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We calculate the topological part of the electromagnetic response of bosonic integer quantum Hall (BIQH)
phases in odd (space-time) dimensions, and bosonic topological insulator (BTI) and bosonic chiral semimetal
(BCSM) phases in even dimensions. To do this, we use the nonlinear sigma model (NLSM) description of
bosonic symmetry-protected topological (SPT) phases, and the method of gauged Wess-Zumino (WZ) actions.
We find the surprising result that for BIQH states in dimension 2m − 1 (m = 1,2, . . . ), the bulk response to
an electromagnetic field Aμ is characterized by a Chern-Simons term for Aμ with a level quantized in integer
multiples of m! (factorial). We also show that BTI states (which have an extra Z2 symmetry) can exhibit a
Z2-breaking quantum Hall effect on their boundaries, with this boundary quantum Hall effect described by a
Chern-Simons term at level m!

2 . We show that the factor of m! can be understood by requiring gauge invariance
of the exponential of the Chern-Simons term on a general Euclidean manifold, and we also use this argument
to characterize the electromagnetic and gravitational responses of fermionic SPT phases with U(1) symmetry in
all odd dimensions. We then use our gauged boundary actions for the BIQH and BTI states to (i) construct a
bosonic analog of a chiral semimetal (BCSM) in even dimensions, (ii) show that the boundary of the BTI state
exhibits a bosonic analog of the parity anomaly of Dirac fermions in odd dimensions, and (iii) study anomaly
inflow at domain walls on the boundary of BTI states. In a series of Appendixes we derive important formulas
and additional results. In particular, in Appendix A we use the connection between equivariant cohomology
and gauged WZ actions to give a mathematical interpretation of the actions for the BIQH and BTI boundaries
constructed in this paper.
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I. INTRODUCTION

In the years since the theoretical prediction and experi-
mental discovery of the electron topological insulators [1,2],
the study of symmetry-protected topological (SPT) phases of
matter [3–7] has emerged as an extremely rich subfield of con-
densed matter physics, with interesting and surprising connec-
tions to high-energy physics and mathematics. Although there
has been tremendous progress in the understanding of these
states of matter, some basic issues about these phases are still
the subject of intense investigation. As illustrative examples we
point to the question of which theories can describe a surface
termination of the time-reversal invariant electron topological
insulator in three spatial dimensions [8–14], as well as the
analogous question for the surface of the bosonic topological
insulator in three spatial dimensions [15,16].

A very useful definition of an SPT phase is as follows [17].
Consider a quantum many-body system with Hamiltonian H ,
where H has the symmetries of a group G and a gapped
spectrum. Then, the ground state |�〉 of H represents an SPT
phase if it satisfies several properties. First, |�〉 should be
unique independently of the topology of the (closed) spatial
manifold that H is defined on. This ensures that the ground
state of H does not represent a phase with topological order (no
excitations with fractional charge or statistics, etc.). Second,
|�〉 should be invariant under the action of G, i.e., U (g)|�〉 =
|�〉 for any g ∈ G, where U (g) is a representation of G on
the Hilbert space of the system. This means that the ground
state of H does not spontaneously break the symmetry of the

group G. Finally, |�〉 cannot be continuously tuned to a trivial
product state (e.g., by adding terms to the Hamiltonian) without
(i) breaking the symmetry of G, or (ii) closing the gap in the
spectrum of H . Despite the lack of anyon excitations in the
bulk, interesting degrees of freedom will in general be present
at the boundary of an SPT phase.

In this paper, we focus our primary attention on bosonic SPT
phases and, in particular, on those bosonic SPT phases which
are analogs of more familiar topological phases of fermions.
We are especially interested in the bosonic integer quantum
Hall (BIQH) effect [18–28], a bosonic analog of the ordinary
ν = 1 integer quantum Hall effect of fermions in three (space-
time) dimensions, and in the time-reversal invariant bosonic
topological insulator (BTI) [29–32], a bosonic analog of the
time-reversal invariant electron topological insulator in four
dimensions. In fact, the main goal of our paper is to consider
generalizations of the BIQH and BTI states to all odd and
even space-time dimensions, respectively, and then to study
the physical properties of these higher-dimensional states. The
reader should note that in the remainder of this paper the word
“dimension” always refers to the space-time dimension. We
always write “spatial dimension” when we want to discuss the
dimension of space only.

BIQH phases are protected only by U(1) charge-
conservation symmetry, while the BTI phase is protected by
the symmetry group U(1) � Z2, where, as we discuss later,
the Z2 symmetry is unitary charge-conjugation symmetry
ZC

2 in dimensions 2,6,10, etc., and antiunitary time-reversal
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symmetry ZT
2 in dimensions 4,8,12, etc. The symbol “�”

means that the U(1) and Z2 symmetry operations do not
commute with each other. Since both of these phases have
U(1) charge-conservation symmetry, they can both be coupled
to an external electromagnetic field Aμ. One can then study
the electromagnetic response of these states.

One of our main results in this paper is an explicit derivation
of the (topological part of) the electromagnetic response of
BIQH phases in all odd dimensions and BTI phases in all
even dimensions. From a physical standpoint, the magnitude
of the electromagnetic response is extremely interesting, as
it is known already in three dimensions that the requirement
that a BIQH state has no topological order places a constraint
on the allowed values of the Hall conductance of any putative
BIQH state [18]. In particular, the Hall conductance must be
a multiple of 2 (in units of e2

h
), i.e., a BIQH state has twice

the Hall conductance that a free-fermion integer quantum Hall
state can have. In higher dimensions, we also find that the
electromagnetic response of the BIQH state is some integer
multiple of the minimum value which can be realized by free
fermions, and we find analogous results in even dimensions
for BTI states.

To calculate the electromagnetic response of these states,
we need a concrete model to work with. For reasons to be
discussed in the next section, we choose to use the nonlinear
sigma model (NLSM) description of bosonic SPT phases
[33–38]. This allows us to use the theory of gauged Wess-
Zumino (WZ) actions [39–44] to study the boundary of these
states, and from our study of the boundary we are able
to deduce the bulk response. As a by-product, our explicit
construction of gauged WZ actions for the boundaries of these
states allows us to study several physical properties of these
states in more detail. We show that the boundary theory for
the BTI displays a bosonic analog of the parity anomaly for
Dirac fermions in odd dimensions [45–49], and we also use
the boundary theory of the BIQH state to construct effective
theories for bosonic analogs of Weyl (or chiral) semimetals in
all even dimensions.

For the case of the BIQH state, we also provide an
alternative derivation of the response by requiring the gauge
invariance of (the exponential of) the Chern-Simons functional
describing the electromagnetic response of the state. We also
use this gauge-invariance argument to derive and discuss
the electromagnetic and gravitational responses of fermionic
integer quantum Hall (FIQH) phases in different dimensions.
This gauge-invariance argument provides us with a general
understanding of the difference in the quantization of response
coefficients of BIQH and FIQH phases.

Before moving on, we take this opportunity to provide
some justification for our study of bosonic SPT phases in
dimensions higher than the physically relevant dimensions
of two, three, and four. Studying a state of matter in
generic dimensions can often reveal underlying organizational
principles or mathematical structures which cannot be seen by
studying low-dimensional examples on their own. An obvious
example of this is the periodic table of topological insulators
and superconductors [50,51], which exhibits an eightfold
periodicity in the dimension of space (i.e., the pattern does not
completely develop if one considers only low dimensions). In
the case of bosonic SPT phases, low-dimensional examples

suggest that the response of the bosonic analog of a given
fermionic state (integer quantum Hall or electron topological
insulator) is twice that of its fermionic counterpart. However,
our results in this paper clearly show that this is not the case
in higher dimensions. Finally, it is also worth mentioning
that many new insights on four-dimensional physics can be
gained by imagining that our four-dimensional space-time is
the boundary of a five-dimensional SPT phase [52–54].

This paper is organized as follows. First, in Sec. II we
outline our basic approach and summarize our main results.
In Sec. III we review the relevant background information
on BIQH and BTI phases, the NLSM description of SPT
phases, and the method of gauged WZ actions. In Sec. IV we
construct the gauged WZ action for the boundary of the BIQH
phase, and we use the anomaly of the gauged boundary action
to deduce the bulk response of the BIQH phase. We also give
an alternative derivation of the BIQH response which relies on
only the bulk physics of the NLSM. In Sec. V we use a general
gauge-invariance argument to understand the electromagnetic
response of BIQH states, and also the electromagnetic and
gravitational responses of FIQH states in odd dimensions. In
particular, we illuminate the important differences between
the quantization of response coefficients in BIQH and FIQH
phases. In Sec. VI we construct the gauged WZ action for the
boundary of the BTI phase, and we use the gauged boundary
action to study the symmetry-breaking BIQH response of the
BTI boundary. In Sec. VII we use the results from Secs. IV
and VI to (i) construct effective theories for bosonic analogs
of Weyl, or chiral, semimetals in all even dimensions, (ii)
show that the boundary of a BTI state displays an analog of
the parity anomaly for Dirac fermions in odd dimensions, and
(iii) study the physics of symmetry-breaking domain walls
on the boundary of BTI states. Section VIII presents our
conclusions. Finally, in a series of appendixes we examine the
results of the paper from a more mathematical point of view,
and also derive several important formulas which are used
throughout the paper.

II. BASIC APPROACH AND SUMMARY OF RESULTS

In this section, we outline our basic approach to calculating
the electromagnetic response of higher-dimensional bosonic
SPT phases, and then we present our results. In this paper, we
work in units where h̄ = e = 1, where e is the charge of the
basic particles (bosons or fermions) which make up the state
we are interested in. To restore e in any formula one can simply
replace Aμ (the external electromagnetic field) with eAμ.

Let us first discuss the general form that the topological
part of the electromagnetic response is expected to take for
BIQH and BTI states. In odd dimensions, the response of
a higher-dimensional analog of a quantum Hall state to an
external field A = Aμdxμ (we use differential form notation)
is characterized by a Chern-Simons (CS) term SCS[A] in the
effective action for the external field. In 2m − 1 dimensions,
this term takes the form

SCS[A] = N2m−1

(2π )m−1m!

∫
M

A ∧ Fm−1, (2.1)

where N2m−1 is called the level of the CS term, F = dA, Fm−1

is shorthand for the wedge product of F with itself m − 1
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times, and M represents the space-time manifold. Let us also
note here that all actions in the paper are written in Minkowski
signature (real time) except in Sec. V and Appendix B, where
we consider CS and other terms in Euclidean space-times. On
the other hand, the response of an analog of a topological insu-
lator in 2m dimensions is characterized by a “Chern character”
term (we avoid using “theta term” here since that name is also
used for a type of topological term in the NLSM action)

SCC[A] = �2m

(2π )mm!

∫
M

Fm. (2.2)

Here, the coefficient �2m should be interpreted as an angular
variable, although its period is not necessarily 2π . We call this
term a “Chern character” term as the quantity 1

m! (
F
2π

)
m

appears
as the mth term in the expansion of the total Chern character
ch[F ] = e

F
2π of a U(1) principal bundle with curvature

F [55]. Since locally we can write Fm = d(A ∧ Fm−1),
we see that for a BTI state with a boundary, the term
SCC[A] can be interpreted as a CS term at level �2m

2π
on

the (2m − 1)-dimensional boundary of the BTI state (more
precisely, this is only true when the bulk field configuration F

has vanishing topological contributions).
For the analogs of integer quantum Hall states of fermions

(FIQH states) in odd dimensions, the level N2m−1 of the
CS term can be any integer [56–59], while for free-fermion
topological insulators, and their generalizations to higher
dimensions, the angle �2m is 2π periodic and the value which
represents a nontrivial topological insulator state is �2m = π

[60] (the result for fermionic topological insulators in any even
dimension is easily established using the axial anomaly for a
Dirac fermion in 2m dimensions). For bosonic SPT phases
in low dimensions we know that N3 = 2k, k ∈ Z, for BIQH
states in three dimensions [18,19], that �4 has 4π periodicity,
and �4 = 2π for the nontrivial BTI state in four dimensions
[29,30,61,62].

One of the main purposes of this paper is to calculate the
values of the response coefficients N2m−1 and �2m for BIQH
and BTI states in all dimensions. There are (at least) two ways
that one could go about doing this. The first way would be
to formulate a general physical argument based, for example,
on the consistency of the value of N2m−1 or �2m and the
fact that a bosonic SPT state should have no fractionalized
excitations, and in this way determine a constraint on the
possible values of N2m−1 or �2m. In fact, such an argument has
already been given for the BIQH state in the case m = 2 (three
space-time dimensions). In Ref. [18] the authors showed that if
the response coefficient N3 (which is just the Hall conductance
in units of e2

h
) is odd, then the underlying theory must contain

an excitation of charge one (in units of the charge e of the
underlying bosons) with fermionic exchange statistics. An
excitation with fermionic statistics is not allowed in a state
of bosons which has no fractionalized excitations, and so
the authors of Ref. [18] concluded that N3 must be an even
integer for BIQH states in three dimensions. Generalizing this
argument to higher dimensions clearly represents a significant
conceptual difficulty, as in higher dimensions one is probably
forced to consider generalized braiding processes for extended
objects such as string or membrane excitations [63–65]. For

this reason, we do not pursue this approach in this work, and
instead use a second method.

The second method for answering this question, and the
method that we choose to use, is to (i) start with a concrete field-
theoretic model which is believed to accurately describe the
low-energy physics of a BIQH or BTI state in the relevant
dimension, (ii) couple this model to the external field A,
and (iii) directly calculate the electromagnetic response for
this particular model. In the literature, there are two main
kinds of field-theoretic models that can describe SPT phases:
topological quantum field theory (TQFT) in terms of gauge
field variables (e.g., Chern-Simons theory in three dimensions
[19,25,66,67] and twisted gauge theory [68–70] in four
dimensions [32,71]) and the nonlinear sigma model (NLSM)
description in terms of constrained bosonic fields [33–38].
In both approaches, the bulk topological order is trivial but
global symmetry is imposed nontrivially on the field variables.
In this paper, we choose to use the NLSM description since
this description can be easily generalized to any space-time
dimension.

In the NLSM description, a bulk bosonic SPT phase in d +
1 space-time dimensions is described by an O(d + 2) NLSM
with topological theta term having coefficient θ = 2πk where
k ∈ Z. In this description, the boundary of the SPT phase
is then described by an O(d + 2) NLSM with Wess-Zumino
(WZ) term, where the coefficient of the WZ term, known as
the level of the WZ term, is equal to k. Conventionally, the
construction of the WZ term for the boundary theory requires
defining an extension of the NLSM field into an auxiliary di-
rection of space-time. In a series of works [33–38], the NLSM
description has been shown to accurately describe the structure
of the ground-state wave function of SPT phases [17], the point
and loop braiding statistics of excitations in gauged SPT phases
[17,63,64,72,73], the decorated domain-wall construction of
SPT phases [74], as well as several other properties of these
phases. In addition, a mathematical classification of bosonic
SPT phases based on the NLSM description has been shown to
be completely identical to the group cohomology classification
[6] in situations where both classification schemes can be
applied. In fact, there is even a concrete procedure for
calculating the cocycle which classifies an SPT phase in
the group cohomology approach by starting with the NLSM
description of that SPT phase [75]. Additional applications of
NLSMs to the study of SPT phases with translation symmetry
and to exotic quantum phase transitions in Weyl semimetals
were considered recently in Refs. [76,77]. However, despite
the many successes of the NLSM description, deriving the
electromagnetic response of a bosonic SPT phase directly
from its NLSM description remains a difficult problem. In
the few instances in which the response of an SPT phase
has been determined from its NLSM description, it has been
by an indirect method such as an appeal to gauge invariance
of the final effective action [78], a dual vortex description
of the theory [29], or a description of the NLSM involving
auxiliary fermions which also carry charge of the external field
A [16,79]. The descriptions in terms of auxiliary fermions are
in turn based on a set of formulas due to Abanov and Wiegmann
[80] which allow one to generate an O(d + 2) NLSM with theta
term by coupling the NLSM field to a set of auxiliary fermions
and then integrating out those fermions.
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In this paper, we overcome this difficulty and give a
direct computation of the response of higher-dimensional
generalizations of BIQH and BTI states in all dimensions from
their NLSM description. To do this, we use a two-pronged
approach. First, instead of focusing on the bulk of the SPT
phase, we study the boundary and, in particular, the behavior
of the gauged boundary theory. In the case of the BIQH state
we find that the boundary has a perturbative U(1) anomaly,
which we explicitly calculate. Since the CS action changes by
a boundary term under a gauge transformation, requiring the
entire system (bulk plus boundary) to be gauge invariant allows
us to determine the bulk response coefficient N2m−1 from the
boundary anomaly. In the BTI case we show that the boundary
exhibits a quantum Hall response when the associated discrete
symmetry (e.g., time reversal in four dimensions) of the BTI
state is broken. Again, from this boundary response we can
directly read off the coefficient �2m using the fact that for a
system with boundary, the action SCC[A] is equivalent to a CS
action with level �2m

2π
on the boundary of the BTI.

To study the boundary theory coupled to the external
field electromagnetic A we use the method of gauged WZ
actions [39,40,42–44] (see also Refs. [81,82] for some recent
applications of gauged WZ actions in condensed matter
physics). This machinery can be applied to this problem since,
in the NLSM description, the boundary of an SPT phase in
d + 1 dimensions is described by an O(d + 2) NLSM with
WZ term. Therefore, we require knowledge of the proper
way to gauge a WZ action in order to gauge the boundary
theory of the SPT phase. For readers who are familiar with
gauged WZ actions, it is also worth remarking that all terms
in the gauged actions we write (with the sole exception of
the original un-gauged WZ term) are expressed as integrals
of fields only over the physical boundary space-time. That is,
we do not assume an extension of the external field A into the
auxiliary direction of space-time which is used to write the
WZ term. This is to be contrasted with the general approach of
Ref. [44], in which all terms in the gauged action are written
as integrals over the extended space-time, and an analog of the
method used to obtain the Chern-Simons form from the Chern
character must then be used to reduce the terms in the action
to integrals only over the physical space-time. This difficulty
usually prevents one from writing an explicit local (i.e., not
involving integrals over the extended space-time) form for the
gauged WZ action in any dimension. We emphasize that here
we do not encounter this difficulty. For the BIQH and BTI
systems that we study, we give explicit local expressions for
the gauged boundary action in all dimensions.

In Sec. IV we use this method to derive the unusual result
that for BIQH states in 2m − 1 dimensions the level of the CS
term in the effective action for A is quantized as

N2m−1 = (m!)k, k ∈ Z (2.3)

where m! denotes the factorial of m. This general formula
agrees with existing results for the cases of three [18,19,25]
and five [79] dimensions (m = 2 and 3, respectively), and
gives a prediction for all higher odd dimensions. In this case
we also provide an alternative derivation of the value of N2m−1

using only the NLSM description of the bulk of the BIQH
state, which confirms our result derived using the anomaly of
the boundary theory.

Next, in Sec. V we show that the BIQH response computed
in Sec. IV can be understood by requiring the exponential of
the CS response action for the BIQH state to be invariant under
large U(1) gauge transformations when the response theory is
formulated on general closed, compact Euclidean manifolds.
Furthermore, we apply these gauge-invariance arguments
to study the electromagnetic and gravitational responses of
fermionic SPT phases with U(1) symmetry in odd dimensions,
and point out the distinctive features between the bosonic and
fermionic cases.

Moving on to the BTI case, we show in Sec. VI, using the
NLSM description of the BTI phase, that the nontrivial BTI
state in 2m dimensions is characterized by a coefficient

�2m = 2π

(
m!

2

)
. (2.4)

Again, this general formula agrees with the known answer in
four dimensions [29,30,61,62] (m = 2) and gives a prediction
for all higher even dimensions. It also suggests that the
period of the parameter �2m is 2π (m!) for BTI states in 2m

dimensions.
In Sec. VII we use the gauged boundary actions derived

in Secs. IV and VI to derive several other interesting results.
First, we construct an effective theory for a bosonic analog of
a two-node Weyl (or chiral) semimetal in all even dimensions
d using two copies of the boundary action for the BIQH state.
We refer to this state as a bosonic chiral semimetal (BCSM).
The theory that we construct has an electromagnetic response
of the form (Rd−1,1 is d-dimensional Minkowski space-time)

S
(b)
eff [A,B] = −2

(
d

2
+ 1

)
1

(2π )
d
2

∫
Rd−1,1

B ∧ A ∧ (dA)
d
2 −1,

(2.5)

where B = Bμdxμ is a one-form whose components Bμ

represent the separation in energy and momentum of the two
copies of the BIQH boundary theory (in the fermionic case
the components of Bμ specify the separation in energy and
momentum of the two Weyl cones). This response is larger
than the response of the fermionic chiral semimetal in the
same dimension by a factor of ( d

2 + 1)!. This factor turns out
to be identical to the factor of m! discussed earlier for the
BIQH state since our semimetal theory in d dimensions is
constructed from two copies of the boundary theory for the
BIQH state in d + 1 = 2m − 1 dimensions. Next, we show
that the boundary theory of the BTI exhibits a bosonic analog of
the parity anomaly of a single Dirac fermion in odd dimensions
[45–49]. This parity anomaly is essentially the statement that
although the boundary theory of the BTI is gauge invariant
and possesses the Z2 symmetry of the BTI state, the Z2

symmetry can be spontaneously broken at the boundary of
the BTI, resulting in a half-quantized BIQH response on the
boundary. This anomaly then provides strong evidence that the
boundary theory of the BTI (with the symmetries of the BTI
phase) cannot be realized intrinsically in 2m − 1 dimensions.
Finally, we analyze the physics of symmetry-breaking domain
walls on the boundary of the BTI state, and we show that the
physics of such domain walls provides a nice example of the
phenomenon of anomaly inflow [83] in bosonic SPT phases.
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The Appendixes of the paper contain several additional
results, most of a more mathematical nature. In Appendix A we
use the well-known connection between gauged WZ actions
and equivariant cohomology to understand the mathematical
structure of the gauged WZ actions that we construct for the
boundaries of BIQH and BTI states. In particular, we show that
the construction of these actions is related to the mathematical
problem of constructing an equivariant extension of the
volume form for the sphere S2m−1 (in the BIQH case) or S2m

in the BTI case, and we study this mathematical problem in
detail. In Appendix B we show an example of the computation
of the Chern character for the field strength F on the complex
projective space CPm. This example serves to illustrate the
necessity of the peculiar quantization of the CS level required
for gauge invariance of the CS term on general manifolds as
derived in Sec. V. In Appendix C we discuss a dimensional
reduction procedure which allows one to obtain the response
action for the BTI phase from the response action for the
BIQH phase in one higher dimension. In Appendix D we
derive a general dimensional reduction formula for topological
theta terms in NLSMs. Finally, in Appendix E we compute the
electromagnetic response of the O(2) NLSM in one dimension.

III. BACKGROUND

In this section we introduce the relevant background
material necessary for understanding the later sections of
the paper. We start with a brief review of the physics of
the BIQH and BTI states, and also present definitions of
higher-dimensional generalizations of these states. We then
review the NLSM description of the bulk and boundary of
bosonic SPT phases, and discuss the specifics of the NLSM
descriptions of the BIQH and BTI states that we study in this
paper. Finally, we give a general discussion of the tool of
gauged WZ actions, and we describe in concrete terms the
procedure that we use in this paper to construct gauged WZ
actions for the boundaries of BIQH and BTI states.

A. BIQH and BTI phases

In its original formulation [18,19], the BIQH phase was
conceived of as a gapped quantum phase of bosons in three
space-time dimensions which exhibits a nonzero Hall conduc-
tance, but does not have any bulk topological order. As an SPT
phase it is protected by only charge-conservation symmetry,
i.e., we have G = U(1) where G is the symmetry group of the
SPT phase. Physically, the BIQH state is characterized by a
CS term in the effective action for the external field A,

Seff[A] = N3

4π

∫
M

A ∧ dA, (3.1)

in which the coefficient N3 (which is just the Hall conductance
in units of e2

h
) is quantized in integer multiples of 2. The authors

of Ref. [18] gave a very appealing physical argument for why
the value of N3 = 1 is not allowed if the BIQH state is required
to have no fractionalized excitations, and we now briefly
review their argument. Consider a hypothetical BIQH state on
flat space, and a configuration of A in which a thin tube of 2π

flux pierces the spatial surface. According to the action Seff[A],
the point in space where the flux tube pierces the plane will bind

a charge equal to N3. Now, one invokes a standard argument1

that 2π flux is gauge equivalent to zero flux, and so the
pointlike excitation created by threading the flux is in fact an
excitation of the BIQH fluid and not an external defect. One can
therefore ask about the phase obtained by the wave function
of the system after a process in which two such excitations are
exchanged. By the Aharanov-Bohm effect, taking one exci-
tation completely around another results in a statistical phase
of 2πN3. The phase for an exchange process is therefore half
of that, ϑex = πN3. From this result the authors of Ref. [18]
concluded that the state described by the effective action of
Eq. (3.1) contains a fermionic excitation if N3 is odd, and so
N3 must be an even integer in order for the action of Eq. (3.1)
to represent the electromagnetic response of a BIQH phase.

In this paper, we consider generalizations of the BIQH
state to all odd space-time dimensions. One definition of a
BIQH state in 2m − 1 dimensions which is sufficient for our
purposes is that a BIQH state is an SPT phase of bosons which
is protected by the symmetry group G = U(1), where U(1)
is charge-conservation symmetry, and which exhibits a CS
response to an applied electromagnetic field A of the form of
Eq. (2.1). We should also mention here that in odd dimensions
there is a countable infinity of different BIQH states, i.e.,
these states have a Z classification [6,34]. This means that the
coefficient N2m−1 takes on a countable infinity of values which
all have the form of some particular number times an integer.

On the other hand, the BTI phase [6,29,32] is a bosonic
analog of the time-reversal invariant electron topological
insulator in four space-time dimensions. As an SPT phase
it is protected by the symmetry group G = U(1) � ZT

2 , where
U(1) represents charge conservation and ZT

2 is time-reversal
symmetry. If we write ZT

2 = (1,T ) where T is the time-
reversal operator, then we have T 2 = 1 for the BTI. This
should be contrasted with the relation T 2 = (−1)F which
holds for the electron topological insulator, where F is the
fermion number. The semidirect product “�” indicates that
the U(1) and ZT

2 symmetries do not commute with each other.
In the next subsection we will see an explicit representation of
the action of the group U(1) � ZT

2 on the fields in the NLSM
description of the BTI.

The bulk of the BTI phase is characterized by an effective
action for A of the Chern character form

Seff[A] = �4

8π2

∫
M

F ∧ F, (3.2)

where F = dA, and �4 = 2π for the BTI (compare with �4 =
π for the electron topological insulator [60]). The parameter
�4 has 2π periodicity in the case of the electron topological
insulator [60] but 4π periodicity in the BTI case [29,30]. One
way to understand this effective action is to consider what
happens when the space-time M has a boundary ∂M. In this

1In fact, this statement is only true on a lattice when we can couple
to a compact U(1) gauge field, or in the continuum when the level of
the CS term is an integer. To see what can go wrong, consider N3 = 1

q

for q ∈ Z. Then, the object created by threading a thin 2π flux tube
has charge 1

q
and so only q such fluxes are a physical excitation of

the system, in the sense that all states in the physical Hilbert space of
the quantum mechanical system should have integer charge.
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case, if the bulk field configuration F is topologically trivial,
then we can write F ∧ F = d(A ∧ dA) to find

Seff[A] = �4

2π

1

4π

∫
∂M

A ∧ dA, (3.3)

which is equivalent to a quantum Hall state with Hall
conductance σH = �4

2π
on the boundary of M. In particular,

for the BTI we have �4 = 2π so that the surface of the BTI
exhibits a half-quantized BIQH effect (i.e., σH = 1 on the
surface). Such a surface quantum Hall response breaks the
time-reversal symmetry of the BTI.

Now, we turn to the question of how to generalize the BTI
state to all even dimensions. The main issue with generalizing
the BTI state to all even dimensions is that the discrete part of
the symmetry group G, which was antiunitary time-reversal
symmetryZT

2 in four dimensions, should be chosen differently
when the space-time dimension is equal to zero or two modulo
four. Whenever the space-time dimension is equal to zero
modulo four, we choose the discrete part of G to be antiunitary
time-reversal symmetry ZT

2 . On the other hand, whenever the
space-time dimension is equal to two modulo four, we choose
the discrete part of G to be unitary charge-conjugation (or
particle-hole) symmetry ZC

2 . This choice is consistent with
the results of the group cohomology [6] and NLSM [34]
classifications of SPT phases in these dimensions, and with the
symmetries which protect the fermion topological insulators
in two and four space-time dimensions, respectively [60].

We therefore choose to use the following definition of a
BTI phase in all even dimensions. A BTI phase in space-time
dimension 2m is an SPT phase of bosons with symmetry group

G =
{

U(1) � ZT
2 , m = even

U(1) � ZC
2 , m = odd

(3.4)

and which exhibits a bulk response to an external field A of the
form of Eq. (2.2). As we noted earlier, when the space-time
M has a boundary ∂M, and when the field configuration F

is topologically trivial, this bulk response is equivalent to a
boundary quantum Hall response of the form of Eq. (2.1) with
coefficient N2m−1 = �2m

2π
. In addition, this boundary quantum

Hall response breaks the ZT
2 symmetry (for m even) or ZC

2
symmetry (for m odd) of the BTI phase. When we discuss the
BTI phase in a general dimension 2m, and when we do not
have a particular m in mind, we just write Z2 for the discrete
part of G. However, the reader should always keep in mind
that the Z2 symmetry is different for the cases of m even and
m odd as discussed in this section.

Finally, we also mention that based on the group coho-
mology [6] and NLSM [34] classification schemes, only the
smallest value of �2m is expected to represent a nontrivial BTI
phase in 2m dimensions. This can be understood as follows.
For SPT phases with U(1) � ZT

2 symmetry in four dimensions,
the group cohomology and NLSM classifications predict a
(Z2)2 classification. One of these Z2 factors corresponds to the
BTI state, while the other corresponds to a state in which the
U(1) symmetry plays no role [30] (so this second state cannot
be interpreted as an insulator). This means that there is only
a single nontrivial BTI state in four dimensions. In addition,
in two dimensions the classification for SPTs with U(1) � ZC

2
symmetry is Z2, and the U(1) symmetry does play a role in
the nontrivial phase, so we identify that phase with the BTI

phase in two dimensions. Based on this evidence we expect the
existence of a single nontrivial BTI phase to generalize to all
even dimensions. In the context of the NLSM classification,
this can be understood as coming from the fact that in 2m

dimensions the O(2m + 1) NLSM theory with θ = 2πk can
be smoothly connected to the theory with θ = 2π (k ± 2) (see,
e.g., the discussion in Ref. [34]).

B. NLSM description of the bulk and boundary of SPT phases

We now give a brief review of the NLSM description of
SPT states, which was presented in its fully developed form
in Ref. [34]. Let us consider bosonic SPT phases in d + 1
space-time dimensions. The space-time coordinates are xμ,
μ = 0, . . . ,d (x0 = t is the time coordinate), and for now we
focus on the case of flat Minkowski space-time Rd,1 with
the mostly minus metric η = diag(1,−1, . . . ,−1). Following
the prescription of Ref. [34], a bosonic SPT phase in this
dimension is described by an O(d + 2) NLSM with topological
theta term where the coefficient of the theta term is given by
θ = 2πk with k ∈ Z. The O(d + 2) NLSM is a theory of a
(d + 2)-component unit vector field n (i.e., n · n = 1) with
components na , a = 1, . . . ,d + 2. Because of the constraint,
the configuration space (or target space) of the NLSM field is
the (d + 1)-dimensional sphere Sd+1. Latin indices a,b,c, . . . ,
which label components of na , can be raised and lowered
with the Euclidean metrics δab, δab, and so na and na are
numerically equal to each other. In what follows, we use the
summation convention for any indices (Latin or Greek) which
appear once in an upper position and once in a lower position
in any expression.

The NLSM action describing the SPT phase is

Sbulk[n] =
∫

dd+1x
1

2g
(∂μna)(∂μna) + Sθ [n], (3.5)

where g > 0 is the coupling constant of the NLSM [with units
of (length)d−1], and Sθ [n] is the theta term. To write the theta
term in a compact way we first introduce some notation. Let
ωd+1 be the volume form on Sd+1. Explicitly, we have

ωd+1 =
d+2∑
a=1

(−1)a−1nadn1 ∧ · · · ∧ dna ∧ · · · ∧ dnd+2,

(3.6)

where the overline means to omit that term from the wedge
product. We also use the notation Ad+1 ≡ Area[Sd+1] =
2π

d+2
2

( d+2
2 )

for the area of the sphere Sd+1. In terms of these quan-

tities, the theta term can be written compactly in differential
form notation as

Sθ [n] = θ

Ad+1

∫
Rd,1

n∗ωd+1, (3.7)

where n∗ωd+1 denotes the pullback to space-time of the
form ωd+1 via the map n : Rd,1 → Sd+1. In coordinates this
becomes

Sθ [n] = θ

Ad+1

∫
dd+1x εa1...ad+2na1∂x0na2∂x1na3 . . . ∂xd nad+2 .

(3.8)
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For the description of SPT phases we have θ = 2πk for
integer k. The reason for choosing θ = 2πk is that at these
values of θ , the NLSM is expected to flow to a disordered
(g → ∞) fixed point under the renormalization group [34]. In
addition, we note that the full action of Eq. (3.5) (including
theta term) has an SO(d + 2) global symmetry, where the
action of the group on the NLSM field is given by na → Rb

anb

for any matrix R ∈ SO(d + 2). When the coefficient θ is set
to zero, this symmetry is promoted to an O(d + 2) global
symmetry [under a general transformation R ∈ O(d + 2) the
theta term transforms only by acquiring the sign det[R] = ±1].
The fixed-point theory (with g → ∞ at θ = 2πk) is gapped
and has a unique ground state which does not break the
SO(d + 2) symmetry of the NLSM with theta term [33].
This property of the disordered ground state of the NLSM
at θ = 2πk is one of the main reasons why these field theories
are useful for describing SPT phases.

SPT phases are classified according to their symmetry
group G. In the NLSM description of Ref. [34] this symmetry
is encoded in a homomorphism σ : G → O(d + 2), which
maps g ∈ G to some (d + 2) × (d + 2) matrix σ (g) ∈ O(d +
2). We refer to such a σ as a symmetry assignment. According
to the NLSM classification of SPT phases, if g ∈ G represents
an internal unitary symmetry operation (i.e., g does not have
any action on the space-time coordinates) then σ should be
chosen so that det[σ (g)] = 1. In this case it is then clear
that the action of g leaves the theta term invariant. On the
other hand, if g ∈ G represents the time-reversal operation,
then σ should be chosen so that det[σ (g)] = −1. Since the
time-reversal operation also sends t → −t (in addition to its
action on the components of the NLSM field), the minus sign
in the theta term from det[σ (g)] will be canceled by the minus
sign from sending ∂t → −∂t . Thus, choosing det[σ (g)] = −1
in this case ensures that the theta term is invariant under the
time-reversal transformation.

Not all NLSMs with a symmetry assignment will describe a
nontrivial SPT phase. For example, an NLSM with a symmetry
assignment σ will describe a trivial phase if there exists a vector
v such that σ (g)v = v ∀ g ∈ G. This is because in this case
we are allowed to add a term n · v to the NLSM action without
breaking the symmetry of the group G. Such a term will then
drive the system into a trivial phase in which n is parallel
or antiparallel to v at all points in space. If a vector v with
this property does not exist, then the NLSM with symmetry
assignment σ can describe a nontrivial SPT phase.

When an SPT phase has a bulk description in terms of an
O(d + 2) NLSM with theta term and theta angle θ = 2πk, its
d-dimensional boundary is described by an O(d + 2) NLSM
with Wess-Zumino (WZ) term at level k. Let us for simplicity
study the boundary perpendicular to the xd direction, so on the
boundary we have coordinates xμ, μ = 0, . . . ,d − 1, and the
boundary space-time is Rd−1,1. To construct the WZ term we
need to extend the field configuration na into a fictitious extra
dimension of the boundary space-time. We take s ∈ [0,1] to be
the coordinate for this extra direction, and define B = [0,1] ×
Rd−1,1 to be the extended boundary space-time. Let ña(xμ,s)
be an extension of the field na into the s direction. It is typical
to choose boundary conditions in the extra direction so that
ña(xμ,1) = δa,1 (i.e., a trivial configuration) and ña(xμ,0) =
na(xμ) so that the physical boundary space-time is located at

s = 0. Then, the action for the boundary theory takes the form

Sbdy[n] =
∫

ddx
1

2gbdy
(∂μna)(∂μna) + SWZ[n], (3.9)

where the WZ term is

SWZ[n] = 2πk

Ad+1

∫
B

ñ∗ωd+1. (3.10)

Here, gbdy is the coupling constant for the boundary theory,
and the WZ term now involves the pullback of ωd+1 to B (the
extended boundary space-time) via the map ñ : B → Sd+1.
Again, in coordinates this takes the form

SWZ[n] = 2πk

Ad+1

∫ 1

0
ds

∫
ddx εa1...ad+2 ña1

× ∂sña2∂x0 ña3 . . . ∂xd−1 ñad+2 . (3.11)

We now discuss the specific symmetry assignments σ :
G → O(d + 2) which will be used to construct NLSM
descriptions of BIQH states in odd space-time dimensions and
BTI states in even space-time dimensions. We start with the
case of BIQH states in 2m − 1 space-time dimensions. In this
case, the integer m is related to d by the relation 2m = d + 2,
and the BIQH state is described by an O(2m) NLSM with theta
term. In the BIQH case, the symmetry group is just G = U(1)
and the particular U(1) symmetry that we are interested in is
embedded in the full O(2m) group as follows. We first combine
pairs of the 2m components na of the NLSM field to create the
m boson fields

b� = n2�−1 + in2�, � = 1, . . . ,m. (3.12)

Then, the U(1) symmetry we consider acts on the NLSM field
as

U(1) : b� → eiξ b�, ∀ �, (3.13)

where ξ is a constant parameter. We can consider the fields
b� to be m complex scalar fields of charge 1, but subject
to the constraint

∑m
�=1 |b�|2 = 1, which is equivalent to the

constraint n · n = 1 for the NLSM field na . This choice of
U(1) transformation, and the corresponding pairing of the
components of n into the bosons b�, is convenient, but it is
not unique. Since the NLSM action with theta term (or WZ
term) is still invariant under the group SO(2m), we can do any
change of basis na → Mb

a nb with M ∈ SO(2m) to obtain a
theory with a different action of the U(1) symmetry, but with
the same physical properties. As discussed above, the most
important property of the symmetry assignment is that there
should not be any vector v that remains fixed under the U(1)
action. Indeed, if such a v exists, then the NLSM with this
symmetry assignment describes a trivial phase. The choice
above satisfies this requirement.

For the case of BTI states in even dimensions 2m, the
integer m is instead related to d by the formula 2m + 1 =
d + 2, so that these states are described by O(2m + 1) NLSMs
with theta term. As we discussed in the previous subsection
the symmetry group in this case is G = U(1) � ZT

2 for m

even and G = U(1) � ZC
2 for m odd. To define the symmetry

assignment σ in this case we again take pairs of the first
2m components of the NLSM field and combine them into
bosons b�, � = 1, . . . ,m, as done for the BIQH case. The U(1)
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symmetry we consider again acts as in Eq. (3.13) on these
bosons, but leaves the final component n2m+1 of the NLSM
field fixed. Finally, in the BTI case the additional discrete Z2

symmetry (which is either ZT
2 or ZC

2 depending on the parity
of m) is taken to act on the NLSM field as

Z2 : na → na, a = 1,3, . . . ,2m − 1 (3.14a)

na → −na, a = 2,4, . . . ,2m,2m + 1. (3.14b)

In the case where theZ2 symmetry is time reversalZT
2 , we also

need to send t → −t in the argument of na and in the action.
Under the transformation in Eq. (3.14), the theta term of the
NLSM picks up the sign (−1)m+1. So, we see that for m odd
the theta term in the NLSM automatically has this symmetry,
while in the case of m even it must be supplemented with
the replacement t → −t , which gives an extra minus sign in
the theta term. So, the NLSM has the internal, unitary ZC

2
particle-hole symmetry in the case of m odd, while in the case
of m even it has the antiunitary time-reversal symmetry ZT

2 .
Now that we know how the fields in the NLSM description

transform under the U(1) symmetry of the BIQH and BTI
phases, we can considering coupling the NLSM theory, and in
particular the boundary theory which involves a WZ term, to
the external electromagnetic field A = Aμdxμ. In order to do
this, we are going to need the tool of gauged WZ actions.

C. Gauged Wess-Zumino actions

We now give a discussion of the theory of gauged WZ
actions, mostly focusing on the general philosophy behind
the construction of a gauged WZ action. The details of this
construction will be worked out explicitly for the boundary
theories of the BIQH and BTI phases in all dimensions
in later sections of this paper. In addition, in Appendix A
we review the relation between gauged WZ actions and
equivariant cohomology, and we reexamine the gauged WZ
actions constructed in this paper from this more mathematical
point of view.

Before we start, let us note that the kinetic term for the
NLSM is easily gauged using ordinary minimal coupling
(also known as a “Peierls substitution” in a condensed matter
context). In fact, the gauged kinetic term is most simply written
in terms of the b� as

Skin,gauged[n,A] =
∫

ddx
1

2gbdy

m∑
�=1

(Dμb�)∗(Dμb�) (3.15)

for the boundary of the BIQH state (d + 2 = 2m), or

Skin,gauged[n,A] =
∫

ddx
1

2gbdy

[
m∑

�=1

(Dμb�)∗(Dμb�)

+ (∂μn2m+1)(∂μn2m+1)

]
(3.16)

for the boundary of a BTI state (d + 2 = 2m + 1), where
Dμ = ∂μ − iAμ is the usual covariant derivative. Note here
that since we are only interested in enforcing a U(1) subroup
of the full SO(d + 2) symmetry group of the NLSM, we could
allow a different boundary coupling constant gbdy,� for each

species b� of boson. This type of anisotropy in the coupling
constant will not affect the results in the rest of the paper since
those results only depend on the form of the WZ term.

Gauging the WZ term is more subtle. The main problem
we face in attempting to gauge this term is the fact that the WZ
term is written as an integral of an expression involving the
field ña over the (d + 1)-dimensional extended space-time B.
One method [44] for gauging a WZ term involves defining an
extension Ã of the gauge field A into the extra s direction, and
then applying the usual minimal coupling procedure (but using
the extended field Ã) inside the WZ term. This has the effect
of replacing the integrand ñ∗ωd+1 of the WZ term in Eq. (3.10)
with ñ∗ωÃ

d+1, where ωÃ
d+1 represents the volume form on Sd+1

but with the ordinary exterior derivative d replaced with a
gauge-covariant exterior derivative D (the precise form of D

is not important for the general discussion here). However,
minimal coupling alone is not sufficient, as varying the
minimally coupled WZ action does not lead to d-dimensional
equations of motion, i.e., the resulting equations of motion
depend on the extensions ña and Ã. To remedy this, the authors
of Ref. [44] used the following prescription. They suggested
that one should add a second term U (ña,Ã) to the integrand of
the WZ term such that the combination ωÃ

d+1 + U is a closed
form on the extended space-time. Since a closed form is locally
exact (i.e., a closed form ω can be written as ω = dγi for some
γi on each coordinate patch Ui of the manifold), variation of
this new WZ term leads to d-dimensional equations of motion
on each coordinate patch of the original space-time manifold.
There is, however, one conceptual issue with this method,
which the authors of Ref. [44] point out [see their discussion
in the paragraph after Eq. (4.7)]. The problem is that in the
usual setup of the WZ term, the form ωÃ

d+1 (and also ωd+1) is a
(d + 1) form on the (d + 1)-dimensional extended space-time
B, and so it is trivially closed. Therefore, in order to apply
the method of Ref. [44] one has to imagine that the extended
space-time B is embedded in a space-time X of even higher
dimension so that dωÃ

d+1 is not trivially equal to zero.
From this discussion it is clear that gauging a WZ is

in general a difficult procedure. However, for the problems
encountered in this paper, in which we only deal with a
U(1) subgroup of the full O(d + 2) symmetry of the NLSM
theories, we do not need the complicated machinery developed
in Ref. [44]. Instead, we use the following concrete procedure
(which is similar in spirit to the methods used in Refs. [42,43])
to gauge the U(1) symmetry of our theories. First, we consider
how the WZ term changes under the transformation b� →
eiξ b� (with a space-time dependent ξ ). We will see that it
changes by a term which is a total derivative, which means
that the change of the WZ term can be written as an integral
only over the physical boundary space-time Rd−1,1 instead
of over the extended space-time B. Next, we attempt to
cancel this change in the action by adding an integral over
space-time of the NLSM field coupled to A. We will see
that this procedure usually needs to be iterated several times
because the counterterms that we add to the action may not
transform nicely under a gauge transformation, where “nicely”
is defined below by Eq. (3.17). We use the following criterion,
inspired by the discussion in Ref. [43], for determining when
the action has been properly gauged.
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Gauging principle. The correctly gauged action
Sgauged[n,A], if it is not completely gauge invariant,
must transform under a gauge transformation b� → eiξ b�,
A → A + dξ , as

Sgauged[n,A] → Sgauged[n,A] + δξSgauged[A,ξ ], (3.17)

where we have used the notation δξSgauged to indicate the
change in Sgauged under a gauge transformation. The key
point here is that the change in the action under a gauge
transformation depends only on A and ξ , but not on the matter
field n.

Let us also note here that in this paper we use the word
“anomaly” to refer to the change in the action (or action plus
path-integral measure) under a U(1) gauge transformation.
There is no anomaly if the action (plus path-integral measure)
is gauge invariant. The gauging principle stated above then
simply asserts that the anomaly δξSgauged[A,ξ ] of the gauged
action Sgauged[n,A] should only depend on A and ξ .

We will see in the following sections that we may need to
add several counterterms to the WZ action to get Eq. (3.17)
to hold. In the BIQH case, the correctly gauged action still
transforms under a gauge transformation, and so the U(1)
symmetry of the boundary theory of the BIQH phase is
anomalous. This fact is what allows us to deduce the bulk
CS response of the BIQH state. On the other hand, for the
surface of the BTI it is possible to construct a completely
gauge-invariant action. However, from the form of the gauge-
invariant action we will be able to see that if the NLSM field
condenses in a way that preserves the U(1) symmetry, but
breaks the Z2 symmetry of the BTI phase, then the surface of
the BTI will exhibit a Z2 symmetry-breaking quantum Hall
response.

IV. ELECTROMAGNETIC RESPONSE OF BIQH STATES
IN ALL ODD DIMENSIONS

In this section, we construct the gauged WZ action for the
boundary of BIQH states in all odd dimensions. The action we
construct satisfies the gauging principle of Eq. (3.17), but is
still not completely gauge invariant, as evidenced in the U(1)
anomaly of the boundary theory of the BIQH state. We then use
the U(1) anomaly of the gauged boundary action to calculate
the bulk CS response of the BIQH state in all odd dimensions.
As we discussed in the Introduction, we find that for the BIQH
state in 2m − 1 dimensions the level N2m−1 of the CS term
appearing in the effective action is quantized in units of m!.
We then give a more intuitive derivation of the BIQH response
using only the dimensional reduction properties of CS terms
and of theta terms in NLSMs. This second derivation relies on
results which we derive in Appendixes D and E. This intuitive
picture confirms our more technical derivation using gauged
WZ actions.

The result in this section is related to the results of
several other sections of this paper. In Sec. V, we show
that the factor of m! for the CS response of the BIQH state
computed in this section can be understood by requiring
that partition functions containing the CS response action be
invariant under large U(1) gauge transformations on general
Euclidean manifolds. Later, in Appendix A, we reexamine
the gauged WZ action constructed in this section in light of

the well-known connection between gauged WZ actions and
equivariant cohomology of the target space of the NLSM. The
construction of a gauged WZ action for the boundary of the
BIQH state is equivalent to the problem of constructing an
equivariant extension [with respect to the U(1) symmetry]
of the volume form ω2m−1 for S2m−1. In Appendix A we
attempt to construct such an extension, and then show that
the construction fails at the last step. The fact that such an
extension does not exist is mathematically equivalent to our
finding that the gauged action for the boundary of the BIQH
state still has a U(1) anomaly. In Appendix A, we also show
that the differential forms �(r), which appear later in this
section in the counterterms of Eq. (4.29), are the same forms
which appear in the construction of the equivariant extension
of ω2m−1 (although the extension fails at the last step in this
case as mentioned above).

Let us make a few remarks on the notation used in this
section and in later sections of the paper. In what follows, we
omit the pullback symbol n∗ so as not to clutter the notation,
but one should always remember that the integrand of any
integral should be pulled back to space-time (or the extended
space-time, in which case one would write ñ∗). In addition, we
will express many quantities in terms of the integer m instead
of d. Recall that these are related by 2m = d + 2 in the BIQH
case. So, for example, we write the WZ term as

SWZ[n] = 2πk

A2m−1

∫
B

ω2m−1. (4.1)

For later use we also define several differential forms which
are constructed from the components of the NLSM field. We
define the one-form J� and two-form K� by

J� = n2�−1dn2� − n2�dn2�−1, (4.2a)

K� = dn2�−1 ∧ dn2�. (4.2b)

Under a gauge transformation b� → eiξ b� these forms trans-
form as

J� → J� + (
n2

2�−1 + n2
2�

)
dξ, (4.3a)

K� → K� + (n2�−1dn2�−1 + n2�dn2�) ∧ dξ. (4.3b)

We also note here that

K� = 1
2dJ� (4.4)

and so

dK� = 0, (4.5)

i.e., K� is an exact differential form.

A. O(4) NLSM with WZ term in two space-time dimensions

Before presenting the gauged action for any integer m, we
warm up with an explicit calculation for the simplest possible
case, which is the O(4) NLSM with WZ term which appears
at the two-dimensional boundary of the BIQH state in three
dimensions. We also mention here that an O(4) NLSM with
WZ term in two dimensions is equivalent to a model of an
SU(2) matrix field U = n4I + ∑3

a=1 naσ
a (where σa are the

three Pauli matrices) with WZ term for U , so the analysis in
this section is actually a special case of the analysis done in
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Refs. [42,43]. Although we focus on the case of a continuous
symmetry [namely, the U(1) charge-conservation symmetry],
we also note here that anomalies in the two-dimensional
boundary theories of SPT phases protected by the symmetry of
a finite Abelian group were considered previously in Ref. [84].

In the O(4) case the volume form can be written as

ω3 = J1 ∧ K2 + J2 ∧ K1. (4.6)

Under the transformation b� → eiξ b� we have

δξω3 = K1 ∧ dξ + K2 ∧ dξ

= 1
2dJ1 ∧ dξ + 1

2dJ2 ∧ dξ

= 1
2d[J1 ∧ dξ + J2 ∧ dξ ], (4.7)

which is a total derivative. So, we find (neglecting any terms
coming from the boundary of the physical space-time R1,1)

δξSWZ[n] = 2πk

A3

1

2

∫
R1,1

(J1 + J2) ∧ dξ. (4.8)

We attempt to cancel this variation by adding the counterterm

S
(1)
ct [n,A] = −2πk

A3

1

2

∫
R1,1

(J1 + J2) ∧ A. (4.9)

It is clear that when we send A → A + dξ in S
(1)
ct it will cancel

the gauge variation of the WZ term.
At this point, our candidate for the gauged WZ term is then

SWZ,gauged[n,A] = SWZ[n] + S
(1)
ct [n,A]. (4.10)

However, this action is not completely gauge invariant, and
under a gauge transformation we find

δξSWZ,gauged[n,A] = −2πk

A3

1

2

∫
R1,1

(δξJ1 + δξJ2) ∧ A

= −2πk

A3

1

2

∫
R1,1

dξ ∧ A

= − k

2π

∫
R1,1

dξ ∧ A

= k

∫
R1,1

ξ

(
F

2π

)
, (4.11)

where we used the formula for δξJ� from Eq. (4.3), the fact
that n is a unit vector field, A3 = 2π2, and also performed an
integration by parts in the last line (F = dA). We conclude
that the U(1) symmetry here is anomalous and, since the
kinetic term has been made completely gauge invariant, the
total anomaly of the boundary theory is given by Eq. (4.11).
We also note that the anomaly in Eq. (4.11) is exactly what is
needed to cancel the gauge variation of the bulk CS action of
Eq. (3.1) with N3 = −2k.

B. The O(2m) NLSM with WZ term in 2m − 2
space-time dimensions

Now, we move on to the general case of an O(2m) NLSM
with WZ term on the (2m − 2)-dimensional boundary of a
BIQH state in 2m − 1 dimensions (recall that m is related to
the integer d in the BIQH case by d = 2m − 2, so that d is
also the dimension of the boundary space-time). In this case,
we find that a total of m − 1 counterterms are needed in order

for the gauged WZ action to transform as in Eq. (3.17) under a
gauge transformation. To start, we note that the volume form
ω2m−1 can be rewritten using the forms J� and K� as

ω2m−1 = 1

(m − 1)!

m∑
�1,...,�m=1

J�1 ∧ K�2 ∧ · · · ∧ K�m
. (4.12)

To see it, simply note that if any of �2, . . . ,�m are equal to each
other or to �1, then the wedge product vanishes. So, each index
�s can be summed over the full range of 1 to m. However, this
means that we are actually overcounting in the sum over all �s .
This is not a problem though asK�s

can be commuted past each
other in the wedge products (they are all two-forms), so all we
need to do to remedy this is to divide by the factor of (m − 1)!,
where m − 1 is the number of factors of K� appearing in the
expression.

Now, for any integer r in the range 0, . . . ,m − 1, we
introduce the form

�(r) =
m∑

�1,...,�m−r=1

J�1 ∧ K�2 ∧ · · · ∧ K�m−r
. (4.13)

In particular, we have ω2m−1 = 1
(m−1)!�

(0) and �(m−1) =∑m
�1=1 J�1 . In Appendix A, we give a mathematical interpreta-

tion of these forms in terms of U(1)-equivariant cohomology
of S2m−1. The following formula for the change in �(r)

under a gauge transformation is the essential ingredient in
our construction of the full gauged WZ action.

Claim. Under a gauge transformation b� → eiξ b� we have
�(r) → �(r) + δξ�

(r) with

δξ�
(r) = 1

2d�(r+1) ∧ dξ. (4.14)

Proof. Using Eqs. (4.3), we can show

δξ�
(r) =

m∑
�1,...,�m−r=1

(
n2

2�1−1 + n2
2�1

)
K�2 ∧ · · · ∧ K�m−r

∧ dξ

+
m−r∑
s=2

m∑
�1,...,�m−r=1

J�1 ∧ K�2 ∧ · · · ∧ K�s
∧ · · · ∧

×K�m−r
∧ (

n2�s−1dn2�s−1 + n2�s
dn2�s

) ∧ dξ,

(4.15)

where the overline again means to omit that term from the
wedge product. Next, we use the two properties

m∑
�=1

(
n2

2�−1 + n2
2�

) = 1, (4.16a)

m∑
�=1

(n2�−1dn2�−1 + n2�dn2�) = 0, (4.16b)

which follow from the fact that n is a unit vector field with 2m

components, to find that

δξ�
(r) =

m∑
�2,...,�m−r=1

K�2 ∧ · · · ∧ K�m−r
∧ dξ (4.17)
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or, after reindexing,

δξ�
(r) =

m∑
�1,...,�m−(r+1)=1

K�1 ∧ · · · ∧ K�m−(r+1) ∧ dξ. (4.18)

So, in fact, only the term in the first line of Eq. (4.15) has
contributed. Next, we write K�1 = 1

2dJ�1 and use the fact that
K� is closed to find

δξ�
(r) = 1

2

m∑
�1,...,�m−(r+1)=1

dJ�1 ∧ K�2 ∧ · · · ∧ K�m−(r+1) ∧ dξ

= 1

2
d�(r+1) ∧ dξ (4.19)

which completes the proof. �
With Eq. (4.14) in hand, we can now construct the properly

gauged action step by step. We go through the first few steps
explicitly, and then write the final answer. To start, the change
of the WZ term under a gauge transformation is

δξSWZ[n] = 2πk

A2m−1

1

(m − 1)!

∫
B

δξ�
(0)

= 2πk

A2m−1

1

(m − 1)!

1

2

∫
B

d�(1) ∧ dξ

= 2πk

A2m−1

1

(m − 1)!

1

2

∫
Rd−1,1

�(1) ∧ dξ. (4.20)

So, the first counterterm we should add is

S
(1)
ct [n,A] = − 2πk

A2m−1

1

(m − 1)!

1

2

∫
Rd−1,1

�(1) ∧ A. (4.21)

The part of the action containing the WZ term is now

S ′
WZ,gauged[n,A] = SWZ[n] + S

(1)
ct [n,A], (4.22)

and under a gauge transformation we find

δξS
′
WZ,gauged[n,A]

= − 2πk

A2m−1

1

(m − 1)!

1

2

∫
Rd−1,1

δξ�
(1) ∧ A, (4.23)

which becomes

δξS
′
WZ,gauged[n,A]

= − 2πk

A2m−1

1

(m − 1)!

1

22

∫
Rd−1,1

d�(2) ∧ dξ ∧ A. (4.24)

Now, we note that

d(�(2) ∧ dξ ∧ A) = d�(2) ∧ dξ ∧ A + �(2) ∧ dξ ∧ F,

(4.25)

and we use this to do an integration by parts. Neglecting
boundary terms (in general, we neglect all terms coming from
the boundaries of the physical boundary space-time), we now
have

δξS
′
WZ,gauged[n,A]

= 2πk

A2m−1

1

(m − 1)!

1

22

∫
Rd−1,1

�(2) ∧ dξ ∧ F. (4.26)

Therefore, we should choose the second counterterm to be

S
(2)
ct [n,A] = − 2πk

A2m−1

1

(m − 1)!

1

22

∫
Rd−1,1

�(2) ∧ A ∧ F,

(4.27)

and the total gauged action is now

S ′′
WZ,gauged[n,A] = SWZ[n] + S

(1)
ct [n,A] + S

(2)
ct [n,A].

(4.28)

At this point, the pattern is clear. After iterating this
procedure we find that a total of m − 1 counterterms are needed
to construct a gauged WZ action which satisfies Eq. (3.17). The
rth counterterm (for r = 1, . . . ,m − 1) is given by

S
(r)
ct [n,A] = − 2πk

A2m−1

1

(m − 1)!

1

2r

∫
Rd−1,1

�(r) ∧ A ∧ F r−1,

(4.29)

where F r−1 is shorthand for the wedge product of F with itself
r − 1 times. The total gauged action is then

SWZ,gauged[n,A] = SWZ[n] +
m−1∑
r=1

S
(r)
ct [n,A]. (4.30)

In Appendix A we discuss this gauged WZ action from the
point of view of U(1)-equivariant cohomology over the sphere
S2m−1.

When we look at the change of the full action
SWZ,gauged[n,A] under a gauge transformation we find that
it is not completely gauge invariant. In other words, the
U(1) symmetry of the boundary theory of the BIQH state
is anomalous, as we expect on physical grounds. The anomaly
is controlled only by the final counterterm S

(m−1)
ct [n,A] since

all other contributions cancel by construction. Under a gauge
transformation we have

δξSWZ,gauged[n,A]

= − 2πk

A2m−1

1

(m − 1)!

1

2m−1

∫
Rd−1,1

δξ�
(m−1) ∧ A ∧ Fm−2.

(4.31)

Now, we use δξ�
(m−1) = dξ , the formulaA2m−1 = 2πm

(m−1)! , and
integrate by parts to arrive at the final formula

δξSWZ,gauged[n,A] = k

∫
Rd−1,1

ξ

(
F

2π

)m−1

, (4.32)

or in terms of the boundary space-time dimension d,

δξSWZ,gauged[n,A] = k

∫
Rd−1,1

ξ

(
F

2π

) d
2

. (4.33)

C. Chern-Simons effective action for bulk
electromagnetic response

We now use the result of the previous subsection to
understand the bulk electromagnetic response of BIQH states
in all odd space-time dimensions. As we discussed in the
Introduction, a quantum Hall state in 2m − 1 dimensions is
characterized by the presence of a CS term in the effective
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action Seff[A] for the electromagnetic field A. Recall that on
(2m − 1)-dimensional space-time the CS term takes the form

SCS[A] = N2m−1

(2π )m−1m!

∫
M

A ∧ (dA)m−1. (4.34)

Now, it is well known that under a gauge transformation A →
A + dξ the CS action changes by a boundary term

δξSCS[A] = N2m−1

m!

∫
∂M

ξ

(
F

2π

)m−1

. (4.35)

We can then deduce the coefficient N2m−1 for the bulk response
of BIQH states by matching the variation of the bulk CS
effective action for A with the anomaly of the boundary
theory of the BIQH state [the O(2m) NLSM with WZ term]
which we calculated in the previous subsection. The gauge
transformation of the bulk CS term must cancel the anomaly
of the boundary theory in order for the entire system (bulk plus
boundary) to be gauge invariant. This is exactly the concept of
anomaly inflow [83] which we mentioned in the Introduction.
Comparing Eq. (4.35) to (4.32) for the U(1) anomaly of the
O(2m) theory with WZ term, we deduce that the coefficient
N2m−1 must be given by

N2m−1 = −(m!)k, k ∈ Z (4.36)

in order to cancel the anomaly of the boundary theory.
Therefore, we find that the level N2m−1 of the CS effective
action for BIQH states in 2m − 1 space-time dimensions is
quantized in units of m!. This answer agrees with the known
cases for three and five space-time dimensions and gives a
prediction for all odd dimensions beyond those. In Sec. V
we discuss this peculiar quantization of the CS level from a
mathematical point of view by studying the transformation of
the CS term under large U(1) gauge transformations on general
Euclidean manifolds (including manifolds which do not admit
a spin structure).

We also remark here that based on the form of the CS
response for the BIQH state in 2m − 1 dimensions, we can
conclude that the chiral anomaly of the boundary theory of
the BIQH state is m! times larger than the chiral anomaly
of the boundary theory for a fermionic SPT phase in 2m −
1 dimensions with a bulk CS response at level one. So, for
example, the anomaly of the boundary theory is twice as large
when the bulk is three dimensional (m = 2 case) and six times
as large when the bulk is five dimensional (m = 3).

D. A derivation of the response from the bulk physics

To close this section, we present an alternative derivation
of the response of the BIQH state. This derivation uses only
bulk properties of the BIQH state, which should be contrasted
with our derivation using gauged WZ actions which was based
on the anomaly of the boundary theory. Recall again that the
bulk of the BIQH state is described by an O(2m) NLSM with
theta term and theta angle θ = 2πk (so we have a theta term
and not a WZ term in the bulk description). The main reason
for including this alternative derivation is that it provides a
clear physical reason for the appearance of the m! factor in
the response. The derivation in this section uses only the
dimensional reduction properties of the CS response action

for the external field, and the theta term of the NLSM, which
we now review.

We start by considering the CS response action at level N

in 2m − 1 dimensions,

SCS[A] = N

(2π )m−1m!

∫
RD,1

A ∧ (dA)m−1, (4.37)

where D is the spatial dimension so that D + 1 = 2m − 1. Let
x = (x1, . . . ,xD) be the spatial coordinates. Now, suppose we
thread a delta function of 2π flux at a point x0 in the (xD−1,xD)
plane (i.e., x

j

0 = 0, j = 1, . . . ,D − 2). Concretely, we set

FxD−1xD = 2πδ
(
xD−1 − xD−1

0

)
δ
(
xD − xD

0

)
, (4.38)

and we assume that Fxj xD−1 = Fxj xD = 0∀ j = 1, . . . ,D −
2, and that Fxj xk is independent of (xD−1,xD) for j,k =
1, . . . ,D − 2. Then, for this configuration, the CS response
action reduces to

SCS[A] → N

(2π )m−2(m − 1)!

∫
RD−2,1

Ã ∧ (dÃ)m−2. (4.39)

The key point is that it reduces to a CS term at the same level
N on the (D − 2)-dimensional space located at the point x0 in
the (xD−1,xD) plane.

Now that we know what happens in the CS response action
when we thread a 2π delta function flux of F in a particular
plane, let us also see what happens in the NLSM description
of the BIQH phase when this flux is inserted. In the NLSM
description, the m bosons b� are all charged under the U(1)
symmetry. Therefore, threading a 2π delta function flux at the
point x0 in the (xD−1,xD) plane will cause all of the bosons b�

to have a vortex configuration in that plane around the point x0.
By a vortex configuration we just mean that the phases of the
complex numbers b� all wind by 2π as one encircles the point
x0 in the (xD−1,xD) plane. So, we conclude that threading a
2π delta function flux of F will create m vortex excitations in
the O(2m) NLSM which describes the bulk of the BIQH.

On the other hand, we are going to show that if a single
boson b� for some � has a vortex configuration at a point
x0 in the (xD−1,xD) plane, then the O(2m) NLSM action with
θ = 2πk reduces to an O(2m − 2) NLSM with θ = 2πk living
on the (D − 2)-dimensional space at x0. So, if we have a vortex
in one boson only, then the NLSM theory for the BIQH state in
2m − 1 dimensions reduces to the NLSM theory for the BIQH
state in 2m − 3 dimensions (inside the vortex core) and with
the same theta angle.

We now prove the assertion in the previous paragraph that a
vortex in one boson b� in the O(2m) NLSM traps an O(2m − 2)
NLSM with the same theta angle inside the vortex core. To
do this, we consider an explicit vortex ansatz for the NLSM
field in which the last boson bm = n2m−1 + in2m takes on a
vortex configuration. To set up the notation let (r,φ) be polar
coordinates for the (xD−1,xD) plane, and let y = (x1, . . . ,xD)
be the coordinates for the remaining directions of space. Then,
our vortex ansatz has the form

n(t,x) = {sin[f (r)]N(t,y), cos[f (r)]m(φ)}, (4.40)

where N(t,y) is a (2m − 2)-component unit vector field
depending only on t and y, and m(φ) = [cos(φ), sin(φ)]
represents the vortex configuration of the last two components
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of n. The function f (r) is assumed to satisfy the boundary
conditions

f (0) = π

2
, (4.41)

lim
r→∞ f (r) = 0, (4.42)

which means that the field N(t,y) lives in the core of the vortex.
This vortex ansatz is equivalent to the q = 1, nq = 1 case of
the more general defect configurations for NLSMs considered
in Appendix D. Using the dimensional reduction formula from
Eq. (D10) of Appendix D, we immediately derive that on this
configuration the theta term of the O(2m) NLSM reduces to

Sθ [n] = θ

A2m

∫
RD,1

n∗ω2m

→ θ

A2m−2

∫
RD−2,1

N∗ω2m−2. (4.43)

This is the theta term for the O(2m − 2) NLSM with field N
living in the vortex core, and we see that the theta angle is the
same as for the original O(2m) NLSM. This proves our claim
from the previous paragraph.

From the discussion above we see that threading a 2π flux
of F in the O(2m) NLSM theory will produce m copies of the
O(2m − 2) theory since the 2π flux creates a vortex in all m

species of bosons, and a vortex in just one species produces
one copy of the O(2m − 2) NLSM with theta term. We should
mention a technical point that the m vortices cannot all be
localized at a point and should spread or separate slightly in
space after we thread the 2π flux. This is because the amplitude
|b�| should vanish at the core of a vortex in the phase of b�, but
the NLSM constraint

∑
� |b�|2 does not allow the amplitudes

|b�| for all � to simultaneously vanish at a particular point.
However, this subtlety does not effect the basic physical point
which is that threading the 2π flux of F produces m vortices
(at nearly the same point), each of which carries a copy of the
lower-dimensional BIQH state.

Let us denote the CS level for the response of the O(2m)
NLSM with θ = 2πk in 2m − 1 dimensions by N2m−1. From
what we have just learned, and from Eq. (4.39) for the reduction
of the CS term after threading 2π flux, we find that the CS
levels for the response of the NLSMs in dimensions 2m − 1
and 2m − 3 = 2(m − 1) − 1 must obey the recursion relation

N2m−1 = mN2m−3. (4.44)

We can now iterate this equation to generate

N2m−1 = (m!)N1. (4.45)

This equation gives the electromagnetic response of the O(2m)
NLSM with θ = 2πk in terms of the response of the O(2)
NLSM in one dimension with θ = 2πk. In Appendix E, we
directly calculate N1 for the O(2) NLSM (in the limit of large
coupling g) and show that N1 = −k in that case. This then
implies that

N2m−1 = −(m!)k, (4.46)

and this agrees (in magnitude and in sign) with our boundary
calculation using gauged WZ actions. Thus, the dimensional
reduction approach employed in this section gives a clear

physical picture for the m! factor in the response, and crucially
depends on the fact that all the bosons b� carry a U(1) charge.

V. GENERAL GAUGE-INVARIANCE ARGUMENT FOR
THE BIQH RESPONSE AND COMPARISON WITH THE

FERMIONIC CASE

In this section we show that the factor of m! in the
BIQH response derived in Sec. IV can be understood by
studying large U(1) gauge transformations of the CS action
on general (closed, compact) Euclidean manifolds which do
not necessarily admit a spin structure. Physically, we require
the exponential of the CS term to be gauge invariant since
this object is part of the partition function of a short-range
entangled (gapped) phase coupled to the external field A. In
such phases, since the ground state is always unique, one
can always safely integrate out the matter field and obtain
a gauge-invariant action. In contrast, if we do the same thing
for a topologically ordered state, for example a Laughlin state,
we will indeed get a non-gauge-invariant response theory. This
is because the calculation to arrive at a response theory is only
perturbatively defined around a single ground state.

The level N2m−1 of the CS term must be quantized for the
exponential of the CS term to be gauge invariant, but we find
that the required quantization of N2m−1 is different depending
on whether or not the Euclidean manifold admits a spin
structure. Bosonic theories may be formulated on any generic
manifold, but the Dirac equation cannot be formulated properly
on a manifold which does not admit a spin structure, and so we
cannot place fermions on these manifolds. In particular, we find
that the CS action will be gauge invariant on a generic manifold
if the level N2m−1 is quantized in integer multiples of m!, which
agrees with our direct calculation for the NLSM theory from
Sec. IV. For the fermionic case we use the Atiyah-Singer index
theorem for the twisted Dirac complex [55] to show that the CS
response action will not, in general, be U(1) gauge invariant
unless suitable gravitational terms are also included in the
response action. We also discuss an explicit example of how
these gravitational terms can contribute to the response of a
fermionic SPT phase with U(1) symmetry. Furthermore, using
these examples, we compare the quantization of FIQH and
BIQH states, as well as another type of bosonic SPT state with
nontrivial topological electromagnetic- gravitational response.

A. Gauge-invariance argument for bosonic and fermionic states

In Euclidean space-time the CS term takes the form

SCS[A] = −i
N2m−1

(2π )m−1m!

∫
M

A ∧ Fm−1. (5.1)

Here,M is a (2m − 1)-dimensional closed, compact manifold,
and for the moment let us assume that N2m−1 is some number,
not necessarily an integer. A more careful way to define the CS
term is to consider an extension of the field configuration A into
a 2m-dimensional manifold B such that ∂B = M (this type
of analysis of CS terms dates back at least to Ref. [85]). Let
Ã denote this extension. Then, the CS term is more properly
written as

SCS[A] = −i
N2m−1

(2π )m−1m!

∫
B

F̃ m, (5.2)
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where F̃ = dÃ. In this formulation, a large U(1) gauge
transformation of the action can be understood as a change
of the extension of A into the larger space B. Suppose Ã(1) and
Ã(2) are two different extensions of A. In order for the CS term
to be well defined, we require that the difference

−i
N2m−1

(2π )m−1m!

∫
B

(F̃ (1))m −
(

−i
N2m−1

(2π )m−1m!

∫
B

(F̃ (2))m
)
(5.3)

be an integer multiple of 2πi so that the exponential of the
difference of the two Euclidean actions is equal to one. This
is equivalent to the requirement that the exponential of the
CS term be invariant under a large U(1) gauge transformation.
This difference can in turn be written as the integral of the
field strength F of a gauge field in 2m dimensions over the
closed manifold 2m-dimensional manifold X constructed by
gluing B to another copy of B (with the opposite orientation)
along their boundary (which is the original lower-dimensional
manifold M). So, the requirement for a well-defined CS term
is to check that

I [A] = −i
N2m−1

(2π )m−1m!

∫
X

Fm (5.4)

is equal to 2πk for some integer k, where X is a 2m-
dimensional closed, compact manifold, and F is now the field
strength of a gauge field A living in 2m dimensions.

We must also make one crucial assumption about the
configuration of F on X, which is that F should be chosen to
satisfy the Dirac quantization condition∫

C

F

2π
∈ Z , (5.5)

where C is any nontrivial two-cycle on X [i.e., an element of
the second homology group H2(X,R)]. This requirement tells
us how a general background field F on X can be expanded
in terms of the elements of the second cohomology group
H 2(X,R) of X [more precisely, we expand F in terms of
elements of the second de Rham cohomology group H 2

dR(X),
which is in turn isomorphic to H 2(X,R) by de Rham’s
theorem].

If we enforce the Dirac quantization condition of Eq. (5.5),
then on a generic closed, compact Euclidean manifold X we
have ∫

X

(
F

2π

)m

∈ Z. (5.6)

Briefly, this comes from the fact that (assuming the Dirac
quantization condition) F

2π
is the first Chern class c1 of a

complex line bundle over X. The integral over X of its mth
power (c1)m is then one of the Chern numbers of this complex
line bundle, and is therefore an integer [86]. Note that here we
also need to assume that X is orientable. From this result we
deduce that the (exponential of the) CS term will be invariant
under large U(1) gauge transformations on any Euclidean
manifold provided that

N2m−1 = (m!)k, k ∈ Z (5.7)

which agrees with our result from Sec. IV derived using the
NLSM description of the BIQH state. In Appendix B we show

that the minimum value with
∫
X

( F
2π

)
m = 1 can be achieved

for X = CPm if we thread 2π flux of F through the nontrivial
two-cycle on CPm.

We can also compare this result with the result for
FIQH phases with U(1) symmetry in the same dimension.
In any odd dimension, we can consider the massive Dirac
fermion as a model for a FIQH state with the global U(1)
symmetry associated to charge conservation. The Lagrangian
of a massive Dirac fermion on flat, (2m − 1)-dimensional
Minkowski space-time takes the form

LDirac[ψ,A] = ψ(i /∂ − /A − M)ψ, (5.8)

where γ μ, μ = 0, . . . ,2m − 2, are the standard gamma matri-
ces satisfying {γ μ,γ ν} = 2ημν with η = diag(1,−1, . . . ,−1),
ψ = ψ†γ 0, and M > 0 is the mass of the Dirac fermion. We
also used the Feynman slash notation /∂ ≡ γ μ∂μ, etc. Here,
we have also coupled the fermion ψ to the background U(1)
gauge field (electromagnetic field) Aμ. After integrating out
the massive Dirac fermion, we arrive at a topological response
theory given by the CS theory at level one:

SDirac[A] = −i
1

(2π )m−1m!

∫
M

A ∧ Fm−1, (5.9)

where in this case the space-time manifoldM is just (2m − 1)-
dimensional Minkowski space-time. In deriving this response
theory we have employed a Pauli-Villars regularization proce-
dure (see Ref. [45] or the more recent discussion in Ref. [48])
such that integrating out a Dirac fermion with a negative mass
M does not produce any topological term (i.e., a CS term with
level zero). Also, we have omitted all the nontopological terms,
for example the Maxwell term, from the final response action.
Since a single massive Dirac fermion gives rise to a CS term
for A at level one, we have the result that

N2m−1 ∈ Z (5.10)

for general U(1) fermionic SPT phases in 2m − 1 dimensions.
However, as we know from the discussion of the CS term

earlier in this section, on a generic manifold M the CS term
will not be invariant under large U(1) gauge transformations
unless the level N2m−1 is an integer multiple of m!. Thus, one
might naively conclude that the response action for the FIQH
state on a generic manifold M is not invariant under large
U(1) gauge transformations. Of course, this is not the case.
The resolution of this problem is to recall that on a curved
manifold M a Dirac fermion also has nontrivial gravitational
and (when coupled to the gauge field A) mixed gauge and
gravitational responses. The gravitational part of the response
comes from the coupling of the Dirac fermion to the metric gμν

of the curved space-timeM. The response action for the FIQH
state (as modeled by the massive Dirac fermion) will include
these additional terms. The effective action for a massive Dirac
fermion on a (2m − 1)-dimensional closed, compact manifold
M can be written in the form [47]

SFIQH[A,g] = 2πi

∫
B

ch(F̃ ) ∧ Â(B), (5.11)

where ∂B = M, ch(F̃ ) = e
F̃
2π is the Chern character of the

extended field strength F̃ , and Â(B) is the A-roof genus (or
Dirac genus) on B. Since we are focusing on fermionic phases
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here, we should only consider spin manifolds M and B. The
A-roof genus Â(B) can be expressed in terms of the Pontryagin
classes pi(B) of B as [87]

Â(B) = 1 − 1
24p1 + 1

5760

(
7p2

1 − 4p2
) + · · · , (5.12)

with

p1 = − 1

8π2
TrR̃2, (5.13)

p2 = − 1

64π4
TrR̃4 + 1

128π4
(TrR̃2)2. (5.14)

Here, R̃ is the 2m × 2m matrix of two-forms (curvature two-
form) on B:

R̃ν
μ = 1

2 R̃αβμ
νdxα ∧ dxβ (5.15)

which depends on the Riemann curvature tensor R̃ν
αβμ in the

extended space B. In Eq. (5.11) it is understood that the
integral is only over the terms of (differential form) degree
2m in the product ch(F̃ ) ∧ Â(B) on B. It is easy to see
that when we only consider the electromagnetic response in
SFIQH[A,g] (e.g., by setting all pi to 0 on B), it recovers the
response theory (5.9) of the massive Dirac fermion in 2m − 1
dimensions. More importantly, the response theory SFIQH[A,g]
is fully gauge invariant. This is because on any closed, compact
2m-dimensional spin manifold X, the Atiyah-Singer index
theorem for the twisted Dirac complex (see, for example,
Ref. [55]) states that∫

X

ch(F̃ ) ∧ Â(X) = index( /D) ∈ Z, (5.16)

where index( /D) is the index (the difference between the
number of positive and negative chirality zero modes) of the
Dirac operator on X, and is necessarily an integer. Although
we originally derived Eq. (5.11) by using the theory of a
massive Dirac fermion on the curved manifold M as a model
for the FIQH state, we argue that due to the requirement of
large U(1) gauge invariance, Eq. (5.11) is the minimal (or
“level 1”) nontrivial gauge and gravitational response theory
of any putative FIQH phase with U(1) symmetry in (2m − 1)
dimensions.

There is one more subtlety here. When m is even (i.e., when
the space-time dimension is 4k − 1 with k ∈ Z), the object
ch(F̃ ) ∧ Â(B) contains a purely gravitational term that comes
from Â(B) alone. Such a term itself can be well defined (the
index theorem for the untwisted Dirac complex guarantees that
it integrates to an integer on a closed, compact spin manifold)
and can capture the nontrivial gravitational response of certain
short-range entangled states even without the inclusion of a
global U(1) symmetry. For example, for m = 2 the purely
gravitational term is given by − 1

24p1 on B, which is equivalent
to the three-dimensional gravitational Chern-Simons term on
M. This term is tied to the chiral central charge. Hence,
we can separately consider the purely gravitational term
Â(B) and the rest of the terms [ch(F̃ ) ∧ Â(B) − Â(B)] in
Eq. (5.11).

In general, we can consider the FIQH phase at level
N2m−1 ∈ Z, whose topological response theory (minus the
purely gravitational term) is given by

S ′
FIQH[A,g] = 2πiN2m−1

∫
B

[ch(F̃ ) ∧ Â(B) − Â(B)].

(5.17)

S ′
FIQH[A,g] naturally contains both a term capturing the elec-

tromagnetic response of the FIQH state and other terms that
describe various different types of mixed gauge-gravitational
response. The coexistence of all these terms is enforced by
the properties of spin manifolds and the Atiyah-Singer index
theorem, and reflects the fermionic nature of the FIQH phase.
This combination also informs us that we should not use each
of the terms to independently classify fermionic SPTs with
U(1) symmetry. For bosonic systems, we can, in principle,
separately study each single term in S ′

FIQH[A,g] by itself,
and use each of them to characterize a different class of
bosonic SPTs. However, just like the quantization of the
level of the U(1) CS term, we expect gauge invariance to
enforce a larger quantization unit of the “level” when we
isolate a single term as a bosonic response theory, as opposed
to the case where that term appears in the full combination
S ′

FIQH[A,g] as a part of a fermionic theory. The difference in
the quantization unit of the “level” between fermionic and
bosonic systems will also lead to very different behaviors
under dimensional reduction, the details of which will be
elaborated using examples. In Sec. V B, we provide an example
of the electromagnetic and gravitational response theory of
FIQH states in five dimensions. In Sec. V C, we compare
the example fermionic response theory with five-dimensional
bosonic theories, including the BIQH state and another type of
bosonic U(1) SPT state with nontrivial mixed electromagnetic
and gravitational response.

B. An example of electromagnetic and gravitational response
theories of FIQH states and their dimensional reduction

In this section, we restrict our discussion to the topological
response theory of a five-dimensional FIQH phase, and we
study its dimensional reduction to the response theory of a
FIQH state in three dimensions. We start with the response
theory of the FIQH phase at level N5 = 1 on a five-dimensional
spin manifold M5:

SFIQH[A,g] = 2πi

∫
B6

[
1

6

(
F̃

2π

)3

− p1

24
∧ F̃

2π

]
, (5.18)

where B6 is a six-dimensional spin manifold such that M5 =
∂B6. We first consider its dimensional reduction to the response
theory of a FIQH state in three dimensions. In order to do
so, we take the space-time manifold to be M5 = S2 × M3

where M3 is a closed, compact three-dimensional manifold,
and S2 is a two-sphere. In this case, it is natural to consider the
bounding space B6 = S2 × B4 where B4 is a four-dimensional
spin manifold such that M3 = ∂B4. Also, we consider the
configuration with 2π flux of F̃ piercing the S2 part. The
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response theory is then reduced to

SFIQH[A,g]|S2×M3

= 2πi

∫
B4

(
F̃ 2

8π2
− p1

24

)

= i

∫
M3

[
A ∧ F

4π
− 1

24

1

4π
Tr

(
ω ∧ dω+ 2

3
ω ∧ ω ∧ ω

)]
,

(5.19)

where ω is the SO(1,2) spin connection on M3. The first
term describes the standard integer quantum Hall effect in
three dimensions with unit Hall conductance. The second
term, which is the gravitational Chern-Simons term, captures
the gravitational response of a three-dimensional chiral state
with chiral central charge c = 1. On the other hand, we can
directly consider a five-dimensional massive Dirac fermion as
a model of a five-dimensional FIQH state at level one on this
background. When put on the manifold S2 × M3 with 2π flux
of F inside the S2 part, the five-dimensional massive Dirac
fermion effectively reduces to a three-dimensional massive
Dirac fermion on M3 at low energies when the linear size of
the S2 part is small compared to the length scale set by the
Dirac fermion mass M . The U(1) and gravitational response
of the three-dimensional FIQH state is indeed given by the
dimensionally reduced response theory SFIQH[A,g]|

S2×M3
.

Finally, let us also remark here that the response theory
(5.18) for the five-dimensional FIQH state can also be used
to derive the electromagnetic and gravitational responses of
a topological superconductor in four dimensions using a
dimensional reduction procedure [88].

C. Comparing bosonic and fermionic systems: Quantization
and dimensional reduction

As we have discussed, we can consider each term of
SFIQH[A,g] separately as a topological response theory for
bosonic U(1) SPTs in five dimensions:

SBIQH[A] = 2πiN5

∫
B6

1

6

(
F̃

2π

)3

, (5.20)

SBSPT[A,g] = −2πiN ′
5

∫
B6

p1

24
∧ F̃

2π
. (5.21)

SBIQH[A] is the response theory of a five-dimensional BIQH
state, and requires a quantization of level as N5 ∈ 6Z as we
showed in this section and in Sec. IV. SBSPT[A,g] characterizes
an independent class of bosonic SPT states in five dimensions
without a requirement of U(1) symmetry [89]. Similar to the
BIQH and FIQH cases, gauge invariance requires N ′

5

∫
X6

p1

24 ∧
F̃
2π

∈ Z on any closed six-dimensional manifold X6. Since

p1 and F̃
2π

are both cohomology classes of X6 with integer
coefficients, gauge invariance then enforces the quantization
N ′

5 ∈ 24Z. We would like to point out that previously Ref. [89]
considered only closed six-dimensional manifolds that can
be decomposed into products of two- and four-dimensional
manifolds, and concluded that N ′

5 ∈ 8Z. However, when we
take into account more general six-dimensional manifolds, for
example CP3, we arrive at the stronger quantization condition

N ′
5 ∈ 24Z.2As seen here, for both of the bosonic theories

SBIQH[A] and SBSPT[A,g], the quantization units of their levels
are larger than when these two terms appear together in the
fermionic theory SFIQH[A,g] in Eq. (5.18).

Now, let us consider a similar dimensional reduction of
both SBIQH[Aμ] and SBSPT[Aμ,g] to three dimensions, as we
did in the fermion case. Now, the five-dimensional space-
time manifold M5 is taken to be the product S2 × M3 with
M3 a three-dimensional manifold. Again, we consider the
configuration with 2π flux of F̃ piercing the S2 part. The
dimensionally reduced theories are given by

SBIQH[A]|S2×M3 = i2π
N5

2

∫
M3

A ∧ F

(2π )2
, (5.22)

SBSPT[A,g]|S2×M3

= −i2π
N ′

5

24

∫
M3

1

4π
Tr

(
ω ∧ dω + 2

3
ω ∧ ω ∧ ω

)
.

(5.23)

For the BIQH state, due to the bosonic quantization N5 ∈ 6Z,
we notice that the most fundamental three-dimensional BIQH
state (with CS level N3 = 2) cannot be realized from such a
dimensional reduction from a five-dimensional BIQH state.
From our analysis of the CS level of the BIQH state, it should
be generally true that there are certain lower-dimensional
BIQH states that cannot be realized from the dimensional
reduction of higher-dimensional BIQH states. In fact, this
phenomenon is not restricted to BIQH states. For the bosonic
SPT states described by Eq. (5.21), due to the quantization
N ′

5 ∈ 24Z, the action SBSPT[A,g]|
S2×M3

only captures chiral

bosonic states with chiral central charge c ∈ 24Z. The E8

state in (2 + 1) dimensions, which has chiral central charge
c = 8, is absent in this dimensional reduction picture. This is
in strong contrast with the fermionic theory studied in Sec. V B,
in which case lower-dimensional response theories of FIQH
at any level can be obtained from dimensionally reducing
higher-dimensional FIQH states.

VI. ELECTROMAGNETIC RESPONSE OF BTI STATES
IN ALL EVEN DIMENSIONS

In this section we construct the gauged WZ action for
the boundary of BTI states in all even dimensions. Again,
the action that we construct satisfies the gauging principle
of Eq. (3.17). Unlike the BIQH case, however, the gauged
boundary action that we find for BTI states is completely
gauge invariant. From the form of the gauged action for the
boundary of the BTI, we find that if the NLSM field on the
boundary condenses in such a way that the Z2 symmetry of
the BTI is broken, but the U(1) symmetry remains intact, then

2When we consider CP3 with the U(1) gauge field given by
its fundamental line bundle, we find that N ′

5

∫
CP3

p1
24 ∧ F̃

2π
= N ′

5/6.
Combining with the result N ′

5 ∈ 8Z from Ref. [89], we can conclude
that the gauge-invariance argument requires N ′

5 ∈ 24Z. On the
other hand, since p1 and F̃

2π
are both cohomology classes with

integer coefficients, any N ′
5 ∈ 24Z will satisfy the gauge-invariance

requirement.
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the boundary of the BTI can exhibit a Z2 symmetry-breaking
quantum Hall response [recall from Sec. III that the BTI phase
also has a Z2 symmetry such that the total symmetry group is
U(1) � Z2].3 We find that the boundary quantum Hall response
is characterized by a CS level N2m−1 which is quantized in
units of m!

2 , i.e., the minimal boundary quantum Hall response
is half that of the minimal BIQH state that can be realized
intrinsically in the same space-time dimension. This boundary
response implies a bulk response of the form of Eq. (2.2) with
the parameter �2m quantized as �2m = 2π (m!

2 ).
In Appendix A we reinterpret the gauged action constructed

in this section in terms of U(1)-equivariant cohomology of the
sphere S2m. There we show that the problem of constructing
a gauged WZ action for the boundary of the BTI phase in
2m dimensions is equivalent to the problem of constructing
an equivariant extension of ω2m, the volume form for S2m,
and we explicitly construct such an extension. The fact that an
extension exists is mathematically equivalent to the result in
this section that the gauged WZ action for the boundary of the
BTI is completely gauge invariant. We also show that the forms
�(r) which appear later in this section in the counterterms of
Eq. (6.25) are exactly the same forms which are needed for the
construction of the equivariant extension of ω2m.

We now construct the gauged WZ action for the boundary
of BTI states. Recall that in the BTI case we define the integer
m via 2m + 1 = d + 2, so that the SPT phases we study live in
2m space-time dimensions and have a (2m − 1)-dimensional
boundary (the bulk space-time dimension was defined to be
d + 1). We again make use of the forms J� and K�, � =
1, . . . ,m, defined in Eqs. (4.2). Now, however, the NLSM field
has the extra component n2m+1, so the relations of Eq. (4.16)
are replaced with

m∑
�=1

(
n2

2�−1 + n2
2�

) = 1 − n2
2m+1, (6.1a)

m∑
�=1

(n2�−1dn2�−1 + n2�dn2�) = −n2m+1dn2m+1. (6.1b)

In this case the WZ term takes the form

SWZ[n] = 2πk

A2m

∫
B

ω2m, (6.2)

where B = [0,1] × Rd−1,1 is the extended boundary space-
time.

3Our result can also be applied to systems with a symmetry of the
form U(1) × Z2, but only in the case that the U(1) symmetry rotates
the maximal number of components of na as in the U(1) � Z2 cases
considered in this paper. For example, according to Ref. [34] bosonic
SPT phases in four dimensions with U(1) × ZT

2 symmetry have a
(Z2)3 classification. However, only one of the three root phases is
described by an O(5) NLSM with symmetry assignment that rotates
four out of the five components of n [29], so this is the only case in
which our technique can be applied directly. For the other cases, one
must use the more general methods of Ref. [44] to gauge the U(1)
symmetry.

For the BTI case it is convenient to define the forms �(r)

for r = 0,1, . . . ,m − 1 as

�(r) =
m∑

�1,...,�m−r=1

K�1 ∧ · · · ∧ K�m−r
, (6.3)

and in addition we define �(m) = 1, so that �(r) is defined
for all r = 0,1, . . . ,m. Also, note that all of these forms are
closed since each K� is closed. Just as in the BIQH case,
the essential ingredient in the construction of the gauged WZ
action is a formula for how these forms change under a gauge
transformation.

Claim. Under a gauge transformation b� → eiξ b� we have
�(r) → �(r) + δξ�

(r) with

δξ�
(r) = −(m − r)n2m+1dn2m+1 ∧ �(r+1) ∧ dξ. (6.4)

Proof. Using the symmetry of the summand of �(r) under
the exchange of any two of the indices �1, . . . ,�m−r , we first
find that

δξ�
(r) = (m − r)

m∑
�1,...,�m−r=1

(
n2�1−1dn2�1−1 + n2�1dn2�1

) ∧

dξ ∧ K�2 ∧ · · · ∧ K�m−r
. (6.5)

Now, we can move dξ all the way to the right by commuting
it past the two-forms K�2 , . . . ,K�m−r

. This gives

δξ�
(r) = (m − r)

m∑
�1=1

(
n2�1−1dn2�1−1 + n2�1dn2�1

)
∧�(r+1) ∧ dξ, (6.6)

where we used the fact that

�(r+1) =
m∑

�2,...,�m−r=1

K�2 ∧ · · · ∧ K�m−r
. (6.7)

Finally, we can do the sum over �1 using the second relation
of Eqs. (6.1), and this gives the final formula of Eq. (6.4). �

In terms of the form �(0) we can write the volume form on
S2m as

ω2m = 1

(m − 1)!

⎡
⎣ m∑

�1,...,�m=1

J�1 ∧ K�2 ∧ · · · ∧ K�m
∧ dn2m+1

+ n2m+1

m
�(0)

⎤
⎦. (6.8)

The last term in this expression is just the term

n2m+1dn1 ∧ dn2 ∧ · · · ∧ dn2m−1 ∧ dn2m, (6.9)

but rewritten using the formula

dn1 ∧ dn2 ∧ · · · ∧ dn2m−1 ∧ dn2m

= 1

m!

m∑
�1,...,�m=1

K�1 ∧ · · · ∧ K�m
. (6.10)

We are now in a position to construct the properly gauged
action step by step as in Sec. IV on the BIQH system. We
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demonstrate the first few steps in the construction and then
write the final answer. To start we have

δξω2m = − 1

(m − 1)!
dn2m+1 ∧ �(1) ∧ dξ

= − 1

(m − 1)!
d(n2m+1�

(1) ∧ dξ ). (6.11)

This is computed using Eq. (6.4) for the case r = 0 combined
with the formula

δξ

⎛
⎝ m∑

�1,...,�m=1

J�1 ∧ K�2 ∧ · · · ∧ K�m
∧ dn2m+1

⎞
⎠

= −(
1 − n2

2m+1

)
dn2m+1 ∧ �(1) ∧ dξ, (6.12)

which is easily proven using Eqs. (4.3) and (6.1). Then, we
have

δξSWZ[n] = −2πk

A2m

1

(m − 1)!

∫
Rd−1,1

n2m+1�
(1) ∧ dξ. (6.13)

We therefore choose the first counterterm to be

S
(1)
ct [n,A] = 2πk

A2m

1

(m − 1)!

∫
Rd−1,1

n2m+1�
(1) ∧ A. (6.14)

The total gauged WZ action is now

S ′
gauged,WZ[n,A] = SWZ[n] + S

(1)
ct [n,A], (6.15)

and under a gauge transformation we find

δξS
′
gauged,WZ[n,A]

= −2πk

A2m

1

(m − 2)!

∫
Rd−1,1

n2
2m+1dn2m+1 ∧ �(2) ∧ dξ ∧ A.

(6.16)

Next, we integrate by parts using the formula

d

(
1

3
n3

2m+1�
(2) ∧ dξ ∧ A

)

= n2
2m+1dn2m+1 ∧ �(2) ∧ dξ ∧ A

− 1

3
n3

2m+1�
(2) ∧ dξ ∧ F, (6.17)

to find (neglecting boundary terms)

δξS
′
gauged,WZ[n,A]

= −2πk

A2m

1

(m − 2)!

1

3

∫
Rd−1,1

n3
2m+1�

(2) ∧ dξ ∧ F. (6.18)

We should then take the second counterterm to be

S
(2)
ct [n,A] = 2πk

A2m

1

(m − 2)!

1

3

∫
Rd−1,1

n3
2m+1�

(2) ∧ A ∧ F.

(6.19)

To see the full structure of the counterterms it is necessary
to go one step further. At this point, the total gauged action is

S ′′
gauged,WZ[n,A] = SWZ[n] + S

(1)
ct [n,A] + S

(2)
ct [n,A], (6.20)

and under a gauge transformation we have

δξS
′′
gauged,WZ[n,A]

= −2πk

A2m

1

(m − 3)!

1

3

∫
Rd−1,1

n4
2m+1dn2m+1 ∧

�(3) ∧ dξ ∧ A ∧ F. (6.21)

We again integrate by parts and show

δξS
′′
gauged,WZ[n,A]

= −2πk

A2m

1

(m − 3)!

1

5 · 3

∫
Rd−1,1

n5
2m+1�

(3) ∧ dξ ∧ F 2.

(6.22)

Note that the denominator contains the double factorial 5!! =
5 · 3 = 5 · 3 · 1. In general, we find that all of the counterterms
contain a double factorial. Then, the third counterterm takes
the form

S
(3)
ct [n,A] = 2πk

A2m

1

(m − 3)!

1

5!!

∫
Rd−1,1

n5
2m+1�

(3) ∧ A ∧ F 2.

(6.23)

At this point, the pattern is clear. Continuing with this
procedure we find that a total of m counterterms are needed to
construct a gauged boundary action which satisfies Eq. (3.17),
and the final gauged action is completely gauge invariant. It
takes the form

SWZ,gauged[n,A] = SWZ[n] +
m∑

r=1

S
(r)
ct [n,A], (6.24)

where the rth counterterm is

S
(r)
ct [n,A]

= 2πk

A2m

1

(m − r)!

1

(2r − 1)!!

∫
Rd−1,1

(n2m+1)2r−1

×�(r) ∧ A ∧ F r−1, (6.25)

where (2r − 1)!! is the double factorial

(2r − 1)!! = (2r − 1)(2r − 3) . . . (3)(1). (6.26)

The final counterterm is just

S
(m)
ct [n,A] = 2πk

A2m

1

(2m − 1)!!

∫
Rd−1,1

(n2m+1)2m−1 A ∧ Fm−1,

(6.27)

and its change under a gauge transformation comes only from
the transformation of A [the last component n2m+1 of the
NLSM field does not transform under U(1)]. This explains
why the final gauged action is completely gauge invariant: the
change due to the transformation of A in the last term cancels
the transformation from the previous counterterm in the action,
and there are no further changes in the last term which remain
to be canceled.

Now, let us show that the boundary of a BTI phase exhibits
aZ2 symmetry-breaking response when the field na condenses
in such a way that it preserves the U(1) symmetry, but breaks
the Z2 symmetry. The only possible way for na to condense
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and fulfill these requirements is to have

n2m+1 = ±1, (6.28a)

na = 0, ∀ a �= 2m + 1. (6.28b)

In this case, all terms in SWZ,gauged[n,A] vanish except for
the final counterterm (r = m), which gives the boundary
electromagnetic response

Seff,bdy[A] = ±2πk

A2m

1

(2m − 1)!!

∫
Rd−1,1

A ∧ Fm−1, (6.29)

where we used 0! = 1 and �(m) = 1. Now, we use the formulas

A2m = 2πm
√

π


(
m + 1

2

) (6.30)

and

(2m − 1)!! = 2m

√
π



(
m + 1

2

)
(6.31)

to find

Seff,bdy[A] = ±1

2

k

(2π )m−1

∫
Rd−1,1

A ∧ Fm−1. (6.32)

Comparing to Eq. (2.1), we see that this is a CS response with
level

N2m−1 = ±
(

m!

2

)
k, (6.33)

which is exactly half the response of the BIQH state which
appears intrinsically in the same space-time dimension (which
we calculated in Sec. IV). As we discussed in Sec. III, this
boundary CS response is equivalent to a bulk electromagnetic
response of the form of Eq. (2.2) with response parameter

�2m = 2π

(
m!

2

)
k. (6.34)

However, we should recall from the discussion in Sec. III that
the BTI phase with k = 2 is smoothly connected to the phase
with k = 0. More generally, the BTI phase with θ = 2πk is
smoothly connected to the phase with θ = 2π (k ± 2). This
means that the single nontrivial BTI phase is represented by
the choice k = 1.

Finally, we note that the boundary of the BTI can be
driven into theZ2 symmetry-breaking phase without explicitly
breaking the Z2 symmetry. This can be done by adding a
term μ n2

2m+1 to the Lagrangian. This term is invariant under
the full U(1) � Z2 symmetry of the BTI but, for μ > 0 and
sufficiently large, will drive the system into a phase in which
the Z2 symmetry is spontaneously broken and na = ±δa,2m+1

(i.e., n2m+1 = ±1 and na = 0 for a �= 2m + 1).

VII. APPLICATIONS

In this section, we explore several applications of the
results obtained so far. We start with the observation that
the gauged boundary action for the BIQH state in 2m − 1
space-time dimensions can be used as building block to
construct a bosonic analog of a Weyl, or chiral, semimetal
in any even dimension. We refer to this state as a bosonic
chiral semimetal (BCSM). We write an effective theory for this

state in any even dimension d, compute its electromagnetic
response, and compare this response with the response of
an ordinary fermionic chiral semimetal. This construction
represents a generalization to higher even dimensions of the
work in Ref. [16] that constructed a bosonic analog of a Dirac
semimetal in three dimensions.

As a second application, we show that the boundary
theory of the BTI exhibits a bosonic analog of the parity
anomaly of a single Dirac fermion in odd dimensions. As
we discuss below, this is closely related to the fact (derived
in Sec. VI) that the boundary theory of the BTI can exhibit
a half-quantized BIQH state when the Z2 symmetry of the
BTI is broken spontaneously at the boundary. This situation
is clearly analogous to the time-reversal symmetry-breaking
half-quantized integer quantum Hall state which appears on
the surface of the familiar electron topological insulator [1].
This leads us to argue that the boundary theory for a BTI
state in 2m dimensions cannot exist intrinsically in 2m − 1
dimensions without breaking (partially or fully) the symmetry
of the BTI state.

Finally, we perform a detailed study of Z2 symmetry-
breaking domain walls on the boundary of BTI states. We
use a dimensional reduction formula for NLSMs with WZ
term, analogous to the dimensional reduction formula for
theta terms that we derive in Appendix D, to show that a
Z2 symmetry-breaking domain wall on the boundary of a
BTI state in 2m dimensions hosts a lower-dimensional theory
which is identical to the boundary theory of the BIQH state
in 2m − 1 dimensions. We show that the U(1) anomaly of the
theory on the domain wall is exactly canceled by an inflow
of charge from the two Z2-breaking regions on either side of
the domain wall. This calculation is an important consistency
check for our results on the response of BIQH and BTI states,
and also provides a clear example of the phenomenon of
anomaly inflow in the context of bosonic SPT phases.

A. Bosonic analog of a Weyl semimetal in any even dimension

In this section, we describe how a bosonic analog of a
Weyl semimetal can be constructed in any even space-time
dimension d using two copies of an O(d + 2) NLSM with
Wess-Zumino (WZ) term. Before discussing the bosonic
analog, let us first review the basic construction of a Weyl
(or more generally a chiral) semimetal of fermions in any even
dimension d. Note that our construction here still assumes
a pointlike structure of the Fermi surface even in higher
dimensions, as opposed to the recent construction in Ref. [90]
using Weyl sheets in six space-time dimensions. We consider a
Dirac fermion � in d dimensions. To write an action for a Dirac
fermion, we need the gamma matrices γ μ, μ = 0, . . . ,d − 1,

which obey the Clifford algebra {γ μ,γ ν} = 2ημν [and we
choose η = diag(1,−1, . . . ,−1)]. When d is even, we have an
extra element γ of the Clifford algebra which anticommutes
with the other gamma matrices and can be chosen to satisfy
γ † = γ and γ 2 = I (γ is the higher-dimensional analog of γ 5

in d = 4). In the basis (known as the Weyl basis in d = 4) in
which γ takes the block diagonal form

γ =
(
I 0
0 −I

)
, (7.1)
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the fermion � breaks up into chiral and antichiral parts as

� = (�+,�−)T . (7.2)

Now a minimal, two-node chiral (or Weyl) semimetal
(CSM) in d dimensions is described at low energies by
chiral fermions �± separated in momentum by 2B and in
energy by 2Bt , where B = (B1, . . . ,Bd−1) should be thought
of as a vector in a (d − 1)-dimensional momentum space (or
Brillouin zone). We assume here that the components Bμ

(μ = 0, . . . ,d − 1, B0 = Bt ) are constant, although the results
below are expected to hold approximately if the components
Bμ are slowly varying functions of xμ. In addition, both chiral
fermions carry charge e of an external U(1) gauge field Aμ.
Using the extra gamma matrix γ , an action capturing this
low-energy physics takes the form

SCSM[�,A,B] =
∫

ddx i�(/∂ − ie /A − i /Bγ )�, (7.3)

where � = �†γ 0 and we used the Feynman slash notation /∂ =
γ μ∂μ, etc. In addition, we have assumed that the separation of
�± in momentum and energy is symmetric about Bμ = 0, so
that �± is located at ±Bμ in momentum/energy space. We also
note here that in this low-energy description, the chiral fermion
fields �± couple only to the linear combinations eAμ ± Bμ

of the vector fields Aμ and Bμ. This feature will be important
later in our construction of a bosonic analog of the CSM.

The quasitopological part of the electromagnetic response
of the CSM follows directly from the axial anomaly of a Dirac
fermion in d dimensions [91]. This is because this response is
generated by attempting to remove the coupling to Bμ from
the action via the chiral rotation

� → eiξγ �, (7.4)

with the parameter ξ chosen as

ξ = Bμxμ. (7.5)

This transformation removes the coupling to Bμ from the
action. The physical interpretation of this transformation is
that it moves the two cones of the chiral semimetal to the origin
of the Brillouin zone. However, the path-integral measure is
not invariant under this transformation. Instead, the change in
the path-integral measure generates a new term in the action
of the form (“f ” stands for fermionic)

S
(f )
eff [A,B] = − 2(

d
2

)
!

(
e

2π

) d
2
∫
Rd−1,1

ξ (F )
d
2 . (7.6)

Noting that dξ = Bμdxμ ≡ B (for constant Bμ), and inte-
grating by parts gives the final form of the chiral semimetal
response

S
(f )
eff [A,B] = 2(

d
2

)
!

(
e

2π

) d
2
∫
Rd−1,1

B ∧ A ∧ (F )
d
2 −1. (7.7)

It is also interesting to consider the form (7.6) of the semimetal
response (before integrating by parts), as it has the form of the
“Chern character” terms discussed earlier in the paper, but
with a space-time-dependent angle ξ = Bμxμ appearing in
the integrand.

So, under the chiral transformation of Eq. (7.4), the CSM
action of Eq. (7.3) transforms as

SCSM[�,A,B] → SCSM[�,A,0] + S
(f )
eff [A,B], (7.8)

where we again emphasize that the term S
(f )
eff [A,B] was

generated by the change in the path-integral measure under the
chiral transformation of Eq. (7.4). Thus, we can say that the
electromagnetic response of the CSM with nonzero separation
vector Bμ differs from the response of a CSM with separation
vector Bμ = 0 (i.e., a system where the two chiral parts of the
Dirac fermion sit at the same point in momentum space) by the
term S

(f )
eff [A,B] from Eq. (7.7). For d = 2 and 4, the responses

are

S
(f )
eff [A,B] = e

π

∫
R1,1

B ∧ A (7.9)

and

S
(f )
eff [A,B] = e2

4π2

∫
R3,1

B ∧ A ∧ F, (7.10)

respectively. We see that the general expression of Eq. (7.7)
agrees with the known expressions in low dimensions [91,92].

Having reviewed the basic properties of fermionic chiral
semimetals, we are now ready to describe our construction
of a bosonic analog of a CSM (BCSM). To motivate our
construction, we note that the low-energy theory of the CSM
has (at least) two essential properties which we use as a guide
to construct the BCSM model. The first property is that the
CSM model is constructed from two building blocks, namely,
the chiral fermion theories with fields �±, such that each
building block on its own would have an anomaly in the
U(1) symmetry which sends �s → eiξs �s, s = ±. The second
property (already noted above) is that the two building blocks
�± couple only to the linear combinations eAμ ± Bμ of vector
fields. This property, combined with the axial anomaly of the
Dirac fermion, is responsible for the form of the CSM response
shown in Eq. (7.7). We now describe the construction of a
bosonic theory with very similar properties.

Our low-energy theory for a BCSM in d dimensions (d
even) consists of two copies of the O(d + 2) NLSM with WZ
term, i.e., two copies of the boundary theory of the BIQH state
in d + 1 dimensions. To understand this system, we briefly
recall a few facts from Sec. IV about the boundary theory of
the BIQH state. The boundary of the BIQH state in 2m − 1
dimensions is described by an O(2m) NLSM with WZ term.
Here, the dimension d is related to m by d = 2m − 2 as we
are constructing a model using the boundary theory for the
BIQH state. Finally, recall that under a U(1) transformation
the NLSM field transforms as in Eq. (3.13) (in units where the
boson charge e is set to 1). We showed that the properly gauged
boundary action had an anomaly in this U(1) symmetry, with
the anomaly given explicitly by Eq. (4.33).

To construct an effective theory for a bosonic semimetal
in d dimensions we use two copies of the boundary theory
of the BIQH state. We label the fields of the two copies by
n±, or b�,±, when written in terms of bosons, and we take the
two copies to have opposite level on their WZ term, k± = ±k.
Finally, in the effective theory we model the separation of the
two copies in momentum/energy space by coupling the fields
b�,± to the linear combinations Aμ ± Bμ of the external U(1)
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gauge field Aμ and the momentum/energy shift field Bμ. Then,
our action for the BCSM theory takes the form

S̃BCSM[n+,n−,A,B]

= Sgauged[n+,A + B] + Sgauged[n−,A − B], (7.11)

where Sgauged[n,A] is the properly gauged action for one O(d +
2) NLSM with WZ term and coupled to the external field A (as
constructed in Sec. IV). We put a tilde on S̃BCSM[n+,n−,A,B]
because, as we now discuss, this action has an inconsistency
and must be modified.

Suppose that the vector field Bμ, which is a constant in
the context of the chiral semimetal, instead had a nontrivial
space-time dependence, i.e., dB �= 0. In this case, the action in
Eq. (7.11) is not invariant under the U(1) gauge transformation
b�,± → eiθb�,±, A → A + dθ . Instead, under this transforma-
tion one can show that the change in the action of Eq. (7.11)
is

δθ S̃BCSM[n+,n−,A,B]

= − k

(2π )m−1

m−1∑
p=0

(
m − 1

p

)
[1 + (−1)m−p]

×
∫
Rd−1,1

dθ ∧ (dA)p ∧ B ∧ (dB)m−2−p, (7.12)

where 2m − 1 = d + 1. This equation requires some expla-
nation. To compute it we used the relation (4.32) for the
U(1) anomaly for each gauged WZ theory in Eq. (7.11) (but
coupled to the combinations of fields A ± B instead of A

alone), then expanded the powers (dA ± dB)m−1 using the
binomial expansion, and finally performed an integration by
parts to move one derivative off of B and onto θ .

So, in the presence of a space-time-dependent Bμ, our
putative semimetal model is not invariant under U(1) gauge
transformations. To remedy this, we modify the action by
adding the counterterm

Sct [A,B] = k

(2π )m−1

m−1∑
p=0

(
m − 1

p

)
[1 + (−1)m−p]

×
∫
Rd−1,1

A ∧ (dA)p ∧ B ∧ (dB)m−2−p. (7.13)

The change in this counterterm under A → A + dθ exactly
compensates for the change in Eq. (7.11) under the U(1) gauge
transformation, and so the modified BCSM action

SBCSM[n+,n−,A,B] = S̃BCSM[n+ ,n−,A,B] + Sct [A,B]

(7.14)

is completely gauge invariant even in the presence of a space-
time dependent Bμ. The counterterm Sct [A,B] is the analog
in our bosonic theory of the Bardeen counterterm that one
adds to the theory of a Dirac fermion coupled to vector and
axial vector gauge fields to ensure conservation of the vector
current in the quantum theory [93]. Since this counterterm is
absolutely necessary for the more general case of a space-time
dependent Bμ, we argue that one should include it even in
the simple semimetal setting in which we take Bμ to be a
constant. If we now restrict to the case of a constant Bμ, then

only the p = m − 2 term in the counterterm survives, and the
counterterm reduces to

Sct [A,B] → − 2k

(2π )m−1
(m − 1)

∫
Rd−1,1

B ∧ A ∧ (dA)m−2,

(7.15)

where we used (m − 1
m − 2) = m − 1.

To compute the response of the modified BCSM theory in
Eq. (7.14), we attempt to remove the coupling to B from the
action via the chiral transformation

b�,± → e±iξ b�,±, (7.16)

where ξ = Bμxμ as in the fermionic case. Note that this
transformation takes the opposite sign for the two copies of
the NLSM theory: this is the analog in the bosonic theory of
the chiral transformation of Eq. (7.4) that we performed in
the fermionic case. Using the U(1) anomaly for the boundary
theory of the BIQH state from Eq. (4.33), we find that under
this transformation the original effective action for the BCSM
state transforms as

S̃BCSM[n+, n−,A,B] → S̃BCSM[n+,n−,A,0] + S̃
(b)
eff [A,B],

(7.17)

where

S̃
(b)
eff [A,B] = − 2k

(2π )m−1

∫
Rd−1,1

B ∧ A ∧ (dA)m−2. (7.18)

However, this is not the end of the story as the full action
for the BCSM state contains the counterterm Sct [A,B]. When
we combine Eq. (7.18) with the counterterm (neglecting those
parts of the counterterm containing dB), then we obtain the
final expression for the response of the BCSM,

S
(b)
eff [A,B] = −2km

(
e

2π

)m−1 ∫
Rd−1,1

B ∧ A ∧ (dA)m−2

(7.19)
or, in terms of d,

S
(b)
eff [A,B]

= −2k

(
d

2
+ 1

)(
e

2π

) d
2
∫
Rd−1,1

B ∧ A ∧ (dA)
d
2 −1,

(7.20)

where we have restored the charge e of the bosons. This
equation is the final form of the response of our BCSM
model.

If we set k = 1 and compare the BCSM response in
Eq. (7.20) to the fermionic CSM response in Eq. (7.7), then we
see that the response of the BCSM in d dimensions is larger by
a factor of ( d

2 + 1)!. To understand this number recall that our
BCSM model in d dimensions is constructed from two copies
of the boundary state for a BIQH state in d + 1 dimensions.
Setting d + 1 = 2m − 1, we see that ( d

2 + 1)! = m!, so we
find that the coefficients for the response of the bosonic and
fermionic semimetals in d dimensions differ by exactly the
same factor we found in Sec. IV for the coefficients for
the response of BIQH and FIQH states in one dimension
higher.
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We can also see from Eq. (7.20) that at the level of the
electromagnetic response, the BCSM theory at level k is
equivalent to k copies of the BCSM theory at level 1. However,
as a quantum field theory we certainly expect the theory at level
k to be distinct from k copies of the theory at level 1. This can
be seen very clearly in the case where d = 2. In this case, the
BCSM model consists of two copies of an O(4) NLSM with
WZ terms at levels k and −k, respectively. The O(4) NLSM can
be reformulated in terms of a 2 × 2 SU(2) matrix field, and so
(when the coupling constant for the NLSM takes on a particular
value) the O(4) NLSM with WZ term at level k is equivalent to
the SU(2)k Wess-Zumino-Witten conformal field theory. Now,
the SU(2)k theory is distinct from k copies of the SU(2)1 theory
(this can be seen by comparing central charges), and so we
conclude that even in the simplest case of two dimensions, the
BCSM model at level k is distinct (as a quantum field theory)
from k copies of the BCSM model at level 1. However, it is
entirely possible that k copies of the BCSM model at level
1 could flow under the renormalization group to the BCSM
model at level k. In the simple d = 2 case discussed in this
paragraph, this flow is allowed by Zamolodchikov’s c theorem
[94].

B. Bosonic analog of the parity anomaly
on the boundary of BTI phases

In this section, we show that the half-quantized BIQH on
the BTI boundary, which we derived in Sec. VI, represents
a bosonic analog of the parity anomaly [45–49], which is an
anomaly that is usually associated to massless Dirac fermions
in odd dimensions. To start, we give a brief review of the parity
anomaly in the fermionic case before explaining the bosonic
analog.

To understand the parity anomaly for Dirac fermions in
odd dimensions, consider a theory of a single massless Dirac
fermion � with U(1) symmetry in 2m − 1 dimensions. We
can couple � to an external electromagnetic field A and then
integrate out � to obtain the partition function

Z[A] =
∫

[D�][D�]eiS[�,A], (7.21)

and the effective action for the external field A,

Seff[A] = −i ln(Z[A]). (7.22)

The action S[�,A] (with � a massless fermion) has an
additional discrete symmetry, which is time-reversal symmetry
when the space-time dimension equals 3 mod 4, or charge-
conjugation (particle-hole) symmetry [95] when the space-
time dimension equals 1 mod 4 (in Euclidean space-time
the discrete symmetry in any dimension can be chosen to be
reflection of a single coordinate). However, when one proceeds
to calculate the effective action Seff[A], one finds that there is
no choice of regularization procedure which yields an action
Seff[A] which has this extra discrete symmetry and is also
gauge invariant. In other words, one can choose to preserve
either the discrete symmetry or gauge invariance, but not
both. For example, when Pauli-Villars regularization is used
to compute Seff[A], the mass terms for the regulator fermions
explicitly break the discrete symmetry, and this results in the

appearance of a term in Seff[A] which also breaks the discrete
symmetry.

At this point, it helps to look at a specific example. We
choose the case of a massless Dirac fermion � in three
space-time dimensions with U(1) symmetry and ZT

2 time-
reversal symmetry, which was the case originally studied in
Refs. [45,46]. This case also applies directly to the study of
the surface of the familiar electron topological insulator in
four dimensions. Because of the U(1) symmetry, � can be
coupled to the external field A. To discuss the transformation
of � under time reversal, it is convenient [8] to choose the
gamma matrices in the “mostly minus” metric to be γ 0 = σ z,
γ 1 = iσ y , and γ 2 = −iσ x , where σa , a = x,y,z, are the
three Pauli matrices (and recall that a single Dirac fermion
in three dimensions has two components). With this choice,
the time-reversal transformation of � takes the form

ZT
2 : �(t,x) → iσ y�(−t,x), (7.23)

while the components Aμ of A transform as

ZT
2 : A0(t,x) → A0(−t,x), (7.24)

Ai(t,x) → −Ai(−t,x), i = 1,2. (7.25)

In the absence of a mass term for � the action S[�,A]
for � minimally coupled to A has time-reversal symmetry in
addition to the U(1) symmetry. However, when Pauli-Villars
regularization is used to compute Seff[A], one finds that
Seff[A] contains the time-reversal-breaking CS term for A.4

In addition, the level of this CS term is equal to ± 1
2 , which

is half of the minimum Hall conductance possible for free
fermions in three dimensions (i.e., the CS term with level ± 1

2
is like a half-quantized integer quantum Hall state of fermions).
One can think of the parity anomaly as a quantum version of
the spontaneous breaking of a discrete symmetry. Indeed, the
value of the induced CS term in Seff[A] is determined by the
sign of the mass of the Pauli-Villars regulator fermion, and this
choice of sign is arbitrary in the same way that the choice of
a particular point on the vacuum manifold of a “Mexican hat”
potential is arbitrary.

To demonstrate that a bosonic analog of the parity anomaly
occurs in the boundary of a BTI phase, we first need to
discuss the symmetries of the BTI theory coupled to A. As
we discussed in Sec. III, the NLSM field na transforms under
the ZT

2 or ZC
2 symmetry of the BTI as shown in Eq. (3.14).

Recall that in the case where the Z2 symmetry is time reversal,
we also need to send t → −t in the argument of the NLSM
field na and in the action. For a space-time of dimension d

(which in our convention is the dimension of the boundary of
the SPT phase), the field A transforms under time reversal and

4In a more precise treatment, Pauli-Villars regularization leads to an
effective action which is proportional to the Atiyah-Potodi-Singer eta
invariant of the Dirac operator [47]. In certain cases, the expression
in terms of the eta invariant can then be replaced with the simpler
expression in terms of a CS term with half-quantized level. However,
this more precise treatment using the eta invariant still gives an
effective action that breaks the time-reversal symmetry of the original
Lagrangian for � and A.
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charge conjugation as

ZT
2 : A0(t,x) → A0(−t,x), (7.26)

Ai(t,x) → −Ai(−t,x), i = 1, . . . ,d − 1 (7.27)

and

ZC
2 : Aμ(t,x) → −Aμ(t,x), ∀ μ (7.28)

where x = (x1, . . . ,xd−1) denotes the spatial coordinates.
The gauged WZ action of Eq. (6.24) for the boundary of

the BTI phase has the ZC
2 (for m odd) or ZT

2 (for m even)
symmetry of the BTI, in addition to the invariance under U(1)
gauge transformations. To see this, we simply note that the
counterterms from Eq. (6.25) transform under these two Z2

symmetries as

ZT
2 : S

(r)
ct [n,A] → (−1)mS

(r)
ct [n,A] (7.29)

and

ZC
2 : S

(r)
ct [n,A] → (−1)m+1S

(r)
ct [n,A]. (7.30)

So, the gauged WZ action for the BTI boundary has ZT
2

symmetry for m even and ZC
2 symmetry for m odd.

Now, although the gauged WZ action for the BTI boundary
has theZ2 symmetry, we have seen in Sec. VI that it is possible
to add the symmetry-allowed term μ n2

2m+1 to the Lagrangian
and drive the boundary of the BTI into a phase in which
the Z2 symmetry is spontaneously broken by the condensate
na = ±δa,2m+1. In addition, we showed that when the field na

condenses in this way it leads to a CS term in the effective
action for A on the boundary of the BTI phase. The CS term
in 2m − 1 dimensions breaks ZT

2 symmetry for m even, and
ZC

2 symmetry for m odd, so the effective action for A does not
have the Z2 symmetry of the BTI phase. We also saw that the
CS level turned out to be quantized in half-integer multiples
of m!.

Since the CS term in the effective action for the boundary
breaks the Z2 symmetry of the BTI phase, and since the
boundary also exhibits a “half” BIQH response, we conclude
that the boundary theory of the BTI phase exhibits an anomaly
in the Z2 symmetry which is almost an exact analog of the
parity anomaly of a Dirac fermion in odd dimensions.

There is, however, one important difference between the
bosonic analog of the parity anomaly discussed here and the
original parity anomaly for Dirac fermions. The difference is
the fact that in the bosonic case the spontaneous breaking of
the Z2 symmetry is a classical effect, whereas in the original
fermionic case the Z2 symmetry is broken spontaneously only
at the quantum level (by the choice of the sign of the mass of the
regulator fermions). One likely explanation for this difference
is as follows. Since the NLSM description of the bosonic SPT
phase is an effective field-theory description, i.e., it does not
involve the microscopic degrees of freedom in the SPT phase,
it is entirely possible that the quantum anomaly of any putative
microscopic description of the SPT phase is already captured
at the classical level in the effective NLSM description of
the phase. This is, in fact, exactly the way in which quantum
anomalies of fermionic theories are captured at the classical
level in effective descriptions of those fermionic theories in
terms of gauged WZ actions [39,40]. In addition, we have

already seen in this paper that the pertubative U(1) anomaly
on the boundary of BIQH states is completely captured at
the classical level in the gauged WZ description of the BIQH
boundary. For this reason, we believe that the bosonic analog
of the parity anomaly discussed here is a bona fide quantum
effect that occurs in the boundary theory of a BTI phase, and
that this anomaly would appear as a true quantum anomaly in
a more microscopic description of the boundary of the BTI.
We are therefore led to argue that, due to this anomaly, the
boundary theory of a 2m-dimensional BTI phase cannot be
realized intrinsically in 2m − 1 dimensions without breaking
either the U(1) or the Z2 symmetry of the BTI phase.

Finally, let us describe one more way of understanding
the bosonic analog of the parity anomaly in the specific case
of the boundary theory of the four-dimensional BTI. As we
know, the boundary theory is an O(5) NLSM with WZ term
in three dimensions. Let us investigate what happens in this
theory when we thread a 2π delta function flux of the gauge
field at a point in space. This method of analysis is known to
expose the parity anomaly in the theory of a single massless
Dirac fermion in three dimensions (see, for example, Ref. [14])
and so it should work in this case as well. For simplicity, we
consider a deformation of the O(5) theory in which we set
n5 = 0 [this deformation preserves the U(1) and time-reversal
symmetry]. In this case, the WZ term at level k reduces to a
theta term for the four-component field (n1, . . . ,n4) with the
theta angle equal to θ = πk. In particular, for k = 1 (which
represents the nontrivial BTI phase in four dimensions) the
WZ term with level k = 1 reduces to a theta term with theta
angle θ = π .

Threading a 2π delta function flux at a point x0 in space
will cause the phase of both bosons b1 = n1 + in2 and b2 =
n3 + in4 to wind by 2π about x0, i.e., there is a vortex centered
at x0 in the phase of both bosons. In Appendix B of Ref. [16],
two of us performed a detailed study of vortex configurations
of a single boson b1 or b2 in the O(4) NLSM with theta term and
with θ = π . In particular, we quantized global fluctuations of
the theory over such a vortex background and showed that the
ground state of these fluctuations was doubly degenerate, with
the two degenerate states having charges ± 1

2 . This analysis
confirmed the arguments of Ref. [29] that a vortex in a single
boson b1 or b2 should carry charge ± 1

2 . As stated above,
threading a 2π flux of Aμ at x0 induces a vortex in both b1 and
b2 at that point. This composite object has an integer charge
and so is naively gauge invariant, however, this composite
object can actually be shown to be a fermion [16,29,96]. This
fact clearly shows the anomaly in theory, as there should be
no local fermionic particle with integer charge in a system
made up of bosons of unit charge. The existence of a fermion
with unit charge in the boundary theory of the BTI can also be
inferred from the presence of a CS term at level N3 = 1 in the
response action for the BTI boundary using an argument from
Ref. [18].

C. Z2 symmetry-breaking domain walls on the boundary of BTI

We close this section by analyzing the physics of a domain
wall between two opposite Z2 symmetry-breaking regions on
the boundary of a BTI state in 2m dimensions. In particular,
we derive the low-energy theory that exists on the domain
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wall, and we show that this theory has a U(1) anomaly which
is exactly canceled by the contributions of the CS response
actions for the Z2 symmetry-breaking regions on either side
of the domain wall. We find that the theory which lives on
the domain wall is identical to the boundary theory for the
BIQH phase in 2m − 1 dimensions, and so this demonstration
of anomaly cancellation for domain-wall configurations on the
BTI boundary provides a nice consistency check between our
gauged actions for BIQH and BTI surfaces.

To start, recall from Sec. VI that the boundary of a BTI phase
in 2m dimensions, which is described by an O(2m + 1) NLSM
with WZ term at level k, can exhibit a Z2 symmetry-breaking
response of the form (d = 2m − 1 is again the boundary
dimension)

Seff[A] = ±1

2

k

(2π )m−1

∫
Rd−1,1

A ∧ Fm−1, (7.31)

when the NLSM field na condenses as in Eq. (6.28), i.e.,
n2m+1 = ±1 and all other components of n equal to zero. As
we discussed earlier, this particular condensation pattern is the
only one which preserves the U(1) symmetry of the BTI phase
while breaking the Z2 symmetry.

We now consider a domain-wall configuration between op-
positeZ2-breaking regions on the boundary. Let (x0, . . . ,xd−1)
be the boundary space-time coordinates. We study a configu-
ration of the system in which n2m+1 condenses as n2m+1 = 1
in the region xd−1 > 0, and as n2m+1 = −1 in the region
xd−1 < 0. Hence, the domain wall is in the xd−1 direction.
Then, on the two sides of the domain wall, the electromagnetic
response is given by

Seff,+[A] = 1

2

k

(2π )m−1

∫
Hd−1,1

+
A ∧ Fm−1 (7.32)

and

Seff,−[A] = −1

2

k

(2π )m−1

∫
Hd−1,1

−
A ∧ Fm−1, (7.33)

respectively, where Hd−1,1
+ denotes the half-space {x ∈

Rd−1,1| xd−1 > 0}, and similarly for Hd−1,1
− . If we perform

a gauge transformation, then the change in the total effective
action is

δξSeff,+[A] + δξSeff,−[A] = k

(2π )m−1

∫
Rd−2,1

ξFm−1,

(7.34)

where the integration is over the domain wall which is just
the space Rd−2,1 sitting at xd−1 = 0. Note also that the
contributions from Seff,±[A] add instead of subtract due to
the fact that the domain wall is on the opposite side of the two
regions (the domain wall lies to the right of the region Hd−1,1

+
and to the left of the region Hd−1,1

− , so when we integrate the
total derivative the boundary terms coming from each integral
appear with opposite signs).

Next, we derive the theory which lives on the domain wall
and show that it has a U(1) anomaly which precisely cancels the
gauge transformation from Eq. (7.34). To derive this theory, we
analyze the BTI surface theory in the presence of a domain wall
in n2m+1. Concretely, we assume that the O(2m + 1) NLSM

field takes on the domain-wall configuration

n = {sin[f (xd−1)]N(x0, . . . ,xd−2), cos[f (xd−1)]}, (7.35)

where N is a 2m-component unit vector which depends only on
the coordinates (x0, . . . ,xd−2) on the domain wall, and where
f (xd−1) is a function with the limiting behavior

lim
xd−1→∞

f (xd−1) = 0, (7.36)

lim
xd−1→−∞

f (xd−1) = π. (7.37)

This guarantees that n asymptotes to a configuration with
n2m+1 = ±1 as xd−1 → ±∞. To solve for the theory which
lives on the domain wall, we evaluate the O(2m + 1) NLSM
action (with WZ term) on this configuration. Evaluating the
kinetic term of the NLSM on the domain-wall configuration
is simple, provided that we assume the function f (xd−1) is
sufficiently well behaved so that the integration over xd−1

gives a finite answer. We therefore focus our attention on the
WZ term since any anomalous behavior of the domain-wall
theory should come from this term. The WZ term involves an
extension ñ of the field n into a fictitious extra direction with
coordinate s ∈ [0,1], and so we need to decide how to extend
our domain-wall configuration into this extra direction. Here,
we assume the extension takes the form

ñ = {sin[f (xd−1)]Ñ(s,x0, . . . ,xd−2), cos[f (xd−1)]}, (7.38)

so that all of the s dependence of the extension is in the
extended 2m-component field Ñ, while the function f (xd−1)
still depends only on xd−1.

We now examine how the WZ term of the O(2m + 1)
NLSM reduces on the extended domain-wall configuration ñ
of Eq. (7.38). The analysis is similar (but not identical) to that
in Appendix D for the dimensional reduction of theta terms
in NLSMs on defect configurations of the NLSM field. Recall
that the WZ term takes the form

SWZ[n] = 2πk

A2m

∫
[0,1]×Rd−1,1

ñ∗ω2m, (7.39)

where ω2m is the volume form for the sphere S2m, and [0,1] ×
Rd−1,1 is the extended space-time (which we called B before).
Using the relations

dna = sin(f )dNa + cos(f )Nadf, a = 1, . . . ,2m (7.40)

and

dn2m+1 = − sin(f )df, (7.41)

one can show that on this configuration the volume form ω2m

for n reduces to

ω2m → [sin(f )]2m−1df ∧ ω2m−1, (7.42)

where

ω2m−1 =
2m∑
a=1

(−1)a−1NadN1 ∧ · · · ∧ dNa ∧ · · · ∧ dN2m

(7.43)

is the volume form for Na . Since the WZ term involves the
pullback ñ∗ω2m of the volume form to the extended space-time,
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we find that the WZ term reduces as

SWZ[n] → 2πk

A2m

∫ ∞

−∞
dxd−1 f ′(xd−1){sin[f (xd−1)]}2m−1

×
∫

[0,1]×Rd−2,1
Ñ∗ω2m−1

= 2πk

A2m

(
−

√
π (m)


(
m + 1

2

)) ∫
[0,1]×Rd−2,1

Ñ∗ω2m−1

= − 2πk

A2m−1

∫
[0,1]×Rd−2,1

Ñ∗ω2m−1. (7.44)

We see that the theory localized on the domain wall is an
O(2m) NLSM for the field N, with a WZ term at level −k.
This theory also appears at the boundary theory of the BIQH
phase in 2m − 1 dimensions, as discussed in Sec. IV. The
extra minus sign on the level of the domain-wall theory, as
compared with the level of the boundary theory of the BTI, is
very important. Indeed, from our previous formula (4.32) for
the U(1) anomaly of the O(2m) NLSM with WZ term we see
that, under a gauge transformation, the theory on the domain
wall transforms as

δξSDW[N,A] = − k

(2π )m−1

∫
Rd−2,1

ξFm−1. (7.45)

This exactly cancels Eq. (7.34), which was the contribution
flowing into the domain wall from the Z2-breaking regions
on either side, and so this calculation gives a nice example of
anomaly inflow at the domain walls on the boundary of SPT
phases. It also provides an important consistency check of the
gauged WZ actions calculated in this paper for the boundaries
of BIQH and BTI phases (since it relates the calculation of the
BTI boundary CS response to the calculation of the anomaly
of the BIQH boundary theory).

VIII. CONCLUSION

In this paper, we calculated the electromagnetic response
of bosonic SPT phases with U(1) symmetry in all space-time
dimensions. In particular, we focused our attention on BIQH
phases in odd dimensions and BTI phases in even dimensions.
To calculate the response of these phases, we used the NLSM
description of bosonic SPT phases and the tool of gauged
WZ actions. This enabled us to compute the coefficients
N2m−1 and �2m which determine, via Eqs. (2.1) and (2.2),
the electromagnetic response of BIQH and BTI states in all
odd and even space-time dimensions, respectively. We found
that for BIQH states the coefficient N2m−1 was quantized in
units of m!, and that the nontrivial BTI state in 2m dimensions
has �2m = 2π (m!

2 ). This response for the BTI is equivalent to
a Z2 symmetry-breaking quantum Hall state on the boundary
of the BTI with CS level equal to m!

2 , which is exactly half the
response of the BIQH state which can be realized intrinsically
in the same space-time dimension. In Sec. V we showed that
the value of m! for the CS level can be understood by studying
the transformation of the CS term under large U(1) gauge
transformations on general Euclidean manifolds which may or
may not admit a spin structure. In that section we also applied
this gauge-invariance argument to study the electromagnetic

and gravitational responses of fermionic SPT phases with U(1)
symmetry in odd space-time dimensions.

We then used our gauged WZ actions for the boundaries
of the BIQH and BTI phases to further investigate the physics
of BIQH and BTI states, and to construct other interesting
states. In particular, we showed how two copies of the BIQH
boundary theory could be used to construct an effective theory
for a bosonic analog of a Weyl, or chiral, semimetal (a “bosonic
chiral semimetal” or BCSM state) in any even space-time
dimension. We also showed that the boundary of the BTI
state exhibits a bosonic analog of the parity anomaly of a
Dirac fermion in odd dimensions, and we used this fact to
argue that the boundary theory of the BTI in 2m dimensions
cannot be realized intrinsically in 2m − 1 dimensions while
preserving the symmetry of the BTI state. We also explored
the phenomenon of anomaly inflow at Z2 symmetry-breaking
domain walls on the boundaries of BTI states.

From a technical point of view, one of the most interesting
results of the paper is our explicit construction of gauged
WZ actions for O(2m) and O(2m + 1) NLSMs, and with the
gauge group U(1). This construction allowed us to overcome
the difficulties associated with calculating the electromagnetic
response of bosonic SPT phases from their NLSM description.
In addition, as we reviewed in Appendix A, the problem
of constructing a gauged WZ action is equivalent to the
mathematical problem of constructing equivariant extensions
of the volume form on the target space of the NLSM. Then,
from a mathematical point of view, we can say that we have
succeeded in constructing an equivariant extension of the
volume form ω2m on S2m (this is the BTI case), whereas in
the case of S2m−1 we have constructed an extension of ω2m−1

which is almost, but not quite, equivariantly closed (this is
the BIQH case). The fact that we could not construct an
equivariant extension of ω2m−1 is mathematically equivalent
to the statement that the boundary theory of the BIQH phase
has a perturbative anomaly in the U(1) symmetry, as we expect
based on physical arguments.

Our work in this paper opens up many possible directions
for future investigations. In particular, it would be nice to have
a physical argument along the lines of the one in Ref. [18]
for why the CS level for the BIQH phase is quantized in
units of m! in 2m − 1 dimensions. Perhaps one can find a
physical argument for this quantization by studying gener-
alized braiding processes of extended excitations in gapped
bosonic phases in higher dimensions, but we do not have
any concrete suggestions as to which excitations and braiding
processes might be relevant. Another possible direction would
be to apply the general method of gauging WZ actions from
Ref. [44] to compute the “electromagnetic” response of SPT
phases with the symmetry of a non-Abelian Lie group G. From
a mathematical point of view, it would also be interesting to
investigate whether the theory of G-equivariant cohomology
over an appropriate target manifold could be used to classify
SPT phases with the symmetry of a Lie group G. Finally, it
would be interesting to use the bosonic analog of the parity
anomaly discussed in this paper as a guide to investigate
possible dual descriptions of the boundary of BTI phases in
all dimensions, analogous to the recent investigations into the
dual description of the boundary of the electron topological
insulator and BTI in four space-time dimensions [8–16].
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APPENDIX A: EQUIVARIANT COHOMOLOGY
INTEPRETATION OF GAUGED WESS-ZUMINO ACTIONS

In this Appendix, we review the connection between the
theory of gauged WZ actions and equivariant cohomology.
This allows us to give a concrete mathematical interpretation
of the form of the gauged WZ actions for the boundary theories
of BIQH and BTI states that we derived in Secs. IV and VI of
this paper. Briefly, equivariant cohomology can be thought of
as a generalization of de Rham cohomology to the case where a
continuous group G acts on the manifold. In the cases of inter-
est in this paper the group G is just the group U(1) representing
the charge-conservation symmetry of the SPT phases we study
(i.e., the BIQH and BTI states), and this group acts on the target
space of the NLSM via the rotations shown in Eq. (3.13).
The connection between gauged WZ actions and equiv-
ariant cohomology has been explored in Refs. [43,97–99].
The connection was first discussed explicitly by Witten in
Ref. [43] for the case of two space-time dimensions. Later,
Figueroa-O’Farrill and Stanciu [98,99] considered NLSMs
with a generic target space and in any space-time dimension,
and they gave an explanation of the results of Ref. [44] in terms
of equivariant cohomology. In addition, Wu [100] considered
the equivalent mathematical problem of finding obstructions
to the equivariant extension (to be defined below) of closed
differential forms which are invariant under a group action.
The result of these papers is that the problem of constructing
a gauge-invariant WZ action is equivalent to the problem of
constructing an equivariant extension of the volume form on
the target manifold of the NLSM. We now give a brief review
of equivariant cohomology and the connection to gauged
WZ actions in the case where G = U(1), and then we apply
this knowledge to give a mathematical interpretation of the
counterterms of Eqs. (4.29) and (6.25) which appear in the
gauged WZ actions constructed in this paper.

1. Equivariant cohomology

To introduce equivariant cohomology, we first need to
recall some basic facts about calculus on manifolds. For a
D-dimensional manifold M a vector field V in the coordinate
patch with coordinates y = (y1, . . . ,yD) can be expanded as

V = V a ∂

∂ya
. (A1)

The partial derivatives ∂
∂ya provide a basis for the tangent space

TyM of M at the point y, and a general vector field V is a
section of the tangent bundle TM of M. The differential
forms dya provide a basis which is dual to the basis provided
by ∂

∂ya , i.e., the dya form a basis for the cotangent space T ∗
y M

at the point y. A general differential p-form α is a section of
the bundle whose fiber over the point y is

∧p(T ∗
y M), the pth

exterior power of T ∗
y M.

Now, for any vector field V and p-form α =
1
p!αb1...bp

dyb1 ∧ · · · ∧ dybp we can define the operator iV ,
called interior multiplication by V , by

iV α = 1

(p − 1)!
V aαab2...bp

dyb2 ∧ · · · ∧ dybp . (A2)

So, iV takes a p-form to a (p − 1)-form. For later use we also
note that applying the interior multiplication twice gives zero,
i2
V = 0, and that iV f = 0 for any function (zero form) on M.

The Lie derivative LV of any differential form α along the
vector field V is then given by Cartan’s formula

LV α = d(iV α) + iV (dα) (A3)

or simply

LV = diV + iV d (A4)

in operator form.
We are now ready to introduce U(1)-equivariant cohomol-

ogy over M. To start, we pick some vector field V which
generates a U(1) action, or circle action, on the manifold. This
can be understood concretely in terms of the flow generated
by V as follows. First, recall that a vector field V generates a
flow on the manifold via the set of differential equations

dya(t)

dt
= V a(y1, . . . ,yD), a = 1, . . . ,D. (A5)

The condition that V generate a U(1) action on the manifold
means that this flow carries each point on M along a closed
path, and each point takes the same amount of “time” t to
return to its initial position. Now, define the modified exterior
derivative

d̃ = d − iV . (A6)

Note that d̃ takes a p-form to a linear combination of a (p + 1)-
form and a (p − 1)-form. If we compute the square of d̃ then
we find that

d̃2 = −LV , (A7)

which means that d̃2 = 0 on the subspace of forms which have
a vanishing Lie derivative along V . It is therefore possible to
define the cohomology of the operator d̃ in this subspace of
differential forms in the same way that one defines the ordinary
de Rham cohomology of the exterior derivative d.
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Given this structure, one can then try to understand what
kinds of objects are closed under the action of d̃ . From the
definition of d̃ it is clear that a differential form of a definite
degree will not, in general, be closed under the action of d̃ .
Instead, an equivariantly closed “form” α is actually a formal
linear combination of differential forms of different degrees,
i.e., a section of the bundle whose fiber over the point y is
the exterior algebra

∧
(T ∗

y M) = ⊕D
r=0

∧r (T ∗
y M). For the

purposes of this paper, we are interested in the case where α

is a sum of a form of degree D (the highest possible degree
form on the manifold), and several other forms whose parity
(even or odd) is the same as that of the form of degree D. In
this case, we can expand α as

α =
D′∑
r=0

α(D−2r), (A8)

where α(D−2r) is a differential form of degree D − 2r and

D′ =
{

D
2 D = even,
D−1

2 D = odd.
(A9)

The condition d̃α = 0 then implies that the forms α(D−2r) obey
the set of equations

iV α(D−2r) = dα(D−2r−2), r = 0, . . . ,D′ − 1 (A10a)

iV α(D−2D′) = 0. (A10b)

In these equations, the second line is trivially satisfied in the
case that D is even since in that case D − 2D′ = 0 and so
α(D−2D′) is just a function. The relation dα(D) = 0 is also
trivially satisfied since α(D) is a highest-degree form on M,
and so we have not included it in the set of equations for the
forms that make up α. The form α constructed in this way is
known as an equivariant extension of the form α(D). We now
move on and discuss the connection between these ideas and
the theory of gauged WZ actions.

2. Connection to gauged WZ actions

To understand the connection between equivariant coho-
mology and gauged WZ actions, consider a general NLSM
with D-dimensional target space M (a closed, compact
manifold). We denote the NLSM field by φ = (φ1, . . . ,φD),
so φ labels a point on M. We formulate this NLSM on a
space-time manifold ∂B of dimension D − 1, where B is an
extended space-time of dimension D. So, the NLSM field φ

is a map from ∂B to M. Finally, let α(D)(φ) be the volume
form on the target space M. Then, a WZ term for this NLSM
takes the form (we absorb any constant factors needed for
consistency of the WZ term into the definition of α(D))

SWZ[φ] =
∫
B

φ̃
∗
α(D), (A11)

where φ̃ is an extension of φ into B and φ̃
∗
α(D) again denotes

the pullback of α(D) to B via the map φ̃. In what follows,
we again omit the pullback symbols φ∗ and φ̃

∗
for notational

simplicity.
Now, we suppose that the NLSM has a U(1) symmetry and

we attempt to probe this symmetry by coupling the system to

the external field A. The transformation of the field φ under
the U(1) symmetry is generated by a vector field V , i.e., under
an infinitesimal gauge transformation the field φ transforms as

φa → φa + ξV a, (A12)

where ξ is a small gauge transformation parameter. More gen-
erally, a differential p-form β = 1

p!βa1...ap
dφa1 ∧ · · · ∧ dφap

on M transforms under a small gauge transformation as

β → β + LξV β, (A13)

where LξV is the Lie derivative along the “small” vector field
ξV . We can now use this more general geometric formulation
to try and gauge the WZ term. We should mention that in the
case of a U(1) symmetry it suffices to study the change in the
action under infinitesimal gauge transformations since there is
only one gauge transformation parameter ξ (as opposed to the
non-Abelian case where there are several parameters ξJ with
J indexing the generators of the Lie group).

Under a small gauge transformation, the WZ term trans-
forms as

δξSWZ[φ] =
∫
B
LξV α(D) =

∫
∂B

ξ (iV α(D)), (A14)

where we used the Lie derivative formula (A13), the fact
that dα(D) = 0, and the property iξV = ξ iV of the interior
multiplication. This change can be canceled by a term

S
(1)
ct [φ,A] =

∫
∂B

A ∧ α(D−2), (A15)

where α(D−2) is some (D − 2)-form, provided that α(D−2)

satisfies the equation

iV α(D) = dα(D−2). (A16)

To see this, consider the change in S
(1)
ct [φ,A] when A → A +

dξ . We find a term∫
∂B

dξ ∧ α(D−2) = −
∫

∂B
ξdα(D−2), (A17)

where we performed an integration by parts and ignored
boundary terms (since ∂B has no boundary). At this point,
the candidate gauged WZ action takes the form

S ′
WZ,gauged[φ,A] = SWZ[φ] + S

(1)
ct [φ,A]. (A18)

Now, under a small gauge transformation we find

δξS
′
WZ,gauged[φ,A] =

∫
∂B

A ∧ (LξV α(D−2)), (A19)

which can be reduced to

δξS
′
WZ,gauged[φ,A] =

∫
∂B

ξF ∧ (iV α(D−2)), (A20)

with the help of Eq. (A16), the property i2
V = 0, and an

integration by parts. This change can then be canceled by
a term

S
(2)
ct [φ,A] =

∫
∂B

A ∧ F ∧ α(D−4), (A21)
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where α(D−4) is some (D − 4)-form that satisfies the equation

iV α(D−2) = dα(D−4), (A22)

and so on.
Proceeding in this way, we find that a gauge-invariant WZ

term can be constructed if and only if there exist differential
forms α(D−2r), r = 1, . . . ,D′, such that together with the
volume form α(D) they satisfy Eqs. (A10). Thus, we find that
the problem of constructing a gauge-invariant WZ action is
exactly the same as the problem of constructing an equivariant
extension of the volume form α(D) on the target space manifold
M. We now use this information to reinterpret the gauged WZ
actions for the boundary theories of the BIQH and BTI phases.

3. Application to BIQH and BTI boundary theories

In the BIQH and BTI cases, the vector field V which
generates the U(1) gauge transformations is

V =
m∑

�=1

(
−n2� ∂

∂n2�−1
+ n2�−1 ∂

∂n2�

)
. (A23)

Now, the NLSMs which describe the boundary of the BIQH
and BTI have target spaces S2m−1 and S2m, respectively.
We now consider the mathematical problem of constructing
equivariant extensions of the volume forms ω2m−1 and ω2m

for these two manifolds. In the BTI case, we will see that
an equivariant extension of ω2m exists, and we will give an
explicit formula for it. On the other hand, in the BIQH case we
will attempt to construct an equivariant extension of ω2m−1,
but we will find that it is not quite closed under the action of
d̃ = d − iV . This gives a mathematical interpretation of the
U(1) anomaly that we found for the boundary theory of the
BIQH phase.

We start with the BTI case. Recall from our study of the
boundary theory of the BTI that the construction of the gauged
WZ action involved the forms �(r) from Eq. (6.3). If we apply
interior multiplication by V to these forms, we find

iV �(r) = (m − r)n2m+1dn2m+1 ∧ �(r+1), (A24)

which bears a close resemblance to Eq. (6.4). In addition, for
the volume form ω2m we have

iV ω2m = 1

(m − 1)!
d(n2m+1�

(1)). (A25)

We now use these relations to construct an equivariant
extension of ω2m, i.e., a solution of Eqs. (A10) with α(D) = ω2m

(so D = 2m). To start, we need a form α(2m−2) which satisfies

iV ω2m = dα(2m−2), (A26)

and from Eq. (A25) the answer is obviously

α(2m−2) = 1

(m − 1)!
n2m+1�

(1). (A27)

Next, we need a form α(2m−4) such that

iV α(2m−2) = dα(2m−4), (A28)

and Eq. (A24) tells us exactly how to find such a form.
Proceeding in this way we eventually find that an equivariant

extension of ω2m exists and is given explicitly by

ω̃2m = ω2m +
m∑

r=1

1

(m − r)!(2r − 1)!!
(n2m+1)2r−1�(r).

(A29)

The terms appearing in the equivariantly closed form ω̃2m

are exactly the same as the terms which appear multiplying
the factors A ∧ F r−1 in the counterterms of Eq. (6.25) for the
gauged action of the BTI boundary. So, our construction of a
gauged WZ action for the BTI boundary is equivalent to the
construction of an equivariant extension of the volume form
ω2m on S2m.

Moving on to the BIQH phase, we recall that in the BIQH
case the construction of the gauged WZ action involved
the forms �(r) defined in Eq. (4.13). Applying the interior
multiplication by V to these forms gives

iV �(r) = 1
2d�(r+1), (A30)

which bears a close resemblance to Eq. (4.14). We also saw that
the volume form ω2m−1 for S2m−1 could be written in terms of
the �(r) as ω2m−1 = 1

(m−1)!�
(0). Using this fact, and Eq. (A30),

we can then attempt to construct an equivariant extension of
ω2m−1, using the same procedure as in the BTI case. In this
way, we find a candidate for an equivariant extension of ω2m−1,
which is given explicitly by

ω̃2m−1 = ω2m−1 + 1

(m − 1)!

m−1∑
r=1

1

2r
�(r). (A31)

However, this object is not quite closed under the action of
d̃ = d − iV , and instead we find that

d̃ω̃2m−1 = − 1

(m − 1)!

1

2m−1
. (A32)

In fact, what has happened is that the second line of Eqs. (A10)
fails to hold in this case. This failure of ω̃2m−1 to be
equivariantly closed is the mathematical reason for why the
BIQH boundary action is not gauge invariant, but instead has
a pertubative anomaly in the U(1) symmetry.

It turns out that there is a simple mathematical explanation
for why an equivariant extension of ω2m−1 does not exist in
this case.5 For the U(1) symmetry considered in this paper
[see Eq. (3.13)], the action of the group U(1) on S2m−1 is free,
i.e., only the identity element of U(1) leaves all the points in
S2m−1 fixed. In this case, the U(1)-equivariant cohomology of
S2m−1 is equal to the ordinary de Rham cohomology of the
quotient manifold S2m−1/U(1) (see, for example, Ref. [101]).
Now, for the specific U(1) symmetry we have chosen the
quotient is just S2m−1/U(1) = CPm−1, and we know that
the cohomology ring of CPm−1 is generated by the Kähler
two-form K (which we will meet in Appendix B). This
means that only the even-dimensional cohomology groups of
CPm−1 are nontrivial. On the other hand, the volume form of
S2m−1 is a (2m − 1)-form, i.e., a form of odd degree. Since

5This explanation was pointed out to us by M. Stone and we thank
him for sharing it with us.
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the U(1)-equivariant cohomology of S2m−1 is equivalent to
the ordinary cohomology of CPm−1, we conclude that an
equivariant extension of ω2m−1 does not exist for this U(1)
symmetry (if such an extension did exist, then it would imply
the existence of a nontrivial closed form of odd degree on
CPm−1, but no such form exists).

APPENDIX B: CHERN CHARACTER ON CPm

In this Appendix, we compute the integral∫
X

(
F

2π

)m

(B1)

for the specific case of X = CPm (complex projective space
with m complex dimensions). When the field strength F

satisfies the Dirac quantization condition of Eq. (5.5) in Sec. V
we find that the integral can be equal to one. This answer is
already well known, but it provides a nice example of the
need for the peculiar quantization of the CS level on generic
manifolds, as we discussed in Sec. V.

To compute the integral in Eq. (B1), we are going to need
some background information about the complex projective
space CPm. We choose to follow the discussion in Ref. [55].
Note that in this section we depart from previous notation
and use an overline z̄, and not a star, to denote the complex
conjugate of a complex number z. For CPm the second Betti
number is b2 = dim[H2(X,R)] = 1, meaning that CPm has a
single nontrivial two-cycle. This two-cycle, which we call C,
is essentially a copy of CP1. To understand this two-cycle, and
the element of H 2(X,R) which is dual to it, first introduce the
Kähler form K on CPm,

K = i

2
gab dza ∧ dz̄b, (B2)

where

gab = 1

D2
[Dδab − z̄azb] (B3)

and

D = 1 +
m∑

c=1

zcz̄c. (B4)

Here, za , a = 1, . . . ,m, are complex coordinates which each
take values on the whole complex plane C. The indices of za

can be raised and lowered with δab and δab, and as usual there is
an implied sum over any index which appears once in a lower
position and once in an upper position in any expression. The
quantity gab is known as the Fubini-Study metric and it satisfies
ḡab = gba . In addition, we have dK = 0, so K is closed. That
K is closed follows immediately from the fact that it can be
written as

K = i

2
∂∂ ln(D), (B5)

where ∂ ≡ ∂za dza , ∂ ≡ ∂za dza are the Dolbeault operators (on
any Kähler manifold one has K = i

2∂∂ρ, where the function ρ

is called the Kähler potential). Since the exterior derivative de-
composes as d = ∂ + ∂ , and since the Dolbeault operators sat-

isfy ∂2 = ∂
2 = {∂,∂} = 0, we immediately see that dK = 0.

Hence, the Kähler form is closed. However, it is not exact, and

so it can be used to construct nontrivial configurations of F on
CPm.

The Kähler form K is a representative of the nontrivial
element of H 2(X,R). In the coordinate patch that we have
chosen [in which K takes the form shown in Eq. (B2)], we can
take the nontrivial two-cycle C to be any one of the m complex
planes whose coordinates are za . For example, let us take C to
be the z1 plane. In that plane (with all other za = 0) we have

K →
(

i

2

)
dz1 ∧ dz̄1

(1 + z1z̄1)2
. (B6)

If we introduce the real coordinates x1 and x2 by z1 = x1 + ix2,
then we have dz1 ∧ dz̄1 = −2idx1 ∧ dx2, and integrating K

over the (x1,x2) plane gives∫
C
K =

∫
dx1 ∧ dx2(

1 + x2
1 + x2

2

)2 = π. (B7)

We learn from this that a normalized form with unit flux
through C is K

π
, so we should set F

2π
= K

π
or just

F = 2K (B8)

in order to satisfy the Dirac quantization condition of Eq. (5.5).
Now, in order to compute the integral in Eq. (B1) we need

to do the integral ∫
CPm

Km, (B9)

so we need to compute the wedge product of K with itself m

times. We have

Km =
(

i

2

)m 1

D2m
dza1 ∧ dz̄b1 ∧ · · · ∧ dzam ∧

dz̄bm

m∏
r=1

[
Dδarbr

− z̄ar
zbr

]
. (B10)

To simplify this, first note that

dza1 ∧ dz̄b1 ∧ · · · ∧ dzam ∧ dz̄bm

= εa1...amεb1...bmdz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m. (B11)

Now, we have to contract εa1...amεb1...bm with the product
m∏

r=1

[
Dδarbr

− z̄ar
zbr

]
. (B12)

When expanded out, this product contains 2m terms. However,
most of these terms contain two or more factors of z̄ar

zbr
,

for example, a term might contain two of them such as
z̄a1zb1 z̄a2zb2 . All such terms with two or more factors of z̄ar

zbr

will vanish when contracted with εa1...amεb1...bm because of the
antisymmetry of the Levi-Civita symbol, so we only have to
worry about terms with zero or one factor of z̄ar

zbr
. The term

with no factors of z̄ar
zbr

is

Dm

m∏
r=1

δarbr
, (B13)

and we have

εa1...amεb1...bmDm

m∏
r=1

δarbr
= m!Dm. (B14)
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Then, there are m terms which each have a single factor of
z̄ar

zbr
. The first such term is

−z̄a1zb1Dm−1
m∏

r=2

δarbr
, (B15)

and we find

−εa1...amεb1...bm z̄a1zb1Dm−1
m∏

r=2

δarbr

= −Dm−1(m − 1)!
m∑

c=1

zcz̄c. (B16)

So, all together we find that (recalling that there are m

terms with one factor of z̄ar
zbr

and they all give an identical
contribution)

εa1...amεb1...bm

m∏
r=1

[
Dδarbr

− z̄ar
zbr

] = m!Dm−1, (B17)

where we used (D − ∑m
c=1 zcz̄c) = 1. We finally obtain

Km = m!

(
i

2

)m
dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m

Dm+1
. (B18)

To do the integral over CPm we now introduce 2m real
coordinates xj , j = 1, . . . ,2m, defined by zj = x2j−1 + ix2j .
Let r2 = ∑2m

j=1 x2
j . The integral becomes∫

CPm

Km = m!
∫

d2mx
1

(1 + r2)m+1

= m! A2m−1

∫ ∞

0
dr

r2m−1

(1 + r2)m+1

= m! A2m−1
1

2m

= πm, (B19)

where we used spherical coordinates on R2m to do the integral.
Setting F = 2K , we then find that∫

CPm

(
F

2π

)m

= 1. (B20)

APPENDIX C: FROM BIQH TO BTI STATES VIA
DIMENSIONAL REDUCTION

In this Appendix, we discuss a dimensional reduction
procedure which allows one to generate a BTI state in 2m − 2
dimensions from a BIQH state in 2m − 1 dimensions. The
procedure is carried out at the level of the effective action
Seff[A] and is similar, but not equivalent, to the procedure used
in Ref. [60] to obtain the time-reversal invariant topological
insulator in four dimensions from an integer quantum Hall
state of fermions in five dimensions.

To start, we imagine separately gauging the U(1) symmetry
associated with each species of “boson” b� (� = 1, . . . ,m)
in the NLSM description of the BIQH state in 2m − 1
dimensions. That is, we consider an O(2m) NLSM describing
a BIQH state, and we study this state with a U(1)m symmetry

which acts on the bosons as

b� → eiξ�b�, � = 1, . . . ,m (C1)

where ξ� are a set of m-independent gauge transformation
parameters. We then couple this system to m U(1) gauge fields
A(�)

μ .
In this paper, we have not calculated the response of the

O(2m) NLSM when this U(1)m subgroup is gauged. However,
from our results in this paper we can make an argument for
what the general form should be. The effective response action
Seff[A(1), . . . ,A(m)] should have at least two properties: (i) it
should reduce to a CS response with level N2m−1 = m! for
the gauge field A if we set A(�) = A ∀ �, and (ii) it should be
invariant under any permutation of the labels � of the different
gauge fields. The second property follows from the fact that the
action for the O(2m) NLSM is invariant under any permutation
of the labels � of the bosons b�. This fact is not completely
obvious, and so we prove it now.

The O(2m) NLSM with theta term or WZ term is invariant
under the action of the alternating group A2m of even signature
permutations of the labels a = 1, . . . ,2m of the components
na of the NLSM field n. Now, the permutations of the labels
� = 1, . . . ,m of the bosons b� consist of two transpositions
in the symmetric group S2m. This is because a permutation
which swaps � with �′ must swap n2�−1 with n2�′−1 and
n2� with n2�′ . Since the signature of a permutation σ in
the symmetric group is given by sgn(σ ) = (−1)NT , with NT

the number of transpositions in σ , it immediately follows
that the permutations of the boson labels � are contained within
the group A2m. This proves property (ii).

Using properties (i) and (ii), we can now argue that the
response action for a gauged U(1)m symmetry must take the
form

Seff[A
(1), . . . ,A(m)]

= k

(2π )m−1m!

∫
M

(A(1) ∧ dA(2) ∧ · · · ∧ dA(m)

+ permutations). (C2)

IfM has no boundary, then we can integrate by parts and write
this simply as

Seff[A
(1), . . . ,A(m)]

= k

(2π )m−1

∫
M

A(m) ∧ dA(1) ∧ · · · ∧ dA(m−1), (C3)

or we could choose some other ordering of the gauge fields
A(�). We now describe the dimensional reduction procedure
which allows one to derive the electromagnetic response for
the BTI state in 2m − 2 dimensions from this response action
for the BIQH state in 2m − 1 dimensions. For concreteness,
we work on flat space-time with spatial coordinates xj , j =
1, . . . ,2m − 2.

To obtain the BTI state from the higher-dimensional BIQH
state, we first compactify the space by wrapping the x2m−2

direction into a circle, which turns the space R2m−2 into the
“cylinder” R2m−3 × S1. We then thread a π flux of the gauge
field A(m) through the hole in the cylinder, and finally shrink
the circumference of the cylinder to zero. This leaves us with a
response action for a phase in 2m − 2 space-time dimensions.
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Mathematically, this procedure assumes the following con-
figuration of gauge fields A(�): (i) A(�), � = 1, . . . ,m − 1, are
independent of x2m−2 and have their last component A

(�)
μ=2m−2

equal to zero, (ii) the components A(m)
μ , μ = 0, . . . ,2m − 3,

of the mth gauge field are equal to zero, and (iii) the last
component of A(m) satisfies

∫
dx2m−2 A

(m)
2m−2 = π .

Under these assumptions, the effective action for the BIQH
phase with gauged U(1)m symmetry reduces as

Seff[A
(1), . . . ,A(m)]

→ πk

(2π )m−1

∫
R2m−3,1

dA(1) ∧ · · · ∧ dA(m−1). (C4)

If we now break the remaining U(1)m−1 symmetry of this phase
down to U(1) by setting A(�) = A for � = 1, . . . ,m − 1, then
we obtain (with F = dA)

Seff[A
(1), . . . ,A(m)] → πk

(2π )m−1

∫
R2m−3,1

Fm−1, (C5)

which is a response action of the form of Eq. (2.2) with
response parameter �m−1 = π (m − 1)!k. This is exactly the
response action for a BTI phase in 2m − 2 dimensions, so the
dimensional reduction procedure described here does allow
one to obtain the BTI response action from the BIQH response
action in one higher dimension.

The main difference between the dimensional reduction
procedure shown here and the procedure used in Ref. [60] is
that in our procedure we only thread π flux of one flavor �

of gauge field A(�) through hole in the cylinder. On the other
hand, the procedure in Ref. [60] [in which there is only a single
U(1) gauge field A] is equivalent to threading π flux of all the
gauge fields A(�). This second method does not give the proper
quantization of the parameter �m−1 for the BTI phase in one
lower dimension. The answer turns out to be too large by a
factor of m. The physical reason for the different dimensional
reduction procedure needed to go from BIQH to BTI states
can be seen from our alternative calculation in Sec. IV of the
BIQH response. There we showed that threading 2π flux of
the external gauge field A generates a vortex in all m bosons
b�, and so it creates m excitations. This explains why the more
familiar dimensional reduction procedure of threading π flux
for A gives an answer which is m times too large.

APPENDIX D: DIMENSIONAL REDUCTION FORMULAS
FOR THETA TERMS IN NONLINEAR SIGMA MODELS

In this Appendix, we derive a general dimensional reduction
formula for theta terms of O(D + 2) NLSMs in D + 1 dimen-
sions. The formula shows how the theta term of the NLSM
can reduce to a theta term for a lower-dimensional NLSM
when evaluated on a “defect configuration” of the NLSM field.
The formula we derive applies to any space-time dimension
D + 1, and defects of any codimension, with the simplest cases
being vortices and hedgehog defects. The physical content of
the dimensional reduction formula can be summarized in the
following way: a topological defect of (spatial) codimension
(q + 1) in an O(D + 2) NLSM with theta term can trap an
O(D − q + 1) NLSM with theta term in its core. The theta
angle of the lower-dimensional NLSM is related to that of the
original NLSM in a simple way which we calculate below.

We use a special case of this formula in the last subsection of
Sec. IV to study vortices in the NLSM description of the BIQH
state, but the general result presented in this appendix should
be very useful for working with these models. Dimensional
reduction of topological terms in NLSMs was also considered
in Appendix C of Ref. [79], but to the best of our knowledge the
general formula presented in this appendix has not appeared
before in the literature. Finally, we also remark that the formula
presented here can also be used when WZ terms are present,
as the form of the WZ term is similar to the form of the theta
term.

To start, recall the theta term

Sθ [n] = θ

AD+1

∫
RD,1

n∗ωD+1 (D1)

for a NLSM with field n(t,x) in D + 1 space-time dimensions,
where t represents the time, and x = (x1, . . . ,xD) represents
the spatial coordinates. Here, ωD+1 is the volume form for the
sphere SD+1 which was introduced in Eq. (3.6). The integral
is over (D + 1)-dimensional Minkowski space-time RD,1. To
describe the defect configurations considered here, we first
decompose the total space-time as

RD,1 = Rq+1 × RD−(q+1),1, (D2)

and we further decompose the first factor into (q + 1)-
dimensional spherical coordinates as

Rq+1 = [0,∞) × Sq. (D3)

Here, q is a positive integer which is going to be related to the
codimension of the defect in the NLSM field.

We introduce coordinates r ∈ [0,∞) and s = (s1, . . . ,sq)
to parametrize Rq+1 = [0,∞) × Sq . The precise nature of
the coordinates s for Sq will not be important to us here.
We also use t and y = (y1, . . . ,yD−(q+1)) to denote the
remaining coordinates onRD−(q+1),1. The defect configuration
we consider takes the form

n(t,x) = {sin[f (r)]N(t,y), cos[f (r)]m(s)}, (D4)

where N is a (D − q + 1)-component unit vector which
depends only on the coordinates (t,y) for RD−(q+1),1, m is
a (q + 1)-component unit vector which depends only on the
coordinates s for Sq , and where f (r) is a function obeying the
boundary conditions

f (0) = π

2
, (D5)

lim
r→∞ f (r) = 0. (D6)

Physically, this form of n describes a defect of spatial
codimension q + 1 in which the field m takes on a nontrivial
configuration on the sphere Sq . The field N then describes
a lower-dimensional NLSM which lives in the core of this
defect, and the core size is controlled by the profile of the
function f (r). The nontriviality of the configuration of m is
captured by the winding number nq of m on Sq :

nq = 1

Aq

∫
Sq

m∗ωq. (D7)

After some algebra, one can show that the pullback n∗ωD+1

of the volume form for the original NLSM field n will reduce
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on this configuration as

n∗ωD+1 → (−1)(D−q)(q+1)+1{sin[f (r)]}D−q{cos[f (r)]}q
× f ′(r)dr ∧ m∗ωq ∧ N∗ωD−q . (D8)

This formula can be derived from the formula for n∗ωD+1 by
using the fact that wedge products of the differential of any
coordinate with itself will vanish. This fact strongly constrains
the terms which survive in n∗ωD+1 once one assumes that n is
in the defect configuration of Eq. (D4). Now, we just need to
do the integrals over the radial direction (parametrized by r)
and the sphere Sq to find the reduced theta term for N. For the
radial integral we have

Ir ≡ −
∫ ∞

0
dr {sin[f (r)]}D−q{cos[f (r)]}qf ′(r)

=
∫ π

2

0
df [sin(f )]D−q[cos(f )]q

= 
(

D−q+1
2

)


(
q+1

2

)
2

(
D
2 + 1

) . (D9)

Combining this with Eq. (D7) for the winding of the defect
in the m field, we find that the theta term of Eq. (D1) for n
reduces as

Sθ [n]

→ (−1)(D−q)(q+1) θIr

AD+1

∫
Sq

m∗ωq

∫
RD−(q+1),1

N∗ωD−q

= θeff

AD−q

∫
RD−(q+1),1

N∗ωD−q, (D10)

where the effective theta angle for the lower-dimensional
NLSM is

θeff = (−1)(D−q)(q+1)nq θ, (D11)

and where we used the formula


(

D−q+1
2

)


(
q+1

2

)
2

(
D
2 + 1

) Aq

AD+1
= 1

AD−q

. (D12)

So, we see that on this defect configuration the original theta
term for n has reduced to a theta term for the field N which
lives in the core of the defect. In addition, from Eq. (D11) we
see that the theta angle θeff for this lower-dimensional NLSM
is simply related to the original theta angle by a sign factor
(−1)(D−q)(q+1) and by multiplication by the winding number
nq of the defect in m.

APPENDIX E: ELECTROMAGNETIC RESPONSE OF O(2)
NLSM IN ONE SPACE-TIME DIMENSION

In this Appendix, we derive the electromagnetic response
of the O(2) NLSM with theta term, which represents an analog
of the BIQH state in 1 space-time dimension. In the last
subsection of Sec. IV we presented an alternative derivation of
the electromagnetic response of the O(2m) NLSM with theta
term at θ = 2πk in 2m − 1 dimensions, in which we were able
to relate the level N2m−1 of the CS term in the response for
the O(2m) NLSM to the level N1 for the response of the O(2)
NLSM at θ = 2πk. Specifically, we found that the two levels

were related as

N2m−1 = (m!)N1. (E1)

We now derive the formula

N1 = −k (E2)

for the O(2) NLSM with θ = 2πk, which we then use to
complete our alternative derivation at the end of Sec. IV of the
formula N2m−1 = −(m!)k for the CS response of the O(2m)
NLSM with θ = 2πk.

We begin the derivation by parametrizing the O(2) field
as n = {cos(ϕ), sin(ϕ)} or as b1 = eiϕ in terms of the boson
b1 = n1 + in2. In terms of the angular variable ϕ the action
for the O(2) NLSM with theta term takes the form

S[n] =
∫ T

0
dt

{
1

2g
(∂tϕ)2 + θ

2π
∂tϕ

}
. (E3)

Here, we have made the calculation as concrete as possible
by considering a finite-time interval [0,T ), and we assume
periodic boundary conditions for the boson b1 in the time
direction. This leaves open the possibility that ϕ can wind
around the time direction, i.e., we can have configurations
in which ϕ(t + T ) = ϕ(t) + 2πn for an integer n. As in the
higher-dimensional cases, we will be interested in the limit
g → ∞. In this one-dimensional case, this limit just projects
onto the ground state (or states) of this quantum mechanical
system (in higher dimensions g → ∞ corresponds to the
disordered phase of the model).

The U(1) symmetry which acts on b1 as b1 → eiξ b1 then
acts on ϕ as

U(1) : ϕ → ϕ + ξ. (E4)

We would now like to couple ϕ to a U(1) gauge field A = Atdt .
For the boundary conditions we are considering we can write
At in the general form

At = At + δAt , (E5)

where At = 1
T

∫ T

0 dt At and
∫ T

0 dt δAt = 0. This is equivalent
to the statement that the closed form A can be written as
an exact part plus a piece which has a nonvanishing integral
around the nontrivial one-cycle in the time direction since
we assumed periodic boundary conditions in time. We can
always remove the exact part δAt from At by a small U(1)
gauge transformation ϕ → ϕ + ξ , A → A + dξ with

∫
dξ =

0. Therefore, we will just work with the constant part At in
what follows.

The gauged O(2) NLSM action is obtained by the standard
minimal coupling procedure

Sgauged[n,A]

=
∫ T

0
dt

{
1

2g
(∂tϕ − At )

2 + θ

2π
(∂tϕ − At )

}
, (E6)

however, there is one subtle point here. This action is invariant
under small and large U(1) gauge transformations, where by
a large U(1) gauge transformation we mean a transformation
in which

∫
dξ �= 0. Now, if we only cared about invariance

under small U(1) gauge transformations, we could just as well
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have used the action

S ′
gauged[n,A] =

∫ T

0
dt

{
1

2g
(∂tϕ − At )

2 + θ

2π
∂tϕ

}
, (E7)

which does not involve minimal coupling inside the theta term.
This form is more relevant in cases in which one is interested
in enforcing certain discrete symmetries at the expense of
large U(1) gauge invariance, as could be the case in the
investigation of global anomalies in discrete symmetries of this
theory at θ = π (compare with the discussion for fermionic
systems in one dimension in Ref. [95]). This could be relevant
for studies of the boundary states of SPT phases in two
space-time dimensions. In our case, however, we are interested
in the O(2m) NLSM in 2m − 1 dimensions as a low-energy
description of a bosonic lattice model which can be coupled
to a compact U(1) gauge field, and so we gauge the theory in
such a way as to preserve this large U(1) gauge invariance. With
these remarks in mind, we now proceed with the computation.

From Eq. (E6) the momentum conjugate to ϕ is p =
1
g

(∂tϕ − At ) + θ
2π

, and the Hamiltonian is

H = g

2

(
p − θ

2π

)
+ pAt . (E8)

To quantize, we impose the commutation relations [ϕ,p] = i

(we seth̄ = 1 here), and we use the Schrödinger representation
p = −i∂ϕ . The eigenfunctions of p and H are then the Fourier
modes ψn(ϕ) = 1√

2π
einϕ , n ∈ Z. We now restrict ourselves

to the case of θ = 2πk and g → ∞, which is the case for
which we are trying to calculate the electromagnetic response.
Then, the ground state is ψk(ϕ) = 1√

2π
eikϕ ≡ 〈ϕ| G.S.〉, and

the partition function (vacuum-to-vacuum transition function)
in this case is

Z[A] = 〈G.S.|e−iHT |G.S.〉 = e−ikT At (E9)

or in terms of the original field A = Atdt ,

Z[A] = e−ik
∫ T

0 dt At = e−ik
∫

A. (E10)

The effective action is then

Seff[A] = −i ln(Z[A]) = −k

∫
A, (E11)

from which Eq. (E2) immediately follows.
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