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Few-body collective excitations beyond Kohn’s theorem in quantum Hall systems
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A relative coordinate breathing mode in the quantum Hall system is predicted to exist with different behavior
under either Coulomb or dipole-dipole interactions. While Kohn’s theorem [W. Kohn, Phys. Rev. 123, 1242
(1961)] predicts that any relative coordinate interaction will fail to alter the center-of-mass energy spectrum, it
can affect excitations in the relative coordinates. One such collective excitation, which we call the hyperradial
breathing mode, emerges naturally from a few-body, hyperspherical representation of the problem and depends
on the interparticle interactions, the ground state wave function, and the number of particles participating in the
excitation. Possible observations of this excitation will be discussed in the context of both conventional quantum
Hall experiments and cold, rotating atomic simulations.
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In condensed matter and atomic physics alike, particle
interactions can give rise to collective behaviors in many-body
systems with dramatic and often unexpected properties [1–4].
In no system are collective behaviors more central than in the
fractional quantum Hall (QH) system, where the properties
of low-energy quasiparticle excitations continue to drive new
theoretical and experimental discoveries [5–10]. For example,
among such low-energy excitations, one type of density
oscillations known as the magnetoroton was described quite
early in the description of the fractional quantum Hall effect
[11,12]. However, collective excitations at higher energies,
near the cyclotron frequency ωc = eB/m, are considerably
less well explored: while the the center-of-mass excitation,
which is indistinguishable in frequency from the single particle
excitation frequency ωc by Kohn’s theorem [13], is clearly
predicted by theory, experiments in capacitance spectroscopy
[14], optical emission spectroscopy [15], and high-intensity
pulsed terahertz spectroscopy [16] have detected behaviors that
defy the simple single-particle or Kohn’s theorem predictions,
indicating that the cyclotron frequency excitation regime
exhibits interesting new physics. A variety of numerical
treatments have been used to characterize QH systems [17–21],
but isolating any specific excitation in the cyclotron energy
regime from many of these models is daunting since the
excitation spectrum is highly complicated.

Recasting the QH problem in the adiabatic hyperspherical
representation [22,23] highlights the existence of a unique
type of vibrational mode [24] that may be directly measurable.
The adiabatic hyperspherical representation [25–27] has not
seen widespread use in condensed matter physics, but has
contributed to developments in many disparate fields, includ-
ing nuclear structure and reactivity [28–32], universal Efimov
physics in cold atoms and molecules [33–38], few-electron
atoms [39–41], positron and electron systems [42–45], Bose-
Einstein condensates [46,47], and trapped degenerate Fermi
gases [34,48]. The technique is broadly useful because it
expresses few- or many-body interacting systems in collective
coordinates and separates a particle cluster’s internal geometry
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from the cluster center-of-mass motion. This paper examines
the origin and properties of a particular type of vibrational
excitation observable in quantum Hall systems, which we call
the hyperradial breathing mode, and also discusses possible
schemes for its measurement in experiments in both condensed
matter and cold atom systems.

Consider the many-body QH Hamiltonian for N elec-
trons confined to two dimensions in a strong, perpendicular
magnetic field in the symmetric gauge [49]. A rotating
two-dimensional gas of neutral atoms in a harmonic trap (or
even nonrotating; see below) shares the same Hamiltonian,
except for the form of the interactions [50], making it an ideal
system for comparing the effect of different interactions on
the collective behaviors of the system. The hyperspherical
transformation first extracts the center-of-mass coordinate
from the Hamiltonian, then converts the remaining 2N − 2
relative Jacobi coordinates into 2N − 3 angular dimensions
known as hyperangles, collectively labeled �, and a single
length scale known as the hyperradius, R. The hyperradius is
a scalar whose square is equal to the sum of the squares of
the mass-weighted relative Jacobi coordinates and essentially
defines an approximate area covered by the N -particle system.
All lengths in this paper have been scaled by the magnetic
length, λ0 = √

�/meωc for the condensed matter system,
where me is the effective mass of the electron in the material,
or by the trap length in the cold atom system, λ0 = √

�/mωc,
where m is the atom mass and ωc is defined as twice the trap
frequency [50], and is the analog of the Landau-level spacing
in the conventional system. For brevity, “�ωc” will be used to
represent the Landau-level separation in both systems when
appropriate.

In the symmetric gauge, the relative coordinate interacting
Hamiltonian can be rewritten in hyperspherical coordinates as

Hrel = − 1

2μ
∇2

R,� + μ

8
R2 + 1

2
Lrel

z + κC(�)V (R), (1)

where ∇2
R,� is the Laplacian in hyperspherical coordinates

[29], μ = N−1/Nrel is a dimensionless mass scaling factor, Nrel

is equal to N − 1 (the number of relative Jacobi vectors),
and C(�) is the hyperangular part of the interactions. The
Hamiltonian has been divided by �ωc, to express the energies
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in dimensionless units. The last term in Eq. (1) represents
the interactions in terms of the hyperspherical coordinates,
with the lengths scaled by λ0 for the system in question.
For the condensed matter system, the interactions are simply
Coulomb repulsive, but in two-dimensional cold atom systems,
a variety of interactions can be implemented by different
experimental choices. We restrict our cold atom investigation
to clusters of electric or magnetic dipoles aligned with the
axis of rotation interacting purely via repulsive dipole-dipole
interactions, which are among the class of interactions that
can drive the formation of quantum Hall liquids [51–53].
Then the term κ in Eq. (1) is the ratio of the interaction
energy to the Landau-level separation: for Coulomb inter-
actions, κ = e2/(4πελ0�ωc); for dipole-dipole interactions,
κ = cdd/(4πλ3

0�ωc), where cdd = μ0μ
2
mag for polarized mag-

netic dipoles with magnetic moment μmag, and cdd = d2/ε0

for polarized electric dipoles with dipole moment d. The form
of the hyperangular term C(�) depends on the form of the
interactions and on the specific choices of Jacobi vectors and
hyperspherical coordinates, and V (R) takes the simple forms
1/R for Coulomb interactions or 1/R3 for polarized dipole-
dipole interactions. In the absence of interactions, the quantum
Hall Hamiltonian is exactly separable into a hyperradial and
a hyperangular Hamiltonian. The solutions are products of
hyperradial functions times hyperangular functions known
as the hyperspherical harmonics from K-harmonic theory
[28], �(R,�) = R−Nrel+1/2F

(M)
nR,K (R)	(M)

K,i (�). The quantum
number M is the familiar total relative azimuthal quantum
number which determines the filling factor ν, K is an additional
hyperangular momentum quantum number known as the grand
angular momentum, and nR = 0,1, . . . is a hyperradial nodal
quantum number. Particle exchange symmetry of the basis
functions is imposed in a separate step, for example by a
technique developed by Efros [54] as outlined in [22].

Diagonalizing the fixed-R hyperangular Hamiltonian in
a restricted hyperangular Hilbert space (a reasonable ap-
proximation [22] is to ignore coupling between different K

manifolds; for K = |M|, this coincides with restricting the
Hilbert space to the lowest Landau level) in degenerate per-
turbation theory with R as an adiabatic coordinate reduces the
many-dimensional hyperradial Schrödinger equation to a set of
one-dimensional, uncoupled, ordinary differential equations:{

− 1

2μ

d2

dR2
+ U

(M)
K,a (R) − E

}
F

(M)
nR,K,a(R) = 0, (2)

where the U
(M)
K,a (R) are the hyperradial potential curves, and

a is a label to distinguish different curves in the same K,M

manifold. In the noninteracting limit, the potential curves take
the form

U
(M)
K (R) = (K + Nrel − 1/2)(K + Nrel − 3/2)

2μR2

+ μ

8
R2 + 1

2
M. (3)

Each of these potential curves U
(M)
K,a (R) supports a

collection of energies separated by �ωc zeroth order in
κ , E0 = (2nR + M + K + Nrel)�ωc/2. The excitation in
the hyperradial dimension alone is a density excitation of
the finite system, which we call the hyperradial breathing

FIG. 1. Hyperradial potential curves and the hyperradial bound
states for the four-particle, ν = 1 system. The ground state for ν = 1
has hyperangular quantum numbers K = 6, M = −6, and nR = 0,
and is totally isolated. The hyperradial excitation takes the system
from the nR = 0 state with energy E0 to the first hyperradially excited
state with nR = 1 and energy E1. The E0 plus the cyclotron energy
is shown as a (blue) dashed line for contrast. Other excited potential
curves and their ground state energies with the same M with are
shown in pale gray.

mode. When the κ-dependent term in the adiabatic potential
curve is treated in first-order perturbation theory, the energies
for the Coulomb system exactly match those calculated in
conventional configuration interaction calculations [22,55].
If the adiabatic hyperradial differential equation is solved
numerically, Ref. [22] shows that even higher accuracy is
obtained.

Calculations beyond first-order perturbation theory [e.g.,
using finite differences techniques to solve Eq. (2)], reveal
that interaction induced shifts to the potential curves cause
the hyperradial excitations within each curve to shift so
their separations no longer exactly equal �ωc. We call such
an excitation a hyperradial breathing mode. As a simple
example, Fig. 1 shows the hyperradial curves and energies
for the four-particle integer quantum Hall state (M = −6,
K = 6, and nR = 0) in GaAs and all excited states with
M = −6 that are approximately �ωc higher in energy. We
are interested in the lowest energy hyperradial excitation,
the transition from nR = 0 to nR = 1 with energy (E1 − E0)
for any given set of hyperangular quantum numbers, as is
highlighted with the vertical (red) arrow in Fig. 1. It is a density
excitation, but unlike the magnetoroton, it is not a low-energy
excitation within a Landau level, and it includes physics
beyond the single mode approximation of a simple oscillator
model [11,12,56]. Using more exact numerical techniques
here constitutes including some level of Landau-level mixing
in our approximation; our previous studies give bounds to
the hyperangular contribution to Landau-level mixing, and
indicate that hyperangular Landau-level mixing, or coupling
between K manifolds, is weak for lowest Landau-level ground
states and modest values of κ .

Figure 2 gives the energy separation between the ground
state and the first hyperradial excited state for several important
lowest Landau-level filling factors in the GaAs system (top)
and the cold atom system (bottom) as a function of κ (left)
and the number of particles (right). For Fig. 2(b), the values of
κ used for each filling factor are taken from the experimental
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FIG. 2. (a) The hyperradial vibrational (HRV) mode excitation energies for Coulomb interactions as a function of κ for N = 4, . . . ,9
particles at ν = 1 filling factor. From the lowest curve (red) with N = 4, the number of particles increases to N = 9 for the uppermost (black)
curve. (b) The HRV energies for Coulomb interactions versus particle number for various filling factors [ν = 1(red “×”s), ν = 2/3 (green
squares), ν = 2/5 (blue triangles), and ν = 1/3 (black circles)]. The values of κ are calculated from corresponding experimental magnetic
fields in Tesla from [57]: ν = 1 corresponds to 9T , ν = 2/3 to 14T , ν = 2/5 to 25T , and ν = 1/3 to 29T . (c) The HRV excitation energies
for dipole-dipole interactions as a function of κ . In this case the number of particles decreases from N = 4 downward to N = 9 on the
plot. (d) The HRV energies for dipole-dipole interactions at κ = 1. The filling factors are labeled as in (b). For Coulomb interactions, the
κ = e2/(4πελ0�ωc), and for dipole-dipole interactions, κ = cdd/(4πλ3

0�ωc), where cdd is μ0μ
2
mag for polarized magnetic dipoles or d2/ε0 for

polarized electric dipoles.

results of [57]. Since cold atom systems are hypothetically
more tunable and currently lack an experimental paradigm, κ

was set to 1 for all filling factors of the dipole-dipole interaction
calculations shown in Fig. 2(d). We note that the hyperradial
excitation energy E1 − E0 for Coulomb repulsion is smaller
than �ωc for all tested systems, while the opposite is true for
the dipole-dipole interacting system. In general, the vibrational
mode excitation energy detuning from �ωc in both cases is

largest when κ is large and when the filling factor is smallest,
although this trend does not hold universally for Coulomb
interactions, as there are a few exceptions [which are difficult
to see in the scales of Fig. 2(b)]. Increasing the number of
particles weakens the detuning in both cases as well, and this
trend is stronger in the dipole-dipole interacting system, as can
be seen in Fig. 3, which compares the two systems at filling
factor ν = 1/3 on equivalent scales.

FIG. 3. The hyperradial vibrational modes versus κ for the ν = 1/3 filling state for both (a) Coulomb, and (b) dipole-dipole interactions
shown on the same scales relative to �ωc. The detuning for the dipole-dipole interacting system exhibits stronger N dependence.
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We have not yet found a simple interpretation for the
nonmonotonic N dependence of the energy shifts, but it is
likely due to finite size effects. In the composite fermion (CF)
picture, a N -electron Laughlin ground state consists of the N

transformed CFs totally filling the lowest CF Landau levels
(known in the CF picture as Lambda levels). The N -electron
Jain states, in contrast, consist of (N/2 − 1) CFs filling the
lowest CF lambda level and N/2 + 1 CFs filling the second
lambda level. As can be seen from this picture, increasing
the number of particles for a Laughlin system increases the
Hilbert space size of a single lambda level at twice the rate as
increasing the number of particles for a Jain system. As a result,
the largest Jain systems we ran numerically are more affected
by finite size effects than the largest Laughlin systems we ran.
Access to more significant computing resources would allow
the exploration of more structurally complicated few-body
quantum Hall states in the lowest Landau level requiring more
particles (e.g., the 4/11 state [58,59]), which could establish
whether the nonmonotonicity is uniquely due to few-body
behaviors.

Experimentally, this hyperradial breathing mode cannot be
excited through purely optical means because the laser field
only operates on the center of mass for equal-mass, equal-
charge particles, and should not induce transitions of the inter-
nal degrees of freedom of the system without additional terms
in the Hamiltonian involving significant coupling between the
center of mass and relative degrees of freedom (which we
neglect in this work, but could include localized anisotropic
features of the background, e.g., impurities or lattice defects).
However, the transition could be induced by a time-dependent
perturbation to the radial harmonic confinement of the form

V ′(t) = a cos ω0t

N∑
i=1

r2
i = a cos ω0t

(
1

N
r2
cm + μR2

)
, (4)

where a is the strength of the weak potential, ri are the
single-particle coordinates, and ω0 is the hyperradial transition
frequency. From the form of Eq. (4), it is clear that such a
potential can perturbatively excite the center of mass or the
hyperradial degrees of freedom, but the hyperradial excitation
can be spectroscopically selected by the choice of frequency.
For a two-dimensional electron gas, this oscillating potential
could be achieved by weakly oscillating the perpendicular
magnetic field at high frequencies, although the terahertz
frequencies required for typical samples will be experimentally
challenging to achieve, and detection will also prove difficult.

Measuring the hyperradial breathing modes should be
more feasible in trapped cold atom or cold molecule systems
interacting via repulsive dipole-dipole interactions, where
the harmonic perturbation of Eq. (4) can be produced by
flexing the trapping potential in a time-dependent manner.
Collective modes have been previously observed directly
in Bose-Einstein condensates [60] and degenerate Fermi
gases, including in two dimensions [61], using trap-oscillating
techniques in the absence of internal rotation as a tool to
evaluate various internal properties of the gas.

Construction of a cold atom or cold molecule quantum Hall
gas remains a significant experimental challenge, but the cold
atom systems present a dramatic range of tunability which
could be ideal for probing these vibrational modes. Using,

for example, the magnetic dipole interactions of 161Dy [62]
and assuming a ν = 1 filling factor, dipole trap with a planar
trapping frequency of ωtrap = 30 kHz has κ of only 2.6×10−3,
and a detuning of only ≈22 Hz, but a much tighter trap could
enhance the detuning, since κ varies with the square root of ωc.
Substituting magnetic dipolar atoms with cold electric-dipolar
bialkali molecules, which have intrinsic dipole moments of
around 1 D, can also dramatically enhance the effect. For
example, fermionic LiRb has an intrinsic dipole moment of
around 4.1 D [63], so in a 15 kHz trap, κ ≈ 1.5 and the
detuning for the N = 4, M = 6 integer quantum Hall state
is around 2 kHz. The greatest challenge in this experimental
system will be the measurement of the energy, but there are
several methods that might prove effective. For an array of
quantum Hall droplets, photoassociation measurements in the
spirit of [64,65] may be sensitive enough to measure the
few-body excitation energies. Alternately, it may be feasible to
directly measure the total absorption of the perturbative light
by the many droplets. If instead the successful quantum Hall
experiment consists of a single droplet of only a few particles
in a deep-well, optical tweezer, the excitation energy might be
measured by Coulomb explosion imaging [66] or by a sensitive
trap loss [67].

While most discussions of the quantum Hall effect for
ultracold atoms have envisioned rotating traps, it should be
pointed out that the spectra predicted here can be observed
also for a nonrotating isotropic two-dimensional (2D) trap.
This is because the difference in the Hamiltonian between
a rotating versus a nonrotating trap is simply the presence
of the constant term 1

2Lrel
z in Eq. (1), which is present only

for a rotated trap in the rotating frame. But since Lrel
z is a

conserved quantity for this system, the energy levels should
be observable if the appropriate relative angular momentum
modes are created for the number of atoms or molecules in
the trap. For example, in a nonrotating 2D trap containing
four identical, spin-polarized fermionic atoms, the Laughlin 1

3
state is the lowest energy eigenstate having relative angular
momentum |M| = 18, and the breathing mode frequency
predicted using the adiabatic hyperspherical approximation
should be accurate. It is therefore an observable excitation in
the Hilbert space even though it is not the M value of the
ground state of the system as a whole.

In conclusion, we have established the existence of a
hyperradial breathing mode in the quantum Hall system. This
breathing mode energy is affected by the particle count, the
strength and type of the interaction, and the filling factor.
Although experimental realizations of this measurement face
significant challenges, the modes should be experimentally
excitable and measurable. For few-body systems, the presence
of disorder will specifically affect excitations located near the
disorder center. Our model does not yet account for the possible
effects of disorder, but it will likely enable coupling between
different hyperangular states, including between states within
different K manifolds because the disorder will likely break
the rotational symmetry input in our model. Disorder in the
atomic traps is unlikely to be a problem, but trap anharmonicity
could similarly allow nonhyperradial excitations. We are
unable to predict the strength of these effects in our model
at this time. As a final speculation, we suggest that, while
exciting in its own right as a new collective excitation in the
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system, this particular measurement could also be useful in
establishing direct measurements of the effects of Landau-level
mixing. Landau-level mixing refers to deviations from the
idealized single-Landau-level approximation due to coupling
between different Landau levels. While Landau-level mixing
has been estimated through various methods [68–71], the effect
is challenging to measure experimentally. In measuring the
hyperradial excitation, deviations from the ideal hyperradial
vibrational mode energies should be attributed to hyperangular
coupling between Landau levels. Such a direct measurement
of Landau-level mixing in the hyperangular picture would

provide a test for these previous models of interlevel coupling
effects in the quantum Hall system.
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