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We investigate patterns of critical current as a function of perpendicular and in-plane magnetic fields in
superconductor-semiconductor-superconductor (SNS) junctions based on InAs/InGaAs heterostructures with an
epitaxial Al layer. This material system is of interest due to its exceptionally good superconductor-semiconductor
coupling, as well as large spin-orbit interaction and g factor in the semiconductor. Thin epitaxial Al allows the
application of large in-plane field without destroying superconductivity. For fields perpendicular to the junction,
flux focusing results in aperiodic node spacings in the pattern of critical currents known as Fraunhofer patterns
by analogy to the related interference effect in optics. Adding an in-plane field yields two further anomalies in
the pattern. First, higher-order nodes are systematically strengthened, indicating current flow along the edges of
the device, as a result of confinement of Andreev states driven by an induced flux dipole; second, asymmetries
in the interference appear that depend on the field direction and magnitude. A model is presented, showing good
agreement with experiment, elucidating the roles of flux focusing, Zeeman and spin-orbit coupling, and disorder
in producing these effects.
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I. INTRODUCTION

Materials with strong spin-orbit interaction (SOI) and large
Zeeman splitting coupled to superconductors have attracted a
great deal of attention in recent years, largely due to the pos-
sibility of accessing topological states of matter [1,2]. Despite
considerable progress on such systems using semiconducting
nanowires [3–6], work on two-dimensional platforms, more
amenable for quantum computation schemes [7], has been
limited.

The strong SOI and large Landé g factor in InAs [8–10]
in combination with its natural surface accumulation layer,
facilitating coupling to superconductors, make the InAs two-
dimensional electron gas (2DEG) a favorable candidate for
creating superconductor-semiconductor hybrids [11–13]. Very
recently, two-dimensional epitaxial Al/InAs heterostructures
have been realized, demonstrating an exceptionally transparent
superconductor-semiconductor interface, resulting in a near
unity Andreev reflection probability [14–16].

Despite showing great promise, many properties of these
two-dimensional epitaxial structures are not yet well under-
stood. For instance, basic quantities such as the strength of the
SOI in the hybrid system or the orientation of the resulting
effective spin-orbit field are not known. Also, the detailed
interplay of superconductivity, SOI, and Zeeman interaction
has, to large extent, not been experimentally investigated
in two-dimensional systems. Recent investigations of this
interplay in the two-dimensional topological insulator HgTe
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have shown promising results stimulating further studies in
more conventional material systems [17]. Further, since most
envisioned applications of these systems require considerable
in-plane magnetic fields, it is important to understand the de-
tailed behavior of the heterostructure under applied magnetic
fields with different orientations.

Superconductor-normal-superconductor (SNS) junctions
form a well-established platform to study the properties
of superconducting hybrid structures. SNS junctions based
on semiconductors with strong SOI have been proposed to
study the topological phase transition [18–21], but could
also potentially be used to quantify the strength of SOI
in the semiconductor [22]. For instance, theoretical models
have been developed to understand how the detailed SNS
current-phase relation depends on SOI in two-dimensional
junctions [23], as well as in single-channel junctions [24],
quantum point contacts [25,26], and nanowires [27].

Many details of the physics occurring in the junction are
also encoded in the critical current. A measurement of the
critical current as a function of the out-of-plane magnetic
field Bz is paradigmatic in the study of SNS junctions. For
increasing Bz, the winding of the superconducting phase by
the enclosed flux leads to a characteristic modulation of the
critical current Ic. For a rectangular junction with uniform
current density,

Ic(Bz) = I (0)
c

∣∣∣∣ sin(πBzLW/�0)

(πBzLW/�0)

∣∣∣∣, (1)

reminiscent of a single-slit Fraunhofer interference pattern
in optics [28]. Here, L and W are the length and width of
the normal region, respectively, I (0)

c is the zero-field critical
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current, and �0 = h/2e is the flux quantum. This behavior has
been observed in a wide variety of systems [29,30] including
2DEGs with strong SOI [31]. Deviations from this Fraunhofer
form can yield information about the local magnetic field
profile [32] as well as the supercurrent density in the junction
[33,34]. Recently, such interference mapping has been used
to probe edge states arising in two-dimensional topological
insulators [35–37] and graphene [38].

In this paper, we present an experimental and theoretical
study of the magnetic field dependence of the interference
pattern of critical currents in epitaxial Al/InAs/Al junctions,
with both perpendicular field as well as a separately controlled
in-plane field. We identify several interesting effects: (i) in
a purely perpendicular field, we observe a deviation from
a simple Fraunhofer pattern [Eq. (1)], which we interpret
as arising from flux focusing due to the Meissner effect in
the epitaxial Al leads. (ii) The interference pattern changes
dramatically when an in-plane field is applied. A crossover
is observed in the perpendicular-field interference pattern
with increasing in-plane field, from a Fraunhofer-like pattern
with rapidly decreasing critical currents with node index,
toward one resembling that of a superconducting quantum
interference device (SQUID) with critical currents that depend
only weakly on node index. We interpret this transition as
again resulting from flux focusing: When the in-plane flux
is excluded from the leads, an effective out-of-plane flux
dipole appears in the junction region. This dipole dephases
contributions to the supercurrent in the center of the junction,
resulting in coherent transport only near the edges of the
sample. (iii) Application of an in-plane field also induces
striking asymmetries (upon reversing perpendicular field) in
the interference pattern that depend on the magnitude and
direction of the in-plane field, but also vary strongly from
lobe to lobe and from sample to sample. Based on these
observations, we conclude that flux focusing plays a key role in
planar epitaxial devices, particularly in the presence of an in-
plane field. Indeed, field modulations due to flux focusing may
prove useful, for instance providing magnetic confinement of
Andreev states. In the present devices, observation (iii)—
asymmetries in the interference pattern—is dominated by
disorder effects, masking related effects due to spin-orbit and
Zeeman coupling.

The paper is organized as follows. Section II provides
details on device fabrication and magnetotransport measure-
ments. Section III describes the behavior of the junction with
a purely perpendicular magnetic field. Section IV describes
junction behavior when the applied field is purely in-plane.
Section V reports effects of combined perpendicular and
in-plane fields. Conclusions and open questions are discussed
in Sec. VI.

II. METHODS

The wafer structure, starting at the top surface, consists
of 10 nm Al, 7 nm InAs, 4 nm In0.81Ga0.19As, grown on
an InAlAs buffer on an InP substrate by molecular beam
epitaxy (see Ref. [39] for more details). The in situ epitaxial
growth of the Al layer contrasts with previous approaches
to 2D semiconductor-superconductor systems, where the
superconductor was deposited in a subsequent processing step

[36,37,40,41]. The clean interface provides high transparency
[14,16] and a hard induced gap in the semiconductor [15].

Devices are patterned with conventional electron-beam
lithography. In the first processing step, mesas are defined
using a wet etch (220:3:3 H2O : H3PO4 : H2O2), followed
by selective etching of Al using Transene type-D to form
the junction. Atomic layer deposition is then used to form
an Al2O3 (40 nm) dielectric, followed by electron-beam
deposition of a Ti/Au (5/250 nm) metallic top gate. Ohmic
contact is provided directly by the epitaxial Al, which is
electrically contacted by wire bonding.

Measurements were carried out in a dilution refrigerator
at base temperature ∼30 mK applying a dc+ac current bias
and measuring a four-terminal voltage V with standard lock-in
techniques (below 100 Hz), using an ac excitation of 4 nA or
less.

Characterization of the epitaxial Al film yielded a su-
perconducting transition temperature of Tc = 1.5 K, and
collapse of superconductivity at an out-of-plane critical field
Bz,c ∼ 30 mT, and an in-plane critical field Br,c ∼ 1.6 T
(see Ref. [39]). Separate transport measurements of the
InAs quantum well (QW) with Al removed demonstrated
an electron density of ne = 3.8 × 1016 m−2 and mobility
μ = 0.43 m2 V−1 s−1 at zero gate voltage, yielding a mean
free path le = 140 nm. In this density regime, two QW
subbands are occupied, as determined by magnetotransport
measurements. Upon partially depleting the 2DEG with the
top gate, the single subband limit is reached at gate voltage
Vg < −2.0 V with a mobility peak μ = 0.7 m2 V−1 s−1 for
ne = 1.9 × 1016 m−2. The data presented in Secs. III to V were
all obtained with Vg = 0. Occupation of the second subband
appears to play only a minor role in all device characteristics
(see Appendix B). Measurements on similar QWs have
demonstrated large SOI, characterized by a spin-orbit length
lso ∼ 45 nm [14]. The superconducting coherence length is
estimated as ξ = �vF/�

∗ = 1.3 μm,1 with vF the Fermi
velocity and the induced superconducting gap �∗ ∼ 180 μeV
as determined from tunneling measurements (see Ref. [15] and
Supplemental Material therein).

Measurements were performed on six SNS devices, all of
which showed qualitatively similar behavior (see Ref. [39]).
The data in Sec. III through Sec. V A were characteristic of
all devices. Data similar to those presented in Sec. V B were
obtained from several samples but with broad quantitative
variation, as discussed below. We focus on data from one
SNS junction with contact separation, L = 450 nm, and lateral
width, W = 1.5 μm in the regime le < L < ξ [see Fig. 1(a)].
The junction is oriented such that the current flows along the
[011] orientation of the underlying crystal structure.

Throughout, we define the x direction as in the plane of the
electron gas and parallel to the average current flow, and the y

direction as in plane and perpendicular to average current flow.
The inset in Fig. 1(a) shows the corresponding components of
the applied magnetic field B. To avoid effects of hysteresis as
a function of I [42] and Bz [43], measurements as in Fig. 1(c)
were obtained by merging the four quadrants separated by

1An effective mass of meff = 0.05me is estimated from k · p
calculations.
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FIG. 1. (a) Device and measurement schematic illustrating the
extended superconducting Al banks (gray), InAs quantum well
(yellow), and InGaAs barrier (green). The top gate (orange) is
shown suspended above the junction, for clarity we have omitted the
intervening ALD layer. L and W denote the junction length and width
respectively. Lc indicates the physical aluminum contact length. The
coordinate system is illustrated in the inset. (b) Local magnetic-field
focusing parameter γ as a function of position x for three different
ratios β = Bz/Bf . On the upper horizontal axis we highlight 2LAl,
the contact length entering the model. (c) Differential resistance R,
as a function of bias current I and perpendicular magnetic field Bz.
(d) Total magnetic field enhancement in the junction � as a function
of Bz, calculated by extraction of the nodes visible in (c,e) (markers),
and a fit using Eqs. (3) to (6) (solid line). (e) Critical current Ic, plotted
logarithmically to highlight periodicity, extracted from (c) (markers).
Overlaid are the expectation of Eq. (1) (green) and the modified form
taking into account field enhancement due to flux focusing (red).

white dashed lines, each taken separately by sweeping current
and field away from zero.

III. PERPENDICULAR MAGNETIC FIELD

Sweeping the bias current I over a range of perpendicular
magnetic fields Bz while measuring the differential resistance
R results in the interference pattern shown in Fig. 1(c). This
pattern deviates from the expected Fraunhofer form predicted
by Eq. (1). For instance, from Eq. (1), we expect equally
spaced nodes of the critical current, at values of perpendicular
field Bz = n�0/(WL), where integer numbers of flux quanta
penetrate the semiconductor region. Experimentally, we find a
deviation from this uniform node spacing, as can be seen from
the vertical dashed lines in Fig. 1(c).

In order to investigate this variable node spacing in more
detail, we plot in Fig. 1(e) the critical current extracted from
Fig. 1(c) as a function of Bz (markers). For reference, we
also show the expected Fraunhofer pattern (green) using the
lithographic device area, for which �0/(WL) = 3.1 mT. From
the data, we find a central lobe half-width of 0.97 mT and

a reduced spacing of the subsequent side-lobes, gradually
increasing and reaching 1.9 mT for the fifth side-lobe.2

To quantify the deviation from the expected uniform
spacing, we introduce a dimensionless factor �, the ratio of
the expected node position to the observed node position,

�
(
B(n)

z

) = n�0

B
(n)
z LW

, (2)

where B(n)
z is the perpendicular magnetic field at node number

n. A regular Fraunhofer pattern has � = 1 everywhere, as
indicated in Fig. 1(d). At low fields, we find � ∼ 3. As Bz

increases, � decreases, approaching unity at high fields. The
black dots in Fig. 1(d) show the extracted � based on the data
of Fig. 1(c).

The deviation from Eq. (1) leading to � > 1 can be
understood as resulting from field-dependent flux focusing
from the superconducting contacts. The qualitative behavior
of � is consistent with the superconducting leads passing from
a Meissner state at low field, through a mixed state, towards
a fully flux-penetrated state above 10 mT. In the Meissner
state, the contacts completely expel flux, causing the field in
the junction region to be enhanced. When the magnetic field
is increased, the thin aluminum banks are slowly pushed into
a mixed state as they are penetrated by field lines, leading to a
smaller field enhancement in the junction and correspondingly
a decreasing �. At high field, the banks are presumably fully
penetrated by the incident flux, approaching a negligible field
enhancement and � ≈ 1.

Previous studies using thick niobium contacts also found
large field enhancements in SNS junctions [44,45]. In those
studies, however, the leads remained in a full Meissner regime
for the perpendicular field range studied, resulting in a constant
field enhancement. Because the Al electrodes in the present
system are operated close to their critical field Bc, the degree
of flux focusing depends on field.

To examine the flux-focusing picture more quantitatively,
we model the field profile inside the junction following
Ref. [46] (see also Ref. [43]). The effective field near a single
thin superconducting strip of length 2LAl and infinite width
[see Fig. 1(b)], subject to a perpendicular applied field, is
given by

Beff(x̃) = Bf ln

⎛
⎝ |x̃|

√
L2

Al − a2 + LAl

√
x̃2 − a2

a

√∣∣x̃2 − L2
Al

∣∣
⎞
⎠, (3)

for |x̃| > a and Beff(x̃) = 0 for |x̃| � a. The coordinate x̃ is
the in-plane coordinate perpendicular to the edges of the film,
with x̃ = 0 corresponding to the center of the film. The length
2a corresponds to the extent of a region centered at x̃ = 0
where the field is fully expelled due to Meissner screening;
this length is given by a = LAl/ cosh(Bz/Bf ), with Bz the

2The deviation at high field between our result and the expectation is
presumably due to an underestimation of the junction area due to the
neglect of the finite penetration depth in the leads [63]. Utilizing an
effective length Leff = L + 2λL (with λL estimated in Appendix A)
yields an expected node spacing of 1.7 mT.
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applied perpendicular magnetic field3 and Bf a characteristic
field scale roughly corresponding to the field of first vortex
penetration. To account for the finite width of our junction, we
argue that 2LAl in this case corresponds not to the physical
contact length Lc [see Fig. 1(a)], on the order of 10 μm, but to
an effective length over which flux is focused into the junction.
Flux lines further away than ∼W from the junction edge are
more likely to be expelled towards the sides rather than into
the junction region. We thus use W as a cutoff for the effective
contact length and set LAl = W .

To account for both contacts in our SNS geometry, we
approximate the total effective perpendicular field profile as

Btot(x) = Beff(LAl + L/2 − |x|), (4)

expressed in terms of the x coordinate with x = 0 correspond-
ing to the center of the SNS junction. We thus make the
simplification that the focusing in the junction is dominated by
the left (right) contact for negative (positive) x. We then use
Eqs. (3) and (4) to define a local field enhancement parameter

γ (β,x) = Btot(x)/Bz, (5)

which is a function of the ratio β = Bz/Bf . In Fig. 1(b), we
plot γ for three different β, illustrating the inhomogeneous
field profile induced by the superconducting leads. The dashed
line in Fig. 1(b) highlights the expectation in the absence
of focusing (γ = 1). Near zero applied field (blue line), the
local enhancement peaks strongly close to the superconducting
banks. Inside of the superconducting contacts, however, γ

abruptly falls to zero. When the field is increased (cyan and
gold lines) we see a gradual smoothing of the enhancement
profile as more of the flux penetrates the superconducting
banks.

Integrating Eq. (5) over the junction length allows us to
calculate the total field enhancement,

�(Bz) = 1

L

∫ L/2

−L/2
γ (β,x) dx. (6)

We fit the data using Eq. (6) with Bf as the only free
parameter. The resulting fit is shown as the blue line in
Fig. 1(d), yielding Bf = 8.2 mT. This is in good agreement
with an estimate for the field of first vortex penetration of
the film Bc1 = 7.7 mT (see Appendix A). Besides, detailed
calculations for a finite-width geometry predict a low-field
enhancement of � = (2W/L)2/3 ∼ 3.5 as shown by the black
dashed line in Fig. 1(d) [47]. The good agreement between
this low-field prediction and our model further supports our
approximation LAl = W . The resulting continuous function
�(Bz) can then be used to plot the full interference pattern of
Ic(Bz), corrected for the flux focusing due to the presence of
the superconducting contacts. The resulting Ic(Bz) is plotted
in red in Fig. 1(e), and shows excellent agreement with the
Ic(Bz) extracted from Fig. 1(c).

Despite its simplicity, our model captures the observed
deviations from a regular Fraunhofer pattern in the inter-
ference pattern of critical currents, strongly suggesting that

3For Bz>Bf , Beff (x̃) depends approximately linearly
on Bz. Indeed, for large x̃, we find Beff (x̃) =
Bf ln {cosh(Bz/Bf )[1 + tanh (Bz/Bf )]} = Bz.

FIG. 2. (a) Differential resistance R as a function of bias current
I and in-plane magnetic field Bx , applied in the x direction (along the
direction of current flow). (b) As in (a) but with the in-plane field By

along the y direction. (c) Schematic indicating how an in-plane field
along x̂ can result in an effective flux dipole in the normal region. (d)
Normalized critical current Ic as a function of the angle θ between the
in-plane field and x̂; the field has a fixed magnitude of Br = 150 mT.
The dots represent the experimental data, the solid line is a theory
curve based on a one-parameter fit of α at θ = π , using the model
based on Eq. (7) (see below). The red and yellow markers highlight
the correspondence with (a) and (b), respectively.

the observed aperiodic node spacings are indeed caused by
flux focusing in the mixed state of the superconducting
leads where Bz ∼ Bc1. As a control experiment we have
also studied a device of nominally identical dimensions, but
with large flux holes located behind the superconducting
contacts. Consistent with our interpretation, negligible field
enhancement is observed in this device, independent of the
applied field (see Ref. [39] for details).

IV. IN-PLANE MAGNETIC FIELD

We next examine the effects of in-plane magnetic field
on the SNS junction, initially without perpendicular field,
Bz = 0. Differential resistance as a function of bias current and
field magnitude is shown in Fig. 2 for two field orientations:
field parallel to the current [x direction, Fig. 2(a)] and field
perpendicular to the current [y direction, Fig. 2(b)]. We see that
the critical current exhibits a strong anisotropy. The critical
field (where the supercurrent becomes fully suppressed)
changes from ∼200 mT for B ‖ x̂ to ∼650 mT for B ‖ ŷ. In
Fig. 2(d), we show the full dependence of Ic on the direction
of the in-plane field, where we fixed the magnitude of the field
to Br = 150 mT and θ denotes the angle between B and the x

direction.
We propose to interpret this anisotropy again in terms of flux

focusing due to the Meissner effect. Indeed, also an in-plane
field could give rise to flux focusing, since the thickness of the
Al layer (d ∼ 10 nm) is comparable to the London penetration
depth of Al, λL = 16 nm [48].

One consequence of the in-plane Meissner effect would be
that the density of flux lines just below the aluminum contacts
increases, leading to local enhancements of the effective field
inside the QW. However, this focusing effect is not expected to
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depend strongly on the direction of the in-plane field. Another
possible effect is that the bending of the field lines around
the edges of the contacts may induce a flux dipole in the
junction, as exaggerated schematically in Fig. 2(c). Assuming
that B ‖ x̂, we see that close to the left contact there is a small
component of flux inside the well in the positive z direction,
and close to the right contact there is a comparable component
in the opposite direction. This flux dipole couples to the in-
plane motion of the electrons and can therefore have a strong
effect on the interference pattern of Ic. Furthermore, the effect
is proportional to Bx only, and can thus lead to an anisotropy
of Ic in the in-plane field direction.

For B ‖ ŷ, the suppression of the critical current with field
appears to be fully accounted for by Zeeman effects only.
Neglecting orbital effects, an estimate of the magnitude of the
effective g factor in the InAs QW from the critical field By,c

yields |g∗| = 2�∗/μBBy,c ∼ 10, which is in good agreement
with previous measurements [14].

As soon as we let the in-plane field deviate from the y

direction, a flux dipole will be induced in the N region.
The effect of this dipole is most easily understood within a
semiclassical picture, where supercurrent arises from coherent
transport of Andreev pairs between S regions along well-
defined trajectories through the N region. A finite flux dipole
makes the phase picked up along a trajectory depend explicitly
on the angle ϑ between the trajectory and the x axis. The
dipole will therefore lead to a dephasing of contributions to
the current arising from trajectories with different ϑ , and will
thus suppress the supercurrent.

We develop a simple but quantitative model of supercurrent
through an SNS junction in the presence of a flux dipole
by assuming that the junction is ballistic and we can use a
semiclassical approximation (where the Fermi wavelength is
the smallest length scale in the problem). In the absence of a
perpendicular field (or for finite but small Bz) we can associate
the Andreev bound states in the normal region with straight
trajectories connecting the two proximitized regions in the
QW. For the energy of such a bound state as a function of
ϑ and the average y coordinate y0 one finds in the limit of
W,L � ξ

E(y0,ϑ) = ±�∗ cos

(
ϕ

2
− π

�

�0

y0

W
− πα tan ϑ

)
, (7)

where ϕ is the phase difference between the two proximitized
regions, � is the homogeneous flux associated with Bz, and
α = α0 cos θ depends on Bx and parametrizes the effect of
flux focusing.4 The contribution of all Andreev bound states
to the free energy F of the junction is found by summing (7)
over all allowed y0 and ϑ , weighted by a Fermi function. The
supercurrent then follows as Is(ϕ) = (2e/�)∂F/∂ϕ and the
critical current is simply Ic = maxϕ Is(ϕ).

We convert the sums over y0 and ϑ into integrals and,
assuming for simplicity zero temperature and fully absorbing
sides at y = ±W/2, we numerically compute the critical

4We note that this model neglects the effect of SOI. We have
verified that spin-orbit effects, calculated along the lines of Ref. [23],
yield changes on the order of a few percent while the experimental
anisotropy is of the order 1.

current for � = 0 as a function of the in-plane field direction
θ . Comparing the resulting Ic(θ )/Ic(π/2) with the data shown
in Fig. 2(d) results in a single-parameter fit yielding α0 =
0.32 ± 0.01. The resulting fit is shown as the solid blue line
in the figure and shows excellent agreement with the data.
We can also try to connect this numerical value for α0 to our
device geometry. A rough estimate for α0 in terms of device
parameters is α0 = ηBrWdf /�0, where df is the width of the
strips close to the proximitized regions where flux focusing is
significant and η is the fraction of Bx that locally contributes to
magnetic flux oriented along ±ẑ. We thus estimate that there is
only a significant out-of-plane flux in two narrow strips of area
W × df bordering the proximitized regions, and 0 � η � 1 is
a phenomenological parameter related to the average degree
of bending of the flux lines. (For instance, η = 1/

√
2 would

correspond to a situation where the flux lines make on average
an angle of 45◦ with the plane of the junction within two strips
of width df .) If we estimate df = d = 10 nm, we find for
Br = 150 mT and α0 = 0.32 that η = 0.29, corresponding to
an average local out-of-plane angle of ∼20◦.

V. COMBINED PERPENDICULAR AND IN-PLANE
MAGNETIC FIELDS

Sweeping Bz while still applying an in-plane field we
observe two new and striking effects, as shown in Figs. 3(a)

FIG. 3. (a) Differential resistance R as a function of bias current
I and Bz, measured for different values of fixed By : By = ±150 mT
(top) and By = ±400 mT (bottom). The white numbers in the upper
left panel indicate the lobe indices. (b) As (a), for an in-plane magnetic
field applied along x̂, using Bx = ±150 mT (top) and Bx = ±200 mT
(bottom).
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and 3(b). First, in the presence of an in-plane field, the critical
current develops a pronounced asymmetry between positive
and negative Bz; we observe this for all directions of in-plane
field. Second, increasing the in-plane field when directed
along x̂ results in (i) a decrease of the zero-perpendicular-field
critical current, I (0)

c ; (ii) a relative enhancement of all side-lobe
maxima as compared to the central one, approaching a situation
where all observable maxima are roughly equal; (iii) a gradual
decrease of the width of the central lobe. We initially focus
on the latter effects, associated with Bx , and discuss the
asymmetries in Sec. V B.

A. SNS-to-SQUID transition

Both the narrowing of the central lobe and the gradual
equalizing of lobe maxima with increasing Bx can be under-
stood as resulting from the flux-focusing mechanism discussed
in the previous section. As argued above, a large Bx could
lead to a situation where the supercurrent in the center of the
junction is suppressed and most transport takes place along
the edges of the normal region, making the system more
like a SQUID, with conduction only along sample edges,
instead of a planar SNS junction with uniform current flow.
In the pure-SQUID limit, one expects for the critical current
Ic(�) ∝ | cos(π�/�0)| instead of a Fraunhofer-like pattern,
i.e., all lobes will have the same maximum value and the same
width �0. This is qualitatively consistent with the trend we
observe in Fig. 3(b).

To further examine the picture of a focusing-induced flux
dipole leading to SQUID-like current flow, we use the model
from Sec. IV to calculate the critical current as a function of
� = BzLW for different focusing parameters α, and compare
the resulting theoretical interference patterns Ic(Bz) with
experimental data.5 In Fig. 4(a), the calculated Ic(Bz) is plotted
for five values of α, corresponding to Bx = 0, 100, 150, 200,
and 300 mT (assuming for simplicity a linear relation between
α and Bx , and setting α = 0.32 for Bx = 150 mT). These
numerical results reproduce the two main features discussed
above. (i) As highlighted by the vertical gray dashed lines,
the width of the central lobe decreases with increasing Bx .
For Bx = 0 we find a width of roughly 2.6�0 (slightly larger
than the 2�0, corresponding to a regular Fraunhofer pattern,
presumably due to finite size effects6), and for large Bx it
approaches �0, the SQUID limit. (ii) The heights of all
side-lobes in Fig. 4(a) increase relative to the central lobe
when increasing Bx , approaching a situation where all lobes
are of comparable height. Both these trends are qualitatively

5In this section, we concentrate largely on qualitative features and
thus for simplicity neglect the effect of out-of-plane focusing as
discussed in Sec. III.

6Close to the edges of the junction, where y0 ≈ ±W/2, there are
fewer angles ϑ available to construct Andreev bound states with.
Consequently, the flux penetrating the N region close to the edges has
less influence on the total average supercurrent through the junction
than the flux penetrating the center of the region. To achieve the first
full suppression of the supercurrent by perfect destructive interference
of all trajectories, one thus needs to go to slightly higher fields than
Bz = �0/(WL).

FIG. 4. (a) Numerically calculated critical current as a function of
�, normalized by I (0)

c . The in-plane field is assumed along x̂ and the
different curves correspond to α = 0, 0.21, 0.32, 0.43, and 0.64, from
bottom to top (each offset by 1). (b) Symmetrized side-lobe maxima
extracted from experimental data, for different in-plane fields. The
field magnitudes indicated in the plot refer to B ‖ x̂; all data points
for B ‖ ŷ (black dots) fall on top of the set marked 0 mT. (c) Side-lobe
maxima obtained from the numerical data shown in (a).

consistent with the experimental observations and support our
interpretation in terms of a focusing-induced flux dipole.

We next examine the behavior of the sequence of side-lobe
maxima for different Bx in more detail. In Fig. 4(b), we
show the experimentally obtained maxima for four different
Bx , where we removed the complicating asymmetry in ±Bz

(considered in detail below) by symmetrizing and normalizing
the data, (I (+n)

c + I (−n)
c )/2I (0)

c , using side-lobe numbers n

as indicated in the top left pane of Fig. 3(a). When Bx is
increased, we see that (i) the side-lobe maxima are enhanced
relative to the central peak, and (ii) the sequence of maxima
I (n)
c becomes nonmonotonic, even yielding side-lobes that

exceed the central lobe in magnitude at the highest field
(Bx = 200 mT). We can extract the same data from the
numerical results presented in Fig. 4(a), and show in Fig. 4(c),
the resulting lobe maxima I (n)

c , normalized by I (0)
c . Comparing

with the experimental data, we see that the model not only
reproduces the gradual enhancement of the side-lobe maxima
for increasing Bx , but also captures the more detailed behavior
of the series of side-lobes. Whereas at small Bx the maxima
I (n)
c monotonically drop for increasing |n|, at larger Bx the

series becomes nonmonotonic, ultimately even producing
interference patterns where side-lobes exceed the central
maximum in height.

The black dots in Fig. 4(b), all falling on top of the yellow
curve corresponding to Bx = 0, represent two data sets with the
side-lobe maxima for By = 150 and 300 mT (all at Bx = 0),
where we removed the asymmetry by symmetrizing Ic in ±Bz

(as above, this data is normalized by I (0)
c ). The fact that all
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these data are equal to the data without in-plane field, within
experimental accuracy, confirms that the qualitative change
of the interference pattern that we attribute to an SNS-to-
SQUID transition only depends on Bx . It also suggests that the
asymmetry in ±Bz has a physical origin which is distinct from
the focusing effects discussed in this section.

In conclusion, the model presented in Sec. IV, which
assumes a simple flux dipole in the normal region proportional
to Bx , appears to capture many aspects of the qualitative
behavior of Ic(Bz) as a function of in-plane field. All global
trends we observe in the data are reproduced by our numerical
calculations, indicating a transition from Fraunhofer-like
interference at zero in-plane field to SQUID-like behavior in
the presence of sufficiently strong Bx . A flux dipole in the
normal region, induced by flux focusing of the x component of
the in-plane field thus appears to provide the likely explanation
for our observations. However, we emphasize that the model
used in this section is not capable of generating the striking
asymmetries in ±Bz.

B. Asymmetries in the interference patterns

Finally, we turn our attention to the surprising asymmetries
observed in the interference patterns of Figs. 3(a) and 3(b). To
quantify the asymmetry, we define an asymmetry parameter
An for each side-lobe pair {n, − n} as

An = I (−n)
c − I (n)

c

I
(−n)
c + I

(n)
c

, (8)

which yields the relative difference in the side-lobe maxima
for ±Bz. In this section, we will investigate systematic
dependencies of An on the magnitude Br and direction θ of
the in-plane field.

In Fig. 5(a), we plot A1 (blue) and A2 (red) as functions of
Br with the field applied along ŷ. The asymmetry of the first
node A1 is seen to scale roughly linearly with Br , reaching
∼100% at the highest fields, while the asymmetry of the second
node A2 remains zero within experimental uncertainty. In
Fig. 5(b), for in-plane field now along x̂, we now see that both
A1 and A2 increase proportionally to Br , both reaching ∼25%
at 250 mT, just before Ic gets fully suppressed (see Fig. 2). All
asymmetries thus seem to scale linearly with the magnitude
of the applied in-plane field. The slope of An(Br ), however,
varies considerably: from positive, to zero, to negative for
different n and θ . From these two angles (θ = 0 and θ = π/2)
no systematics are evident.

The dependence of the An on the direction of the in-plane
field is shown in Fig. 5(c). We plot the measured absolute
asymmetries |A1| and |A2| for 16 angles at a fixed field
magnitude Br = 150 mT (we use solid and dashed connectors
to indicate where the obtained An are positive and negative,
respectively). As a reference, we include the anisotropic
angular dependence of I (0)

c (filled gray area, plotted in arbitrary
units), which we analyzed in terms of a Meissner-induced flux
dipole in Sec. IV. The observed evolution of the asymmetry as
a function of θ in the present sample has a number of interesting
characteristics: (i) the asymmetry of the first side-lobe is
maximal for θ ∼ 5π/8 and minimal in the perpendicular
direction θ ∼ π/8. (ii) The maximal and minimal asymmetries
of the second lobe are roughly perpendicular to those of the

FIG. 5. (a) Normalized asymmetry A in the lobe maxima as a
function of By , for the first two side-lobes (shown in blue and red
respectively). (b) As (a), for magnetic fields oriented along x̂. (c)
Magnitude of the asymmetry parameter |A| as a function of in-plane
field angle θ . Solid(dashed) lines connect points indicating where An

are positive(negative). The in-plane field is fixed to Br = 150 mT.
To emphasize the deviation of this angular dependence from the
anisotropy observed for Bz = 0 (see Sec. IV), we include in gray
the height of the central lobe I (0)

c as a function of θ (arbitrary units).
The panels along the edges show the differential-resistance data from
which the asymmetries are extracted.

first lobe. (iii) Consistent with the mirroring in Bz observed
upon inversion of Bx or By (see Fig. 3), both asymmetries have
a well defined node at zero about which the behavior of An is
antisymmetric in θ (or equivalently Br ).

Separate samples have demonstrated similar behavior,
including a linear scaling of the An in field magnitude and a
continuous angular evolution of the asymmetry antisymmetric
upon π rotation.7 Many of the details, however, are very
different from sample to sample: The observed magnitudes
of A1 and A2 for given Br fluctuate up to 100%, and also the
angular alignment of their minima and maxima varies across
different samples (also the roughly perpendicular orientation
of the maxima of A1 and A2 observed in Fig. 5 is not a
consistently observed feature). The variation of all these details
does not display a clear trend following any of the controllable

7See Ref. [39] for more details and data from different samples.
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device parameters, such as W , L, or the orientation of the
junction with respect to the crystallographic axes of the InAs
wafer. This suggests that the asymmetries are the result of
an intricate interplay of many device-dependent factors, most
likely including SOI, disorder, local details of the coupling
between the InAs and the Al, and the microscopic shape of the
sample.

Although it thus seems difficult to pinpoint the physical
mechanism responsible for the asymmetries, we can try
to develop a qualitative picture by carrying out a general
analysis along the lines of Ref. [49]. We construct a model
(Bogoliubov-de Gennes) Hamiltonian, treating the electrons
in the junction as a two-dimensional free electron gas in the
presence of a vector potential due to the applied magnetic
field (including the flux dipole proportional to Bx). We add to
this Hamiltonian finite superconducting pairing potentials of
equal magnitude under the left and right contacts, and terms
accounting for Rashba and Dresselhaus SOI, Zeeman splitting,
and an arbitrary disorder potential V (x,y). We can then
investigate under what circumstances the symmetries of the
total Hamiltonian dictate the critical current to be symmetric
in Bz and when this symmetry is broken (see Ref. [39] for
details).

The most important conclusion is that if V (x,y) = 0 the
symmetry Ic(+Bz) = Ic(−Bz) is protected, and the model will
produce a symmetric interference pattern for a symmetrically
shaped sample, no matter how all other parameters are tuned.
Disorder or other spatial asymmetries in the junction are thus
a necessary ingredient for obtaining an asymmetric critical
current. More specifically, we find that (i) in the presence
of an in-plane field oriented along x̂, only one of the mirror
asymmetries V (x,y) 
= V (−x,y) or V (x,y) 
= V (x,−y) has
to be present to allow for an asymmetric interference pattern.
(ii) If the in-plane field is along ŷ, a direction along which
we observe a strong asymmetry (see Fig. 5), only V (x,y) 
=
V (x,−y) breaks the symmetry.

As a side note, we mention that some combinations of
symmetry-breaking ingredients only affect the higher Fourier
components of the current-phase relation Is(ϕ). For instance, in
order to have Ic(+Bz) 
= Ic(−Bz) in combination with a purely
sinusoidal Is(ϕ), it is required to have (in addition to disorder):
(i) a finite Bx or (ii) a finite By and SOI. In this case, the degree
of asymmetry left at θ = π/2 could thus present a measure for
the strength of SOI in the junction. In our experiment, however,
current was controlled rather than phase, so we do not know
to what degree the current-phase relation is nonsinusoidal. In
general, one expects junctions with weak NS-coupling to have
a nearly sinusoidal Is(ϕ) [50]. Engineering a barrier between
the normal and proximitized regions in the QW could thus
present a way to obtain more detailed knowledge about the
SOI in the sample.

Our qualitative analysis thus clearly supports the idea that
a key role is played by structural asymmetries in the device,
already suggested by the strong sample-to-sample variation
observed in the data. As to the mechanisms that can break
spatial symmetries in our samples, we identify three: (i) spatial
variation in the couplings to the superconducting contacts,
(ii) imperfections in the microscopic shape of the junction,
or (iii) a random disorder potential. Owing to the epitaxial
growth of Al and the small size of the junction, we expect

the couplings to the contacts to be relatively homogeneous.
Further, measurements of the asymmetry as a function of gate
voltage, presented in Appendix B, show that the asymmetries
in Ic are robust to gating in both magnitude and angular
dependence. This weak gate dependence could indicate that
the dominant spatial symmetry breaking mechanism is stable,
which also suggests that it is either the specific shape of
the junction or a fixed disorder potential induced by ionized
impurities in the QW. To further support this picture, we also
performed tight-binding numerical simulations of the super-
current through a two-dimensional disordered SNS junction
focusing on the asymmetry parameters An; the results are
presented in the Supplemental Material. We find patterns that
look similar to those extracted from the experimental data and
also display a strong variation from device to device (i.e., when
we change the disorder configuration). This also supports our
speculation that disorder plays a crucial role in the underlying
mechanisms responsible for the asymmetries.

An alternative explanation of the asymmetries one could
propose is in terms of Abrikosov vortices near the junction;
the presence of such vortices is known to induce asymmetries
in the critical current upon inversion of Bz. In the limit of
single vortices the behavior is well understood and studies
have successfully mapped the position of vortices from the
modification of interference patterns [32,51]. For large num-
bers of vortices, experimental and theoretical investigations
exist in the limit of disordered vortex arrays [52,53], yielding
seemingly random interference patterns. Theoretical work on
ordered vortex arrays predicts symmetric interference patterns
described by minor modifications to Eq. (1) [54].

While we expect flux penetration of the leads in a
perpendicular field, and thus vortices to be present, we observe
no indication of quantized vortex entrance events, i.e., sudden
switches in the critical current [51]. Furthermore, we do not
observe asymmetries without the application of an in-plane
field, which seems to be incompatible with vortices as the
origin of the asymmetry. Finally, the mirror symmetry in Bz

of the observed asymmetry upon reversing the sign of the
in-plane field would require an almost perfect reversal of the
vortex configuration, which is highly unlikely.

To conclude, we believe that in the mechanisms underlying
the asymmetries we explored in this section, an important
role is being played by structural disorder in the samples.
Given the complexity of the system and the randomness of
what appears to be the most important symmetry-breaking
ingredient, it is currently unclear whether measurements of
the asymmetry could be used to quantify the strengths of SOI
and Zeeman coupling in these devices. SNS junctions designed
with a well-defined built-in dominant asymmetry might allow
for disentangling these effects; this warrants further work.

VI. CONCLUSION

We report a systematic experimental study of the behavior
of two-dimensional epitaxial Al/InAs/Al SNS junctions under
the application of out-of-plane as well as in-plane magnetic
fields. Our system is of great interest since it combines strong
spin-orbit interaction with exceptionally good semiconductor-
superconductor coupling and, due to the epitaxially grown
superconductor, it can withstand large in-plane magnetic
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fields. Measuring the critical current as a function of the
magnitude and direction of the applied magnetic field, we
discover a strong influence on the properties of the junction
of flux focusing from the superconducting contacts, both
for perpendicular and in-plane magnetic fields. For in-plane
fields applied along the direction of average current flow,
flux focusing results in an effective flux dipole in the normal
region, causing transport to be localized towards the edges of
the sample. We thus find that the in-plane field may act as
a novel control knob allowing for magnetic confinement of
Andreev states in such hybrid superconductor-semiconductor
systems. We further observe striking asymmetries in the
interference pattern Ic(±Bz) when an in-plane field is applied.
Although most qualitative properties of these asymmetries
remain unexplained, we argue that the microscopic structure
of the device plays an crucial role, potentially masking the
influences of spin-orbit and Zeeman coupling.
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APPENDIX A: ESTIMATING Bc1

In order to determine Bc1, we need to estimate the parameter
κ = λ/ξ . We use values for bulk Al from the literature [55]:
ξbulk = 1.6 μm and Tc,bulk = 1.2 K. From our measurements
we have an accurate value for Tc (see Ref. [39]) and we know
from [28] that

�(0) = 1.76 kBTc and ξ = hvF

π�
. (A1)

These expressions allow us to determine the coherence length
in the thin film limit as a function of known parameters,
yielding

ξthin = ξbulk
Tc,bulk

Tc,thin
, (A2)

the same method is, e.g., used in Ref. [56]. Substituting the
known values of Tc,bulk, ξbulk, and the Tc = 1.5 K measured
gives ξ = 1.28 μm for the superconducting film. We may also
estimate the penetration depth from known quantities [28,57]:

λ = λL(0)

√
1 + ξ

d
. (A3)

Using the value for λL = λL,bulk = 16 nm from the literature
and using the modified ξ calculated above, we obtain λ =
180 nm for a film thickness of d = 10 nm.

Finally, we can estimate Bc1. For type-II superconductors,
the field of first vortex penetration (assuming a magnetic field
perpendicular to the film) is given by [28]

Bc1 ≈ �0

4πλ2
ln κ = Bc√

2κ
ln κ. (A4)

Importantly, this formula assumes that κ > 1/
√

2. For our val-
ues κ ≈ 0.2 × (1/

√
2), clearly in the type-I regime. However,

in the thin-film limit, the penetration depth is renormalized
such that κ = �/ξ [58,59], where � ∼ λ2/d. Using this
renormalization we obtain κ ∼ 2.5, which lies in the type-II
regime. Using these numbers together with Bc,z ∼ 30 mT
yields Bc1 = 7.7 mT. It is worth noting that the first vortex
may penetrate before Bc1 is reached [60].

APPENDIX B: GATE DEPENDENCE

The QW used for the experiment hosts two subbands
at Vg = 0. Based on Hall measurements, we know that the
transition to the single subband limit is achieved at Vg ∼ −2 V.

Fig. 6(a) shows the measured differential resistance R, as a
function of gate voltage Vg and bias current I . The interference
patterns obtained at four different values of Vg are shown in
Figs. 6(c)–6(f). From these data, we can extract the field-
dependent critical current Ic(Bz), which we correct for the
flux focusing parameter � (see Sec. III). The resulting Ic(Bz)
can be used to calculate the supercurrent density Jc(y) using
the Dynes and Fulton method [33], the results are shown in the
insets in Figs. 6(c)–6(f). All curves show a supercurrent density
accumulation towards the lateral edges of the SNS, the effect
being more accentuated at negative gate voltages. This effect

FIG. 6. (a) Differential resistance R, as a function of gate voltage
Vg and bias current I . (b) Normalized critical current as a function of
side-lobe index n, for varying gate voltages, denoted by the colored
markers in (a). (c)–(f) Differential resistance R, as a function of bias
current I and out-of-plane magnetic field Bz, for the different values
of gate voltage marked in (a). Insets show the extracted supercurrent
density Jc(y). (c) is based on the same data set as shown in Fig. 1(c)
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FIG. 7. (a) Measured magnetic field asymmetry A1 for the first
side-lobe as a function of in-plane field angle θ . (b) as (a) for the
second side-lobe A2. Curves are colored according to gate voltage.
Note that the zero gate voltage data is the same as that displayed in
Fig. 5.

is also captured in Fig. 6(b), where we plot the normalized
side-lobe maxima. Compatibly with the accumulation of Jc

at the edges, the side-lobe maxima are gradually lifted upon
depletion of the 2DEG. For Vg < −2 V, an anomalous lifting
of the n = 2 side-lobe is observed, similar to Fig. 4(b) where
in an in-plane field is applied. We interpret the gate-voltage-
induced enhancement of the critical current density at the mesa
edges with band bending. InAs is well known to host a surface
accumulation layer due to the breaking of the translational
symmetry of the crystal [61,62]. Due to the presumably high
initial electron density at the edges, we expect these features
to dominate as the 2DEG is depleted.

Finally, we investigate the effect of the gate on the
asymmetries in the interference pattern. In Figs. 7(a) and
7(b), we plot the asymmetry of the first two lobes, A1 and
A2, respectively, as a function of the in-plane field angle
at a fixed magnitude of Br = 150 mT. The asymmetry of
the two lobes is largely independent of gate voltage, both in
amplitude and angular alignment. These results highlight how
the asymmetries are robust against variation of carrier density
and the subband occupation of the system.
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