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Two of the most striking experimental findings when investigating exciton spectra in cuprous oxide using
high-resolution spectroscopy are the observability and the fine structure splitting of F excitons reported by J.
Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015)]. These findings show that it is indispensable to account for
the complex valence band structure and the cubic symmetry of the solid in the theory of excitons. This is all
the more important for magnetoexcitons, where the external magnetic field reduces the symmetry of the system
even further. We present the theory of excitons in Cu2O in an external magnetic field and especially discuss the
dependence of the spectra on the direction of the external magnetic field, which cannot be understood from a
simple hydrogenlike model. Using high-resolution spectroscopy, we also present the corresponding experimental
spectra for cuprous oxide in Faraday configuration. The theoretical results and experimental spectra are in
excellent agreement as regards not only the energies but also the relative oscillator strengths. Furthermore, this
comparison allows for the determination of the fourth Luttinger parameter κ of this semiconductor.
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I. INTRODUCTION

Excitons are of great physical interest since they represent
the fundamental optical excitation in semiconductors. Excitons
in cuprous oxide (Cu2O), in particular, have attracted lots of
attention in recent years [1–14] due to an experiment, in which
the hydrogenlike absorption spectrum of these quasiparticles
could be observed up to a principal quantum number of n =
25 [1]. The discovery of these giant Rydberg excitons may pave
the way to a deeper understanding of interparticle interactions
in the solid [1] and to applications in quantum information
technology [14].

In this context it is indispensable to completely understand
the underlying theory of excitons. Excitons consist of a
negatively charged electron in the conduction band and a
positively charged hole in the valence band. As the interaction
between electron and hole can be described by a screened
Coulomb interaction, excitons are often regarded as the
solid-state analog of a hydrogen atom [15–18]. However, the
hydrogenlike model of excitons is generally too simple to
describe exciton spectra correctly. It has recently been shown
that even without external fields this model is incapable of
describing the fine structure splitting observed experimentally
and that it is inevitable to account for the complex valence band
structure and the cubic symmetry Oh of Cu2O in a quantitative
theory [6,8].

This is all the more important in the presence of an external
magnetic field, which reduces the symmetry of Cu2O to a lower
symmetry. For this reason one expects an extremely complex
splitting of exciton lines in absorption spectra, in which also
anticrossings appear. Hence earlier theoretical treatments of
these spectra using a hydrogenlike model were unable to
describe the vast number of lines observed in experiments (see
Refs. [19–22] and further references therein). On the other
hand, due to the specific material parameters in Cu2O, the
exciton radius aexc is much larger than the Bohr radius a0

known from atomic physics. This makes excitons attractive
for investigations in external fields [5] since the region of

“high magnetic fields” can be reached within several Tesla, in
contrast to the hydrogen atom, where this region begins above
several hundreds of Tesla [5,20].

We present the theory for the exciton absorption spectra of
Cu2O in an external magnetic field and solve the corresponding
Schrödinger equation using a complete basis. This method
also allows for the direct calculation of relative oscillator
strengths. We especially discuss the dependence of the spectra
on the direction of the external magnetic field, which is
well described by the anisotropic band structure and which
cannot be understood from a simple hydrogenlike model.
Using high resolution spectroscopy to study natural crystals,
we also present the complex experimental absorption spectra
for the n � 7 exciton states in Faraday configuration with
a significantly better resolution than in previous work on
this topic [19–22]. The comparison of theory and experiment
shows an excellent agreement. It furthermore allows for the
determination of a yet not precisely determined material
parameter of Cu2O, i.e., the fourth Luttinger parameter κ .

The paper is organized as follows: In Sec. II we present
the Hamiltonian of excitons in external fields in the case
of degenerate valence bands and the method of solving the
Schrödinger equation in a complete basis. We explain how to
calculate relative oscillator strengths in Sec. III. In Sec. IV the
experimental setup is described and the absorption spectra
of excitons in a uniform magnetic field are discussed. In
Sec. V we investigate the symmetry of the Hamiltonian and
compare theoretical with experimental spectra for different
orientations of the magnetic field to determine the fourth
Luttinger parameter of Cu2O. Finally, we give a short summary
and outlook in Sec. VI."

II. HAMILTONIAN

In this section we present the theory of exciton spectra of
Cu2O in a uniform magnetic field. The lowest conduction band
in Cu2O is almost parabolic in the vicinity of the � point or the
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center of the first Brillouin zone. Therefore, the kinetic energy
of an electron in this �+

6 conduction band is given by

He( pe) = p2
e

2me
(1)

with the effective electron mass me. Since Cu2O has cubic
symmetry, we use the irreducible representations �±

i of the
cubic group Oh to assign the symmetry of the bands. In
contrast to the conduction band, the three uppermost valence
bands in Cu2O are nonparabolic but deformed due to interband
interactions and the presence of the nonspherical symmetry of
the solid. Hence the kinetic energy of the hole is given by the
more complex expression [7,8]

Hh( ph) = Hso + (1/2�
2m0)

{
�

2(γ1 + 4γ2) p2
h

+ 2(η1 + 2η2) p2
h(I · Sh) − 6γ2

(
p2

h1 I2
1 + c.p.

)
− 12η2

(
p2

h1 I1 Sh1 + c.p.
)

− 12γ3({ph1,ph2}{I1,I2} + c.p.)

− 12η3({ph1,ph2}(I1 Sh2 + I2 Sh1) + c.p.)
}
, (2)

with p = (p1, p2, p3), {a,b} = 1
2 (ab + ba), and c.p. denoting

cyclic permutation. The parameters γi and m0 denote the
first three Luttinger parameters and the free electron mass,
respectively. The parameters ηi are much smaller than the
Luttinger parameters [8]. All of these coefficients describe the
behavior and the anisotropic effective mass of the hole in
the vicinity of the � point. The matrices I j and Shj denote
the three spin matrices of the quasispin I = 1 and the hole
spin Sh = 1/2 while I and Sh are vectors containing these
matrices, i.e.,

I · Sh =
3∑

j=1

I j Shj . (3)

The quasispin I = 1 describes the threefold degenerate va-
lence band and is a convenient abstraction to denote the
three orbital Bloch functions xy, yz, and zx [23]. Due to the
spin-orbit coupling between the quasispin I and the hole spin
Sh [24]

Hso = 2

3
�

(
1 + 1

�2
I · Sh

)
, (4)

the sixfold degenerate valence band (including the hole spin)
splits into a higher lying twofold-degenerate band of symmetry
�+

7 and a lower lying fourfold-degenerate band of symmetry
�+

8 by an amount of �.
The Hamiltonian of the exciton is then given by [24,25]

H = Eg + V (re − rh) + He( pe) + Hh( ph), (5)

with the energy Eg of the band gap and the Coulomb
interaction, which is screened by the dielectric constant ε:

V (re − rh) = − e2

4πε0ε

1

|re − rh| . (6)

The exchange interaction as well as the central-cell corrections
described in Refs. [8,26] are not included in the Hamilto-
nian (5) as they do not affect the exciton states treated in
Secs. IV and V.

In the presence of an external magnetic field, the corre-
sponding Hamiltonian is obtained via the minimal substitu-
tion. After introducing relative and center of mass coordi-
nates [27,28] and setting the position and momentum of the
center of mass to zero, the complete Hamiltonian of the relative
motion reads [17,27–32]

H = Eg + V (r) + HB

+He( p + eA(r)) + Hh(− p + eA(r)). (7)

Since the magnetic field B is constant in our experi-
ments, we use the vector potential A = (B × r)/2. The
term HB describes the energy of the spins in the magnetic
field [23,30,32,33]:

HB = μB[gc Se + (3κ + gs/2)I − gs Sh] · B/�. (8)

Here μB denotes the Bohr magneton, gs ≈ 2 the g factor of the
hole spin Sh, and gc the g factor of the conduction band or the
electron spin Se. The value of the fourth Luttinger parameter κ

is unknown and will be determined in Sec. V. In the case of a
finite spin-orbit coupling � an additional term would generally
appear in HB , which depends on the fifth Luttinger parameter
q [23,32,33]. However, this term is connected with spin-orbit
interactions of higher order [32] and is not considered here. All
material values used in our calculations are listed in Table I.

For the case that the magnetic field is oriented along one
of the directions of high symmetry, i.e., along the [001],
[110], or [111] direction, we rotate the coordinate system to
make the quantization axis coincide with the direction of the
magnetic field and then express the Hamiltonian (7) in terms of
irreducible tensors [32,36,37] (see Appendix A). We can then
calculate a matrix representation of the Schrödinger equation
corresponding to the Hamiltonian (7) using a complete basis.

As regards the angular momentum part of the basis, we have
to consider that the different parts of the Hamiltonian couple
the quasispin I , the hole spin Sh, and the angular momentum
L of the exciton. Due to the spin orbit coupling Hso and the
cubic part of the Hamiltonian (7), we introduce the effective
hole spin J = I + Sh and the angular momentum F = L + J .
We finally include the electron spin in our basis by introducing
the total angular momentum Ft = F + Se. For the radial part
of the exciton wave function we use the Coulomb-Sturmian
functions [38]

UNL(r) = NNL(2ρ)Le−ρL2L+1
N (2ρ), (9)

TABLE I. Material parameters used in the calculations. Note that
the value of γ ′

1 is a result of the analysis in Sec. V and slightly differs
from the value γ ′

1 = 2.77 of Ref. [7].

Band gap energy Eg = 2.17208 eV [1]
Electron mass me = 0.99m0 [34]
Dielectric constant ε = 7.5 [35]
Spin-orbit coupling � = 0.131 eV [7]
Valence band parameters γ ′

1 = 2.74 [7]
μ′ = 0.0586 [7]
δ′ = −0.404 [7]
η1 = −0.02 [7]
ν = 2.167 [7]
τ = 1.5 [7]

g factor of cond. band gc = 2.1 [21]
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with ρ = r/α, a normalization factor NNL, the associated
Laguerre polynomials Lm

n (x), and an arbitrary scaling parame-
ter α. The radial quantum number N is related to the principal
quantum number n via n = N + L + 1. Finally, we use the
following ansatz for the exciton wave function

|�〉 =
∑

NLJFFtMFt

cNLJFFtMFt
|�〉, (10a)

|�〉 = |N,L; (I, Sh) J ; F, Se; Ft ,MFt
〉, (10b)

with real coefficients c. The parenthesis and semicolons in
Eq. (10b) shall illustrate the coupling scheme of the spins and
the angular momenta.

Inserting the ansatz (10) in the Schrödinger equation H� =
E� and multiplying from the left with another basis state 〈�′|,
we obtain a matrix representation of the Schrödinger equation
of the form

Dc = EMc. (11)

The vector c contains the coefficients of the ansatz (10). All
matrix elements, which enter the symmetric matrices D and
M and which have not been treated in Ref. [8], are given in the
Appendixes C and D. The generalized eigenvalue problem (11)
is finally solved using an appropriate LAPACK routine [39].

III. OSCILLATOR STRENGTHS

With the solutions of the eigenvalue problem (11) one
can directly calculate the relative oscillator strengths for
the transitions from the ground state of the solid to the
exciton states. In doing so, four important points need to be
considered [8].

(i) The transition is parity forbidden, for which reason the
transition matrix element is proportional to the gradient of the
envelope function at r = 0 and the exciton state must have a
component with angular momentum L = 1. (ii) The dipole
operator does not change the total spin S = Se + Sh = 0 of the
electron and the hole. (iii) The total symmetry of the exciton
state must be identical to the symmetry of the dipole operator.
(iv) The quasispin I transforms according to �+

5 whereas a
normal spin one transforms according to �+

4 . Therefore, since
�+

5 = �+
2 ⊗ �+

4 holds for the cubic group [40], one has to
multiply all symmetries with �+

2 [6].
The dipole operator transforms according to the irreducible

representation D1 of the full rotation group. Hence it trans-
forms in Cu2O according to the irreducible representation �−

4
of the cubic group Oh. Since the coupling of S = 0, L = 1, and
I = 1 leads to a total angular momentum of Ft = 0, Ft = 1,
and Ft = 2, one has to find in this nine-dimensional space the
three correct linear combinations of states, which transform
according to �−

4 . The reduction of the representations DFt

of the full rotation group with the inclusion of the additional
factor �+

2 yields [41]

D̃0 = D0 ⊗ �+
2 = �−

1 ⊗ �+
2 = �−

2 , (12a)

D̃1 = D1 ⊗ �+
2 = �−

4 ⊗ �+
2 = �−

5 , (12b)

D̃2 = D2 ⊗ �+
2 = (�−

3 ⊕ �−
5 ) ⊗ �+

2 = �−
3 ⊕ �−

4 . (12c)

We see that �−
4 is included only in the reduction of the

irreducible representation DFt with Ft = 2. Using the relations

given in Ref. [40], one can finally find the three linear
combinations of Ft = 2 states, which transform according to
�−

4 and which are connected to light being linearly polarized
in x, y, and z direction:

|πx〉 = i√
2

[|2,−1〉D + |2, 1〉D], (13a)

|πy〉 = 1√
2

[|2,−1〉D − |2, 1〉D], (13b)

|πz〉 = i√
2

[|2,−2〉D − |2, 2〉D]. (13c)

Here |Ft,MFt
〉D is a short notation for the state

|(Se, Sh) S, I ; I + S,L; Ft ,MFt
〉

= |(1/2, 1/2) 0, 1; 1, 1; Ft ,MFt
〉, (14)

in which the coupling scheme of the spins and angular
momenta is different from the one of Eq. (10b)

Se + Sh = S → (I + S) + L = Ft (15)

due to the requirement that S must be a good quantum number.
To determine the relative oscillator strength of an arbitrary

exciton state with the wave function � [see Eq. (10)], we have
to account for its |πx〉, |πy〉, or |πz〉 component. Hence the
relative oscillator strength for light being linearly polarized in
x direction is, e.g., given by

frel ∼
∣∣∣∣limr→0

∂

∂r
〈πx |�(r)〉

∣∣∣∣
2

, (16)

with r = |r| (see also Appendix B). Note that when consider-
ing the coupling scheme of the angular momenta and spins in
Eq. (10b) there are only three combinations of L = 1, J , and
F , which lead to a total angular momentum of Ft = 2. These
are

L = 1, J = 1/2 → F = 3/2, (17a)

L = 1, J = 3/2 → F = 3/2, (17b)

L = 1, J = 3/2 → F = 5/2. (17c)

Hence the oscillator strength is definitely zero if all the
coefficients cN1 1

2
3
2 2MFt

, cN1 3
2

3
2 2MFt

, and cN1 3
2

5
2 2MFt

in the exciton
state � are zero [cf. Eq. (10)].

In the presence of an external magnetic field the operator
Arad p, which describes the interaction between the radiation
field or light and the exciton and which enters the dipole matrix
element, has to be replaced by Arad[ p + eA(r)] due to the
minimal substitution. However, the second term is generally
small in comparison to the first one and it vanishes in the
Faraday configuration considered here [42–44].

Nevertheless, we have to consider that the magnetic field
reduces the symmetry of the system. Furthermore, since the
incident light is oriented parallel to B and since we choose the
quantization axis parallel to B, we have to find the correct
linear combinations of the Ft = 2 states, which describe
linearly or circularly polarized light for the three orientations
of the magnetic field considered here. This will be done in the
following.
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A. Magnetic field in [001] direction

In a magnetic field, which is oriented along the [001]
direction, the symmetry Oh of the system is reduced to C4h

and we have to consider the reduction of the irreducible
representation �−

4 of Oh by the group C4h:

�−
4 → �−

1 ⊕ �−
3 ⊕ �−

4 . (18)

Using the method of projection operators [40], we can deter-
mine the correct linear combinations of the states in Eq. (13)
which transform according to the irreducible representations
of C4h:

�−
1 : |πz〉 = i√

2
[|2,−2〉D − |2, 2〉D], (19a)

�−
3 : |σ+

z 〉 = −i√
2

[|πx〉 + i|πy〉] = |2,−1〉D, (19b)

�−
4 : |σ−

z 〉 = i√
2

[|πx〉 − i|πy〉] = −|2, 1〉D. (19c)

One can see that �−
1 is connected with light which is linearly

polarized along [001], i.e., in the z direction. This light cannot
be observed along the z axis due to the Faraday configuration in
the experiment. �−

3 as well as �−
4 are connected with circularly

polarized light. Consequently, only states of the symmetry
�−

3 or �−
4 can be observed in absorption experiments and we

calculate the relative oscillator strengths by evaluating

frel ∼
∣∣∣∣limr→0

∂

∂r
〈σ±

z |�(r)〉
∣∣∣∣
2

. (20)

Note that the sign of σ± is defined by the direction of rotation
of the polarization with respect to B.

B. Magnetic field in [110] direction

In a magnetic field, which is directed in [110] direction, the
symmetry Oh of the system is reduced to C2h. In this case the
reduction of the irreducible representation �−

4 of Oh by the
group C4h reads

�−
4 → �−

1 ⊕ �−
2 ⊕ �−

2 (21)

and the correct linear combinations of the states in Eq. (13)
which transform according to the irreducible representations
of C2h are

�−
1 :

1√
2

[|πx〉 + |πy〉], (22a)

�−
2 : |πz〉, (22b)

�−
2 :

1√
2

[|πx〉 − |πy〉]. (22c)

We see that �−
1 is connected with light which is linearly

polarized along [110] and that �−
2 is connected with transverse

polarized light in [001] and [11̄0] direction. Since the states
|πx〉 and |πy〉 transform according to the same irreducible rep-
resentation, we can also use the following linear combinations,
which describe circularly polarized light:

�−
2 : ∓ i√

2

[
|πz〉 ± i√

2
[|πx〉 − |πy〉]

]
. (23)

We now choose the quantization axis parallel to B, i.e., we
rotate the coordinate system by the Euler angles (α, β, γ ) =
(π, π/2, π/4). This coordinate transformation reads

r ′ =
⎛
⎝x ′

y ′
z′

⎞
⎠ = 1√

2

⎛
⎝0 0

√
2

1 −1 0
1 1 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ = Rr. (24)

Note that the direction of the x ′ and y ′ axis are predefined by
the crystal axes. Rotating the states of Eq. (22) as well yields

�−
1 : |πz′ 〉 = 1√

2
[|2,−1〉D − |2, 1〉D], (25a)

�−
2 : |πx ′ 〉 =

√
3

2
|2, 0〉D + 1√

8
[|2,−2〉D + |2, 2〉D],

(25b)

�−
2 : |πy ′ 〉 = i√

2
[|2, 2〉D − |2,−2〉D], (25c)

or

�−
2 : |σ±

z′ 〉 = ∓ i√
2

[|πx ′ 〉 ± i|πy ′ 〉]. (26a)

Finally, we calculate the relative oscillator strengths by
evaluating

frel ∼
∣∣∣∣limr→0

∂

∂r
〈πx ′,y ′ |�(r)〉

∣∣∣∣
2

(27)

for light which is polarized in [001] or in [11̄0] direction or

frel ∼
∣∣∣∣limr→0

∂

∂r
〈σ±

z′ |�(r)〉
∣∣∣∣
2

(28)

for circularly polarized light.

C. Magnetic field in [111] direction

In a magnetic field, which is directed in [111] direction, the
symmetry Oh of the system is reduced to C3i. In this case we
have

�−
4 → �−

1 ⊕ �−
2 ⊕ �−

3 (29)

and the correct linear combinations of the states in Eq. (13)
read

�−
1 :

1√
3

[|πx〉 + |πy〉 + |πz〉], (30a)

�−
2 :

−i√
2

[
1√
6

[|πx〉 + |πy〉 − 2|πz〉]

+ i
1√
2

[−|πx〉 + |πy〉]
]
, (30b)

�−
3 :

i√
2

[
1√
6

[|πx〉+ |πy〉 −2|πz〉] − i
1√
2

[−|πx〉 + |πy〉]
]
.

(30c)

We see that �−
1 is connected with light which is linearly

polarized along [111] and that �−
2 and �−

3 are connected with
circularly polarized light transverse to this axis.
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For B ‖ [111] we rotate the coordinate system by the Euler
angles (α, β, γ ) = (0, arccos(1/

√
3), π/4). This coordinate

transformation reads

r ′′ =
⎛
⎝x ′′

y ′′
z′′

⎞
⎠ = 1√

6

⎛
⎝ 1 1 −2

−√
3

√
3 0√

2
√

2
√

2

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ = Rr.

(31)

Rotating the states of Eq. (30) yields

�−
1 : |πz′′ 〉 = |2, 0〉D, (32a)

�−
2 : |σ+

z′′ 〉 = i√
3

[
√

2|2,−2〉D − |2, 1〉D], (32b)

�−
3 : |σ−

z′′ 〉 = −i√
3

[
√

2|2, 2〉D + |2,−1〉D], (32c)

and we calculate the relative oscillator strengths by evaluating

frel ∼
∣∣∣∣limr→0

∂

∂r
〈σ±

z′′ |�(r)〉
∣∣∣∣
2

. (33)

IV. EXPERIMENT

In the experiment, we investigated the absorption α of
Cu2O crystal slabs that were cut and polished from a natural
rock. Three different samples with different orientations were
prepared: in the first sample the [001] direction is normal to the
crystal surface; in the other two samples the normal direction
corresponds to the [110] and [111] orientation, respectively.
The thicknesses of these samples varied from 30 to 50 μm
which is, however, of no relevance for the results described
below. For application of a magnetic field, the samples were
inserted in a superconducting split coil magnet with a helium
cryostat in the center, in which the samples were cooled down
to T = 1.4 K. The magnetic field direction was chosen to be
along the optical axis (Faraday configuration), i.e., also normal
to the studied crystal slabs.

The absorption was measured using a white light source
which was filtered by a double monochromator such that
only the energy range in which the exciton states of interest
are located was covered. The exciting light was circularly
polarized by a quarter-wave retarder and was sent under
normal incidence onto the sample with a spot size of about
100 μm. The transmitted light was dispersed by another double
monochromator and detected by a liquid-nitrogen cooled
charge coupled device camera, providing a spectral resolution
of about 10 μeV. Since the spectral width of the studied
exciton resonances is significantly larger than this resolution,
the setup provides sufficient resolution, as confirmed also by
reference measurements with a tunable frequency-stabilized
laser with neV resolution. The measurements with the two
different light sources yielded identical spectra. The excitation
density was chosen low enough that the excitation of dressed
states, as discussed by Grünwald et al. [4], can be neglected
and the observed spectral lines in the experiment correspond
to resonant absorption peaks.

For an overview, we give in Fig. 1 a contour plot of
absorption spectra composed by superposition of counter-
circularly polarized spectra to show all optically accessible

FIG. 1. (a) Absorption spectra of the n = 3 . . . 7 excitons in an
external magnetic field B ‖ [001] composed by superposition of
countercircularly polarized spectra. The absorption constant α is
given in arbitrary units. (b) Second derivative of the experimental
absorption. The value of ∂2α is given in arbitrary units. The
second derivative levels intensity differences and thus highlights
the contribution of exciton states with higher angular momentum
L to the spectra. Note that the faint periodic horizontal patterns are
artifacts arising from taking the second derivative of the spectra.

exciton states, recorded on the [001] oriented sample. The
energy range from the n = 3 exciton around 2.162 eV up to
n = 7 on the high energy side is displayed. The left hand
plot shows the absorption as recorded, and the right hand
side shows the second derivative of the recorded spectra
which helps to level intensity differences between features
and highlight weak absorption lines. At zero field the spectra
are dominated by the dipole-allowed P excitons [6,8]. With
increasing magnetic field, each P exciton shows mostly a
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doublet splitting. Simultaneously on their high energy flanks
new lines emerge and become steadily stronger. Except of
the magnitude of the splitting, the appearance of the n = 4
multiplet is somewhat similar to that of the n = 5 multiplet,
involving also a similar number of lines. By contrast, the n = 6
multiplet is composed of many more lines due to the presence
of exciton states with angular momentum L = 5.

In general, the impact of the magnetic field in terms of
shifting and splitting levels grows with increasing principal
quantum number n due to the increased extension of the
exciton wave function,

rn,L = 1
2aexc(3n2 − L(L + 1)), (34)

with the exciton Bohr radius aexc = 1.11 nm and envelope
angular momentum L, compared to the magnetic length

�c =
√

�

eB
= 25.6 nm√

B [T]
. (35)

For example, the diamagnetic shift of the center-of-gravity of
a line multiplet belonging to a specific n, which is a measure
of the wave function extension normal to the field, increases
from less than 0.1 meV for n = 3 up to B = 3 T (see below)
to about 0.5 meV for n = 5. Furthermore, due to the reduced
energy splitting between exciton multiplets and their extended
Zeeman splitting in a magnetic field for higher n, exciton states
belonging to different principal quantum numbers come into
resonance at smaller magnetic field strengths. For example,
the first resonance of two states belonging to n = 5 and n =
6 occurs at about 3.5 T, while the corresponding resonance
between the n = 6 and the n = 7 multiplet occurs at 2 T.

We have shown recently that for n > 6 the electron-
hole motion becomes chaotic in a magnetic field, as con-
firmed by corresponding theoretical calculations [2,12]. In
the chaos regime the density of states is so high that an
exact identification of the individual exciton states, while
still being distinguishable, becomes increasingly complex as
does the theoretical calculation. Instead statistical methods
can be applied, such as the calculation of the level spacing
distribution which transfers from a Poissonian to a Wigner-
Dyson distribution going from the regular to the chaotic
motion regime. The Wigner-Dyson distribution function is
characterized by the dominance of avoided crossings between
levels while crossings are suppressed. For n � 6 we observe in
our measurements a clear dominance of crossings, confirming
that in this range the motion stays regular. In combination with
the possibility to assign the exciton character, we therefore
restrict to n � 5 here.

To obtain more detailed insight into the level splitting in
a magnetic field, we focus on exciton multiplets belonging
to a particular n. Moreover, we consider circularly polarized
spectra with the goal to reduce the number of exciton lines in a
spectrum. Figure 2 shows contour plots of absorption spectra
for B ‖ [001] in the energy range of the n = 3 and n = 5
excitons, in one panel for left circular polarization of the white
light, and in the other panel for right circular polarization.
Again, also the second derivatives of the absorption spectra
are shown (see Fig. 3). The n = 3 exciton, for which the enve-
lope angular momentum L is limited to 2, is characterized by
the doublet splitting of the P exciton. The faint features from

FIG. 2. Absorption spectra of (left) n = 3 and (right) n = 5
excitons. The values of the absorption constant α are given in arbitrary
units. The spectra were obtained in Faraday configuration with an
external magnetic field B ‖ [001] and (above) σ+ or (below) σ−

polarized light.

the S and D excitons due to quadrupole-allowed transitions
also show a doublet splitting. We note that the relative oscilla-
tor strengths to a good approximation do not change with mag-
netic field, which indicates that as expected these excitons do
not become mixed with the P excitons. For completeness we
stress again that in a crystal orbital angular momentum strictly
speaking is no good quantum number, but the discrete symme-
try leads to a mixing of states with different L, in particular of
the S and the D excitons as well as the P and the F excitons.
Still, for reasons of simplicity, we use these notations here.

FIG. 3. Second derivative (∂2α) of the absorption spectra of Fig. 2.
The values of ∂2α are given in arbitrary units. The large number of
exciton lines for n = 5 and especially the zero-field splitting of P

and F excitons can be seen more clearly in this presentation of the
experimental results. We note that for the n = 3 exciton two more
lines are observed in this presentation, which we attribute to the S

exciton for the low energy line and the D exciton for the high energy
line. We attribute their appearance to quadrupole-allowed transitions
to the S exciton. For the D exciton quadrupole excitation is possible
because of mixing with the S exciton [24].
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FIG. 4. Absorption spectra of the n = 5 exciton for (left) B ‖
[110] and (right) B ‖ [111]. The values of α are given in arbitrary
units. Also for these orientations of the magnetic field, one can see a
clear difference between the spectra for (above) σ+ and (below) σ−

polarized light.

The magnetic field induces and enhances the mixing of
states with the same parity. This is clearly seen for the n = 5
exciton multiplet. At B = 0 T, besides the dominant P exciton
the F excitons splitting to higher energies can be resolved,
most prominently in the second derivative spectra due to their
rather small relative oscillator strength (more than two orders
of magnitude smaller than that of the P states). With increasing
field the F excitons become much more prominent and also
new lines from this multiplet emerge due to state mixing with
the P excitons, from which oscillator strength is transferred.
This allows us to obtain a detailed picture of the Zeeman-effect
induced splitting of the different lines. Comparing the spectra
for the two countercircular polarizations we note that they
show distinct differences. This clearly shows that the often
used description of an exciton by a hydrogen atom model is
not appropriate, but the details of the electronic band structure
need to be accounted for.

This is corroborated by the measurements in Figs. 4 and 5,
showing corresponding measurements and second derivatives
for the n = 5 exciton in the crystals with [110] and [111]
orientation. Also here we find striking differences between
the two countercircular polarizations. Moreover, they are
also different compared to the spectra for the [001] field
orientation. Also indications for anticrossings together with the
corresponding exchange of oscillator strength can be observed
in the field dispersion; see, for example, the σ−-polarized
spectrum in the lower right panel of Fig. 5.

We note that for the [001] orientation a perfect circular
polarization of the transitions is expected, so that excitation
with particular helicity in principle can be used for optical
orientation of the electron spin. However, when calculating
the degree of circular polarization defined as

ρc(E) = ασ− − ασ+

ασ− + ασ+
, (36)

where ασ− and ασ+ are the absorption as function of energy
for σ− and σ+ polarization, respectively, we find polarization

FIG. 5. Second derivative of the absorption spectra of Fig. 4. The
values of ∂2α are given in arbitrary units. Again, the large number of
exciton lines for n = 5 can be seen more clearly in this presentation
of the experimental results.

degrees well below unity but they are limited to values
between −0.3 < ρc < 0.5, as seen from Fig. 6. This reduced
polarization is the result of the finite width of the lines leading
to spectral overlap. Note that for the other field orientation
such as along [110] the polarization of the optical transitions
is expected to be more complex.

V. RESULTS AND DISCUSSION

First we determine the maximum number of dipole-allowed
exciton states via group theoretical considerations. In this
way, we can also show that the external magnetic field
lifts all degeneracies of the exciton states. In the spherical
approximation, in which the cubic part of the Hamiltonian
is neglected, the angular momentum F is a good quantum
number. However, if the complete Hamiltonian is treated, the
reduction of the irreducible representations DF of the rotation
group by the cubic group Oh has to be considered [40].
As has already been stated in Sec. III, a normal spin one
transforms according to the irreducible representation �+

4 of
the cubic group and the quasispin I transforms according to
�+

5 = �+
4 ⊗ �+

2 . Therefore, one has to include the additional
factor �+

2 when determining the symmetry of an exciton
state [6,8,24]. This symmetry is given by the symmetry of the

FIG. 6. Degree of circular polarization ρc of (a) n = 3 and (b)
n = 5 excitons for B ‖ [001]. It can be seen that none of the observed
lines shows complete circular polarization.
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FIG. 7. Spectra of the n = 3 . . . 7 excitons in an external magnetic
field B ‖ [001] for σ− polarized light. (a) Second derivative of the
experimental absorption spectrum. The value of ∂2α is given in
arbitrary units. (b) Theoretical line spectrum for κ = −0.5. The color
bar shows the calculated relative oscillator strength in arbitrary units.
Since the complete Hamiltonian mixes exciton states with odd angular
momentum, we expect the appearance of F excitons for n � 4 and H

excitons for n � 6 as can be clearly seen, e.g., in the inset in panel (b).

envelope function, the valence band, and the conduction band:

�exc = �env ⊗ �v ⊗ �c. (37)

As the quasispin I already enters the angular momentum
F , we obtain the combined symmetry of the envelope function
and the hole in the reduction of the representations DF of the
full rotation group:

D̃
1
2 = D

1
2 ⊗ �+

2 = �−
6 ⊗ �+

2 = �−
7 , (38a)

D̃
3
2 = D

3
2 ⊗ �+

2 = �−
8 ⊗ �+

2 = �−
8 , (38b)
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FIG. 8. Theoretical line spectrum of the (a) n = 3 and (b) n = 5
exciton states in an external magnetic field B ‖ [001] for σ+ polarized
light. The color bar shows the calculated relative oscillator strength
in arbitrary units. The inset enlarges the most prominent anticrossing
in the spectrum. This anticrossing involves the two exciton states,
which originate from the �−

7 state of Eq. (38a) and the �−
7 state

of Eq. (38d) at B = 0 T (see also Ref. [8]). By comparing the
theoretical results with the position of those exciton states, which
could unambiguously be read out from the experimental spectrum
(blue triangles) using the method of the second derivative [7], we can
determine the fourth Luttinger parameter κ . An excellent agreement
between theory and experiment is obtained for κ = −0.50 ± 0.10.
As the second derivative does not yield the exact position of the
resonances, we have shifted the experimental spectrum by an amount
of (a) 100 μeV and (b) 55 μeV.

D̃
5
2 = D

5
2 ⊗ �+

2 = (�−
7 ⊕ �−

8 ) ⊗ �+
2 = �−

6 ⊕ �−
8 , (38c)

D̃
7
2 = D

7
2 ⊗ �+

2 = (�−
6 ⊕ �−

7 ⊕ �−
8 ) ⊗ �+

2

= �−
7 ⊕ �−

6 ⊕ �−
8 . (38d)

It can be seen that there are two exciton states for n = 2 or
n = 3 and seven exciton states for n = 4 or n = 5. Including
the symmetry �+

6 of the electron or the conduction band, the
total symmetry of the exciton is

�
1
2
exc = D̃

1
2 ⊗ �+

6 = (�−
2 ⊕ �−

5 ), (39a)

�
3
2
exc = D̃

3
2 ⊗ �+

6 = (�−
3 ⊕ �−

4 ⊕ �−
5 ), (39b)

�
5
2
exc = D̃

5
2 ⊗ �+

6 = (�−
1 ⊕ �−

4 ) ⊕ (�−
3 ⊕ �−

4 ⊕ �−
5 ),

(39c)
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FIG. 9. Same comparison as in Fig. 8 but for σ− polarized
light. Again, we obtain an excellent agreement between theory and
experiment for κ = −0.50 ± 0.10.

�
7
2
exc = D̃

7
2 ⊗ �+

6

= (�−
1 ⊕ �−

4 ) ⊕ (�−
2 ⊕ �−

5 ) ⊕ (�−
3 ⊕ �−

4 ⊕ �−
5 ),

(39d)

respectively. Since the symmetries in parentheses belong to
degenerate states, there are fourfold and eightfold degenerate
states.

In the presence of a magnetic field being oriented along one
of the crystal axes, we have to consider the reduction of the
irreducible representations of the cubic group Oh by the group
C4h [41]:

�−
1 → �−

1 , (40a)

�−
2 → �−

2 , (40b)

�−
3 → �−

1 ⊕ �−
2 , (40c)

�−
4 → �−

1 ⊕ �−
3 ⊕ �−

4 , (40d)

�−
5 → �−

2 ⊕ �−
3 ⊕ �−

4 . (40e)

Inserting these relations in Eq. (39), we see that degenera-
cies are further lifted. Since all irreducible representations of
C4h are one dimensional, we expect that all degeneracies are
lifted so that there are 12 exciton states for n = 2 or n = 3 and
40 exciton states for n = 4 or n = 5. Since only the states with
the symmetry �−

3 and �−
4 are dipole allowed, we immediately

see that out of these only six states are dipole allowed for n = 2
or n = 3 and 20 for n = 4 or n = 5.
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FIG. 10. Theoretical line spectrum of the n = 5 exciton states in
an external magnetic field B ‖ [110] for (a) σ+ and (b) σ− polarized
light. The color bar shows the calculated relative oscillator strength
in arbitrary units. The exciton states, which could unambiguously be
read out from the experiment are again marked by blue triangles.
Since σ+ and σ− polarized light belong to the same irreducible
representation of C2h, it is possible to excite a certain exciton state by
σ+ and by σ− polarized light. Hence all 20 dipole-allowed exciton
states can be observed in panel (a) and in panel (b). Note that we have
shifted the experimental spectrum by an amount of 26 μeV.

In the same manner we can also treat the special cases
of a magnetic field being oriented along the [110] and the
[111] direction, i.e., we have to consider the reduction of
the irreducible representations of the cubic group Oh by the
groups C2h and C3i [41]. Since all irreducible representations
of these groups are one dimensional we also expect that all
degeneracies are lifted and that there are 12 exciton states
for n = 2 or n = 3 and 40 exciton states for n = 4 or n = 5.
However, if we consider only the number of dipole-allowed
states we find that there are 6 (n = 2, 3) and 20 (n = 4, 5)
dipole-allowed states for B ‖ [110], but 8 (n = 2, 3) and
26 (n = 4, 5) dipole-allowed states for B ‖ [111].

For a first overview we show the experimental spectra
for B ‖ [001] along with theoretical results for n = 3 . . . 7
in Fig. 7. In the special case of γ2 = γ3 = ηi = 0 the angular
momentum L would be a good quantum number and due to
the selection rules discussed in Sec. III only P excitons would
be observable in this case. However, even without a magnetic
field the complete Hamiltonian couples different exciton states
with odd values of L so that also exciton states with higher
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FIG. 11. Theoretical line spectrum of the n = 5 exciton states in
an external magnetic field B ‖ [111] for (a) σ+ and (b) σ− polarized
light. Note that we have shifted the experimental spectrum by an
amount of 26 μeV.

angular momentum gain a small oscillator strength. This can
be seen clearly from the theoretically calculated spectrum in
panel (b) of Fig. 7.

Since L � n − 1 holds, the number of exciton lines for
n � 6 is very high and a quantitative analysis is hardly
possible. Hence we concentrate on the n = 3 and n = 5 exciton
states in the following. The theoretical exciton spectra of these
excitons in a magnetic field of B � 3 T with B ‖ [001] are
depicted in Figs. 8 and 9 along with the exciton states read from
experimental data. From Figs. 8(b) and 9(b) one can clearly
distinguish between the contribution of the P excitons and
the F excitons at B = 0 T [8]. It can be seen that the relative
oscillator strength of F excitons significantly increases due to
state mixing with growing field strength.

By comparing the experimentally observed line splitting to
our results, we can estimate the value of the fourth Luttinger
parameter to

κ = −0.50 ± 0.10 (41)

provided that the values listed in Table I are correct (see
also the according discussion in Ref. [8]). Using this value in
our numerical calculations, we obtain an excellent agreement
between theory and experiment for both n = 3 and n = 5
excitons in Figs. 8 and 9. The value of κ is further confirmed by
the fact that only one exciton state can be observed at B = 3 T
and E ≈ 2.1687 eV in the experiment for σ+ polarized light
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FIG. 12. Experimental spectrum (black dotted line) for B ‖ [001]
analyzed using the method of harmonic inversion [45,46]. The panels
show the spectra for (a) σ+ polarized light at B = 3 T and (b) σ−

polarized light at B = 4 T. Since several exciton states are almost
degenerate for σ− polarized light at B = 3 T (cf. Fig. 9), we analyze
the spectrum at B = 4 T. The positions and the amplitudes of the
resonances obtained are marked by red triangles. The blue solid line
shows the function G(E) of Eq. (42) for these resonances. Note that
in panel (a) the rightmost resonance originates from an n = 6 exciton
state. Comparing the positions of the resonances to the theoretical
spectrum (dark blue squares) yields the optimum values γ1 = 1.73 ±
0.02 and κ = −0.50 ± 0.10 for the first and the fourth Luttinger
parameter. Furthermore, we obtain a good agreement between the
relative oscillator strengths frel and the modulus |d| of amplitudes of
the resonances.

(see Fig. 8). Only if −0.52 < κ < −0.46 holds, theory predicts
two nearly degenerate states. For other values of κ , i.e., for
κ > −0.4 or κ < −0.6, this degeneracy is lifted and two states
should be observable in the experiment.

We can now use the value of κ = −0.50 to calculate the
exciton spectra for B ‖ [110] and B ‖ [111]. The results are
shown in Figs. 10 and 11. We observe not only an excellent
agreement with the experimental results but also see a clear
difference between the spectra for the different orientations of
the magnetic field. This difference is caused only by the cubic
part of the exciton Hamiltonian [see Eqs. (2) and (7)]. We also
note that the number of exciton states, which can be observed
with σ+ and σ− polarized light, differs. Especially for B ‖
[110] σ+ and σ− polarized light belong to the same irreducible
representation of C2h. Hence it is possible to excite a certain
exciton state by σ+ and by σ− polarized light, for which
reason all 20 dipole-allowed exciton states can be observed in
Fig. 10(a) and in Fig. 10(b).
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To compare the theoretically calculated relative oscillator
strengths with the experimental values, we analyze the experi-
mental spectra using the method of harmonic inversion, which
is presented in detail in Refs. [45,46]. Within the harmonic
inversion the spectra are Fourier transformed to find the
positions Re(Ek), widths Im(Ek), and complex amplitudes dk

of underlying resonances. The spectrum can then be expressed
by a sum of Lorentzians

G(E) = Im

(∑
k

dk

E − Ek

)
. (42)

The results are presented in Fig. 12. For σ+ and σ−
polarized light one can identify six resonances with exciton
states in the theoretical spectrum. For almost all of these
resonances we obtain a very good agreement between the
modulus |d| of their amplitudes and the theoretically calculated
relative oscillator strengths.

The harmonic inversion supplies the true position of the
resonances, which is generally not identical to the position of
the transmission minima due to the asymmetry of the exciton
absorption peaks [1,3]. Hence we can compare the results
for Re(Ek) directly to the positions of the exciton states in
the theoretical spectrum. This allows us not only to confirm
the value of κ = −0.50 ± 0.10 but also to determine the first
Luttinger parameter more accurately. The best agreements are
obtained for γ1 = 1.73 ± 0.02.

VI. SUMMARY AND OUTLOOK

We presented the theory to calculate exciton spectra in
Faraday configuration in a uniform external magnetic field.
Only by taking into account the complex valence band
structure of Cu2O, we could obtain an excellent agreement
between theory and experiment as regards not only the relative
position but also the relative oscillator strengths of the exciton
states. In particular, we showed the significant differences
between the spectra for different orientations of the external
magnetic field. Comparing the theoretical spectrum for
n = 3 and n = 5 excitons with experimental results and
using the method of harmonic inversion, we were able to
determine the fourth Luttinger parameter of cuprous oxide to
κ = −0.50 ± 0.10. As a next step, we plan to investigate the
spectra of excitons in Cu2O in crossed electric and magnetic
fields.
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APPENDIX A: HAMILTONIAN

In this section we give the Hamiltonian (7) in terms of
irreducible tensors for the case that the magnetic field is
oriented along the [001], [110], or [111] direction [8,32,36,37].
Note that we rotate the coordinate system to make the
quantization axis or z axis coincide with the direction of
the magnetic field. Hence we rotate the coordinate system by
the Euler angles (α, β, γ ) = (π, π/2, π/4) for B ‖ [110] and
by (α, β, γ ) = (0, arccos(1/

√
3), π/4) for B ‖ [111].

The first-order and second-order tensor operators used
in the following correspond, as in Ref. [32], to the vector
operators r , L = r × p, I , Se/h and to the second-rank
Cartesian operators

Imn = 3{Im, In} − δmnI
2, (A1a)

Pmn = 3{pm, pn} − δmnp
2, (A1b)

−iMmn = 3{rm, pn} − δmnr p, (A1c)

Xmn = 3{rm, rn} − δmnr
2, (A1d)

respectively. We also use the abbreviation

D
(2)
k = [I (1) × S

(1)
h

](2)
k

. (A2)

The coefficients γ ′
1, μ′, and δ′ are given by [24,37]

γ ′
1 = γ1 + m0

me
, μ′ = 6γ3 + 4γ2

5γ ′
1

, δ′ = γ3 − γ2

γ ′
1

, (A3)

and we define by analogy [8]

ν = 6η3 + 4η2

5η1
, τ = η3 − η2

η1
. (A4)

Furthermore, we write the Hamiltonian in the form

H = H0 + (eB)H1 + (eB)2H2. (A5)

The expressions for H0, H1, and H2 are given in the following.

1. Magnetic field in [001] direction

H0 = Eg − e2

4πε0ε

1

r
+ 2

3
�

(
1 + 1

�2
I (1) · S

(1)
h

)

+ γ ′
1

2�2m0

{
�

2p2 − μ′

3
(P (2) · I (2)) + δ′

3

(∑
k=±4

[P (2) × I (2)](4)
k +

√
70

5
[P (2) × I (2)](4)

0

)}

+ 3η1

�2m0

{
1

3
p2
(
I (1) · S

(1)
h

)− ν

3
(P (2) · D(2)) + τ

3

(∑
k=±4

[P (2) × D(2)](4)
k +

√
70

5
[P (2) × D(2)](4)

0

)}
, (A6a)
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H1 = 1

me
L

(1)
0 + μB

e�

(
gcS

(1)
e 0 − gsS

(1)
h 0 +

(
3κ + 1

2
gs

)
I

(1)
0

)
+ γ ′

1

2�2m0

{
−�

2L
(1)
0 + δ′

3

([
M (2) × I (2)

](4)

−4 − [M (2) × I (2)
](4)

4

)

+
√

2

5
δ′
(

[L(1) × I (2)](3)
0 − 1

3
[M (2) × I (2)](3)

0

)
+
√

5

12
μ′
(

[L(1) × I (2)](1)
0 +

√
2

3
[M (2) × I (2)](1)

0

)}

+ 3η1

�2m0

{
−1

3
L

(1)
0

(
I (1) · S

(1)
h

)+ τ

3

(
[M (2) × D(2)](4)

−4 − [M (2) × D(2)](4)
4

)+
√

2

5
τ

(
[L(1) × D(2)](3)

0 − 1

3
[M (2) × D(2)](3)

0

)

+
√

5

12
ν

(
[L(1) × D(2)](1)

0 +
√

2

3
[M (2) × D(2)](1)

0

)}
, (A6b)

H2 = γ ′
1

24�2m0

{
�

2

(
2r2 −

√
2

3
X

(2)
0

)
− δ′

(∑
k=±4

[X(2) × I (2)](4)
k − 2√

70
[X(2) × I (2)](4)

0

)

+
√

14

3

(
μ′ − 12

35
δ′
)

[X(2) × I (2)](2)
0 + μ′

3
(X(2) · I (2)) +

√
2

3

(
μ′ − 6

5
δ′
)

r2I
(2)
0

}

+ η1

4�2m0

{
1

3

(
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2. Magnetic field in [110] direction
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3. Magnetic field in [111] direction
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APPENDIX B: OSCILLATOR STRENGTHS

We now give the formula for the expression

lim
r→0

∂

∂r
D〈2,M ′

Ft
|�(r)〉, (B1)

which is needed for the evaluation of the relative oscillator strength frel (27). Using the wave function of Eq. (10), we find

lim
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)
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APPENDIX C: MATRIX ELEMENTS

In this section we give the matrix elements of the terms of the Hamiltonian H [Eq. (A5)] in the basis of Eq. (10) in Hartree
units using the formalism of irreducible tensors [36]. The matrix elements of the Hamiltonian H0 [Eq. (A5)] are given in the
Appendix of Ref. [8]. We use the abbreviation

δ̃��′ = δLL′δJJ ′δFF ′δFtF
′
t
δMFt M

′
Ft

(C1)

in the following. The functions of the form (R1)jnL are taken from the recursion relations of the Coulomb-Sturmian functions in
the Appendix of Ref. [8]:

〈�′|r2|�〉 = δ̃��′

3∑
j=−3

(R3)jNL[N + L + j + 1]−1δN ′,N+j , (C2)
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APPENDIX D: REDUCED MATRIX ELEMENTS

We now list the values of the reduced matrix elements of the form 〈N ′ L′‖A(j )‖N L〉. The functions of the form (R1)jNL and
the integral IN ′ L′;N L are taken from the Appendix of Ref. [8]:

〈N ′ L′‖X(2)‖N L〉 = δL′,L+2
3

2

1

(L + 1)(L + 2)

⎡
⎣ 5∏

j=1

(2L + j )

⎤
⎦

1
2
⎡
⎣ 1∑

j=−5

(R1LN2)j 2
NL0

(N + L + j + 3)
δN ′,N+j

⎤
⎦

+ δL′,L

(
−
√

3

8

)
1

L(L + 1)

⎡
⎣ 3∏

j=−1

(2L + j )

⎤
⎦

1
2
⎡
⎣ 3∑

j=−3

3(R1LN2)j 0
NL0 − (R3)jNL

(N + L + j + 1)
δN ′,N+j

⎤
⎦

+ δL′,L−2
3

2

1

L(L − 1)

⎡
⎣ 1∏

j=−3

(2L + j )

⎤
⎦

1
2
⎡
⎣ 5∑

j=−1

(R1LN2)j −2
NL0

(N + L + j − 1)
δN ′,N+j

⎤
⎦, (D1)

〈N ′ L′‖M (2)‖N L〉 = δL′,L+2
3

2

[
(2L + 4)(2L + 2)

(2L + 3)

] 1
2

⎡
⎣ 3∑

j=−3

(R3P1)jNLIN ′ L+2; N+j L +
2∑

j=−2

(−L(R2)jNL

)
IN ′ L+2; N+j L

⎤
⎦

+ δL′,L

(
−

√
3

2

)[
L(2L + 1)(2L + 2)

(2L + 3)(2L − 1)

] 1
2

×
⎡
⎣ 2∑

j=−2

2(R2P1)jNL

(N + L + j + 1)
δN ′,N+j +

1∑
j=−1

3(R1)jNL

(N + L + j + 1)
δN ′,N+j

⎤
⎦+ δL′,L−2

3

2

[
(2L)(2L − 2)

(2L − 1)

] 1
2

×
⎡
⎣ 3∑

j=−3

(R3P1)jNLIN ′ L−2; N+j L +
2∑

j=−2

(L + 1)(R2)jNLIN ′ L−2; N+j L

⎤
⎦. (D2)
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