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Recently, it has been realized that topological Weyl semimetals come in two different varieties: (i) with
standard Weyl cones with pointlike Fermi surfaces (type I) and (ii) with tilted Weyl cones that appear at the
contact of electron and hole pockets (type II). These two types of Weyl semimetals have very different physical
properties, in particular, in their thermodynamics and magnetotransport. Here, we show that Dirac cone surface
states of topological crystalline insulators can be distinguished in a similar way. We demonstrate this in terms
of a general surface theory and then apply this knowledge to a family of antiperovskites of the form A3EO,
where A denotes an alkaline earth metal, while E stands for Pb or Sn. Using ab initio DFT calculations, we
investigate the bulk and surface topology of these antiperovskites and show that they exhibit type-I as well as
type-II Dirac surface states protected by reflection symmetry. We find that the type-II Dirac states, as opposed
to the type-I Dirac states, exhibit characteristic van Hove singularities in their dispersion, which lead to different
thermodynamic properties, and which can serve as an experimental fingerprint of type-II surface states. The
different magnetotransport characteristics between type-I and type-II surface states are discussed. In addition,
we show that both type-I and type-II surface states exhibit an unusual helical spin polarization, which could lead
to topological surface superconductivity.
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I. INTRODUCTION

Topological crystalline insulators (TCIs) are insulating in
the bulk, but exhibit conducting boundary states protected
by crystal symmetries [1–4]. As opposed to surface states of
ordinary insulators, the gapless modes at the surface of TCIs
arise due to a nontrivial topology of the bulk wave functions,
which is characterized by a quantized topological invariant,
e.g., a mirror Chern or mirror winding number [4–10]. One
prominent example of a TCI is the rocksalt semiconductor
SnTe [10–13], which supports at its (001) surface four Dirac
cones protected by reflection symmetries. The surface modes
of this and all other known TCIs are of the standard Dirac
fermion type with closed pointlike (or circular) Fermi surfaces,
which we refer to as “type I”. However, as we discuss in this
article, crystal symmetries can also give rise to new types of
surface fermions, namely type-II Dirac surface states, which
are tilted Dirac cones that appear at the touching of electron
and hole pockets [14]. This distinction between type-I and
type-II cones is analogous to the type-I and type-II Weyl
semimetals [15–19], which have recently been predicted to
exist in WTe2 [15] and LaAlGe [20]. Similar to the type-II
Weyl semimetals, we find that type-II Dirac surface states
exhibit thermodynamic and magnetotransport properties that
are markedly different from their type-I counterparts.

In this paper, we first show in terms of a general surface
theory that type-II Dirac cones can exist on the surface of
topological crystalline insulators [4–10], which is in contrast
to ordinary topological insulators, where they are forbidden
by symmetry. Secondly, we predict that the antiperovskites
A3EO [21–26] (where A denotes an alkaline earth metal,
while E stands for Pb or Sn) are an example of a topological

crystalline insulator that hosts this new type of Dirac cone at its
surface. Using first-principles calculations and a tight-binding
model, we perform a systematic study of the surface states of
A3EO, with a particular focus on Ca3PbO, which crystallizes
in its low-temperature phase in the cubic space group Pm3̄m.
We find that the (011) surface exhibits type-II Dirac nodes,
whereas the (111) surface supports both type-I and type-II
Dirac states. On the (001) surface, on the other hand, the Dirac
nodes overlap with the bulk bands. All these surface states are
protected by the crystal symmetries of A3EO, in particular
the reflection symmetries. We show that the type-II Dirac
nodes, in contrast to type-I Dirac states, exhibit characteristic
van Hove singularities in their dispersions, which lead to
different thermodynamic properties and which can be used
as an experimental fingerprint. Moreover, we find that the
magnetotransport properties are different between type-I and
type-II Dirac states. In particular, we show how the Landau
level spectra of type-II Dirac nodes radically differ from
those of type-I Dirac states. For type-II Dirac nodes, the
zeroth Landau level unpins from the energy of the Dirac band
crossing. Finally, we uncover the unique helical spin texture of
the type-I and type-II surface states, which could lead to exotic
surface superconductivity. Indeed, as was recently shown [27],
the antiperovskites A3EO become bulk superconducting upon
hole doping. Hence a topological superconducting phase in the
surface states of A3EO can be proximity induced by the bulk
superconductivity.

The remainder of the this paper is organized as follows. In
Sec. II, we show, in terms of a generic low-energy theory, that
crystalline topological insulators can host both type-I and type-
II Dirac surface states. We compare the two-dimensional type-
II surface states to the recently discussed type-II Weyl cones of
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FIG. 1. Crystal symmetries and surface terminations. (a) Crystal structure of Ca3PbO. (b), (c), and (d) Surface Brillouin zones (BZs) for
the (001), (011), and (111) surfaces, respectively. For the (001) and (011) surfaces, the surface BZs can be obtained from the bulk cubic BZs
by projecting along the [001] and [011] directions, respectively. For the (111) surface BZ, this is not possible. Nevertheless, the symmetries of
the surface BZ follow from the projection of the bulk reflection planes [see (d)]. The brown shaded areas in (b), (c), and (d) indicate the bulk
mirror planes. The lower panels show the different surface terminations. The crystal symmetries of the (001), (011), and (111) surfaces are
described by the 2D space groups p4m, pmm, and p3m1, respectively.

three-dimensional semimetals. In Sec. III, we predict that the
antiperovskites A3EO host the type-II states on their surfaces.
We compute the dispersion and spin polarization of these Dirac
surface states (Sec. III B) and derive the topological invariants
that protect them (Sec. III A). Section III C is devoted to the
study of the Landau level spectra of the type-II surface states.
Our conclusions and outlook are given in Sec. IV.

II. TYPES OF 2D SURFACE FERMIONS

Before considering the detailed topology of the antiper-
ovskites A3EO, let us first present a general discussion of the
types of fermions that can arise at the surface of topological
(crystalline) insulators. The Hamiltonian describing the low-
energy physics of two-dimensional (2D) surface Dirac states
is of the generic form [28]

Hsurf(k) =
∑
i=1,2

α=0,1,2

kiAiασα, (2.1)

where ki denote the two surface momenta, σi are the Pauli
matrices, and σ0 represents the 2 × 2 identity matrix. Here,
we have kept terms only up to linear order in ki . The energy
spectrum of Hsurf is given by

E± =
∑

i

kiAi0 ±

√√√√√∑
j

(∑
i

kiAij

)2

≡ L(k) ± W (k),

(2.2)

where the sums are over i,j = 1,2. The second term W (k)
in Eq. (2.2) is the linear spectrum of standard (i.e., type-I)
Dirac fermions. That is, for L(k) < W (k), the surface state is
categorized as type I. Since the energy of type-I Dirac states is
dispersive in all directions, we require that det(Aij ) �= 0. On
the other hand, if there exists one momentum direction k0, such
that L(k0) > W (k0), we categorize the surface state as type II.
This is in analogy to the three-dimensional (3D) type-II Weyl
points, which have been recently discovered in WeTe2 [15]. We

note that, while 3D Weyl points are stable in the absence of any
symmetry (except translation), two-dimensional surface Dirac
states can only exist in the presence of time-reversal symmetry
or spatial symmetries, such as reflection.

Now, the interesting question is how these symmetries
restrict the form of Eq. (2.1). For a 3D time-reversal (TR)
invariant strong topological insulator, the Hamiltonian HSTI

satisfies T HSTI(−k)T −1 = HSTI(k), with the time-reversal
operator T = σyK and the complex conjugation operator K .
This symmetry locks the Dirac node at the time-reversal
invariant points of the BZ, such as, e.g., k = 0. We observe that
the linear term kiσ0 is forbidden by time-reversal symmetry.
Hence the surface states of TR invariant strong topological
insulators are described by

H surf
STI (k) = kyσx − kxσy, (2.3)

and are therefore always of type I.
However, type-II Dirac fermions can appear at the surface

of reflection symmetric TCIs (and weak TR symmetric
topological insulators). The reflection symmetric Hamiltonian

TABLE I. Family of antiperovskite materials with cubic space
group Pm3̄m. The tolerance (tol.) factor indicates the deviation from
the ideal inverse perovskite structure [25]. The bulk gap values are
obtained from ab initio first principles calculation. The wave-function
topology is determined by the mirror Chern numbers Cx0 , Cxπ , and
Cx,y (see Appendix A). We find that the topology is nontrivial, with
Cx0 = Cx,y = 2 and Cxπ = 0, for all compounds except for Ba3SnO.

tol. factor bulk gap topology

Ca3PbO 0.999 ∼15 meV nontrivial
Ca3SnO 0.993 ∼5 meV nontrivial
Sr3PbO 0.978 ∼18 meV nontrivial
Sr3SnO 0.973 ∼7 meV nontrivial
Ba3PbO 0.962 ∼10 meV nontrivial
Ba3SnO 0.957 gapless –
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of these type-II surface states is generically given by

H surf
TCI (kx,ky) = Akyσ0 + kyσx − kxσy, (2.4)

with A > 1. (Without loss of generality we have set the
Fermi velocities to 1 and assumed that the reflection plane is
kx = 0.) The type-II Dirac state (2.4) is protected by reflection
symmetry x → −x, which acts on (2.4) as

RxH
surf
TCI (−kx,ky)R−1

x = H surf
TCI (kx,ky), (2.5)

with the reflection operator Rx = σx . Since reflection flips the
sign of kx , it allows the linear term Akyσ0 but forbids kxσ0.

The crucial difference between type-I and type-II Dirac
surface states is that the former have closed circular Fermi
surfaces, whereas the latter exhibit open electron and hole
pockets which touch each other. As one varies the Fermi energy
EF , the Fermi surface of type-I Dirac states can be shrunk to a
single point, which is called a type-I Dirac point. In contrast,
type-II Dirac states give rise to electron and hole pockets,
whose size depends on the Fermi energy. At a certain EF

the electron and hole Fermi surfaces touch each other, which
is called a type-II Dirac point. As opposed to type-I Dirac
points, the density of states at type-II Dirac points remains
finite. In addition, we observe that in type-II Dirac states one
of the two surface bands must bend over in order to connect
bulk valence and conduction bands. As a consequence, there
is a maximum in the dispersion of the surface states. The latter
gives rise to a van Hove singularity, which leads to a kink in the
surface density of states. This can be used as an experimental
fingerprint of type-II Dirac states.

III. TOPOLOGY OF ANTIPEROVSKITE MATERIALS

As an example of a TCI with type-II Dirac surface states,
we consider the cubic antiperovskite materials A3EO with
space group Pm3̄m (Table I). The crystal structure of A3EO
is an inverse perovskite structure, where the oxygen atom O is
surrounded octahedrally by the alkaline earth metal atoms A
[see Fig. 1(a)]. We choose Ca3PbO as a generic representative
of this materials class. The bulk band structure of Ca3PbO
displays six Dirac cones, which are gapped by spin-orbit
coupling (Table I). While Ca3PbO is known to be a trivial TR
invariant insulator [22] (i.e., a trivial class AII insulator [4]), it
has recently been argued that reflection symmetries give rise
to a nontrivial wave-function topology with nonzero mirror
Chern numbers [26].

A. Nontrivial topology

Let us now discuss in detail how the nontrivial topology
of A3EO arises due to reflection symmetry. First, we observe
that the space group Pm3̄m possesses nine different reflection
symmetries Ri which transform r = (x,y,z) as (see Fig. 1)

Rxr =(−x,y,z), Ry,±zr =(x,±z,±y), (3.1a)

Ryr =(x, − y,z), Rz,±xr =(±z,y,±x), (3.1b)

Rzr =(x,y, − z), Rx,±yr =(±y,±x,z). (3.1c)

By Fourier transforming into momentum space, we find
that there are 12 mirror planes in the Brillouin zone (BZ),
namely, ki = 0,π and ki = ±kj for i,j = x, y, z and i �= j .
For each of these reflection planes we can define a mirror
Chern number [7,8,29]. However, due to the cubic rotational
symmetries, only 3 out of these 12 mirror invariants are
independent. Without loss of generality, we choose as an
independent set the mirror Chern numbers Cx0 , Cxπ , and Cx,y

that are defined for the reflection planes kx = 0, π , and ky ,
respectively. Considerations based on first-principles derived
tight-binding models show that for the cubic antiperovskites
the mirror Chern numbers take the values Cx0 = Cx,y = 2
and Cxπ = 0 (see Appendix A, Appendix B, and Table I).
Thus in total there are nine nonzero mirror Chern numbers,
i.e., Ci0 = Ci,±j = 2 for i,j = x,y,z and i �= j . The mirror
Chern numbers can also be derived from a low-energy effective
theory. As shown in Appendix C, the low-energy description
of A3EO is given by six gapped Dirac cones. Within this
low-energy model one finds that there exists only one bulk gap
term m, which respects the reflection symmetries and which
gaps out all six Dirac cones. The sign of this gap opening term,
sgn(m), determines the mirror Chern numbers, i.e.,

Cx,y = sgn(m) + bx,y, Cx0 = 2 sgn(m) + bx, (3.2)

where bx,y and bx are the mirror Chern numbers of the
“background” bands, i.e., those filled bands that are not
included in the low-energy description of the bulk Dirac cones.
For the cubic antiperovskites, we find that bx,y = 1 and bx = 0.
Hence Cx0 is always nonzero even if the sign of the gap term
switches.

B. Surface states

By the bulk-boundary correspondence, a nontrivial value
of the mirror Chern numbers Ci0 (or Ci,±j ) leads to the

FIG. 2. Density of states at the (001) surface. (a) and (b) Surface
density of states along the high-symmetry lines �̄ → X̄ and �̄ →
M̄ of the (001) surface BZ, respectively, for the Pb-Ca termination
[lower left panel in Fig. 1(b)]. The two high-symmetry directions
correspond to the two inequivalent mirror lines of Fig. 1(b), i.e., ky =
0 and kx = ky . The spectrum along the mirror line ky = 0 [see panel
(a)] exhibits two right-moving chiral modes with mirror eigenvalue
Ry = +1 and two left-moving chiral modes with mirror eigenvalue
Ry = −1. Similarly, the spectrum along the mirror line ky = kx [see
panel (b)] shows two right-moving chiral modes with Rx,−y = +1
and two left-moving chiral modes with Rx,−y = −1. We observe that
the Dirac nodal points (i.e., the band crossings) for the upper chiral
modes are hidden by the bulk bands. For the lower chiral modes, there
is no band crossing at all, since the modes are too far apart.
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appearance of Dirac states on those surfaces that are left
invariant by the corresponding mirror symmetry Ri0 (or Ri,±j ).
That is, the value of Ci0 (or Ci,±j ) indicates the number
of left- and right-moving chiral modes in the surface BZ.
These chiral surface modes are located within the mirror
line ki = 0 (or ki = ±kj ), which is symmetric under the
reflection operation Ri0 (or Ri,±j ), see Fig. 1. Importantly,
left- and right-moving surface chiral modes belong to opposite
eigenspaces of the reflection operators Ri0 (or Ri,±j ), and
therefore cannot hybridize, see Fig. 2. That is, the band
crossing between the left- and right-moving modes is protected
by reflection symmetry. Depending on the surface orientation
of A3EO, this band crossing corresponds to the Dirac point of a
type-I surface state, the touching of electron- and hole-pockets
of a type-II Dirac state, or is completely hidden in the bulk
bands. In the following, we discuss these three possibilities
for the case of Ca3PbO.

1. Hidden Dirac nodes on the (001) surface

We start by examining the Dirac states on the (001) surface
for the Ca-Pb termination [lower left panel in Fig. 1(b)].
Projecting the symmetries of Pm3̄m along the (001) direction,
one finds that the two-dimensional space group of the (001)
surface is p4m [30]. The wallpaper group p4m contains

four reflection symmetries, i.e., Rx , Ry , Rx,+y , and Rx,−y

[Fig. 1(b)]. In the surface BZ, this gives rise to six mirror lines
kx = 0,kx = π,ky = 0,ky = π,kx = ±ky with three indepen-
dent mirror Chern numbers Cx0 , Cxπ , and Cx,y . From the above
analysis we find that Cx0 = Cy0 = 2 and Cx,y = Cx,−y = 2,
which leads to two pairs of left- and right-moving chiral modes
within the mirror lines kx = 0, ky = 0 and kx = +ky , kx =
−ky , respectively. The left- and right-moving chiral modes
belong to reflection eigenspaces with R = −1 and R = +1,
respectively. This is clearly visible in Fig. 2, which shows
the surface density of states along the high-symmetry lines
�̄ → X̄ and �̄ → M̄ , which correspond to the mirror lines
kx = 0 and ky , respectively. Interestingly, the band crossing
formed by the upper left- and right-moving chiral modes is
completely hidden by the bulk bands. The lower chiral modes,
on the other hand, do not show a band crossing, since they are
too far apart. Similar chiral modes also appear for the Ca-O
termination, see Fig. 10 in Appendix E.

2. Type-II Dirac nodes on the (011) surface

Next, we consider the Dirac states on the (011) surface,
whose wallpaper group is pmm. We focus here on the
Ca-Pb-O termination; the results for the other termination
are shown in Appendix E. The two-dimensional space group

FIG. 3. Density of states at the (011) surface. (a) and (b) Surface density of states along the high-symmetry lines �̄ → X̄ and �̄ → Ȳ of
the (011) surface BZ, respectively, for the Ca-Pb-O termination [lower left panel in Fig. 1(c)]. The two high-symmetry lines represent the
intersection of the (011) surface plane with the mirror planes kx = 0 and ky = kz of Fig. 1(c). The corresponding mirror symmetries protect the
surface band crossings that are visible in (a) and (b). (c) shows the energy resolved surface density of states, which exhibits several van Hove
singularities as indicated by the green, orange, blue, and purple arrows. (d) and (e) display the energy- and momentum-resolved surface density
of states for different energy ranges. The van Hove singularities are marked by the arrows, except for the light green one, which indicates the
touching of electron and hole pockets. (f) shows the momentum-resolved surface density of states at the energy of the type-II Dirac point,
which is marked by the light green arrow.
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pmm contains two reflection symmetries, Rx and Ry,z, see
Fig. 1(c). Correspondingly, the (011) surface BZ exhibits two
mirror lines, namely, kx = 0 and ky = kz, with the two nonzero
mirror Chern numbers Cx0 and Cyz. Since Cx0 = Cyz = 2,
there appear two pairs of left- and right-moving chiral surface
modes within the mirror lines kx = 0 and ky = kz, see Fig. 3.
Hybridization between the left- and right-moving chiral modes
is prohibited, since they belong to different eigenspaces of the
reflection operators. As indicated by the light green arrows in
Figs. 3(b), 3(f), and 3(e), the two chiral modes at the (011)
surface cross each other at E = 5.67 eV and form a type-II
Dirac point. In the close vicinity of this type-II Dirac point, the
velocity of the two chiral modes has the same sign. However,
one of the two surface modes needs to bend over in order
to connect bulk valence and conduction bands. This leads
to a maximum and therefore a van Hove singularity in the
dispersion of the surface modes. The latter reveals itself in
the surface density of states as a kink at E = 5.68 eV, see
blue arrows in Figs. 3(c) and 3(e). This feature in the surface
density of states can be used as an experimental fingerprint of
the type-II Dirac state. Another key feature of type-II Dirac
points is the touching of electron and hole pockets, see light
green arrow at E = 5.67 eV in Figs. 3(e) and 3(f).

Besides the type-II Dirac nodes at E = 5.67 eV, there are
also two accidental band crossings at the �̄ point of the
surface BZ. These band crossings can be removed by an

adiabatic deformation of the surface states. Associated with
these accidental Dirac nodes are three van Hove singularities.
First, the band crossing at E = 5.75 eV realizes a van Hoves
singularity, which leads to a divergence in the density of states
[orange arrow in Figs. 3(c) and 3(d)]. Second, the maximum
at E = 5.76 eV in the dispersion of the surface states gives
rise to a kink in the surface density of states [dark green arrow
in Figs. 3(a) and 3(c)]. Third, the flat dispersion of the surface
states near E = 5.65 eV leads to a peak in the density of states
[violet arrow in Figs. 3(a), 3(c), and 3(e)].

3. Type-I and type-II Dirac nodes on the (111) surface

Finally, we examine the Dirac states on the (111) surface for
the Ca-Pb termination. (We note that the surface states of the O
termination are expected to be similar to the ones of the Ca-Pb
termination, since the oxygen bands are far away in energy
from the Fermi energy.) Projecting the three-dimensional
space group Pm3̄m along the (111) direction, we find that
the wallpaper group for the (111) surface is p3m1. The
two-dimensional space group p3m1 contains three reflection
symmetries, i.e., Rx,y , Rx,z, and Ry,z. The corresponding
mirror lines in the surface BZ are kx = ky , kx = kz, and ky =
kz, i.e., the M̄-�̄-M̄ lines. For each of the three mirror lines one
can define a mirror Chern number Ci,j , which are related to
each other by the threefold rotation symmetries of Pm3̄m. As

FIG. 4. Density of states at the (111) surface. (a) and (b) Surface density of states along the high-symmetry lines �̄ → K̄ and �̄ → M̄ of
the (111) surface BZ, respectively, for the Ca-Pb termination. The �̄ → M̄ direction corresponds to the mirror lines of the (111) surface. Thus
the spectrum along �̄ → M̄ is gapless and there appear two type-II Dirac states protected by reflection symmetry. The spectrum along the �̄-K̄
line, on the other hand, is gapped, since it is not a mirror line. (c) Surface density of states which exhibits several van Hove singularities as
indicated by the orange, blue, and green arrows. The van Hove singularity at E = 5.76 eV (orange peak) stems from the back bending of the
type-II Dirac state. (d) Schematic illustration of the six type-II Dirac states on the (111) surface. (e) and (f) Energy- and momentum-resolved
surface density of states for different energy ranges. The van Hove singularities are indicated by the blue and orange arrows. The red arrow
indicates the type-II Dirac point at E = 5.70 eV, where the electron and hole pockets meet.
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discussed in Sec. III A, we find that Cx,y = Cx,z = Cy,z = 2.
By the bulk-boundary correspondence, it follows that there
appear two pairs of left- and right-moving chiral modes within
the M̄ − �̄ − M̄ lines of the surface BZ, see Fig. 4(b). These
chiral bands cross each other at E = 5.70 eV, thereby forming
type-II Dirac points [red arrow in Fig. 4(b)]. Close to these
type-II Dirac points, the velocities of the chiral modes have the
same sign. But further away, one of the two modes bends over,
such that it connects bulk valence and conduction bands. Hence
this surface band must exhibit a maximum [orange arrows in
Figs. 4(b) and 4(e)], which leads to a van Hove singularity
in the surface density of states at E = 5.76 eV [orange arrow
in Fig. 4(c)]. Another key feature of this type-II Dirac state
is the touching of the electron and hole Fermi surfaces. That
is, with increasing Fermi energy the open electron and hole
pockets approach each other, touch at the type-II Dirac point
with E = 5.70 eV [red arrow in Fig. 4(f)], and then separate
again.

In addition to these type-II Dirac nodes, the (111) surface
also exhibits two accidental type-I Dirac nodes at the �̄

point, which can be removed by adiabatic transformations.
Connected to these accidental Dirac nodes are two van Hove
singularities. First, the Dirac point at E = 5.81 eV represents
a saddle-point van Hove singularity, which leads to a log
divergence in the surface density of states [green arrows in
Figs. 4(b) and 4(c)]. Second, the lower bands of the Dirac
state at E = 5.81 eV bend over, forming a minimum at
E = 5.78 eV. This leads to a kink in the surface density of
states [blue arrow in Figs. 4(a) and 4(c)].

4. Spin polarization of surface states

The surface states of the antiperovskites A3EO are all singly
degenerated and therefore exhibit a helical spin texture. We
demonstrate this in Fig. 5 for the (001) surface with Ca-Pb
termination (compare also with Fig. 2). Due to spin-orbit
coupling the spin orientations of both Dirac surface states
are locked to their momenta, i.e., the Dirac states exhibit a
helical spin texture. We find that the spin of the surface state
is polarized entirely within the surface plane, at all energies.
Interestingly, the helicity of the outer Dirac state is opposite to
the one of the inner Dirac state, see Fig. 5(a). As was shown
recently [27], A3EO becomes a bulk superconductor upon

FIG. 5. Spin polarization of the Dirac states at the (001) surface.
(a) and (b) Momentum-resolved surface density of states and spin
polarization for the (001) face (Ca-Pb termination) at the energies
E = 5.60 and 5.67 eV, respectively. The spin polarization, which is
purely in-plane, is indicated by the arrows. The direction of the spin
polarization is correlated with the momentum, forming a 90◦ angle.

hole doping, which in turn might induced a superconducting
phase in the surface states. Note that, because of the helical
spin texture, the proximity-induced surface topological phase
is most likely topological. If so, and if additional symmetries
are preserved, the vortices of the surface superconductor are
expected to host zero-energy Majorana modes [31].

C. Landau level spectrum

A drastic difference between type-I and type-II Dirac
surface states arises when a magnetic field is applied. For
type-I Dirac cones the energy spectrum of the Landau levels
is given by

En ∼ √
n, (3.3)

where n is the Landau level index. Hence, the Landau levels
of type-I Dirac cones are in general well separated. This is in
contrast to type-II Dirac cones. To illustrate this, let us consider
the following tight-binding model on a square lattice [32],

H = −
∑
〈ij〉

tij b
†
j ai + t1

∑
〈ij〉

(a†
j ai + b

†
j bi), (3.4)

where ai and bi denote the electron annihilation opera-
tors on the sublattice A and B, respectively. tij represent
the nearest-neighbor hopping, while t1 is the next-nearest-
neighbor hopping integral (for more details see Appendix D).
Hamiltonian (3.4) describes two Dirac cones, whose tilting is
controlled by the ratio t1/t , with t = |tij |. For t1/t = 0, there
is no tilting [Fig. 6(a)] and for t1/t = 0.2 there is a small
tilting [Fig. 6(b)]. In both cases there exist well separated
Landau levels. (Note that the dispersive curves in the Landau
level structure are due to edge states and therefore should be
ignored in the following discussion.) At t1/t = 1/2, there is a
transition from type-I Dirac states to type-II Dirac states. At
this transition point the spectrum becomes nondispersive along
the k2 direction and the Landau levels get very dense around
E = 0 (i.e., around the energy of the Dirac point) [Fig. 6(c)].
Finally, for t1/t > 1/2, there appear type-II Dirac cones with
open electron and hole pockets. As shown in Fig. 6(d), for
type-II Dirac cones the separation between the Landau levels
near E = 0 is close to zero, leading to a sizable region of
very dense Landau levels [cf. Fig. 6(d)]. This region of dense
Landau levels arises because the open electron and hole Fermi
surfaces enclose a very large momentum-space area, which is
much larger than the one enclosed by type-I Dirac states (for
a detailed explanation, see Appendix D). Moreover, we find
that for type-II Dirac states the zeroth Landau level E0 of the
type-I Dirac node [see Figs. 6(a) and 6(b)] becomes unpinned
and moves away from E = 0.

IV. DISCUSSION

Using general symmetry arguments, we have shown that the
surface of crystalline topological insulators can host type-II
Dirac surface states, which are characterized by open electron
and hole Fermi surfaces that touch each other. This is in
contrast to regular strong topological insulators, where the
Dirac surface states, due to time-reversal symmetry, are always
of type-I, which exhibit a closed small Fermi surface. By
means of a DFT-derived tight-binding model and a low-energy
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FIG. 6. Landau level spectrum for type-I and type-II Dirac surface
states. The left and right columns show the energy spectrum and
Landau level structure, respectively, for the tight-binding model
given by Eq. (3.4). The magnetic field strength is chosen to be
B = 0.01φ0/a

2, where φ0 ≡ h/e is the flux quantum and a2 is the
area of a plaquette of the square lattice, see Fig. 8. The tilting of the
Dirac cones is controlled by the ratio t1/t . The four rows correspond to
(a) t1/t = 0 (type-I Dirac cone), (b) t1/t = 0.2 (type-I Dirac cone),
(c) t1/t = 0.5 (transition between type-I and -II Dirac cones), and
(d) t1/t = 0.6 (type-II Dirac cone), respectively. All dispersive curves
in the Landau level structure arise from states localized at the edge
of the sample, and thus are not of interest here.

theory, we have predicted that type-II Dirac states appear at
the surfaces of the cubic antiperovskite materials A3EO.

For these cubic antiperovskites, which exhibit two inde-
pendent reflection symmetries, we have computed the mirror
Chern numbers and shown that they are equal to two for
the ki = 0 and ki = ±kj (for i,j = x, y, z and i �= j )
mirror planes, indicating that there appear two left- and
right-moving modes on surfaces that are invariant under the
mirror symmetries. Depending on the surface orientation and
termination these left- and right-moving modes form type-I
or type-II Dirac nodes, or do not cross at all. We remark
that while the mirror Chern numbers determine the number of
left- and right-moving chiral modes that connect valence and
conduction bands, they do not give any information about the
type and the number of band crossings in the surface spectrum.
This is because, (i) the Dirac points might be hidden in the bulk,
(ii) the left- and right-moving modes might be too far apart to
form a crossing, or (iii) there might be additional accidental
band crossings.

We have investigated in detail the physical properties of the
type-II surface states that distinguish them from their type-I
counterparts. One characteristic feature of type-II Dirac states
are their van Hove singularities, which arise because one of
the two chiral modes needs to bend over in order to connect
valence with conduction bands. These van Hove singularities
lead to divergences and kinks in the surface density of states,
which can serve as unique fingerprints of the type-II Dirac
states. Another distinguishing feature of type-II Dirac states is
their Landau level spectrum. As opposed to type-I Dirac states,
where the Landau levels are well separated, for type-II Dirac
states there exists a very large density of Landau levels near
the band-crossing energy (see Fig. 6). Moreover, for type-II
Dirac states the zeroth Landau level becomes unpinned from
the energy of the Dirac node. In addition, we have uncovered
the helical spin texture of the Dirac surface states (see Fig. 5).
Due to this spin texture, it might be possible to proximity
induce a topological superconducting phase on the surface.
In particular, since the antiperovskites become bulk supercon-
ductors upon doping [27], they might therefore be an ideal
platform for studying topological surface superconductivity. It
will be interesting to compare the above mentioned theoretical
predictions with future quantum oscillation, angle-resolved
photoemission, and scanning tunneling experiments.
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APPENDIX A: DFT CALCULATIONS AND TOPOLOGICAL
INVARIANTS

In this appendix, we give some details about our ab initio
band structure calculations and describe how the topological
invariants are computed.

1. Ab initio first-principles calculations

The electronic band structure of the cubic antiperovskites
A3EO is determined by performing first-principles calcula-
tions with the Vienna ab initio package [33,34] using the
projector augmented wave (PAW) method [35,36]. As an input
for the DFT calculation we used the experimental crystal
structure of Ref. [25]. The lattice constant for Ca3PbO is
4.847 Å. For the exchange-correlation functional, we chose
the generalized-gradient approximation of Perdew-Burke-
Ernzerhof type [37]. The plane-wave basis is truncated with
an energy cutoff of 400 eV. For the bulk calculation a
12 × 12 × 12 k mesh is used. Spin-orbit coupling effects are
also taken into account.

The DFT calculations show that near the Fermi energy
EF the valence bands mostly originate from Pb-p orbitals
(px , py , and pz), while the orbital character of the conduction
bands near EF is Ca-dx2−y2 , Ca-dxz, and Ca-dyz (from three
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different Ca atoms). Guided by these findings, we use these 12
orbitals (24 including spin) as a basis set to derive a low-energy
tight-binding model. We determine the hopping parameter
values for this tight-binding model from a maximally localized
Wannier function (MLWF) method [38,39]. With this model,
we compute the momentum-resovled surface density of states
by means of an iterative Green’s function method [40]. The
results of these calculations are shown in Figs. 2–5. To
determine the topological characteristics of Ca3PbO, we have
also used a simplified nine-band (18 bands including spin)
tight-binding model, see Appendix B for details.

2. Topological invariants

The type-I and type-II Dirac surface states of the cubic
antiperovskites are protected by a mirror Chern number. The
mirror Chern number is defined as a two-dimensional integral
over the reflection plane of the occupied wave functions with
mirror eigenvalue R = +1 (or R = −1) [6,10]. Note that since
the Hamiltonian H commutes with the reflection operator,
the eigenfunctions of H can be assigned a definite mirror
eigenvalue. Without loss of generality, one usually assumes
that the mirror eigenvalues are ±1, since R2 = 1 after a
suitable U (1) gauge transformation [7]. The value of the
mirror Chern number corresponds to the number of left- and
right-moving chiral surface modes. These chiral surface modes
exist within the mirror line of the surface BZ, i.e., within the
line that is obtained by projecting the bulk mirror plane onto
the surface BZ.

We have numerically computed the mirror Chern number
using two different methods: (i) using the simplified tight-
binding model of Appendix B and (ii) using the real space wave
functions of the DFT-derived 12-band tight-binding model. For
method (i), the reflection operator R can be written explicitly in
momentum space. The momentum space Hamiltonian can then
be block diagonalized with respect to R and the eigenfunctions
can be obtained for each block separately (see Appendix B
for details). For method (ii), the real-space wave functions
of the 12-band tight-binding model are projected onto the
mirror eigenspaces (1 ± R)/2. This is done by identifying
mirror-reflected orbitals with proper sign changes. Using these
projected wave functions, a Fourier transform is performed
along the two surface momenta to obtain the surface spectrum
for a given reflection eigenspace. The Chern number can then
be inferred from the number of chiral surface modes in the
surface spectrum. Both methods (i) and (ii) agree with each
other.

APPENDIX B: SIMPLIFIED TIGHT-BINDING MODEL
OF Ca3PbO

To construct a simplified tight-binding model we follow
along the lines of the work by Kariyado and Ogata [22]. In
Ref. [22], a six-band model with the orbitals

Pbpx
,Pbpy

,Pbpz
,Ca1

dy2−z2
,Ca2

dz2−x2
,and Ca3

dx2−y2

was constructed. This six-band model exhibits six gapless
Dirac nodes along the �-X direction, but does not contain
a Dirac mass gap, which is present in the DFT calculations.
To open up a gap, one needs to include in addition the

Ca1-dyz, Ca2-dzx , and Ca3-dxy orbitals. As we show below, the
spin-orbit coupling between these orbitals and the Ca1-dy2−z2 ,
Ca2-dz2−x2 , and Ca3-dx2−y2 orbitals represents a mass term that
opens up a gap at the six Dirac cones. We use this nine-band
model to analyze the topological properties of Ca3PbO (and
other cubic antiperovskites) and to compute the mirror Chern
numbers.

Thus, in the absence of spin-orbit coupling, our tight-
binding Hamiltonian is written as H = ∑

k ψ
†
kHk/2(k)ψk with

the nine-component spinor

ψk =(
Pbpx

, Pbpy
, Pbpz

,

Ca1
dy2−z2

, Ca2
dz2−x2

, Ca3
dx2−y2

,

Ca1
dyz

, Ca2
dzx

, Ca3
dxy

)T

and the 9 × 9 matrix Hk/2, which can be expressed in block
form as

Hk/2(k) =

⎛
⎜⎝

Hp V u
dp V l

dp

V u
dp

† Hu
d 0

V l
dp

†
0 Hl

d

⎞
⎟⎠ (B1)

The blocks of Hk/2(k) are given by

Hp =
⎛
⎝ep − 2tppc2x 0 0

0 ep − 2tppc2y 0
0 0 ep − 2tppc2z

⎞
⎠ (B2)

and

Hu
d =

⎛
⎝ ed −4tddcxcy −4tddczcx

−4tddcxcy ed −4tddcycz

−4tddczcx −4tddcycz ed

⎞
⎠

and Hl
d = ed13, with 13 the 3 × 3 identity matrix. The coupling

terms between p and d orbitals are

V u
dp = 4itpd

⎛
⎝ 0 czsx −cysx

−czsy 0 cxsy

cysz −cxsz 0

⎞
⎠,

V l
dp = 4itpd

⎛
⎝ 0 cxsz cxsy

cysz 0 cysx

czsy czsx 0

⎞
⎠, (B3)

where we have used the short-hand notation

ci = cos
ki

2
, si = sin

ki

2
, c2i = cos ki.

In order to simplify matters, we have neglected in the above
expressions further neighbor hopping terms that were included
in the work by Kariyado and Ogata [22]. We have checked that
these simplifications do not alter the topological properties.

Let us now add spin-orbit coupling terms to the Hamilto-
nian (B1). The on-site spin-orbit coupling for the Pb-p orbitals
is given by

∑
k ψ

†
p(k)Hp

SO(k)ψp(k) with the spinor

ψp(k) = (Pb↑
px

,Pb↑
py

,Pb↑
pz

,Pb↓
px

,Pb↓
py

,Pb↓
pz

)
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and

H
p

SO(k) = λp

2

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1
i 0 0 0 0 −i

0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠.

The on-site spin-orbit coupling for the d orbitals reads∑
k ψ

†
d (k)Hd

SO(k)ψd (k) with the spinor

ψd (k)

= (
Ca1,↑

dy2−z2
,Ca2,↑

dz2−x2
,Ca3,↑

dx2−y2
,Ca1,↓

dy2−z2
,Ca2,↓

dz2−x2
,Ca3,↓

dx2−y2
,

Ca1,↑
dyz

,Ca2,↑
dzx

,Ca3,↑
dxy

,Ca1,↓
dyz

,Ca2,↓
dzx

,Ca3,↓
dxy

,
)T

,

and

Hd
SO(k) =λdτy ⊗

⎧⎨
⎩σx ⊗

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

+ σy ⊗
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ + σz ⊗

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠

⎫⎬
⎭,

(B4)

where τβ and σα represent d-orbital (x2
i − x2

j and xixj ) and
spin (up and down) degree of freedom, respectively. As it
turns out, Hd

SO(k) gaps out the bulk Dirac cones.
Adding these spin-orbit coupling terms to Eq. (B1), we

obtain the full Hamiltonian

H
k/2
tot (k) =

(
H tot

p (k) Vtot(k)

V
†

tot(k) H tot
d (k)

)
, (B5)

with

H tot
p (k) =

(
Hp 0
0 Hp

)
+ H

p

SO(k),

H tot
d (k) =

(
σ0 ⊗ Hu

d 0
0 σ0 ⊗ Hl

d

)
+ Hd

SO(k),

and

Vtot(k) = (
σ0 ⊗ V u

dp σ0 ⊗ V l
dp

)
.

Note that the outermost grading of H tot
p and σ0 in the above

expressions corresponds to the spin grading. The parameters
of the above tight-binding model can be determined by fitting
to the DFT results. We have used the following values (in units
of eV):

ep = 0.0, ed = 2.0, tpp = −0.4,

tdd = −0.4, tpd = −0.4, λp = 0.75, λd = 0.1.

We have checked that the nine-band model Hamiltonian (B5)
exhibits qualitatively the same surface states as the DFT-
derived twelve-band model (cf. Fig. 2).

Let us now compute the mirror Chern numbers for this
model. To this end, we first need to determine the reflection
operators. To remove fractional momenta in the symmetry

operators, we first perform a unitary transformation on the
Hamiltonian (B5), i.e.,

Hk(k) = U †Hk/2
tot (k)U, (B6)

where U = diag(Up,Udu
,Udl

), with

Up = e−i(kx+ky+kz)/216, (B7)

Uu
d = Ul

d = σ0 ⊗
⎛
⎝e−ikx/2 0 0

0 e−iky/2 0
0 0 e−ikz/2

⎞
⎠. (B8)

The reflection operator Rx for the mirror symmetry kx → −kx

is given by

URx
(k) =

⎛
⎝R

p
x 0 0

0 Rdu

x 0
0 0 Rdl

x

⎞
⎠, (B9)

where

Rp
x =σx ⊗

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠,

Rdu

x =σx ⊗
⎛
⎝1 0 0

0 eikx 0
0 0 eikx

⎞
⎠,

Rdl

x =σx ⊗
⎛
⎝1 0 0

0 −eikx 0
0 0 −eikx

⎞
⎠. (B10)

The expression of the reflection operator Rx,−y for the mirror
symmetry (kx,ky) → (−ky, − kx) reads

URx,−y
(k) =

⎛
⎝R

p
x,−y 0 0
0 Rdu

x,−y 0
0 0 Rdl

x,−y

⎞
⎠, (B11)

where

R
p
x,−y = − σx + σy√

2
⊗

⎛
⎝0 1 0

1 0 0
0 0 −1

⎞
⎠,

Rdu

x,−y = − σx + σy√
2

⊗
⎛
⎝ 0 eikx 0

eiky 0 0
0 0 ei(kx+ky )

⎞
⎠,

Rdl

x,−y = − σx + σy√
2

⊗
⎛
⎝ 0 eikx 0

eiky 0 0
0 0 −ei(kx+ky )

⎞
⎠. (B12)

These two reflection symmetries act on the Hamiltonian (B6)
as

Hk(k) = U
†
Rx

Hk(−kx,ky,kz)URx
, (B13)

Hk(k) = U
†
Rx,−y

H k(−ky,−kx,kz)URx,−y
. (B14)

Due to these two mirror symmetries, the bulk wave functions of
Hk(k) in the mirror planes kx = 0 and kx = −ky , respectively,
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can be labeled by the mirror eigenvalues ±1. Within these
two-dimensional mirror planes in momentum space, one can
compute the Chern number n±1 of the occupied bands for each
mirror eigenvalue separately. The mirror Chern number is then
given by C = (n+1 − n−1)/2. Using this approach we have
computed the mirror Chern numbers for Hk(k). We find that
they are consistent with the number of chiral surface modes
as computed from the DFT-derived twelve-band tight-binding
model.

APPENDIX C: LOW-ENERGY EFFECTIVE THEORY

In this section, we study the topology of the cubic
antiperovskites A3EO using a low-energy effective theory.
As discussed in the main text, the surface states of A3EO are

protected by the nine reflection symmetries

Rkx
k = (−kx,ky,kz), Rky,±kz

k = (kx,±kz,±ky), (C1a)

Rky
k = (kx, − ky,kz), Rkz,±kx

k = (±kz,ky,±kx), (C1b)

Rkz
k = (kx,ky, − kz), Rkx,±ky

k = (±ky,±kx,kz), (C1c)

and the bulk band structure of A3EO exhibits six Dirac cones,
which are gapped out by spin-orbit coupling. These six Dirac
cones are located on the �-X high-symmetry lines of the bulk
Brillouin zone, i.e., at

k = (±�,0,0), (0,±�,0), (0,0±�). (C2)

In the absence of spin-orbit coupling, the low-energy physics near these six Dirac cones is described by the Hamiltonian [22]

H (k) =
⎧⎨
⎩

(kx ± �)σx ⊗ σz + kyσy ⊗ σz + kzσz ⊗ σz, near k = (∓�,0,0)
kxσx ⊗ σz + (ky ± �)σy ⊗ σz + kzσz ⊗ σz, near k = (0,∓�,0)
kxσx ⊗ σz + kyσy ⊗ σz + (kz ± �)σz ⊗ σz, near k = (0,0,∓�)

. (C3)

We observe that Eq. (C3) is invariant under the nine mirror
symmetries (C1). That is, the Hamiltonian H (k) obeys

U−1
# H (k)U# = H (R#k) (C4)

with the symmetry operators Uki
= σi ⊗ σx and Uki,±kj

=
σi∓σj√

2
⊗ σx . Moreover, we note that the six gapless Dirac

cones of Eq. (C3) are located within the mirror planes ki = 0
(i = x,y,z). Hence, in order to compute the mirror Chern
number for these mirror planes, the Dirac nodes need to be
gapped out, which occurs due to spin-orbit coupling. Within
the low-energy model (C3), we find that there exists only
one symmetry-preserving gap opening term, namely m1 ⊗ σx ,
with m a constant that is independent of k. The mass term
m1 ⊗ σx gaps out all six Dirac nodes. As we will see, this turns
the system into a nontrivial topological crystalline insulator.
To show this, we need to determine the mirror Chern numbers.

Let us first consider the mirror Chern number in the
kz = 0 reflection plane. The eigenspace of Ukz

with mirror
eigenvalue +1 is spanned by |ψ1〉 = (1,1,0,0)/

√
2 and |ψ2〉 =

(0,0,1,−1)/
√

2. Projecting the low-energy Hamiltonian (C3)
within the reflection plane kz = 0 onto this eigenspace gives

h(k)kz
=

{
(kx ± �)σx + kyσy + mσz, near (∓�,0,0),
kxσx + (ky ± �)σy + mσz, near (0,∓�,0).

(C5)

We observe that the four Dirac cones, which are located within
the mirror plane kz = 0 are gapped out by the same mass term
mσz. Since all four Dirac cones have the same orientation, a
sign change in m leads to a Chern number change by +1 for
all of the four Dirac cones (or −1 for all the four Dirac cones).
Hence the total mirror Chern number Cz0 changes by four,
when m → −m.

Second, we consider the mirror Chern number in the
kx = −ky reflection plane. The eigenspace of Ukx,−ky

with

mirror eigenvalue +1 is spanned by the vectors |φ1〉 =
(e−iπ/8,0,0,eiπ/8)/

√
2 and |φ2〉 = (0,e−iπ/8,eiπ/8,0)/

√
2. Pro-

jecting Hamiltonian (C3) within the reflection plane kx = −ky

onto this eigenspace yields

h(k)kx ,+ky
= kxyσy + (kz ± �)σz + mσx, near (0,0,∓�),

(C6)

where kxy = (−kx + ky)/
√

2. Because the two Dirac cones in
Eq. (C6) have the same orientation, the total mirror Chern
number Cx,y changes by two, when m → −m.

From these observations, we conclude that the total mirror
Chern numbers are given by

Ci0 = 2 sgn(m) + bi, Ci,±j = sgn (m) + bi,±j , (C7)

where bi and bi,±j are the mirror Chern numbers of the
“background” bands, i.e., those filled bands that are not
included in the low-energy description (C3). We note that
there exists the following relation between bi and bi,±j :

bi − bi,±j = 1 mod 2. (C8)

This is because the number of chiral left- (or right-) moving
surface modes on the ki = 0 and ki = ±kj high symmetry
lines can only differ by a multiple of two. That is, the surface
modes on the ki = 0 line are continuously connected to the
surface modes on the ki = ±kj line. The only way how the
number of chiral left- (or right-) moving modes can differ on
these two high-symmetry lines is if left- (or right-) moving
modes are gapped out pairwise.

Using the DFT-derived twelve-band tight-binding model
and the simplified nine-band model, we find that bi = 0 and
bi,±j = 1. Hence, Ci0 = 2 sgn(m) and Ci,±j = sgn (m) + 1,
which is in agreement with the results of Ref. [26].
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APPENDIX D: LANDAU LEVELS OF TILTED
DIRAC CONES

In this appendix, we study the Landau level spectra of type-
II Dirac surface states. We note that the Landau level structure
of tilted Dirac fermions has been studied previously in the
literature [32,41–47], in the context of strained graphene and
certain organic conductors, like α-(BEDT − TTF)2I3. We first
review the properties of Landau level spectra of titled type-I
Dirac cones, and then extend these results to type-II Dirac
surface states.

1. Effective model approach

We start by considering a toy model describing a tilted
Dirac cone. The Hamiltonian of this model is given by

H0 = vF (ηπyσ0 + πxσx + πyσy), (D1)

where πi = h̄ki + eAi denotes the canonical momentum, σi

are the Pauli matrices, and η parametrizes the degree of tilting
along the ky direction. For η < 1 (η > 1), Eq. (D1) describes a
type-I (type-II) Dirac cone with an energy dispersion as shown
in Fig. 7.

The Landau level spectrum of the above Hamiltonian can
be obtained in a closed form when 0 � η < 1, which shows
that quantized Landau levels exist for all type-I Dirac cones.
Specifically, if we adopt the Landau gauge A = (0,Bx), the
spectrum of H0 reads [45]

En = sgn (n)
√

2eBh̄v2
F |n|λ3, (D2)

where λ =
√

1 − η2, and n is the Landau level index. One
intuitive way to understand why Landau level-like spectra
still persists for a tilted Dirac cone with 0 � η < 1 is that
all constant-energy contours in the momentum space are still
closed loops, although with an anisotropic shape [48]. As
a result, quantized Landau levels can be derived within a
semiclassical picture [49]. Mathematically, the reason for the
existence of quantized Landau levels is that the corresponding
eigenvalue problem H0
(r) = E
(r) can be mapped to the
problem of a one-dimensional harmonic oscillator, as long as
0 � η < 1. Specifically, the eigenstates are governed by the

ky (a.u.)

E
ne

rg
y

(a
.u

.)

FIG. 7. Comparison between a type-I (dashed lines) and a type-II
(solid lines) Dirac fermion. Shown are the energy dispersions of
Eq. (D1) with η = 0.5 (type-I) and η = 2 (type-II). The valence bands
are marked by yellow and light blue for type-I and type-II Dirac
fermions, respectively.

following differential equation [45],[
− d2

dX2
+ (1 − η2)

(
X + η

1 − η2
ε

)2]
φ(X)

=

⎛
⎜⎜⎝

ε2

1 − η2
− 1 iη

iη
ε2

1 − η2
+ 1

⎞
⎟⎟⎠φ(X), (D3)

where ε = E�B/(h̄vF ), X = x/�B + ky�B , with ky being
the conserved momentum in the Landau gauge, and �B =√

h̄/(eB) is the magnetic length. Because the coefficient of
the second term is 1 − η2 > 0, harmonic oscillator states are
valid solutions of the above eigenvalue problem, as long as
η < 1.

The above discussion also makes it clear that Landau
level-like spectra no longer exists if η > 1, as the coefficient
of the second term in the differential equation (D3) becomes
negative. Physically, this is because the constant-energy
contours now become unbounded (cf. the solid lines in Fig. 7)
in this effective model.

2. Tight-binding model approach

We now use a tight-binding model to illustrate how the
Landau level spectra evolve as the Dirac cone is titled from
a type-I cone to a type-II cone. Specifically, we adopt the
following tight-binding model on the square lattice [32],

H = −
∑
〈ij〉

tij b
†
j ai + t1

∑
〈ij〉

(a†
j ai + b

†
j bi), (D4)

where the operator ai (bi) annihilates an electron on site Ai

(Bi). The next-nearest-neighbor hopping parameters along the
dashed bonds in Fig. 8 are given by t1, while the nearest-
neighbor hopping amplitude tij are specified as ta = tb = tc =
−t , td = t . In the following, we will calculate the spectrum
of (D4) in a ribbon geometry, as shown by the gray rectangle
in Fig. 8, which is periodic along the k2 direction and finite
along k1.

A1

B1 B2

A2

kx

ky

k1

k2

ta

tb

tc

td

FIG. 8. Illustration of the square lattice, on which the tight-
binding model (D4) is defined. The lattice is bipartite with each
unit cell containing two inequivalent atoms labeled by A (red) and
B (black). The second neighbor hopping integral along all dashed
lines is t1. The nearest-neighbor hopping is specified as ta = tb =
tc = −t , td = t . The gray rectangle marks the ribbon geometry in our
calculation, which is periodic along the k2 direction and finite along
the k1 direction.
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The energy bands of Hamiltonian (D4) in ribbon geometry
are shown in Fig. 6 of the main text. The degree of tilting of
the two Dirac cones is controlled by the ratio t1/t . Specifically,
when t1/t = 0 there is no tilting [Fig. 6(a)]; when t1/t starts
to increase, the two Dirac cones begin to tilt [Fig. 6(b)];
when t1/t = 1/2 the spectrum is nondispersive along the k2

direction [Fig. 6(c)]; finally, when t1/t > 1/2, type-II Dirac
cones appear [Fig. 6(d)].

Such a transition from a type-I to a type-II Dirac cone
also manifests itself in a drastic change in the Landau level
structure, which can be obtained by the Peierls substitution
as follows. We adopt the Landau gauge and write the vector
potential as A = (0,Bx), which will attach a phase factor for
all hopping processes in the tight-binding model in Eq. (D4).
Specifically, for a hopping from lattice point (xi,yi) to (xf ,yf ),
the associated phase factor will be eiθ , with

θ = e

h̄

∫
C

A·d r = (xf + xi)(yf − yi)

2�2
B

. (D5)

Figure 6 shows the corresponding Landau level spectrum when
λ ≡ Ba2/φ0 = 0.01. We can see that when t1/t < 0.5, well
separated Landau levels exist around the Dirac node, although
the level spacing decreases as t1 increases [Figs. 6(a) and 6(b)].
In contrast, when the transition to a type-II Dirac cone occurs,
the spacing of the Landau level around the node becomes
extremely small; the Landau levels with finite separation are
due to the contributions from other parts of the band structure
[Figs. 6(c) and 6(d)].

The change in the Landau level structure stems from a
change in the Fermi surface topology. In fact, it is generally
expected that a large Fermi surface area is associated with
dense Landau levels. One simple example is type-I Dirac cones
with different Fermi velocities: for a given energy, the one with
a smaller (larger) Fermi velocity has a larger (smaller) Fermi
surface area, which is also associated with a small (large) Lan-
dau level spacing. One can also gain an intuitive understanding
of this from a semiclassical point of view [49,50]. We first note
that the Landau levels will occur whenever the semiclassical
orbits of electrons in k space encloses some critical areas
specified by the following condition [49]

B̂
2

·
∮

Cm

kc × dkc = 2π

(
m + 1

2
− �Cm

2π

)
eB

h̄
, (D6)

where Cm is the mth semiclassical orbit of the electron, and
�Cm

is the Berry phase of this energy contour. We thus see

that an additional Landau level will be formed whenever the
area of the k-space semiclassical orbit increases by 2πeB/h̄.
In particular, note that this increment is independent of the
Landau level index m. We can now explain why a large Fermi
surface is usually associated with dense Landau levels: a large
Fermi surface indicates a semiclassical orbit with a large
circumference, and thus a small change in the semiclassical
orbit size |�kc| is sufficient to reach the next critical area.
As a result, as long as the Fermi velocity is not extremely
large, we should expect only a small change in the Landau
level energy. Therefore a large Fermi surface area is usually
associated with dense Landau levels.

3. Relation to the (111) surface states

We now discuss the Landau level structure for the (111)
surface states of the antiperovskite Ca3PbO. As shown in
Fig. 4(b) of the main text, the characteristics of the spectrum
on the (111) surface is that two type-I Dirac nodes are located
at the �̄ point and that their energies are higher than the type-II
Dirac nodes away from the �̄ point. To describe this surface
spectrum we consider the following effective model:

Hk/t =

⎛
⎜⎜⎝

εa(k) γk Tk 0
γ
†
k εb(k) 0 Tk

Tk 0 εc(k) γk

0 Tk γ
†
k εd (k)

⎞
⎟⎟⎠, (D7)

where t is an overall energy multiplier and

εα(k) = Wα[cos(akx) + cos(aky)] + Mα, α = a,b,c,d.

(D8)

Here, a is the distance |A1B1| in Fig. 8. Moreover, we have
γk = sin(akx) − i sin(aky), and Tk = v2 sin(akx) sin(aky).
For the numerical evaluations, we choose the parame-
ters as (Wa,Ma) = (2.58,−0.50), (Wb,Mb) = (−0.42,5.50),
(Wc,Mc) = (1.16,0), (Wd,Md ) = (3.16, − 4.00), and v2 =
0.25, respectively. The energy spectrum of this model at k1 = 0
is shown in Fig. 9(a), which captures the Dirac features of the
(111) surface state [cf. Fig. 4(b) in the main text]. We note that
this effective model possesses a C3 rotation symmetry, instead
of the C4 rotation symmetry in the actual (111) surface of
the antiperovskites; hence, there are four type-II Dirac nodes,
instead of six.

In order to calculate the Landau level spectrum of this
model, we assume that it is defined on the square lattice

FIG. 9. (a) Bulk energy spectrum of model (D7) as a function ok k2 with k1 = 0. (b) Energy spectrum of Hamiltonian (D7) in a ribbon
geometry with the edges along the k2 direction. (c) Landau level spectrum of Hamiltonian (D7) with λ ≡ Ba2/φ0 = 0.05. We note that all
dispersive curves in the Landau level structure arise from states localized at the edge of the ribbon.
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FIG. 10. Surface density of states along the high-symmetry lines
(a) �̄ → X̄ and (b) �̄ → M̄ of the (001) surface BZ for the Ca-O
termination [lower right panel of Fig. 1(b)]. In both the plots, a small
surface band crossing, which is barely visible, is located at the bulk
gap of �̄ point.

shown in Fig. 8, where each site now hosts four orbitals
(Ak,Bk,Ck,Dk), which constitutes the basis of the Hamilto-
nian Hk, Eq. (D7). For convenience, we also make a coordinate
transformation, namely k1 = kx + ky , and k2 = kx − ky . We
then keep the system periodic along the k2 direction, while
finite along the k1 direction. In particular, we only retain
the lattice points marked by the gray rectangle in Fig. 8.
The energy spectrum of such a ribbon geometry is shown in
Fig. 9(b). The Landau level spectrum of (D7) for φ/φ0 = 0.05
is shown in Fig. 9(c). The type-I and type-II Dirac nodes exhibit
distinguishable physical features. Near the type-I Dirac node
at E/t ∼ 4.5, Landau levels are well separated since only a
single Fermi surface appears near the node. Near the type-II
Dirac nodes and the second type-I Dirac node at E/t ∼ 1.5,
on the other hand, the spacing of the Landau levels is close to
zero due to the complexity of the Fermi surface structures.

APPENDIX E: SURFACE STATES FOR THE OTHER
TERMINATION

For completeness we show in this section the surface states
for the other surface terminations. Figure 10 displays the Dirac

FIG. 11. Surface density of states along the high-symmetry lines
(a) �̄ → X̄ and (b) �̄ → Ȳ of the (011) surface BZ for the Ca
termination.

states on the (001) surface for the Ca-O termination. The
surface density of states is plotted along the high-symmetry
lines �̄ → X̄ and �̄ → M̄ , corresponding to the kx = 0
and kx = ky mirror lines, respectively. Both in Figs. 10(a)
and 10(b), two chiral left- and right-moving surface states are
visible, which connect valence with conduction bands. This
is in agreement with the mirror Chern numbers Cx0 and Cx,y

which take the value 2. In Fig. 10(a), there is in addition
a trivial surface state which intersects with one of the left-
(right-)moving chiral modes.

Figure 11 shows the Dirac states on the (011) surface
for the Ca termination. The surface density of states is
plotted along the high-symmetry lines �̄ → X̄ and �̄ → Ȳ ,
which corresponds to the kx = 0 and ky = kz mirror lines,
respectively. Since Cx0 = Cy,z = 2 there appear two left- and
two right-moving chiral modes. In Fig. 11(b) the chiral modes
form a type-II Dirac corssing.

In closing, we note that within our twelve-band tight-
binding description the (111) surface spectrum with O
termination is identical to the one with Ca-Pb termina-
tion. This is because our tight-binding model does not
include oxygen orbitals, since they are far away in energy
from EF .
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