obtain from Eq. (30)

M̃ (2,+) =
( e

ω

)2 γ3

ωμ
k+E2

σ− . (35)

As compared with Eq. (31) for the two-step process involving
intra- and interband transitions, the effective two-photon
matrix element is linear in the wave vector k. That is why p-
shell excitons are optically active in the two-photon processes

ground state ground state

FIG. 5. Demonstration of the two-photon activity of the 1s

exciton due to the p-s exciton mixing, Eq. (6). Left and right sides
show the exciton states with the electron in the K− and K+ valley,
respectively. Dashed arrows denote the mixing of excitonic states of
different parity.

and the matrix element of the two-photon excitation of the mp

exciton state is given, in accordance with Eq. (35) by

M̃ (2,+)
mp =

( e

ω

)2 −iγ3

ωμ
[�′

mp(0)]∗E2
σ− . (36)

Due to the lack of an inversion symmetry, the p-shell
excitons are optically active in single photon processes. Taking
into account Eqs. (19) we have for the contribution to the
susceptibility related to the 2p exciton

χ
(2)
k,2p = e3h̄|�′

2p(0)|2
μω3ω2p

A∗
∣∣∣γ3

h̄

∣∣∣2 1

2ω − ω2p + i�2p

. (37)

It is worth stressing that the susceptibility is proportional to
the parameter A (A∗) responsible for the lack of the inversion
center in the TMD ML.

Let us compare the contributions Eq. (34) and (37) to the
nonlinear susceptibility at 1s and 2p excitons. Taking into
account that |�′

2p(0)|2 ∼ a−2
B |�1s(0)|2 and h̄2/μa2

B ∼ Eb we
observe that the ratio of the peak values of χ (2) can be estimated
as

χ
(2)
k,1s(ω = ω1s)

χ
(2)
k,2p(ω = ω2p)

∼ Eg

Eb

�2p

�1s

	 1. (38)

The dominance of the 1s exciton contribution is related to
two large factors, h̄ω/Eb ∼ Eg/Eb > 1 and �2p/�1s > 1,
because the broadening of the excited states exceeds by far
the broadening of the ground exciton state [20].

B. Mixing of excitons

The mixing of the s- and p-shell excitons described by
the Hamiltonian (6) gives rise to additional contributions to
the two-photon absorption by s-shell exciton states and to the
second-order susceptibility. These nonlinear contributions are
similar to those related to the magneto-Stark effect or electric-
field induced mixing of excitons in ZnO and GaAs [62,63].
Schematically, one of these contributions is illustrated in Fig. 5:
the p-shell exciton can be excited in a one-photon process
due to admixture ∝ β of the s-shell state; the absorption of
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the second photon transforms, as in the previous section, the
p-shell exciton to the s-shell one.

Microscopically, the response of the TMD ML taking into
account the exciton mixing can be derived similarly to the
two-photon activity of the 2p excitons, because the two-photon
excitation of the s-shell state takes place via a combination of
the interband and intraband processes. Taking into account that
the wave function of the s-shell state contains ∝ β admixture
of the p-shell states, the averaging of Eq. (35) produces
a nonzero result for s-shell excitons. Omitting the details
of derivation we present the final result for the 1s exciton
contribution to χ (2) related to the 1s-mp exciton mixing:

χ
(2)
β,1s = −e3h̄�1s(0)

μω3ω1s

∣∣∣γ3

h̄

∣∣∣2 ∑
m

β1m[�′
mp(0)]∗

E1s − Emp

× 1

2ω − ω1s + i�1s

. (39)

The resonance in Eq. (39) takes place, as in Eq. (34), at
ω = ω1s/2 when the second harmonic is resonant with the
1s exciton state. Similar expressions can be derived for
the contributions to the nonlinear susceptibility χ (2) in the
vicinity of other excitonic resonances. For instance, the second
harmonic generation at p-shell excitons is related to the
standard mechanism of the two-photon excitation of the p

shell, Eq. (36), and single-photon emission from the p exciton
due to ∝ β admixture of the s-shell state to the p-shell state.
Here lack of the inversion center is accounted for by the s-p
exciton mixing constants β1m.

C. Discussion and comparison with experiment

A giant enhancement of the second harmonic generation at
exciton resonances in 1 ML WSe2 flakes has been observed
in Ref. [20]. The monolayer samples were obtained by
micromechanical cleavage of bulk WSe2 crystal on 90 nm
SiO2 on a Si substrate. For the two-photon excitation we
use picosecond light pulses, generated by a tunable optical
parametric oscillator synchronously pumped by a mode-
locked Ti:sapphire laser. The second harmonic emission was
collected in reflection geometry; see Ref. [20] for details.
Figure 6 demonstrates the intensity of the second harmonic
signal as a function of the doubled laser excitation energy. A
strong peak at the 1s exciton is clearly seen as well as a less
prominent feature at the 2s/2p excitons. The peaks at exciton
resonances in the second-order susceptibility are in agreement
with the developed model.

The dominant second harmonic response at the 1s exciton
state can be explained within the developed model accounting
for the modification of the matrix elements, Sec. IV A. The
estimates by Eqs. (34) and (38) show that the 1s exciton
should dominate in the second harmonic emission. Compared
with all excited states, the ground exciton has much smaller
broadening; moreover, the 2s state has much smaller oscillator
strength |�2s(0)/�1s(0)|2 � 1 already in the hydrogenic
model, while, as compared with 2p exciton, the enhancement
is caused by the factor Eb/Eg . To provide more quantitative
comparison we fitted the spectra of the second harmonic
generation at 1s and 2s/2p excitons by Gaussian functions
(see black and green profiles in Fig. 6) and extracted the ratio

FIG. 6. The second harmonics generation spectrum at T = 4 K
as function of two-photon energy, 2h̄ω. Narrow peaks represent the
emission intensity measured at a given laser frequency. Solid black
and green lines represent the fits with Gauss functions to the 1s and
2s/2p transition profiles. The inset shows the the schematics of the
experiment. Adapted from Ref. [20].

of the integral second harmonic intensities at 1s and 2s/2p

states to be about 10. We abstain from more detailed fitting
of the experimental data with our model due to uncertainty of
the sample parameters and difficulties with evaluation of the
overall emission intensity in such samples, cf. [64]. This is in
reasonable agreement with the first factor in Eq. (38), Eg/Eb ∼
5 in WSe2. It demonstrates that the mechanism related to the
modification of selection rules, Eqs. (34) and (37), already
reproduces all the main features of the experiment.

Finally, let us emphasize that the interplay of electric-
and magnetic-dipole transitions may also result in the second
harmonic generation due to simultaneous action of electric
and magnetic fields of the light wave (the so-called EB

mechanism) as suggested in Ref. [20]. The EB mechanism
provides a nonlinear contribution with the same polarization
dependence as Eq. (33), which is also enhanced at excitonic
resonances. Although many parameters still need to be
determined for a meaningful quantitative comparison, we
expect at this stage that the EB mechanism is substantially
weaker in TMD MLs as compared to the “intrinsic”
mechanism suggested here. Indeed, in order to activate
the magnetic-dipole transitions at the normal incidence of
radiation, the in-plane magnetic field component should play
a role. However, its effect is strongly diminished in TMD MLs
due to their small thickness. Here the magnetic field has to
mix the states related to different bands; this effect is strongly
suppressed in atomically thin systems; see, e.g., Ref. [59] for
discussion of a similar situation realized in graphene.

V. CONCLUSION

In the present paper we have developed the theory of the ex-
citonic states fine structure in transition metal dichalcogenides
monolayers. We have demonstrated that the lack of inversion
center in the TMD MLs and their specific threefold rotation
symmetry give rise to the mixing of the exciton states with
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different parity. In particular, s-shell and p-shell excitonic
states whose two-dimensional envelope functions are char-
acterized by the angular momentum components 0 and ±1 are
coupled in TMD MLs. The microscopic theory of the mixing
is developed with the k · p formalism. We have identified the
origins of the mixing related with the long- and short-range
parts of the electron-hole exchange interaction. The estimates
show that the coupling constant for the nearest 2s-2p or 1s-2p

states may be in the range of tenths to units of meV.
The manifestations of the exciton mixing in the linear and,

especially, nonlinear optical properties are studied. We have
demonstrated that in TMD MLs s-shell excitons are allowed
not only in single-photon but also in two-photon processes.
Similarly, p-shell excitons are active in single-photon absorp-
tion in addition to the two-photon absorption. We have shown
that, besides exciton mixing, the lack of the inversion center in
TMD MLs results in the modification of optical selection rules,
which also provides simultaneous activity of s- and p-shell
excitons in one- and two-photon processes. These mechanisms
give rise to the effective generation of the crystallographic
second harmonics in the electro-dipole approximation. The
mechanism related to the modification of the selection rules
provides a dominant second harmonic response at the 1s

exciton resonance, in qualitative agreement with experiment.
The precise evaluation of the exciton oscillator strengths

and the nonlinear susceptibility by the combination of the
k · p model developed here and the atomistic calculations as
well as the studies of the interplay of the exciton mixing in
the absence and in the presence of an external electric field are
tasks for future studies.
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APPENDIX: DERIVATION OF EQS. (11) AND (13)

We start from the electron-hole pair with the wave vectors
ke and kh. The Bloch function of this pair (without the
Coulomb interaction) reads

�ke,kh
(ρe,ρh) = eikeρe+ikhρhUc,ke

(ρe)Ũv,kh
(ρh). (A1)

Here ρe and ρh are the in-plane position vectors of the electron
and the hole,Uc,ke

(ρe) [ Ũv,kh
(ρh)] are the single-particle Bloch

functions for the conduction band electron (valence band hole).
The normalization area is set to unity. In the first order in the
k · p mixing we have for the Bloch functions

Uc,ke
(ρe) = Uc,ke=0(ρe) +

∑
m

Um,0(ρe)
h̄
m0

〈m|ke · p|c〉
Ec − Em

,

(A2)

Ũv,kh
(ρe) = Ũv,kh=0(ρe) +

∑
n

Ũn,0(ρe)
h̄
m0

〈n|kh · p|c〉
Ec − En

.

(A3)

The wave vectors are reckoned from the corresponding K point
of the Brillouin zone; e.g., ke = 0 corresponds to K+ valley
for the electron and kh = 0 corresponds to the K− valley for
the hole in the electron-hole pair excited by the σ+ light.

Now we account for the excitonic effect. We assume that
the exciton binding energy is small compared to the bandgaps
and include the Coulomb correlation in the form

�exc(ρe,ρh) =
∑
ke,kh

Cke,kh
eikeρe+ikhρhUc,ke

(ρe)Ũv,kh
(ρh). (A4)

Here Cke,kh
is the Fourier transform of the exciton envelope

function calculated within the effective mass approach,

exp (i K R)�(ρe − ρh) =
∑
ke,kh

Cke,kh
eikeρe+ikhρh . (A5)

Hence, in the first order in the k · p mixing one has

�exc(ρe,ρh)

=
∑
ke,kh

Cke,kh
eikeρe+ikhρhUc,0(ρe)Ũv,0(ρh)

+ δ�e(ρe)Ũv,0(ρh) + δ�h(ρh)Uc,0(ρe). (A6)

Making use of Eq. (A2), we have for δ�e

δ�e(ρe) =
∑
ke,kh

Cke,kh
eikeρe+ikhρh

∑
m

Um,0(ρe)

×
h̄
m0

〈m|ke · p|c〉
Ec − Em

=
∑
ke,kh

Cke,kh
eikeρe+ikhρhk

(e)
−

×
[

γ6U (e)
c+2(ρe)

Ec − Ec+2
+ γ ∗

5 U
(e)
v−3(ρe)

Ec − Ev−3

]
. (A7)

In the latter equality we have considered the particular case
of the electron in the K+ valley and taken into account two
admixed bands, c + 2 and v − 3, where

h̄

m0
〈c + 2|ke · p|c〉 = γ6k

(e)
− ,

h̄

m0
〈v − 3|ke · p|c〉 = γ ∗

5 k
(e)
− .

To sum over ke,kh in Eq. (A7) we consider the exciton
with the center-of-mass wave vector K = 0 and make use of
Eq. (A5) to obtain∑

ke,kh

Cke,kh
eikeρe+ikhρhk

(e)
−

=
∑
ke,kh

Cke,kh
(−i)

(
∂

∂xe

− i
∂

∂ye

)
eikeρe+ikhρh

= −i

(
∂

∂xe

− i
∂

∂ye

)
�(ρe − ρh) = k̂−�(ρ). (A8)

Combining Eqs. (A6), (A7), and (A8) we obtain Eq. (10) of
the paper with the function W− in the form

W− =
(

γ6U (+)
c+2(ρe)

Ec − Ec+2
+ γ ∗

5 U
(+)
v−3(ρe)

Ec − Ev−3

)
Ũ (−)

v (ρh).

This is the first line of Eq. (13a). The second line of Eq. (13a)
can be derived in the same way from δ�h in Eq. (A6).
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