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Measurement and simulation of the polarization-dependent Purcell factor
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We determine, experimentally and numerically, the electric and magnetic Purcell factors in a fishnet
metamaterial in the frequency range 5–15 GHz by measuring the impedance of a dipole antenna. We compare
measurements and numerical simulations of the Purcell factor for transverse electric (TEz) and transverse magnetic
(TMz) polarizations. For TMz polarization, the dispersion relation of the structure is hyperbolic and enhances
the Purcell factor. For TEz polarization, the dispersion relation does not allow any propagating solutions and
decreases the Purcell factor below the effective plasma frequency. Eigenmode calculations of the periodic unit
cell of the metamaterial are used to obtain the band structure and confirm the presence of hyperbolic isofrequency
surfaces. The isofrequency surfaces are used to calculate the density of states (DOS). We also use the impedance
method to obtain the DOS by averaging the Purcell factor obtained at different locations over the periodic unit
cell and find good agreement with DOS calculated from eigenmode calculations.
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I. INTRODUCTION

In the paper of Purcell [1] it was shown that the spontaneous
emission rate of an emitter is modified by its environment.
The ratio of the rate of spontaneous emission in a specific
environment to that in free space is called the Purcell factor
(F ). Modification of the rate of spontaneous emission close to a
conducting surface was observed experimentally in Refs. [2,3],
by measuring the change in lifetime of fluorescent molecules
near an interface. Inhibition of the rate of spontaneous emission
in a waveguide was proposed first in Ref. [4] and observed
experimentally in Rydberg atoms by Hulet et al. [5]. Inhibition
of spontaneous emission by placing emitters in the band gap
of photonic crystals was proposed by Yablonovitch [6]. The
control of the rate of spontaneous emission was achieved
experimentally in photonic crystals in Refs. [7–9]. Engineering
the Purcell factor is of interest in developing single-photon
emitters [10–12] and lasers [13]. Controlling the rate of
spontaneous emission has been studied in nanoresonators
[14–17], microcavities [18], and more recently in hyperbolic
metamaterials (HMM) [19,20]. Hyperbolic metamaterials
have gained attention because of the possibility of achieving
a large density of states (DOS) due to a hyperbolic dispersion
in the TM polarization. A property of hyperbolic media which
has received little attention is the polarization dependence of
the Purcell factor: while there is an enhancement in the Purcell
factor for TM polarization, for TE polarization no propagating
modes are permitted and the Purcell factor is suppressed.
We report experimental confirmation of this property and

provide numerical calculations of the same. Thus far, Purcell
factor measurements in the microwave for HMMs have been
carried out for a wire medium [21,22] which is characterized
in literature as a type I HMM [20] metamaterial; we focus on
type II HMM composed of conducting sheets.
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The Purcell factor is usually studied by measuring the
change in decay lifetimes of quantum dots or fluorescent
emitters. It was shown in Ref. [23] that the impedance of
an antenna can also be used to obtain the Purcell factor. Since
antennas can be used for microwave frequencies, it is possible
to measure the Purcell factor for large structures with this
method. The impedance method was applied to measure the
Purcell factor close to a conducting plate [24] at microwave
frequencies and was found in agreement with theoretical
calculations. The impedance approach has also been applied
numerically to study the Purcell factor for hyperbolic wire
array metamaterials [22]. By replacing the electric dipole
antenna with a magnetic dipole antenna, the magnetic Purcell
factor can also be measured [25] directly with this method.

In this paper we experimentally measure the Purcell factor
using the impedance of dipole antennas for a fishnet metamate-
rial, previously studied as an epsilon-near-zero material [26],
in the frequency range 5–15 GHz. The uniaxial anisotropic
structure has distinct dispersion relations for transverse electric
(TEz) and transverse magnetic (TMz) polarizations, corre-
sponding to ordinary and extraordinary modes. Further, we
show that using magnetic and electric dipoles we can observe
the effect of TEz and TMz dispersion relations on the Purcell
factor. We use the impedance method to calculate the local
and global DOS of our structure and compare it with the DOS
calculated from the band structure.

This paper is structured as follows. In Sec. II we outline the
theory of measurement of the Purcell factor from impedance
of a classical dipole antenna. We then present our fishnet
metamaterial structure and discuss its dispersion relations for
TMz and TEz polarized fields in Sec. III. In Sec. IV we present
the details of the numerical modeling using finite difference
time domain (FDTD) software for simulations of the Purcell
factor with finite-size dipole antenna in a finite metamaterial
slab. Following that, eigenmode analysis of the unit cell of the
infinite metamaterial is performed in Sec. V where the band
structure is discussed and used to calculate DOS. Section VI

2469-9950/2017/95(3)/035156(9) 035156-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.035156


RUSTOMJI, ABDEDDAIM, DE STERKE, KUHLMEY, AND ENOCH PHYSICAL REVIEW B 95, 035156 (2017)

presents the measurements of the Purcell factor using the
impedance method for electric and magnetic dipoles in the
metamaterial and comparison with FDTD simulations. We
apply a method to filter out the reflections from the boundaries
of the finite structure, which enables comparison with the
infinite structure’s DOS. In Sec. VII we compare the DOS
obtained by the impedance method with the DOS obtained
from eigenmode calculations.

II. THEORY

A. Purcell effect

The Purcell factor (F ) [1] is defined as F = γ /γ0, where γ

is the rate of spontaneous emission in the medium and γ0 is the
rate of spontaneous emission in vacuum. If the optical dipole
moment associated with transition is μ then the spontaneous
emission rate for an atom can be calculated using Fermi’s
golden rule [27]:

γ = 2ω

3h̄ε0
|μ|2ρ(r0,ω), (1)

where the angular frequency is ω, ε0 is the permittivity of
free space, h̄ is the reduced Planck constant, and ρ(r0,ω) is
the local density of states (LDOS), which is proportional to
the imaginary part of the Green’s tensor at the location of the
emitter r0:

ρ(r0,ω) = 6ω

πc2
[nμ · Im{←→G (r0,r0; ω)} · nμ]. (2)

Here nμ is the unit vector in the direction of the dipole moment
and c is the speed of light in vacuum. The Green’s function
can be of the electric or magnetic kind and depending upon
the type can be expressed as a solution of the equations

∇ × ∇ × ←→
G e(r,r0; ω) − ω2

c2
[ε]

←→
G e(r,r0; ω) = ←→

I δ(r − r0)

(3)

for the electric Green’s function
←→
G e(r,r0; ω) where

←→
I is the

unit dyad. Its magnetic counterpart is
←→
G m(r,r0; ω) given by

the solution of

∇ × [ε]−1∇ × ←→
G m(r,r0; ω) − ω2

c2

←→
G m(r,r0; ω)

= ←→
I δ(r − r0). (4)

The Green’s function allows the computation of electric field
and magnetic fields from current densities by

E(r) = E0 + iωμμ0

∫
V

←→
G e(r,r′; ω)je(r′)dV ′, (5)

H(r) = H0 + iωεε0

∫
V

←→
G m(r,r′; ω)jm(r′)dV ′, (6)

where je(r′) and jm(r′) denote the electric and magnetic current
densities, respectively.

B. Spontaneous emission and impedance of the classical
dipole antenna

The spontaneous emission rate obtained from Fermi’s
golden rule Eq. (1) can also be related to the power emitted by
a classical ideal dipole [28]. The power emitted by a current
source j is given by Ref. [29] as

P = −1

2

∫
V

Re{j∗ · E(r0)}dV, (7)

for a time harmonic point dipole located at r0 with a dipole
moment μ, the current j = −iωμδ(r − r0). The radiated power
can then be expressed as P = ω

2 Im{μ∗ · E(r0)}. Expressing
the electric field at r0 using the Green’s function as E(r0) =

ω2

c2ε0ε

←→
G (r0,r0; ω) · μ we obtain the radiated power (Pdip) as

Pdip = ω3|μ|2
2c2ε0ε

[nμ · Im{←→G } · nμ]. (8)

The spontaneous emission rate γ from Eq. (1) and power
emitted by a classical dipole Eq. (8) are thus related as γ =
Pdip/h̄ω. Hence the semiclassical analog of the Purcell factor,
i.e., the modification of the rate of spontaneous emission, can
be seen as the modification in power emitted by the dipole in
the environment [30]:

F = γ /γ0 ≡ Pdip/Pdip,0. (9)

We point out that the quantum-mechanical dipole matrix
element μq = e〈2|r|1〉, where e is the charge of the electron,
|2〉 is the excited state, and |1〉 is the ground state, is linearly
related to the classical dipole moment [31] μc as μc = 2μq .
However, we have used μ to denote both as it does not
affect Eq. (9). The power radiated by a weakly coupled
subwavelength dipole antenna can be expressed using the
current (I ) and the impedance of the dipole (Z):

Pdip = 1
2 |I |2Re(Z). (10)

The analogy stated by Eq. (9) along with Eq. (10) was used in
Ref. [23] to show that, for a weakly coupled dipole antenna, the
ratio of the radiated power near a structure to the radiated power
in vacuum is equal to the ratio of the real component of the
complex impedance (Z), of the antenna near the structure and
in vacuum. Furthermore, the Re(Z) can also be used to obtain
the imaginary part of the Green’s function and the LDOS. This
allows us to obtain the Purcell factor F through

Fe/m ≡ γ

γ0
= [nμ · Im{Ge/m} · nμ]

[nμ · Im{Ge/m} · nμ] 0

= Re(Ze/m)

Re(Ze/m)0
. (11)

Here Fe/m is the electric and magnetic Purcell factors for an
electric and magnetic dipole [see Eqs. (3) and (4)], respectively.
It is apparent from Eq. (11) that measurements of the real part
of an antenna’s impedance can be used to obtain the Purcell
factor.

III. MICROWAVE FISHNET METAMATERIAL
STRUCTURE

We now present the fishnet metamaterial structure used in
this paper. The structure is composed of copper grids in the
x-y plane stacked in the ẑ direction (Fig. 1). The grids are
separated in the ẑ direction by expanded polystyrene which
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FIG. 1. The fishnet metamaterial structure used for study is
composed of four layers of 0.1-mm-thick copper grids in the plane
stacked in the ẑ direction. Inset: Unit cell of the metamaterial
structure.

has permittivity close to unity and negligible losses in the
frequency range 5–15 GHz used in this study. Copper has
negligible losses in the frequency range in our study; this
means that quenching, which is a consequence of ohmic losses
in the metal, will not have a significant effect on the Purcell
factor. The structure was fabricated using copper grids with the
period in x and y directions px = py = 5.8 mm and spacing
between the grids pz = 7.0 mm. The length of the inner edge is
4.95 mm. The total length of the structure in the x-y directions
is 280 mm. The frequency range for the measurements is
5–15 GHz, which corresponds to a wavelength range of
20–60 mm, which is consistent with the frequency range of
our experimental apparatus (see Sec. VI).

The effective permittivity of this structure can be expressed
by a uniaxial anisotropic permittivity tensor [ε̄] = [ε//,ε//,εzz]
where the anisotropy axis of the structure is the ẑ direction. In
the simplest approximation, the effective permittivity of this
structure can be described by a local, lossless Drude model
[32–34] with ε//(ω) = 1 − ω2

p/ω2, where ωp is the effective
plasma frequency. For ω < ωp, ε// < 0 whereas for ω > ωp,
ε//(ω) > 0. The thickness of the copper sheets is 0.1 mm,
which is much smaller compared to the wavelength. Hence, the
structure has an effective electromagnetic response of dilute
thin metal layers in the ẑ direction. This leads to the effective
permittivity along ẑ close to unity, and for the frequency range
5–15 GHz, εzz(ω) 
 1.

This leads to an indefinite permittivity tensor with the
property Re(ε//) · Re(εzz) < 0. For materials with such indefi-
nite permittivity tensors the dispersion relation is dramatically
different for TEz and TMz polarizations [35]. Our 5–15-GHz
frequency range includes the effective plasma frequency which
was reported around 14 GHz for such a structure [26], so as
to be able to observe the transition in the Purcell factor across
the plasma frequency. We checked that the effective plasma
frequency of 14 GHz is consistent with that obtained from the
Nicolson-Ross-Weir [36,37] method of retrieval of effective
electromagnetic parameters. At frequencies below 5 GHz the
wavelength becomes comparable to the size of the structure so

finite-size effects become predominant, while above 15 GHz
the effective medium approximation starts to break down.

For a material with such a uniaxial anisotropic permittivity
tensor, the propagating electromagnetic waves in the structure
can be split into transverse electric (TEz) polarization for
which the electric field E lies completely in the x-y plane
(Ez = 0) and transverse magnetic (TMz) polarization where
the magnetic field H lies completely in the x-y plane (Hz = 0).
The isofrequency dispersion relations for the TEz and TMz

polarizations are, respectively,

TE :
k2
x + k2

y + k2
z

ε//

= ω2

c2
, (12)

TM :
k2
x + k2

y

εzz

− k2
z

|ε//| = ω2

c2
. (13)

The density of states is proportional to the infinitesimal
volume between two closely separated isofrequency surfaces
Eqs. (12) and (13) formed by frequencies ω and ω + δω. If
ε//(ω) < 0 in the TEz polarization Eq. (12), there are no real
propagating solutions, whereas TMz polarization Eq. (13) due
to the hyperbolic nature of the dispersion relation can have
a large Purcell factor [19,38–40]. Hence, the TEz and TMz

polarizations have different Purcell factors. Since we shall
study the Purcell factor using the impedance of dipoles, we
now discuss the effect of polarization when the dipoles, electric
and magnetic, are embedded inside such a uniaxial anisotropic
structure.

In vacuum an electric dipole (oriented along ẑ) emits
completely in the TMz (Hz = 0) polarization; similarly a
magnetic dipole (oriented along ẑ) emits in the TEz (Ez = 0)
polarization [41]. If the dipole is embedded in a general
anisotropic medium, the fields cannot be decomposed simply
into TE and TM polarizations. However, this decomposition
becomes possible again in the particular case of a uniaxial
medium where the dipole is oriented along the anisotropy axis
ẑ. As shown by Clemmow [41], the electric and magnetic fields
then retain the property (Hz = 0) and (Ez = 0) for electric
and magnetic dipoles, respectively. Hence, for our particular
anisotropic structure we can use electric and magnetic dipoles
to observe the effect of dispersion relations in Eqs. (12) and
(13) on the Purcell factor.

IV. NUMERICAL MODELLING FOR DOS CALCULATION

For numerical calculations of the band structure and
isofrequency dispersion relations, the periodic unit cell of the
structure as shown in Fig. 1 was modeled and its propagating
eigenmodes were calculated using the eigenmode solver avail-
able in commercial electromagnetic simulation software CST
Microwave Studio [42]. Periodic boundary conditions are
applied on the sides of the unit cell, which enforces that the
structure is infinitely periodic in each direction. Individual
phase shifts 	φx,	φy,	φz are applied on the boundaries,
the phase shifts corresponding to phase difference between
the fields on the two boundaries, and by varying the phase
between zero and π the propagation vector (kx,ky,kz)
can be fixed to any location in the first Brillouin zone.
The eigenfrequencies are then computed for the desired
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FIG. 2. Band diagram of the metamaterial unit cell in Fig. 1
along the path �(kx = 0,kz = 0) − X(kx = π/px,kz = 0) − K(kx =
π/px,kz = π/pz) − M(kx = 0,kz = π/pz) − �(kx = 0,kz = 0).

propagation vectors for obtaining the band diagram (Fig. 2)
and isofrequency dispersion relations (Fig. 3).

In the band diagram (Fig. 2) the first three modes are
marked and the isofrequency dispersion curves for the three
modes are presented in Fig. 3. The first mode starts from the �

point (kx = 0,kz = 0) and has isofrequency curves resembling
hyperboloids, as shown in Fig. 3(a). The second mode starts
from 13.6 GHz, which also denotes the plasma frequency
ωp. In our previous work [26] only the second mode was
considered and the first mode was not excited.

From the hyperbolic isofrequency surfaces of mode 1
[Fig. 3(a)] we can confirm that the material acts as a
hyperbolic metamaterial. However, at low frequencies the
topology is more cylindrical than hyperbolic. The Poynting
vector, which gives the direction of power flow, is normal to
these isofrequency surfaces, so at low frequencies most power
is confined in the x-y plane. It is consistent with the fact
that at low frequencies the structure behaves like a parallel
plate waveguide and most of the power is confined between
two grids. Mode 2 [Fig. 3(b)] and mode 3 [Fig. 3(c)] start as
spheres of small radius at the plasma frequency (ωp) around
13.6 GHz. The radius of these spheres can be expressed as
k0n, where n is the effective refractive index and k0 = ω/c is
the wave number in free space. A small radius implies a small

effective refractive index n. Thus at frequencies slightly greater
than the plasma frequency 13.6 GHz, where the second and
third mode in the band diagram (Fig. 2) originate, the material
acts as an epsilon-near-zero or index-near-zero medium [26].

V. DENSITY-OF-STATES CALCULATION FROM
ISOFREQUENCY SURFACES

Having obtained the isofrequency surfaces, we now proceed
to calculate the density of states for our metamaterial unit
cell from these isofrequency surfaces. The density of states is
defined as

D(ω) =
∑

n

∫
BZ

dkδ(ω − ωn,k). (14)

Integration is performed over k where ωn,k are the eigen-
frequencies corresponding to the wave vectors k and mode
number n. The DOS can also be expressed in terms of the
infinitesimal volume of the shell formed between two closely
separated isofrequency surfaces of frequencies ω and ω + dω:

D(ω)dω = 1

(2π )3

∫∫
δω

dk1
//dk2

// dω

| �∇ωk|
, (15)

where k1
// and k2

// are tangential to the isofrequency surface
and dk1

//dk2
// forms a differential surface area element on the

isofrequency surface ω(kx,ky,kz). The integral in Eq. (15) can
be evaluated by discretizing the isofrequency surface (Fig. 4)
into N triangles and expressing Eq. (15) as a summation:

D(ω) = 1

(2π )3

N∑
i

	i 1

| �∇ωi
k|

, (16)

where 	i is the area of the ith triangular patch and | �∇ωi
k| is

the magnitude of gradient at the center of the triangle.
The density of states D(ω) calculated from the isofrequency

surfaces shown in Fig. 3 using Eq. (16) is shown in Fig. 5. The
density of states of individual modes of the metamaterial unit
cell is compared with the density of states for vacuum for
TM polarization given by ω2

2π2c3 . We observe that the DOS for
mode 1 is large compared to vacuum which is expected due
to the hyperbolic nature of the mode. In contrast, for modes 2
and 3 D(ω) = 0 below ωp ≈ 13.6 GHz as TEz modes cannot
propagate at these frequencies.

FIG. 3. Isofrequency surfaces for the unit cell in Fig. 1. Here, (a), (b), and (c) show isofrequency surfaces for modes 1, 2, and 3, respectively,
as marked in Fig. 2. The topology of isofrequency surfaces for mode 1 (a) is hyperbolic and leads to a high density of states. Mode 2 (b) and
mode 3 (c) begin at 13.6 GHz, at the plasma frequency ωp . The Brillouin zone sectioned by the plane ky = 0.
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FIG. 4. Illustration of the method used to compute the density
of states. The isofrequency surface, ω(kx,ky,kz) is divided into N

triangles; the gradient �∇ωk is computed at the centroids of the
triangular patches and used in Eq. (16) to compute the density of
states.

VI. EXPERIMENTS: MEASUREMENT OF THE PURCELL
FACTOR WITH ANTENNA IMPEDANCE

We now outline our procedure for the measurement of the
Purcell factor from S-parameters. The sketch of the setup used
for measurements is shown in Fig. 6. The dipole attached to a
coaxial cable can be modeled as a one-port network system.
The inset in Fig. 6 shows the experimental system as a one-port
network. The dipole of impedance Z is driven by a voltage
source Vs , of reference impedance Zw. Our experimental
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FIG. 5. Density of states computed with the isofrequency surfaces
for mode 1 (blue), mode 2 (red), and mode 3 (green) as shown in
Fig. 3 and compared with the theoretical density of states for vacuum
(dashed). The first mode due to hyperbolic isofrequency surfaces has
higher DOS than vacuum.

FIG. 6. Sketch of the experimental setup demonstrating the
measurement of the Purcell factor with the dipole. Inset: The one-port
network with the reference impedance Zw .

system was calibrated to have a reference impedance equal
to 50 �. The current flowing in the circuit is denoted by
I . If the current flowing in the circuit I is expressed as a
superposition of incident current Ii and reflected current Ir ,
I = Ii − Ir . For a one-port network system S11 denotes the
reflection coefficient. The reflection coefficient S11 relates
the incident and the reflected currents as Ii = S11Ir . S11 is
measured from a vectorial network analyser (VNA) and is
related to the impedances Z and Zw as [43]

S11 = Z − Zw

Z + Zw

. (17)

The impedance of a dipole antenna for the purpose of
evaluating the Purcell factor is obtained by measuring the
scattering coefficient S11. For a weakly lossy dipole antenna
the real component of impedance Re(Z) can be approximated
by the input impedance Rin [24]. The Purcell factor using
Eq. (11) can thus be measured as

F = Re(Z)

Re(Z)0
= Rin

Rin
0

, (18)

where

Rin = Zw

1 − Re(S11)2 − Im(S11)2

[1 − Re(S11)]2 + Im(S11)2
. (19)

Here S11 is the reflection coefficient and Zw = 50 � is the
characteristic impedance. We use this approach to measure the
Purcell factor of our metamaterial structure.

The procedure for measurement of the Purcell factor is
as follows. The dipole (electric or magnetic) is attached to
a coaxial cable and S11 is recorded in free space. From S11

measurements, the reference input resistance for vacuum Rin,0

is obtained via Eq. (19). The dipole is then placed at the center
of the structure between the second and third copper grids.
S11 is recorded and Rin is calculated again from Eq. (19).
The Purcell factor is then obtained from Eq. (18) as the ratio
of radiation resistance Rin in the metamaterial to the Rin,0

in vacuum. The electric and magnetic Purcell factors (Fe/m)
thus obtained are compared against the Purcell factor obtained
using simulated S11 from FDTD method (Fig. 10).

In simulations and for the experiments, the subwavelength
size electric dipole antenna was made of thin conducting wires
of total length 6.3 mm, while the magnetic dipole was a wire
loop antenna of radius 3.0 mm. Measurements were performed
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with a VNA model Anritsu MS2027C for the frequency range
5–15 GHz. At the high-frequency end this was limited by the
VNA. The plasma frequency (ωp = 13.6 GHz) of the structure
lies in this frequency range which allows us to observe the
change in Purcell factor around this frequency.

Numerical simulations for calculations of the Purcell factor
using the antenna impedance method were performed using
the finite difference time domain solver available in CST.
Perfectly matched layers are used to truncate the computational
domain with space added near the structure. The total number
of mesh cells was approximately 109 for the entire structure.
We checked numerically that the dipole is sufficiently sub-
wavelength in length and the Purcell factor does not depend
significantly on the dipole parameters. The available time
domain solver in CST was used to calculate the scattering
coefficients (S-parameters) in the frequency range 5–15 GHz.

When the electric dipole is oriented along ẑ, the Purcell
factor (F ) is strongly affected by the Fabry-Perot (FP)
resonances. The FP resonances occur due to the finite lateral
size of the structure. The effect of FP resonances on the Purcell
factor in metamaterials has been studied in the context of wire-
medium hyperbolic metamaterials [21] where it was argued
that the Fabry-Perot resonances do not affect the average
value of the Purcell factor. It was numerically shown that
the frequency averaged Purcell factor in finite structure was
in agreement with the Purcell factor of an infinitely periodic
structure. While taking the average may seem heuristic, a
similar signal processing technique can be justified from
the physics of the resonances: The Fabry-Perot resonances
are caused by reflections from the boundaries of the finite
structure; eliminating these reflections by zeroing out the time
signal from the time any reflections arrive should give a good
approximation to the response of the infinite medium. A similar
technique was used to remove Fabry-Perot resonance artifacts
in hyperlens images [44].
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FIG. 7. Input and output time signals from FDTD simulations
for an electric dipole along ẑ placed at the center of the structure.
The first reflection in the output signal occurs around 0.9 ns, which
corresponds to the time taken by the wave to reflect back from the
boundary of the structure.

FIG. 8. The Purcell factor for an electric dipole along ẑ computed
from the time signals in Fig. 7. Solid curves are calculated from time
signals up to 30 ns; dashed curve gives the corresponding results
after time windowing to eliminate the effect of the reflections from
the boundaries.

The Purcell factor is calculated from the reflection coeffi-
cient S11 [Eq. (19)]. In the FDTD simulations S11 is calculated
from the time signals as the ratio of the Fourier transform
(F) of the output [O(t)] and the input [I (t)] time signals,
S11(ω) = F[O(t)]/F[I (t)]. The dipole is placed at the center
of the structure which has a lateral width of L = 280 mm.
The time for the wave to reflect back from the boundaries
(t ref) is thus t ref = L/c 
 0.9 ns where c is the speed of
light in free space. We can observe the reflections in the time
signals at 0.9 ns in Fig. 7. By limiting our time signal to t ref

the reflections are excluded and Fabry-Perot resonances are
eliminated. In order to limit the time signals to t ref we multiply
the input and output signals by a super-Gaussian windowing
function h(t) = e−(t/σ )4

with window length σ = 0.9 ns. Since
we obtain S11 in the frequency domain from the VNA, we
convolve the measured S11 in frequency domain by H (ω)
where H (ω) = F[h(t)]. Figure 8 shows that the truncation of
the time signal (Fig. 7) removes the effect of the Fabry-Perot
resonances on the Purcell factor (F ).

VII. RESULTS AND DISCUSSION

A. Purcell factor for the magnetic dipole oriented along ẑ

Figure 10(a) shows the measured magnetic Purcell factor
for a magnetic dipole oriented along ẑ inside the structure.
A magnetic dipole embedded inside a uniaxial anisotropic
medium oriented parallel to the symmetry axis (ẑ) emits in the
TEz polarization [41] which allows no propagating solutions
when ω < ωp ≈ 13.6 GHz where ε// < 0 [Eq. (12)]. Indeed,
we see that below the plasma frequency the Purcell factor is
close to zero because emission is suppressed, and only takes
significant values above the plasma frequency. This result
is analogous to the inhibition of spontaneous emission of
atoms [5].

The enhancement in Fig. 10(a) around 8.5 GHz is due
to the antiresonance of the dipole which occurs when the
circumference of the dipole loop C = λ/2. This is illustrated
in Fig. 9, which shows the impedance of a magnetic dipole
loop antenna with outer radius b = 3 mm and wire radius
a = 2 mm, using a Fourier series expansion method [45,46]
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FIG. 9. Comparison of FDTD simulations (blue) and theoretical
calculations (green) of input impedance Re(Z) of a magnetic dipole
antenna in vacuum with outer radius b = 3 mm and wire radius
a = 1 mm.

(green curve) and an FDTD calculation (blue curve). These
confirm that the peak around 8.5 GHz corresponds to the first
antiresonance.

The Purcell factor is a property of the medium and cannot
depend on the dipole. Hence the peak near 8.5 GHz in
Fig. 10(a) does not correspond to an enhancement of the
Purcell factor. This is analogous to the strong-coupling regime
where the LDOS loses its meaning. Hence, care must be taken
to avoid antenna-related artifacts when using the impedance
method to measure the Purcell factor.

B. Purcell factor for the electric dipole oriented along ŷ

In Fig. 10(b) the measurement of the Purcell factor for an
electric dipole perpendicular to the anisotropy axis along ŷ is
shown. In this particular orientation the field is a superposition
of TEz and TMz polarizations. The Purcell factor is similar
to that of the magnetic dipole parallel to the anisotropy axis
(pure TEz polarization) [Fig. 10(a)], without the antiresonance
peak. The similarity with the magnetic Purcell factor can be
interpreted as follows. For a magnetic dipole oriented along ẑ,
the electric field is in the x-y plane (TEz polarization). For the
electric dipole along ŷ, perpendicular to the anisotropy axis ẑ,
most of the power is radiated with the electric field along ŷ.
However, the structure in which it is embedded does not allow
propagation with a component of the electric dipole along ŷ,
below the plasma frequency as the metallic grids are in the x-y
plane similar to the magnetic dipole. Hence we measure the
same plasma frequency in both cases and also a similar Purcell
factor with the electric dipole perpendicular to the anisotropy
axis.

We point out that there is no enhancement of the Purcell
factor around 8.5 GHz for this case, in contrast to what was
observed for the magnetic dipole [Fig. 10(a)]. Indeed, for an
electric dipole of length l = 6 mm, the antiresonance lies at
the matching frequency λ/2 = l (that is, 25 GHz) which is
outside the measurement range.

FIG. 10. Comparison of measurements (dashed) and FDTD
simulations (solid) of Purcell factors obtained using the impedance
method for different dipole orientations placed inside the hyperbolic
metamaterial. (a) Purcell factor for a magnetic dipole parallel to the
anisotropy axis z (TEz polarization). The hatching represents the
frequency of the anti-resonance of the magnetic dipole. (b) Purcell
factor for an electric dipole along ŷ (TEz polarization). (c) Purcell
factor for an electric dipole parallel to the anisotropy axis ẑ (TMz

polarization).

C. Purcell factor for the electric dipole oriented along ẑ

The Purcell factor measured with the electric dipole
oriented along ẑ in the structure is shown in Fig. 10(c).
The electric dipole embedded inside a uniaxial anisotropic
medium oriented parallel to the anisotropy axis emits in
the TMz polarization [41]. The Fabry-Perot resonances are
removed by applying a convolution which corresponds to a
super-Gaussian window in the time domain, with a window
length of t ref = 0.9 ns as mentioned in Sec. VI. In the TMz

polarization the dispersion relation for the uniaxial hyperbolic
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medium is given by Eq. (13). The hyperbolic nature of the
dispersion relation leads to a large LDOS and a large Purcell
factor. The Purcell factor decreases with frequency, which
can be interpreted as a consequence of the periodicity of the
structure limiting the maximum permitted value of kz. In a
medium where kz is bound by a maximum value kz,max the
DOS of the structure is linearly proportional to ω [47]:

D(ω) = ω

π2c2

εzz

2
kz,max, (20)

whereas the DOS for vacuum is proportional to ω2. The
Purcell factor is the ratio of LDOS inside the structure to
the LDOS in vacuum, and hence decreases with frequency ω.
The enhancement of the Purcell factor is not extremely large
as would be expected for a truly hyperbolic mode, but we note
that the structure was not designed with the specific aim of
enhancing the Purcell factor.

D. Comparison of the DOS from eigenmode calculations
and impedance of antennas

So far, we have calculated the DOS using eigenmode
analysis (Sec. V), and have measured and determined the
LDOS using the impedance method (Sec. VI). The LDOS
can be obtained from eigenmode calculations, as discussed
in Ref. [48] Conversely, the DOS can be calculated from the
LDOS quite readily, allowing us to compare both results. We
define the relative density of states (rel. DOS) as the ratio of
the DOS of the metamaterial unit cell to the theoretical DOS
for vacuum. The DOS is the spatial and orientational average
of the LDOS over the unit cell. The Purcell factor depends
on the location and the orientation of the dipole inside the
unit cell. Hence, an average of the Purcell factor over the unit
cell and the three orientations (x, y, and z) is equivalent to
rel. DOS.

For obtaining the rel. DOS with the impedance method, an
average of the Purcell factor over a unit cell of the metamaterial
is required. Numerical simulations of a dipole antenna were
performed at 27 locations in one-eighth of the unit cell along ẑ

and ŷ directions. By symmetry of the unit cell it is equivalent
to 27 × 8 = 216 locations. The impedance was obtained from
reflection coefficient S11 and the average of the Purcell factor
was calculated. The length of the dipole antenna was chosen
to be 1 mm. The Purcell factor is obtained from the impedance
method (Sec. VI) at each location and its average is denoted as
〈Fi〉, where i is the orientation of the dipole. The simulation
was limited to t ref = 0.9 ns to remove reflections from the
boundaries, as discussed in Sec. VI.

Averaging the Purcell factor in the three directions
we obtain rel. DOS = (〈Fx〉 + 〈Fy〉 + 〈Fz〉)/3 = (2〈F//〉 +
〈Fz〉)/3. For the eigenmode method, there are three modes
present between 5 and 15 GHz (Fig. 5) and they are summed
to obtain rel. DOS, that is, rel. DOS = (DOSMeta)/DOSvac =
(DOSMode 1 + DOSMode2 + DOSMode 3)/DOSvac. Results of
the comparison are presented in Fig. 11 and we find a good
agreement between the two methods.

VIII. CONCLUSION

A detailed analysis of the Purcell factor inside a fishnet
metamaterial at microwave frequencies has been presented.

FIG. 11. Comparison of the rel. DOS obtained from impedance
method (blue) and rel. DOS from eigenmode calculations (dashed)
as shown in Fig. 5.

Measurements and numerical calculations of impedance of
antennas located inside the metamaterial were used to deter-
mine the Purcell factor. The anisotropic nature of the structure
leads to different electric and magnetic Purcell factors due to
distinct dispersion relations in the TMz and TEz polarizations.
We performed eigenmode calculations of the periodic unit cell
of the metamaterial structure to obtain the band structure and
the isofrequency surfaces. From the isofrequency surfaces, we
confirmed the presence of a hyperboliclike mode, which causes
an enhancement of the Purcell factor, and outlined a method
to calculate the density of states of the metamaterial unit cell
from the isofrequency surfaces.

We show that the impedance method can be used to
obtain the density of states of the metamaterial. We numer-
ically calculated the DOS by averaging the Purcell factor
obtained from impedance calculations over the unit cell of
the metamaterial. We compared the DOS obtained from the
impedance method with the DOS obtained from eigenmode
calculations of the unit cell. By limiting the simulation time
the artifacts due to reflections are removed. It eliminates the FP
resonances, and the rel. DOS for a finite structure and that for
an infinite structure agree with each other. Though we studied
the density of states of a fishnet metamaterial at microwave
frequencies, our method can be used to study the density
of states for other periodic structures like a wire medium
as well. The impedance measurements of an antenna can be
developed as a useful tool to study the density of states of any
medium.
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