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Non-Markovian spin-resolved counting statistics and an anomalous relation
between autocorrelations and cross correlations in a three-terminal quantum dot
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We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-
pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential.
A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved
counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For
symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin
current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces
universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles
in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between
noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in
spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects
give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation.
These unique noise features may offer essential methods for exploiting internal spin dynamics and various
quasiparticle tunneling processes in mesoscopic transport.
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I. INTRODUCTION

Quantum fluctuations in nonequilibrium transport entailed
by the granularity of charge are not necessarily detrimental
in physical experiments, but may rather unveil intriguing
information about the underlying transport processes and
dynamics not available from conventional average currents [1].
In particular, recent advances in nanofabrication have made
it possible to achieve accurate and highly sensitive on-chip
detection of temporal fluctuations in charge or spin currents
through quantum systems [2–11]. A complete knowledge
of the transport statistics, denoted as full counting statistics
(FCS), which characterizes the correlations between quasi-
particle transport events to any orders [12–14], can now be
extracted experimentally.

The statistics of tunneling processes are normally probed
via autocorrelations of the current fluctuations in one terminal
of the circuit. For a multiterminal device, an alternative method
of measuring the current fluctuations is the cross correlation
between two different branches. The principle benefit of
employing autocorrelation is that it can be readily accessed
in experiments. In particular, for very asymmetric junction
capacitances, the autocorrelation is sufficient to character-
ize the noise spectrum of the entire circuit [1]. However,
cross correlation can be utilized to characterize the essential
quantum nonlocal properties [15–22]. Furthermore, cross
correlation is able to filter out local fluctuations not shared
by the two terminals (detectors), leading to a strong enhance-
ment in the signal-to-noise ratio of quantum measurements
[23–27]. In reality, both autocorrelation and cross correlation
are indispensable to a deep understanding of the transport
statistics.
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For noninteracting fermions, the Pauli exclusion principle
leads to a suppression of noise below the classical Poisson
value [28], and correspondingly yields a negative cross
correlation in a multiterminal structure [29]. This has been
experimentally confirmed in an electronic version of the
Hanbury Brown-Twiss experiment [30,31]. In the presence
of interactions, however, these restrictions on autocorrelations
and cross correlations do not exist, in principle. For instance,
it has been demonstrated that super-Poissonian autocorrela-
tions occur in the presence of a dynamical channel (spin)
blockade [32–38], or cotunneling events [39–41]. In addition,
the sign reversal of cross correlations have been proposed to
result from a variety of mechanisms such as crossed Andreev
reflection processes [42–44] and the feedback effects of
external voltage fluctuations [45]. In particular, positive cross
correlations have been experimentally observed in a number of
systems such as tunnel junctions [15,46,47], quantum dot (QD)
systems [48], and semiconducting nanowires [49]. It is thus
appealing to investigate the essential relationships between
autocorrelations and cross correlations in the presence of
interactions, which can provide information complementary
to an understanding of each, and enable a deeper analysis of
the underlying physics in quasiparticle transport.

Cross correlations for a three-terminal QD device have
been experimentally verified to be proportional to autocor-
relations in excess of the Poissonian value, i.e., there are
one-to-one correspondences between positive and negative
cross correlations and super-Poissonian and sub-Poissonian
autocorrelations, respectively [50]. It was later predicted for
the case of ferromagnetic electrodes that this relation does
not necessary hold, and a super-Poissonian autocorrelation
may correspond to a negative cross correlation, depending
on the degree of spin polarization in the electrodes [51,52].
This finding, in conjunction with the presently standing
observation that positive cross correlations occur only in the
presence of super-Poissonian autocorrelations, indicates that
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FIG. 1. A schematic of an ESR-pumped three-terminal QD
system, where the three electrodes are maintained at an equivalent
chemical potential located between the spin-up and spin-down single-
electron levels, such that only spin-up electrons can tunnel into the
QD and spin-down electrons tunnel out.

it is of significant interest and physical importance to establish
whether it is possible to obtain positive cross correlation in the
absence of super-Poissonian autocorrelation.

In this work, we exam this essential issue in the context
of an ESR-pumped spin current through the three-terminal
QD, as schematically shown in Fig. 1. Our analysis is
based on a generic spin-resolved FCS formalism established
with appropriate inclusion of non-Markovian memory effects
due to coupling with an external heat bath. We reveal an
anomalous relationship between autocorrelations and cross
noise correlations. In the limit of very asymmetric spin tunnel
couplings, super-Poissonian autocorrelation is observed in
spite of a negative cross correlation. In addition, with strong
dissipation strength, it is demonstrated unambiguously that
positive cross correlation does occur with a sub-Poissoianian
autocorrelation in the presence of non-Markovian memory
effects.

The remainder of this paper is organized as follows. We
begin in Sec. II with a presentation of the ESR-pumped
three-terminal QD system. The spin-resolved quantum master
equation (QME) is derived in Sec. III, where non-Markovian
characteristics are included due to coupling with a dissipa-
tive heat bath. To account appropriately for non-Markovian
spin transport processes, in Sec. IV we utilize a recursive
scheme [53,54] with inclusion of spin degrees of freedom to
obtain, in principle, any order of spin-resolved current cu-
mulants. The observation of super-Poissonian autocorrelation
with negative cross correlation as well as the occurrence of
positive cross correlation despite sub-Poissonian autocorre-
lation are discussed in Sec. V, where the underlying mech-
anisms associated with phonon-assisted tunneling processes
and non-Markovian memory effects are revealed. Finally, we
summarize the work in Sec. VI.

II. MODEL DESCRIPTION

The system under investigation is a Coulomb-blockaded
single QD tunnel coupled to three electrodes (Fig. 1),
which are maintained at an equivalent chemical po-
tential μ0. An external rotating magnetic field, B(t) =
B0(sin θ cos �t, sin θ sin �t, cos θ ), is applied to the QD,
where its z component is responsible for the Zeeman splitting
of the single-electron level, with the Zeeman energy � =
gzμBB0 cos θ , gz the effective electron gyromagnetic factor
in the z direction and μB the Bohr magneton. The chemical

potential μ0 is located between the split spin-up and spin-down
levels, ensuring that only spin-up electrons can tunnel into the
QD and spin-down electrons tunnel out. The frequency � of the
oscillating magnetic field is tuned very close to Zeeman split-
ting �, leading thus to the well-known electron spin resonance.
The spin-up electron in the QD is thereby pumped to the higher
level with its spin orientation flipped, which then tunnels out
to the electrodes, generating an ESR-pumped spin current. In
the strong Coulomb blockade regime, double occupation in the
QD is energetically prohibited, such that no additional spin-up
electrons can enter the QD prior to the spin-down electron tun-
neling out. Furthermore, the QD is also coupled to an inevitably
dissipative phonon environment, which is not shown explicitly
in Fig. 1. The Hamiltonian of the entire system is given as

H = HQD + Henv + H ′. (1)

Here, HQD represents the Hamiltonian of the single QD in
the presence of magnetic fields, Henv is the Hamiltonian of
the environment, and H ′ is that of the coupling between the
single QD and the environment.

The first term on the right is given as

HQD = �

2
Qz + γRF (d†

↑d↓ei�t + d
†
↓d↑e−i�t ), (2)

where the pseudospin operator is defined as
Qz = d

†
↓d↓ − d

†
↑d↑, with d†

σ and dσ respectively representing
the creation and annihilation operators of an electron with spin
σ = ↑,↓ in the QD. Spin-up and spin-down states are coupled
to each other due to the rotating field, with the ESR Rabi
frequency given by γRF = g⊥μBB0 sin θ and g⊥ the electron
gyromagnetic factor in the perpendicular direction. The time
dependence of HQD can be eliminated by transforming to a
rotating frame via U (t) = eiH0t with H0 = 1

2�Qz, leading to
the following redefinition:

HQD = U (t)(HQD − H0)U †(t) = 1
2δESRQz + γRFQx, (3)

with ESR detuning δESR = � − � and the pseudospin operator
Qx = d

†
↑d↓ + d

†
↓d↑. The transformation leaves Henv and H ′

unchanged.
Henv is comprised of Hamiltonians representative of elec-

tron reservoirs Hres and the heat bath HB:

Henv = Hres + HB. (4)

Here, Hres = ∑
j=1,2,3

∑
kσ εjkσ c

†
jkσ cjkσ models noninteract-

ing electrons in the electrodes, where c
†
jkσ (cjkσ ) represents the

creation (annihilation) operator for an electron in electrode j

(j = 1,2,3) with momentum k and spin σ . HB = ∑
q h̄ωqa

†
qaq

depicts dissipative heat bath, where a
†
q (aq) denotes the creation

(annihilation) operator for a boson in mode q.
The last term in Eq. (1), describing coupling between the

single QD and environment, can be written as

H ′ = HQD−el + HQD−ph. (5)

The first component HQD−el = ∑
jσ (f †

jσ dσ + d†
σ fjσ ) depicts

electron tunneling between QD and electrodes, with fjσ =∑
k tjkσ cjkσ and tjkσ the spin-dependent tunneling ampli-

tude. The corresponding tunneling rate for an electron with
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spin σ is characterized by the intrinsic linewidth 
jσ (ω) =
2π

∑
k |tjkσ |2δ(ω − εjkσ ). Hereafter, we assume wide band

limit in the electrodes, which leads to energy-independent
tunneling rates 
jσ (ω) = 
jσ . Owing to the position of μ0

between the two split spin levels, spin-up electrons can
tunnel into the QD with rate 
j↑ and spin-down electrons
tunnel out with rate 
j↓. The second component in Eq. (5)
models coupling with the phonon bath HQD−ph = FBQz,
where FB = 1

2

∑
q λq(a†

q + aq), with λq the electron-phonon
coupling strength. The effect of phonon bath on the QD
system is characterized by the phonon interaction spectral
density J (ω) = ∑

q |λq |2δ(ω − ωq). Here, we consider the
case of Ohmic dissipation J (ω) = 2αωe−ω/ωc , where the
dimensionless parameter α reflects the strength of dissipation
and ωc is the Ohmic high-energy cutoff. In what follows, we set
unit of h̄ = e = 1 for the Planck constant and electron charge,
unless stated otherwise.

III. NON-MARKOVIAN SPIN-RESOLVED QME

The dynamics of the reduced spin system can be described
by the QME for a reduced density matrix �(t). However,
to describe spin transport characteristics, it is necessary to
unravel the density matrix �(t) into components �({Njσ },t),
where ({Njσ }) = (N1↑,N1↓,N2↑,N2↓,N3↑,N3↓), with Njσ the
number of spin-σ (σ = ↑,↓) electrons tunneled through
junction j (j = 1,2,3) during the time span [0, t]. This
equation, denoted as the spin-resolved QME, can be derived
via decomposition of the entire Hilbert space of the electrode
reservoirs [55–58] or employing the real-time diagrammatic
technique on the Keldysh contour [59–61]:

∂

∂t
�({Njσ },t) =

∑
{Nj ′σ ′ }

∫ t

0
dt ′W({Njσ − Nj ′σ ′ },t − t ′)

× �({Nj ′σ ′ },t ′) + ϒ({Njσ },t), (6)

where the memory kernel W describes the influence of the
environment (electrodes and heat bath) on the spin dynamics,
and the inhomogeneity ϒ accounts for the initial correlation
between the reduced system and the environment. The spin-
resolved density matrix �({Njσ },t) is directly associated with
the probability distribution for the number of transferred spin
P ({Njσ },t) = tr[�({Njσ },t)], where tr[· · · ] denotes the trace
over the degrees of freedom of the reduced system. The
corresponding spin-resolved cumulant generating function
(CGF) F({χ jσ },t) is then given by

eF({χ jσ },t) =
∑
{Njσ }

P ({Njσ },t)ei{Njσ }·{χ jσ }, (7)

where ({χ jσ }) = (χ1↑,χ1↓,χ2↑,χ2↓,χ3↑,χ3↓) are the spin-
resolved counting fields associated with ({Njσ }).

By performing a Laplace transform �̃({χ jσ },z) =∑
{Njσ }

∫ ∞
0 dt ′�({Njσ },t ′)ei{Njσ }·{χ jσ }−zt ′ , Eq. (6) leads readily

to an algebraic equation

z�̃ − �(t = 0) = W({χ jσ },z)�̃ + ϒ̃({χ jσ },z). (8)

A detailed derivation of this equation is provided in
Appendix A. Specifically, let us here consider the spin
occupation representation: |0〉 empty and |σ 〉 occupied by a

spin-σ electron. Under this condition, the kernel W({χ jσ },z)
in the Laplace domain is given by (see Appendix A)

W({χ jσ },z) =

⎛
⎜⎝

−
̃0
↑ 0 
̃

χ↓
↓


̃
χ↑
↑ −γ +

z γ −
z

0 γ +
z −γ −

z − 
̃0
↓

⎞
⎟⎠, (9)

where 
̃χσ
σ = ∑

j=1,2,3 
jσ eiχjσ is the counting-field-dressed
tunneling width for a spin-σ electron, and γ ±

z are the bath-
assisted hopping rates

γ ±
z = γ 2

RF
{C̃(±)(z+) + C̃(∓)(z−)}, (10)

with z± = z + 
̃0
↓

2 ± iδESR. The involving C̃(±)(z) are the
Laplace transform of the bath correlation functions:

C̃(±)(z) =
∫ ∞

0
dte−ztC(±)(t), (11)

with

C(±)(t) = e−Q(∓t),

Q(t) =
∫ ∞

0
dω

J (ω)

ω2

×
{

[1 − cos(ωt)] coth

(
βω

2

)
+ i sin(ωt)

}
. (12)

The details for the derivation of the bath correlations are given
in Appendix B.

It is worthwhile mentioning the validity of our approach.
First, for the treatment of coupling to the electronic reservoirs,
we employed the standard Born-Markov perturbation. In the
context of present ESR-based QD system it requires that
the Zeeman splitting � and the temperature kBT are much
larger than the tunnel-coupling strength, i.e., �,kBT 	 
jσ .
Second, for the coupling to the phonon bath, we performed a
polaron transform (see Appendix B), which therefore implies
that our approach is applicable to strong heat bath coupling.
The resultant equation (6) exhibits clearly non-Markovian
characteristics. The conventional Markovian QME approach
for the FCS therefore must be extended, such that the non-
Markovian effects are appropriately described, as is presented
in the following section.

IV. GENERAL FORMALISM FOR NON-MARKOVIAN
SPIN-RESOLVED FCS

The spin-resolved CGF given above as F({χ jσ },t) is the
essential component required for evaluating spin-resolved
cumulants. For that purpose, we solve Eq. (8) formally as

�̃({χ jσ },z) = G({χ jσ },z)[�({χ jσ },t = 0) + ϒ̃], (13)

where

G({χ jσ },z) = [z − W({χ jσ },z)]−1 (14)

is the resolvent of the kernel. By returning to the time domain
via an inverse Laplace transformation, one readily obtains the
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CGF as

eF = 1

2π i

∫ a+i∞

a−i∞
dztr{G({χ jσ },z)[�({χ jσ },t = 0) + ϒ̃]},

(15)
where a is a real number chosen in such a way that all
the singularities of the integrand are located on the left of
the vertical integration line. Equation (15) is a powerful
result, containing the full statistical information regarding the
spin transfer process. For instance, the first zero-frequency
cumulants correspond to spin-dependent currents

〈〈Ijσ 〉〉 = d

dt

∂

∂(iχjσ )
F({χ jσ },t)|{χ jσ }→{0}. (16)

The net charge and spin currents through terminal j ∈ {1,2,3}
are then given respectively by〈〈

I c
j

〉〉 = 〈〈Ij↑〉〉 + 〈〈Ij↓〉〉, (17a)〈〈
I s
j

〉〉 = 〈〈Ij↑〉〉 − 〈〈Ij↓〉〉. (17b)

The second cumulants are related to the spin-resolved shot
noise, and are given as

〈〈Ijσ Ij ′σ ′ 〉〉 = d

dt

∂2F({χ jσ },t)
∂(iχjσ )∂(iχj ′σ ′)

|{χ jσ }→{0}, (18)

with j,j ′ ∈ {1,2,3}. According to Eq. (17), one readily finds
the autocorrelation (j = j ′) and cross correlation (j 
= j ′) of
the total charge and spin currents〈〈

I c
j I c

j ′
〉〉 = 〈〈Ij↑Ij ′↑〉〉 + 〈〈Ij↓Ij ′↓〉〉 + 〈〈Ij↑Ij ′↓〉〉 + 〈〈Ij↓Ij ′↑〉〉,

(19a)〈〈
I s
j I

s
j ′
〉〉 = 〈〈Ij↑Ij ′↑〉〉 + 〈〈Ij↓Ij ′↓〉〉 − 〈〈Ij↑Ij ′↓〉〉 − 〈〈Ij↓Ij ′↑〉〉.

(19b)

In principle, higher-order cumulants can be obtained in a
similar manner.

The zero-frequency cumulants are determined by the long-
time behavior of F [53,54]

F({χ jσ },t) → z0({χ jσ })t, (20)

in which z0({χσ }) is a unique pole of the resolvent G({χ jσ },z)
that satisfies z0({0}) = 0 and solves

z0({χ jσ }) − λ0({χ jσ },z0) = 0. (21)

Here, λ0({χ jσ },z0) is the single isolated eigenvalue of
W({χ jσ },z) that evolves adiabatically from λ0({0},z0) = 0.

Equations (20) and (21) enable us to calculate the zero-
frequency spin-dependent cumulants readily. For instance, the
first spin-resolved cumulants are given by

〈〈Ijσ 〉〉 = ∂

∂(iχjσ )
λ0|{χ jσ }→{0},z0→0. (22)

The second cumulants simply read

〈〈Ijσ Ij ′σ ′ 〉〉 =
{

∂2

∂(iχjσ )∂(iχj ′σ ′)
+ 〈〈Ijσ 〉〉 ∂2

∂(iχj ′σ ′)∂z

+〈〈Ij ′σ ′ 〉〉 ∂2

∂(iχjσ )∂z

}
λ0|{χ jσ }→{0},z0→0. (23)

While we here present only the first two cumulants, higher-
order cumulants can be obtained in a similar fashion.

The dominant eigenvalue λ0({χ jσ },z0) can be evaluated in
a recursive manner by using the Brillouin-Wigner perturbation
theory. The stationary state of the reduced system |0〉〉 =
limt→∞ �(t) can be obtained as the normalized solution to
W0|0〉〉 = 0, withW0 = W({χ jσ } = {0},z = 0). Analogously,
〈〈0̃| is the normalized solution to 〈〈0̃|W0 = 0, satisfying the
normalization condition 〈〈0̃|0〉〉 = 1. By introducing the per-
turbation of the kernel W = W({χ jσ },z) − W0 and its pseu-
doinverse operator R = Q0[λ0({χ jσ },z) − W0]−1Q0, where
Q0 ≡ 1 − |0〉〉〈〈0̃|, one arrives at a formal expression of the
dominant eigenvalue

λ0({χ jσ },z) = 〈〈0̃|W(1 − RW)−1|0〉〉, (24)

which serves as a starting point for the efficient calculation of
the spin-resolved cumulants in a recursive manner. The first
cumulants, given by Eq. (22), are readily obtained via the first
time derivative of W with respect to the counting field:

〈〈Ijσ 〉〉 =
〈〈

0̃

∣∣∣∣ ∂W
∂(iχjσ )

∣∣∣∣0
〉〉

{χ jσ }→{0},z→0

, (25)

which have no z dependence, and, thus are not sensitive to
non-Markovian effects. The second spin-resolved cumulants
given by Eq. (23), however, clearly show the existence of the
non-Markovian influence:

〈〈Ijσ Ij ′σ ′ 〉〉 =
〈〈

0̃

∣∣∣∣
{

∂2W
∂(iχjσ )∂(iχj ′σ ′)

+ 2
∂W

∂(iχjσ )
R ∂W

∂(iχj ′σ ′)
+ 2

∂W
∂(iχj ′σ ′)

R ∂W
∂(iχjσ )

+〈〈Ijσ 〉〉
[

∂2W
∂(iχj ′σ ′)∂z

+ 2
∂W

∂(iχj ′σ ′)
R∂W

∂z
+ 2

∂W
∂z

R ∂W
∂(iχj ′σ ′)

]

+〈〈Ij ′σ ′ 〉〉
[

∂2W
∂(iχjσ )∂z

+ 2
∂W

∂(iχjσ )
R∂W

∂z
+ 2

∂W
∂z

R ∂W
∂(iχjσ )

]}∣∣∣∣0
〉〉

{χ jσ }→{0},z→0

. (26)

The total charge and spin current noise can be obtained
utilizing Eq. (19). Moreover, higher-order cumulants can be
obtained recursively in a similar manner.

Different from the results for charge current cumu-
lants [53,54], higher-order spin-resolved cumulants apparently
involve correlations between different spin currents; see for
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instance, 〈〈Ijσ Ij ′σ ′ 〉〉 in Eq. (26). These correlations may have
vital roles to play in spin-dependent transport. An essential
effect is that these spin-dependent correlations could exist even
though the net charge current is zero, as we will show in the
following section for symmetric tunnel couplings of up and
down spins. Furthermore, for the case of very asymmetric
spin tunnel couplings, these spin-dependent correlations are
found to be responsible for an anomalous feature between
autocorrelations and cross correlations: A super-Poissonian
autocorrelation is observed despite a negative cross correlation
and a positive cross correlation occurs with a sub-Poissoianian
autocorrelation.

We have presented a generic approach for the calculation
of the spin-resolved counting statistics in the presence of
non-Markovian memory effects. Although the formalism has
been developed in the context of an ESR-based three-terminal
QD system, it is applicable to a wide range of spin transport
systems. Furthermore, the approach allows us to obtain, in
principle, any order of spin-resolved cumulants in a recursive
manner.

V. RESULTS AND DISCUSSION

In this section, we present the spin-resolved non-Markovian
noise characteristics in both cases of symmetric and strongly
asymmetric spin tunnel couplings, where some universal
noise results for charge and spin currents and anomalous
features between autocorrelations and cross correlations will
be revealed. Finite-frequency spin-resolved noise is also
investigated in the non-Markovian regime based on the Mac-
Donald’s formula. Transition from coherence to incoherence
will be demonstrated clearly in the noise spectrum.

A. Symmetric spin tunnel couplings

The first cumulants are related to spin currents through
junction j . For symmetric spin tunnel couplings (
jσ = 
),
they are simply given by

〈〈Ij↓〉〉 = −〈〈Ij↑〉〉 = 
γ +
0

3
 + γ −
0 + 2γ +

0

. (27)

In this case, electrons with up and down spins tunnel into
and out of each electrode with equivalent rates. According
to Eq. (17), the total charge current in electrode j is

FIG. 2. The spin current through junction j as a function of (a)
the magnitude and (b) the ESR detuning of the driving field with
different dissipation strengths α. The tunnel couplings are symmetric,
i.e., 
jσ = 
. The other parameters are heat bath temperature T = 0
and high-energy cutoff ωc = 100
.

exactly zero 〈〈I c
j 〉〉 = 〈〈Ij↓〉〉 + 〈〈Ij↑〉〉 = 0 and the total spin

current through electrode j is given by 〈〈I s
j 〉〉 = 〈〈Ij↓〉〉 −

〈〈Ij↑〉〉 = 2〈〈Ij↓〉〉.
The numerical results for 〈〈I s

j 〉〉 versus γRF are displayed
in Fig. 2(a) for various values of α. The value of 〈〈I s

j 〉〉 is
proportional to the excitation power (〈〈I s

j 〉〉 ∝ γ 2
RF

), which is
consistent with the prototype of the present ESR pumping
device. As γRF increases, 〈〈I s

j 〉〉 saturates regardless of value
of α, which is also implied in Eq. (27). The effect of phonon
absorption and emission is essentially reflected in Fig. 2(b),
where 〈〈I s

j 〉〉 is plotted versus δESR. Without coupling to
the heat bath (α = 0), 〈〈I s

j 〉〉 is symmetric about δESR = 0,
whereas asymmetry is observed in the presence of finite
coupling to the heat bath. The asymmetry arises due to the
asymmetric emission and absorption of phonons, where, at low
temperatures and for δESR < 0, phonon absorption dominates,
and 〈〈I s

j 〉〉 is suppressed. In the opposite regime of δESR > 0,
the phonon emission process is dominant, leading to an
enhancement in 〈〈I s

j 〉〉.
The second cumulants are directly related to the spin-

resolved shot noise. Utilizing Eq. (26), the spin-resolved
cumulants reflecting autocorrelation for electrode j are
given by

〈〈Ijσ Ijσ 〉〉 = +|〈〈Ijσ 〉〉|
{

1 + 6
(γ −
0 γ̇ +

0 − γ +
0 γ̇ −

0 ) + 6
(3
γ̇ +
0 − 2γ +

0 ) − 2γ +
0 (γ +

0 + γ −
0 )

3(3
 + γ −
0 + 2γ +

0 )2

}
, (28a)

〈〈Ijσ Ijσ̄ 〉〉 = −|〈〈Ijσ 〉〉|
{

1

3
+ 6
(γ −

0 γ̇ +
0 − γ +

0 γ̇ −
0 ) + 6
(3
γ̇ +

0 − 2γ +
0 ) − 2γ +

0 (γ +
0 + γ −

0 )

3(3
 + γ −
0 + 2γ +

0 )2

}
, (28b)

where we have employed the notation γ̇ ±
0 ≡ ∂zγ

±
z |z→0 and

σ̄ = −σ . Analogously, the spin-resolved cumulants reflecting
cross correlations between different electrodes are obtained as

〈〈Ijσ Ij ′σ 〉〉 = 〈〈Ijσ Ijσ 〉〉 − |〈〈Ijσ 〉〉| (j 
= j ′), (29a)

〈〈Ijσ Ij ′σ̄ 〉〉 = 〈〈Ijσ Ijσ̄ 〉〉, (j 
= j ′). (29b)

From Eqs. (28) and (29), one readily obtains the autocorrela-
tions of the net charge current [Eq. (19a)]〈〈

I c
j I c

j

〉〉 = 2
3

∣∣〈〈I s
j

〉〉∣∣, (30)

as well as the cross correlations between different electrodes〈〈
I c
j I c

j ′
〉〉 = − 1

3

∣∣〈〈I s
j

〉〉∣∣ (j 
= j ′), (31)
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which are universal results, regardless of the values δESR, γRF

and α. Furthermore, Eqs. (30) and (31) unambiguously demon-
strate that the spin pumping process does generate charge
current shot noise even though, according to Eq. (17a), the
net charge current 〈〈I c

j 〉〉 is zero. Generally, shot noise occurs
when a quantum system is driven out of equilibrium. Our
results therefore reveal that such nonequilibrium shot noise can
occur even when no bias is applied. In this case, the oscillating
magnetic field acts as effective bias voltage. Equations (30)
and (31) also demonstrate that the resultant charge current
shot noise is intimately related to 〈〈I s

j 〉〉, rather than 〈〈I c
j 〉〉. The

cross correlation in Eq. (31) is negative definite, indicating
an antibunching behavior for transported quasiparticles. The
corresponding autocorrelation is thus below the Poissonian
value, i.e., it represents sub-Poissonian noise, consistent with
the arguments in Refs. [1,13].

It is also instructive to investigate the shot noise of the total
spin current according to Eq. (19b). The spin current noise has
been shown to be capable of detecting attractive or repulsive
interactions [62] and revealing a dynamical spin blockade
mechanism [63]. Furthermore, analogous to the charge current
shot noise, which can be used to measure the charge of
quasiparticles in a tunneling process [64–70], the spin current
shot noise may serve as a transparent means of determining the
spin unit of a quasiparticle that has been transported through
the device. Let us focus on the case of δESR = 0 and α = 0.
The autocorrelations and cross correlations of 〈〈I s

j 〉〉 are given,
respectively, by〈〈

I s
j I

s
j

〉〉
∣∣〈〈I s

j

〉〉∣∣ = 4

3

{
1 − 2η(3 + η)

(2 + 3η)2

}
, (32a)

〈〈
I s
j I

s
j ′
〉〉

∣∣〈〈I s
j

〉〉∣∣ = 1

3

{
1 − 8η(3 + η)

(2 + 3η)2

}
(j 
= j ′), (32b)

with η = (2γRF/3
)2. Interestingly, in the limit of small η,
the autocorrelations and cross correlations of spin currents
are reduced to 〈〈I s

j I
s
j 〉〉/|〈〈I s

j 〉〉| → 4
3 and 〈〈I s

j I
s
j ′ 〉〉/|〈〈I s

j 〉〉| → 1
3 ,

respectively. These results imply another universal regime,
where both autocorrelations and cross correlations of 〈〈I s

j 〉〉
determine the spin unit of a quasiparticle transported through
the device, and their ratio is universally 4.

We have now presented both autocorrelations and cross
correlations of charge and spin currents for symmetric spin
tunnel couplings. In this case, up and down spins tunnel,
respectively, into and out of QD with the same rate. Yet,
both charge and spin current noises are uniquely associated
with the spin current, reflecting the fact that the fluctuations
in spin current could also give rise to a charge current noise
even though the net charge current is zero. We further reveal
that the correlations between opposite spin currents have
essential roles to play for both spin and charge current noises
to reach their universal results. These universal results may
provide a crucial means of measuring the charge and spin of
quasiparticles in a mesoscopic spin transport system.

B. Strongly asymmetric spin tunnel couplings

We are now in a position to discuss noise cumulants in
the opposite limit of very asymmetric spin tunneling rates.

FIG. 3. (a) Autocorrelation, expressed as the Fano factor F3 ≡
〈〈(I c

3 )2〉〉/〈〈I c
3 〉〉, and (b) cross correlation of the charge current versus

δESR for very asymmetric spin tunneling rates: 
1↑ = 
2↑ = 
3↓ =
3
10 
, and 
1↓ = 
2↓ = 
3↑ = 1

30 
. The other parameters are γRF =
0.5
, T = 0, and ωc = 100
.

Asymmetry in spin-dependent tunnel couplings may arise
in normal electrodes due to spin-orbital coupling [71–74]
or different electron g factors in the electrode and in the
QD [75,76], or in ferromagnetic electrodes due to different
densities of states for majority and minority electrons [77].
In the following discussion, we will reveal an important new
aspect of the present work. That is an anomalous relation
between autocorrelations and cross correlations: A super-
Poissonian autocorrelation is observed with a negative cross
correlation, while a positive cross correlation occurs in spite
of a sub-Poissonian autocorrelation.

The autocorrelations and cross correlations of the charge
current for various values of α are plotted in Figs. 3(a) and 3(b),
respectively, with strongly asymmetric spin-dependent tunnel-
ing rates: 
1↑ = 
2↑ = 
3↓ = 3

10
 and 
1↓ = 
2↓ = 
3↑ =
1

30
. In this case, the dominant transport process involves
a spin-up electron tunneling from either electrode 1 or 2
into the QD, where its spin is flipped prior to tunneling
out to electrode 3. It is observed for α = 0 [the solid line
in Fig. 3(a)] that the autocorrelation, expressed as the Fano
factor F3 ≡ 〈〈(I c

3 )2〉〉/〈〈I c
3 〉〉, exhibits unambiguously super-

Poissonian characteristics in the regime close to δESR/
 =
± 1

4 . However, as shown by the solid line in Fig. 3(b),
the corresponding cross correlation S12 = 〈〈I c

1 I c
2 〉〉 between

electrodes 1 and 2 is clearly negative.
With finite coupling to the heat bath, asymmetric correla-

tions are observed due to asymmetry in the emission and ab-
sorption of bosons at low temperatures. In the regime δESR <0,
neither the autocorrelation nor the cross correlation is sensitive
to the value of α. In the opposite regime of δESR > 0, however,
the correlations are significantly affected by the value of
α, and, as α increases, the autocorrelation F3 is reduced
from a super-Poissonian to a sub-Poissonian value. However,
S12 is correspondingly enhanced unambiguously from a
negative to a positive value. Remarkably, a positive cross
correlation is observed in the absence of a super-Poissionian
autocorrelation.
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FIG. 4. Effective tunneling widths through eigenstates |±〉
versus ESR detuning for 
1↑ = 
2↑ = 
3↓ = 3

10 
, and 1
3 
1↓ =


2↓ = 1
5 
3↑ = 1

90 
. Other parameters are the same as those in Fig. 3.

In order to explore the underlying physics responsi-
ble for the occurrence of the anomalous feature between
autocorrelations and cross correlations, we first diagonalize
the reduced system Hamiltonian [Eq. (3)] as

H̃QD = 1
2�̃{|+〉〈+| − |−〉〈−|}, (33)

with �̃ =
√
δ2

ESR + 4γ 2
RF

. Spin tunneling through the QD then
can be mapped onto transport through a parallel two-level
system. The involved eigenstates are given, respectively, by

|+〉 = sin
�

2
|↑〉 − cos

�

2
|↓〉, (34a)

|−〉 = cos
�

2
|↑〉 + sin

�

2
|↓〉, (34b)

where � is introduced via sin � = 2γRF/�̃ and cos � =
δESR/�̃. As a result, the system-electrode tunnel-coupling
Hamiltonian in Eq. (5) is recast as

H̃QD−el =
∑
j,k

∑
s=+,−

{
t

(s)
jk c

†
jks |0〉〈s| + H.c.

}
, (35)

where the effective tunneling amplitudes through eigenstates
|+〉 and |−〉 are given by t

(+)
jk = tjk↑ sin( �

2 ) − tjk↓ cos(�
2 )

and t
(−)
jk = tjk↑ cos(�

2 ) + tjk↓ sin( �
2 ), respectively. The cor-

responding tunneling widths 
js = 2π
∑

k |t (s)
jk |2δ(ω − εjks)

therefore sensitively depend on δESR. To clearly elucidate
the physical insight responsible for the anomalous noise
feature, we now discuss the correlations for the following five
typical values of ESR detunings: (i) δESR = 0, (ii) δESR = −
,
(iii) δESR = 
, (iv) δESR = − 1

4
, and (v) δESR = 1
4
. The

corresponding values of 
js can be found in Fig. 4.
(i) δESR = 0. In this case, electrons tunneling through the

eigenstate |−〉 dominates; see Fig. 4. The system resembles
the case of transport through a single-level system with
approximately symmetric tunneling rates. The autocorrelation
is sub-Poissonian and the corresponding cross correlation is
negative [see Fig. 3].

(ii) δESR/
 = −1. It is found from Fig. 4 that 
1−, 
2−, and

3+ dominate. An electron tunnels from electrode 1 or 2 into
state |−〉, where it may reside for a long time before it is excited
to state |+〉 by absorbing energy quanta from the phonon bath,

FIG. 5. Dominant tunneling processes in the eigenstate represen-
tation corresponding to different values of δESR: (a) δESR = −
, (b)
δESR = 
, (c) δESR = −
/4, and (d) δESR = 
/4. All other parameters
are equivalent to those employed in Fig. 3.

and, eventually, tunnels out to electrode 3, as schematically
illustrated in Fig. 5(a). The system can be mapped to a serial
double QD in the sequential tunneling regime [78], and thus
the autocorrelation is below the Poissonian value and the cross
correlation is negative.

(iii) δESR/
 = 1. Analogous to the case of (ii) but the rates

1+, 
2+, and 
3− are now dominant. As shown in Fig. 5(b), an
electron flows into state |+〉 through electrode 1 or 2, relaxes
to state |−〉 with phonon emission, and eventually tunnels out
to electrode 3. Again, the transport can be mapped to that
of a serial double QD, and thus the noise characteristics are
qualitative similar to those in the case (ii).

(iv) δESR = − 1
4
. For this moderate value of ESR detuning,

an electron respectively tunnels into and out of state |−〉 with
characteristic times (
1− + 
2−)−1 and (
3−)−1 are rapid in
comparison with those through state |+〉, i.e., (
1+ + 
2+)−1

and (
3+)−1, indicative of fast (|−〉) and slow (|+〉) channels
[see Figs. 4 and 5(c)]. In the presence of strong Coulomb
interactions that prevent double occupancy on the QD, electron
transport competes between these two channels, where the
fast flow of electrons through state |−〉 is modulated by
slow transport through state |+〉. The fast-to-slow mecha-
nism [26,51,63,78–81] leads to the bunching of tunneling
events, and, eventually, to the super-Poissonian characteristics
shown in Fig. 3(a). Moreover, super-Poissonian noise is even
slightly increased with rising α. This is due to the fact
that the phonon absorption process dominates for δESR < 0
[cf. Fig. 5(c)], which may excite an electron from the fast
channel to the slow channel, and, thus, further enhance the
fast-to-slow mechanism.

(v) δESR = 1
4
. As schematically shown in Fig. 5(d), an

electron tunnels into eigenstates |+〉 and |−〉 with comparable
rates (
1+ + 
2+ � 
1− + 
2−) but leaves the QD with quite
different rates (
3− 	 
3+). Without coupling to the phonon
bath (α = 0), the fast-to-slow mechanism still exists, which
leads to the bunching of tunneling events and super-Poissonian
noise, as shown in Fig. 3(a). Yet, under the condition of finite
coupling to the phonon bath, an electron trapped in the slow
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FIG. 6. Time correlation function component 〈〈I1↑I2↑〉〉(t) for
δESR/
 = 0.08 with different values of α. All other parameters are
equivalent to those employed in Fig. 3. The inset shows the results in
the Markovian limit for weak dissipation strength.

channel |+〉 may relax to the fast channel |−〉, and then tunnel
out to electrode 3; see Fig. 5(d). The fast-to-slow mechanism is
thus lifted, which explains the reduction of the autocorrelation
F3 in Fig. 3(a).

Now let us investigate the sign reversal (from negative
to positive) of the cross correlation S12 via analyzing the
corresponding time correlation function 〈〈I c

1 I c
2 〉〉(t). In the

case of δESR = 1
4
, the primary contribution derives from

the spin-resolved component 〈〈I1↑I2↑〉〉(t), which is evaluated
according to the quantum jump theory [82]. The numerical
results are displayed in Fig. 6 for different values of α. In
the sequential tunneling limit, spins tunnel through the device
one by one. It implies limt→0+〈〈I1↑I2↑〉〉(t) = −2〈〈I1↑〉〉〈〈I2↑〉〉,
independent of α; see also Fig. 6. For finite times, 〈〈I1↑I2↑〉〉(t)
depends sensitively on the α. Without coupling to the heat
bath, the system maintains its coherence for a long time, cf.
the solid curve in Fig. 6. With increasing α, the system loses
its coherence rapidly due to coupling with the heat bath; see,
for instance, the dash-dotted curve for α = 1.0 in Fig. 6.

The typical time scales in 〈〈I1↑I2↑〉〉(t) involve the average
delay between the occupancy of the dot by two consecutive
up electrons τ0 = �st

00/
∑

j SSch
j and the average dwell time of

spin-σ electrons on the QD τσ = �st
σσ /

∑
j SSch

jσ , where SSch
jσ =

2〈〈Ijσ 〉〉 is the Schottky noise associated with the tunnel-
ing of spin-σ electrons through junction j , and SSch

j =∑
σ SSch

jσ [52,63]. Let us focus on the situation of a strong
dissipation strength with α = 1.0; see the dash-dotted curve in
Fig. 6. The time correlation is negative for t < τ0 ≈ 1.7
−1. It
then increases, becomes positive, and attains a maximum value
at approximately t = τ↑ ≈ 3.6
−1. Finally, it decreases on a
time scale of t = τ↑ + τ↓ ≈ 16.5
−1. In comparison, these
unique time features are not identified in case of Markovian
limit and weak system-bath coupling, cf. inset of Fig. 6. It
thus allows us to attribute the observed positive S12 to the
non-Markovian influence due to strong coupling between the
system and the heat bath.

C. Non-Markovian finite-frequency noise

Now we are in a position to investigate the second new
aspect of the present work, which is the finite-frequency

FIG. 7. Finite-frequency noise autocorrelation F3(ω) and cross
correlation S12(ω) for δESR/
 = 0.08 with different α. All other
parameters are equivalent to those employed in Fig. 3.

noise in the non-Markovian regime. Recently, accurate noise
measurements on all relevant frequencies have been enabled
using a nearby quantum point contact for on-chip real-time
detection of current pulses in single-electron devices [83,84].
Here, the second cumulant of the spin current is of primary
interest, and its symmetrized finite-frequency current noise can
be expressed by MacDonald’s formula as [85]

Sjσ,j ′σ ′(ω) = ω

∫ ∞

0
dt sin(ωt)〈〈Ijσ Ij ′σ ′ 〉〉(t), (36)

where 〈〈Ijσ Ij ′σ ′ 〉〉(t)= d
dt

∂2F({χ jσ },t)
∂(iχjσ )∂(iχj ′σ ′ ) |{χ jσ }→{0}, for F({χ jσ },t)

given by Eq. (15). Eventually, one arrives at

Sjσ,j ′σ ′(ω) = −ω2

2

∂2

∂(iχjσ )∂(iχj ′σ ′)
[〈G({χ jσ },z = +iω)〉

+ 〈G({χ jσ },z = −iω)〉]|{χ jσ }→{0}, (37)

where 〈G({χ jσ },z)〉= tr{G({χ jσ },z)[�({χ jσ },t =0)+ϒ̃(z)]}.
The evaluation of the above expression requires an appropriate
treatment of the initial condition, as given by Eq. (A12). It
implies the essential roles that inhomogeneity may play in the
finite-frequency cumulant. Moreover, an appropriate inclusion
of the inhomogeneity guarantees a correct finite-time behavior,
i.e., the proper normalization of the reduced density matrix at
all times (tr{�(t)} = 1). With the knowledge of the individual
spin-resolved noise components in Eq. (37), the total noise
spectrum is obtained according to Eq. (19).

The finite-frequency autocorrelations and cross correlations
of the charge currents are presented in Fig. 7 for different
values of α. Near ω = 0, F3 crosses from a super-Poissonian to
a sub-Poissonian value and S12 undergoes a sign reversal from
negative to positive as α increases, consistent with the results
in Fig. 3. The dips located approximately at frequencies

�̃ =
√
δ2

ESR + 4γ 2
RF

in both the autocorrelations and cross
correlations directly reflect the resonance between the two
quantum spin states. Coupling to the phonon bath renormalizes
the eigenspectrum of the spin degrees of freedom, such that
the resonances are shifted toward lower frequencies. The half
width of the resonant peak around ω = �̃ may be utilized
as an essential tool to extract the total dephasing rate of the
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spin system due to coupling with both electronic reservoirs
and a heat bath [86]. As α increases, the resonance signatures
are washed out, indicating how the coherent dynamics of the
system gets progressively damped by the phonon bath.

VI. SUMMARY

We investigated noise correlations in an electron spin
resonance-pumped three-terminal single quantum dot system.
A recursive scheme was employed for the calculation of
the spin-resolved counting statistics in the presence of non-
Markovian effects due to strong coupling to a dissipative heat
bath. We demonstrated for symmetric tunneling rates of up
and down spins that the ESR pumping process universally
generated both charge and spin current shot noises despite
the condition of a zero charge current, which provides a
practical method for measuring quasiparticle charge and spin
in mesoscopic transport. In the opposite limit of very asym-
metric spin tunneling rates, an anomalous relation between
noise autocorrelations and cross correlations was revealed
in the regime δESR > 0 due to complicated phonon-assisted
hopping processes and non-Markovian memory effects. Here,
super-Poissonian autocorrelation was observed in spite of
a negative cross correlation. Moreover, with increasing α,
the charge current autocorrelation was strongly suppressed
from a super-Poissonian to a sub-Poissonian value while the
corresponding cross correlation underwent a sign reversal
from negative to positive. These unique noise features may
offer essential methods for exploiting internal spin dynamics
and various quasiparticle tunneling processes in the study of
mesoscopic transport. The experimental verification of these
predictions is greatly anticipated in the near future.
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APPENDIX A: DERIVATION OF THE NON-MARKOVIAN
SPIN-RESOLVED QME

The spin dynamics of the reduced system conditioned on
the number of tunneled spins is described by the {Njσ }-
resolved QME. By introducing the spin-resolved count-
ing fields ({χ jσ }) = (χ1↑,χ1↓,χ2↑,χ2↓,χ3↑,χ3↓) associated
with the numbers of tunneled spin ({Njσ }), the {Njσ }-
resolved QME is recast to a counting-field-resolved QME for
ρ({χ jσ },t). Under the second-order expansion of the tunnel
coupling and partial tracing over the degrees of freedom of the
electrodes, the counting-field-dressed QME reads

∂

∂t
ρ({χ jσ },t) = L({χ jσ })ρ(t) − i[HB + FBQz,ρ({χ jσ },t)],

(A1)
where the first term L({χ jσ }) describes spin-dependent tun-
neling through the electrodes and the second term accounts for
the effect of dissipative phonon bath.

Specifically, let us consider the occupation state repre-
sentation (|0〉, |↑〉, |↓〉) (cf. Fig. 1), in which the reduced
density matrix is denoted as ρ = (ρ00,ρ↑↑,ρ↓↓,ρ↑↓,ρ↓↑)T.
Here, ρ00 and ρσσ describe the occupation probability in the
QD being, respectively, empty and spin-σ (σ = ↑, ↓) states,
and the off-diagonal terms ρ↑↓ and ρ↓↑ stand for coherent
superposition of up- and down-spin states. The corresponding
counting-field-dressed QME (A1) reads

ρ̇00 = −
̃0
↑ρ00 + 
̃

χ↓
↓ ρ↓↓ − i[HB,ρ00], (A2a)

ρ̇↑↑ = iγRF (ρ↑↓ − ρ↓↑) + 
̃
χ↑
↑ ρ00 − i[HB + FB,ρ↑↑], (A2b)

ρ̇↓↓ = iγRF (ρ↓↑ − ρ↑↓) − 
̃0
↓ ρ↓↓ − i[HB − FB,ρ↓↓], (A2c)

ρ̇↑↓ = − 1
2 
̃0

↓ρ↑↓ − iδESRρ↑↓ + iγRF (ρ↑↑ − ρ↓↓)

− i[HB,ρ↑↓] − i{FB,ρ↑↓}, (A2d)

ρ̇↓↑ = − 1
2 
̃0

↓ρ↓↑ + iδESRρ↓↑ − iγRF (ρ↑↑ − ρ↓↓)

− i[HB,ρ↓↑] + i{FB,ρ↓↑}, (A2e)

where 
̃χσ
σ = ∑

j=1,2,3 
jσ eiχjσ is the counting-field-dressed
tunneling width for a spin-σ electron and the curly brackets
{X,Y } = XY + YX stands for the anticommutator.

It should be noted that in deriving Eq. (A1) only the degrees
of freedom of the electrodes have been traced out, matrix
elements ρσσ ′ are still operators in the Hilbert space of the
boson bath. The next step is to trace out the degrees of the
freedom of the phonon bath to obtain the dynamics of the
reduced system alone, i.e., �σσ ′ = trB{ρσσ ′ }, with trB{· · · } the
trace over the bosonic degrees of freedom. The dynamics for
the occupation probabilities are readily given by

�̇00 = −
̃0
↑�00 + 
̃

χ↓
↓ �↓↓, (A3a)

�̇↑↑ = 
̃
χ↑
↑ �00 + iγRF trB{(ρ↑↓ − ρ↓↑)}, (A3b)

�̇↓↓ = −
̃0
↓�↓↓ − iγRF trB{(ρ↑↓ − ρ↓↑)}. (A3c)

The effect of the phonon bath on spin dynamics is thus fully
incorporated through the off-diagonal elements ρ↑↓ and ρ↓↑.
From Eqs. (A2d) and (A2e), their solutions formally read

ρ↑↓(t) = iγRF

∫ t

0
dτe−ξ+(t−τ )e−iH (+)

B (t−τ ){ρ↑↑(τ ) − ρ↓↓(τ )}

× eiH (−)
B (t−τ ) + e−ξ+t e−iH (+)

B t ρ↑↓(0)eiH (−)
B t , (A4a)

ρ↓↑(t) = iγRF

∫ t

0
dτe−ξ−(t−τ )e−iH (−)

B (t−τ ){ρ↓↓(τ ) − ρ↑↑(τ )}

× eiH (+)
B (t−τ ) + e−ξ−t e−iH (−)

B t ρ↓↑(0)eiH (+)
B t , (A4b)

where we have introduced ξ± = 
̃0
↓

2 ± iδESR and H
(±)
B = HB ±

FB. To obtain a closed system of equations, the phonon bath is
assumed to equilibrate corresponding to the given charge state,
i.e., the so-called state-dependent Born factorization [87].
The reduced system and the bath degrees of freedom are
factorized as ρ↑↑ � �↑↑ ⊗ ρ

(+)
B and ρ↓↓ � �↓↓ ⊗ ρ

(−)
B , where

ρ
(±)
B = eβH

(±)
B /trB{eβH

(±)
B } is the state-dependent thermal den-

sity matrix of the phonon bath, and β = (kBT )−1 is the inverse
temperature.
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By substitute Eq. (A4) into Eq. (A3), one arrives at

�̇00(t) = −
̃0
↑�00(t) + 
̃

χ↓
↓ �↓↓(t), (A5a)

�̇↑↑(t) = 
̃
χ↑
↑ �00(t) −

∫ t

0
dτ [γ +(t − τ )�↑↑(τ )

− γ −(t − τ )�↓↓(τ )] − ϒ0(t), (A5b)

�̇↓↓(t) = −
̃0
↓�↓↓(t) +

∫ t

0
dτ [γ +(t − τ )�↑↑(τ )

− γ −(t − τ )�↓↓(τ )] + ϒ0(t), (A5c)

where the inhomogeneity ϒ(t) = [0,−ϒ0(t),ϒ0(t)]T stems
from the initial system bath correlation [53,54,88], as shown
in Eqs. (A4a) and (A4b). The inhomogeneity is irrelevant
for the full counting statistics in the long-time limit, i.e.,
zero-frequency cumulants. However, it may have essential
roles to play for fluctuations at finite frequencies. It is also
worthwhile to mention that in deriving the QME in Eq. (A5),
no second-order Born-Markov approximation has been made
for the bosonic degrees of freedom. It thus implies that this
approach is applicable to the case of strong coupling to a heat
bath.

Here, γ ±(t) are bath-assisted hopping rates, given by

γ ±(t) = γ 2
RF

{e−ξ+tC(±)(t) + c.c.}. (A6)

The involving bath correlations are defined as

C(±)(t) = trB
{
e−iH (+)

B t ρ
(±)
B eiH (−)

B t
}
, (A7)

which can be calculated exactly to all orders in α using
the polaron transformation [89–91]. A detailed derivation is
deferred to Appendix B. Here, we just quote the final result:
C(±)(t) = e−Q(∓t) with

Q(t) =
∫ ∞

0
dω

J (ω)

ω2

{
[1 − cos(ωt)] coth

(
βω

2

)
+ i sin(ωt)

}
.

(A8)

By switching to Laplace space �̃(z) = ∫ ∞
0 dte−zt�(t) and

similarly for ϒ̃(z), the QME (A5) becomes

z�̃(z) − �(t = 0) = W({χ jσ },z)�̃(z) + ϒ̃(z), (A9)

where the inhomogeneity is ϒ̃ = [0,−ϒ̃0(z),ϒ̃0(z)]T and the
kernel W reads

W({χ jσ },z) =

⎛
⎜⎝

−
̃0
↑ 0 
̃

χ↓
↓


̃
χ↑
↑ −γ +

z γ −
z

0 γ +
z −γ −

z − 
̃0
↓

⎞
⎟⎠. (A10)

Here the bath-assisted hopping rates γ ±
z are obtained by

Laplace transform of Eq. (A6)

γ ±
z = γ 2

RF
{C̃(±)(z+) + C̃(∓)(z−)}, (A11)

with z± = z + 
̃0
↓

2 ± iδESR and C̃(±)(z) the Laplace transform
of the bath correlation function. We assume the spin system
evolves from t = −∞ and the reduced system reached

the steady state �({Njσ },t) = δ{Njσ },{0}�st at t = 0. For this
model the inhomogeneity is independent of the spin-resolved
counting fields [53]:

ϒ̃(z) = W0 − W({χ jσ } = {0},z)

z
�st, (A12)

where �st = |0〉〉 is the steady state obtained as the normalized
solution to W0|0〉〉 = 0.

APPENDIX B: DERIVATION OF THE BATH
CORRELATION FUNCTIONS

We consider the polaron transformation

U (±) = e±iS, S =
∑

q

iλq

ωq

(aq − a†
q), (B1)

which will removes FB from the bath correlation functions.
By using the Baker-Campbell-Hausdorff (BCH) relation

eXYe−X =
∞∑
0

1

n!
[X,Y ]n, (B2)

with [X,Y ]n+1 = [X,[X,Y ]n] and [X,Y ]0 = Y , the bosonic
annihilation and creation operators are transformed to

U (±)aq[U (±)]† = aq ∓ λq

ωq

, (B3a)

U (±)a†
q[U (±)]† = a†

q ∓ λq

ωq

. (B3b)

Straightforwardly, the effective bath Hamiltonians H
(±)
B =

HB ± FB under the transformation are given by

U (±)H
(±)
B [U (±)]† = HB −

∑
q

λ2
q

2ωq

, (B4)

which leads directly to

U (±)e±iH (±)
B t [U (±)]† = e

±i(HB−∑
q

λ2
q

2ωq
)t
, (B5)

U (±)e−βH
(±)
B [U (±)]† = e

−β(HB−∑
q

λ2
q

2ωq
)
. (B6)

By insertion of the identity 1(±) = U (±)[U (±)]† in the bath
correlation functions in Eq. (A7), one arrives at

C(±)(t) = trB{1(+)e−iH (+)
B t1(+)1(±)ρ

(±)
B 1(±)1(−)eiH (−)

B t1(−)}
= 〈e±iS(0)e∓iS(±t)〉B, (B7)

where S(t) = eiHBt Se−iHBt = ∑
q

iλq

ωq
(aqe

−iωq t − a
†
qe

iωq t ) and
〈· · · 〉B = trB{(· · · )ρB} stands for the average over degrees of
freedom of the boson bath, with ρB = e−βHB/trB{e−βHB} the
local thermal equilibrium state of boson bath.
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By recalling the BCH relation eXeY = eX+Y e
1
2 [X,Y ],

Eq. (B7) can be rewritten as

C(±) = 〈e±iS(0)∓iS(±t)e
1
2 [S(0),S(±t)]〉B, (B8)

where

1

2
[S(0),S(±t)] = ±i

∑
q

λ2
q

ω2
q

sin(ωqt) (B9)

is just a c-number, and

e±iS(0)∓iS(±t) = exp

{
±

∑
q

λq

ωq

[a†
q(1 − e±iωq t ) − H.c.]

}
.

(B10)

For a thermal state ρB ∝ e−βHB , it is easy to verify that for
an arbitrary complex c-number zq one has the following
relation [91]〈

e± ∑
q {z∗

qa
†
q−h.c.}〉

B = e− ∑
q |zq |2[nB(ωq )+1/2], (B11)

where nB(ωq) = {eβωq − 1}−1 is the Bose distribution. By
substituting Eqs. (B9) and (B11) into Eq. (B8), one eventually

arrives at the bath correlations

C(±)(t) = e−Q(∓t)

Q(t)=
∫ ∞

0
dω

J (ω)

ω2

{
[1−cos(ωt)] coth

(
βω

2

)
+i sin(ωt)

}
,

(B12)

where J (ω) = ∑
q |λq |2δ(ω − ωq) is the spectral function of

the heat bath.
Specifically, for Ohmic spectral J (ω) = 2αωe−ω/ωc and

at zero temperature (1/β = kBT = 0), the bath correlation
functions are reduced to

C(±)(t) = (1 ± iωct)
−2α. (B13)

Their counterparts in the Laplace domain are then given by

C̃(±)(z) = (±iωc)−2αz2α−1e∓ iz
ωc 


(
1 − 2α,∓ iz

ωc

)
, (B14)

where 
(· · · , · · · ) stands for the incomplete 
 function.
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[20] G. Strübi, W. Belzig, M.-S. Choi, and C. Bruder, Phys. Rev.
Lett. 107, 136403 (2011).

[21] P. Wang, Y. Cao, M. Gong, G. Xiong, and X.-Q. Li,
Europhys. Lett. 103, 57016 (2013).
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(2013).
[43] J. Börlin, W. Belzig, and C. Bruder, Phys. Rev. Lett. 88, 197001

(2002).
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[78] G. Kießlich, E. Schöll, T. Brandes, F. Hohls, and R. J. Haug,

Phys. Rev. Lett. 99, 206602 (2007).
[79] R. Sánchez, G. Platero, and T. Brandes, Phys. Rev. Lett. 98,

146805 (2007).
[80] A. Thielmann, M. H. Hettler, J. König, and G. Schön, Phys. Rev.

B 71, 045341 (2005).
[81] J. Y. Luo, S.-K. Wang, X.-L. He, X.-Q. Li, and Y. J. Yan, J. Appl.

Phys. 108, 083720 (2010).
[82] H. M. Wiseman and G. J. Milburn, Quantum Measurement and

Control (Cambridge University Press, Cambridge, 2010).
[83] N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug,

Nat. Commun. 3, 612 (2012).
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