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Capacitance and compressibility of heterostructures with strong electronic correlations

Kevin Steffen,1,* Raymond Frésard,2 and Thilo Kopp1

1Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
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Strong electronic correlations related to a repulsive local interaction suppress the electronic compressibility
in a single-band model, and the capacitance of a corresponding metallic film is directly related to its electronic
compressibility. Both statements may be altered significantly when two extensions to the system are implemented
which we investigate here: (i) we introduce an attractive nearest-neighbor interaction V as antagonist to the
repulsive onsite repulsion U , and (ii) we consider nanostructured multilayers (heterostructures) assembled from
two-dimensional layers of these systems. We determine the respective total compressibility κ and capacitance C

of the heterostructures within a strong coupling evaluation, which builds on a Kotliar-Ruckenstein slave-boson
technique. Whereas the capacitance C(n) for electronic densities n close to half-filling is suppressed, illustrated
by a correlation induced dip in C(n), it may be appreciably enhanced close to a van Hove singularity. Moreover,
we show that the capacitance may be a nonmonotonic function of U close to half-filling for both attractive and
repulsive V . The compressibility κ can differ from C substantially, as κ is very sensitive to internal electrostatic
energies which in turn depend on the specific setup of the heterostructure. In particular, we show that a capacitor
with a polar dielectric has a smaller electronic compressibility and is more stable against phase separation than
a standard nonpolar capacitor with the same capacitance.
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I. INTRODUCTION

The experimental and theoretical investigation of oxide
heterostructures has advanced significantly in recent years,
not least with the discovery of a metallic state at the interface
of two bulk band insulators LaAlO3 and SrTiO3 [1]. It is the
electronic reconstruction in the vicinity of the interface, which
generates the metallic state [2,3] and allows for the coexistence
of superconductivity and magnetism [4,5]. Furthermore, it is
suggested to cause the formation of phase-separated states
[6–9]; even a state with negative electronic compressibility at
the interface has been identified [10,11].

Electronic devices are generically heterostructures where
functionalities are determined by interfaces and surfaces.
The conventional semiconductor physics was fascinatingly
successful in this respect. Heterostructures with transition-
metal oxides may come to rival the silicon-based systems
provided that electronic mobilities can be sustained suffi-
ciently high [12]. The recent progress in the fabrication of
multilayered systems makes it possible to manufacture stable
polar nanostructures with physical properties that allow to
functionalize oxide interfaces and surfaces [13].

One of the advantages of oxide heterostructures is the
possibility to generate strongly correlated electronic states
[14]. High-temperature superconductivity, the transition to a
Mott insulating state, as well as exotic magnetism are particular
manifestations of strong electronic correlations. What is the
impact of strong correlations on the electronic reconstruction
in heterostructures? In this paper, we focus on the electronic
compressibility controlled by the electronic density at the
respective interfaces and surfaces. The density at interfaces
can be tuned by gate biases, in fact, by at least an order
of magnitude in the case of LaAlO3/SrTiO3. Moreover, as
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the electronic compressibility is intimately related to the
capacitance, the question arises as to how the capacitance is
controlled by strong electronic interactions, in dependence on
the electronic density.

Long-range Coulomb interactions generate a negative
compressibility in a dilute homogeneous electron system.
Corresponding analytical calculations in perturbation theory
are supported by the results of quantum Monte Carlo evalua-
tions [15–17]. It is mostly the exchange interaction which is
responsible for this behavior. Electronic exchange produces
a negative compressibility on account of the formation of
exchange holes, and capacitances with electrodes comprising
such a dilute electron systems may be enhanced well beyond
their geometrical capacitance value [10,18–20]. For the case
of very dilute electron systems, Wigner crystallization is
suggested to explain observed capacitance enhancements [21].

In this work, we want to investigate systems for intermedi-
ate filling, that is, we do not consider the dilute homogeneous
electron system where exchange becomes so pronounced. We
focus on a single-band lattice system and consider only onsite
and nearest-neighbor interaction, and evaluate compressibility
and capacitance of the electronic system. The capacitance of
interacting electrons in a ring geometry pierced by a magnetic
flux was introduced by Büttiker [22], and the flux-dependent
capacitance was evaluated for a disordered electronic system
with electron interactions represented by an extended Hubbard
model [23]. Here, we will not consider inhomogeneous
systems; this is beyond the scope of this work. Inhomogeneities
are introduced exclusively through the multilayer setup of the
planar heterostructure.

An investigation of the capacitance of multilayers with
strongly correlated materials has been conducted recently by
Hale and Freericks [24]. They considered a heterostructure
with noninteracting leads, however, with a barrier represented
by a Falicov-Kimball model [25], and they identify an
enhancement in the capacitance with increasing thickness
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of the barrier [14,24]. We evaluate a very different, rather
complementary setup: we build the capacitance from a pair
of two-dimensional (2D) metallic electrodes which for them-
selves represent correlated electron systems and the barrier
in-between is a polar or nonpolar dielectric material.

In these systems with sizable band filling, the long-range
Coulomb interaction is screened within the metallic plates
and the exchange does not play a dominant role in the
compressibility. Instead, short-range interactions control the
compressibility, apart from the kinetic term. Also, further one-
particle contributions such as spin-orbit coupling [7,26–28]
or transverse potential profiles [9] can have an impact on the
compressibility. We will briefly address systems with Rashba
spin-orbit coupling in the last part of Sec. V.

The repulsive onsite Coulomb interaction is screened by the
polarization of neighboring atoms, for example, in the cuprates
by the polarization of oxygen ions [29,30]. The screening
depends on the excitations of the local cluster of atoms. It can
be quite different for the nearest-neighbor interaction term and
produce an attractive nearest-neighbor interaction, as in certain
iron pnictides [31,32]. Polaronic effects from strong electron-
lattice coupling may enhance an attractive nearest-neighbor
interaction [33]. For LaAlO3/SrTiO3 polaronic effects have
been observed [34] and investigated within a first-principles-
based scheme [35].

A repulsive onsite interaction U will be effective close to
half-filling and it will generically lead to a filling-dependent
suppression of the compressibility. As antagonist to the
repulsive onsite interaction we introduce an attractive nearest-
neighbor interaction V < 0. The nearest-neighbor interaction
V can generate a charge instability [36], even for large U if
the electronic density is not too close to half-filling. A nearest-
neighbor repulsive interaction, on the other hand, is expected to
rather enhance the suppression of the compressibility through
the onsite Coulomb repulsion. It is only for the heterostructures
with dilute electronic systems [20] that the exchange term from
the repulsive nonlocal interaction increases the compressibility
significantly. The sign of the nearest-neighbor interaction has
to be determined from a careful microscopic analysis of the ef-
fective (screened or even overscreened) interactions in the het-
erostructure. Such an analysis is not the scope of this work; we
focus on the similarly intriguing question as to how electronic
correlations modify the capacitance of the heterostructure for
specified interaction terms with scales U and V .

Whereas the (inverse) electronic compressibility is related
to the second derivative of the free energy with respect to the
total number of mobile electrons, the capacitance is related
to the difference in electronic charge of subsystems. These
subsystems are characterized by an electrochemical potential
difference (voltage), which is the conjugate thermodynamic
variable with respect to the difference in electronic charges.
The two density-response functions (compressibility and dif-
ferential capacitance) appear to be very similar and, in fact, the
standard experiment to measure the electronic compressibility
is the determination of capacitances.

The positivity of the compressibility is a stability criterion,
as well as the positivity of the capacitance of the heterostruc-
ture. As the chemical potential is the first derivative of the free
energy with respect to the total number of mobile electrons,
a negative electronic compressibility would signify that an

increase in the electronic charge entails a decrease in the
chemical potential. The electronic compressibility may attain
a negative value even in an equilibrium state as long as this
is compensated by a sufficiently large positive value from the
ionic system. Moreover, it is to be emphasized that electronic
subsystems may well display negative compressibility, but the
total electronic system still has a positive compressibility on
account of a large electrostatic contribution, even for nanosized
lateral extension of a capacitive electronic system. Here, we
will discuss that in systems with polar dielectric materials
this latter situation is often realized due to the electrostatic
energy of the polar layers. Therefore, a scenario where a
planar substructure of a heterostructure has negative electronic
compressibility does not necessarily imply that the system
is instable and develops a phase separation; the negative
compressibility rather supports a capacitance enhancement.
An instructive example is the heterostructure with Rashba
spin-orbit coupling in a metallic interface plane.

Eventually, an important issue arises in this respect: When
is the electronic compressibility equivalent to the capacitance
of a heterostructure and when does it differ appreciably? We
will deal with this question by “deforming” heterostructures
continuously and thereby approach different geometric limits
such as a standard two-plate capacitance or a setup known
from a gated LaAlO3/SrTiO3 multilayer structure. Thereby
we will identify a charge-transfer function which represents
the increase in charge of a subsystem with the increase of
the total electronic charge. This charge-transfer function
parametrizes the discrepancy between differential capacitance
and compressibility and allows to extract information about
the stability of the electronic system. We will find that
heterostructures with polar dielectrics acquire the highest
electronic stability, in comparison to different nonpolar
heterostructures with identical capacitances.

The paper is organized as follows. In Sec. II we present the
extended Hubbard model and the Kotliar-Ruckenstein slave-
boson technique to investigate correlated electron systems. In
particular, we compare the free energy and compressibility
of the slave-boson evaluation with Hartree-Fock results in
the regime of weak correlations. In Sec. III the basic setup
for a capacitance of a polar heterostructure is introduced for
which the compressibility and capacitance are determined in
the strong coupling regime. The dependence of the capacitance
on the onsite interaction U is comprehensively discussed in
Sec. IV. Eventually, we present distinct layouts of capacitances
in polar structures in Sec. V and compare capacitor setups
which have equal capacitances but unequal compressibilities.
The results are discussed for strongly correlated systems and,
finally, for electron systems subject to Rashba spin-orbit cou-
pling. In the conclusions we readdress the distinction between
the capacitance and the compressibility of a multilayered
electronic system and summarize our findings.

Weak coupling results for the compressibility and capaci-
tance are shortly discussed in Appendix A; they are markedly
at variance with the strong coupling results. In Appendix B we
briefly address heterostructures where the surface electrode
comprises an uncorrelated electron system and the interface
electrode a strongly coupled system as these configurations
may often be realized in experimental setups. Appendix C
presents the interrelation of the total compressibility of a
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structure and its respective capacitance that was used in the
sections of the main text.

II. TECHNIQUE TO INVESTIGATE CORRELATED
ELECTRON SYSTEMS

In our analysis of the compressibility of a heterostructure,
which is composed of two 2D metallic subsystems and further
insulating layers, we resort to a technique that we already
tested on a 2D extended Hubbard model in a previous work
[36], the Kotliar and Ruckenstein slave-boson technique.

A. Kotliar-Ruckenstein slave bosons

Extending Barnes’ pioneering work [37], slave-boson
representations to the most prominent correlated electron
models have been introduced and studied (for a review, see
Ref. [38]). Most relevant to the Hubbard model are the Kotliar
and Ruckenstein (KR) representation [39], as well as its rota-
tionally invariant generalizations [40,41]. All of them possess
an internal gauge symmetry group. It may be made use of to
simplify the problem and to gauge away the phases of some
bosons by promoting all constraint parameters to fields [40].
Thereby only slave-boson fields remain [42], that may not Bose
condense. In fact, their exact expectation values are generically
nonvanishing [43] (see Ref. [44] in the case of Barnes’ repre-
sentation to the single-impurity Anderson model), and may be
approximately obtained through the saddle-point approxima-
tion that we are going to use below. The latter has been shown to
compare favorably with numerical simulations in a number of
cases. For instance, the comparison of the ground-state energy
to quantum Monte Carlo (QMC) data on the square lattice for
U = 4t yields an agreement in the less than 3% range [45]. On
the honeycomb lattice, the location of the metal-to-insulator
transition was found to be in excellent agreement with QMC
data [46] (for more examples, see Ref. [47]).

Regarding fluctuations at one-loop order, random phase
approximation (RPA) forms have been obtained in the low-
frequency–long-wavelength limit, that even agree quantita-
tively with perturbation theory to lowest order in U , in both
spin and charge channels [48]. In the complementary equal-
time limit, quantitative agreement to QMC charge structure
factors has been demonstrated for intermediate coupling [49].

It has recently been shown that the spin-rotation-invariant
representation can be extended to incorporate longer-range
interactions [47]. In particular, the one-loop contribution to
the compressibility has been shown to be independent of the

precise structure of the screened Coulomb interaction Vk , as
the latter only enters through its k = 0 Fourier component
Vk=0. This applies to the saddle-point equations as well. While
it allowed to reveal several instabilities, both on the cubic
[47] and square [36] lattices, it has not been put to such
numerical tests. In fact, it is only established to be variationally
controlled in the large dimensionality limit [47]. Below,
we show that, in the weak coupling regime, it reproduces
the Hartree approximation. However, it is not limited to
the small-U regime, and we make use of its versatility to
perform calculations for arbitrary parameter values in the
thermodynamical limit.

All necessary details of the technique and numerical results
can be found in the previous studies on the homogeneous
3D and 2D systems (specifically, for the evaluation of the
compressibility and Landau parameters, in Refs. [36,47]).

B. Hartree-Fock evaluation

We will compare results of the filling-dependent compress-
ibility for strong correlations in the electronic subsystems to
those in the weak coupling case. For this comparison to be
reasonable, the weak coupling regime must be realized within
the same approach. While nonlocal interactions reduce to their
Hartree approximation in the large-D limit, it is not obvious
in the 2D case that the slave-boson technique allows to gain
the weak coupling results, in particular, when a nonlocal (at-
tractive) interaction is included. For this purpose we evaluate
the free energy of the 2D electronic system within standard
Hartree-Fock perturbation theory and compare the results to
those of the slave-boson evaluation with weak interaction. The
extended 2D Hubbard model, which is expected to present the
physics of the metallic electronic systems, is

H =
∑

〈i,j〉,σ
tij c

†
iσ cjσ + U

∑
i

n̂i↑n̂i↓ + V
∑
〈i,j〉

n̂i n̂j . (1)

In our evaluations below, we restrict the matrix elements tij
to t for 〈i,j 〉 a pair of nearest-neighbor sites and to t ′ for
next-nearest-neighbor pairs on a square lattice; each pair is
counted once. We compare the filling-dependent free energies
in Hartree-Fock perturbation theory and in KR slave-boson
evaluation [36].

We take the Fourier transform of Hamiltonian (1) and make
use of the commutation relations for fermionic operators:

H = Ht + HU + HV (2)

with

Ht = −
∑
σ,k

{2t[cos(akx) + cos(aky)] + 4t ′ cos(akx) cos(aky)}c†kσ ckσ , (3)

HU = U

L2

∑
k,p,q

c
†
k+q↑ck↑c

†
p−q↓cp↓, (4)

HV = V

L2

∑
σ,σ ′

∑
k,p

{−[cos a(px − kx) + cos a(py − ky)]c†pσ cpσ ′c
†
kσ ′ckσ + 2c

†
kσ ckσ c

†
pσ ′cpσ ′ }. (5)

Now, the mean field approximation is performed:

H MFA
U = U

∑
k,σ

n−σ c
†
kσ ckσ − UL2n↓n↑, (6)
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H MFA
V = V

∑
k,σ

c
†
kσ ckσ

{
4(n↑ + n↓) − 2

L2

∑
p �=k

[cos a(px − kx) + cos a(py − ky)]np,σ

}

+ V

L2

∑
σ

∑
k,p

k �= p

[cos a(px − kx) + cos a(py − ky)]np,σ nk,σ − 2V L2(n↑ + n↓)2. (7)

Here, L is the linear extension of the system, a is the
lattice spacing, and nσ = 1/L2 ∑

p np,σ = 1/L2 ∑
p〈c†pσ cpσ 〉

the electron density with spin σ . The first and the last terms
of Eq. (7) constitute the Hartree term while the remaining two
terms constitute the Fock term. The sign of the contribution
of the Fock term to the energy is opposite to the sign of V .
We take the parameter set U = t , V = −0.1t or −0.4t , and
t ′ = −0.45t .

From Fig. 1, it is obvious that the Hartree approximation is
not only consistent with the slave-boson result, but is nearly
identical in the weak coupling regime. This is a remarkable
result as one expects that slave-boson theory is not appropriate
for weak coupling and small band filling. Yet, the KR scheme
provides suitable projection factors for the kinetic energy and
the nearest-neighbor interaction so that its weak coupling limit
is not only exact in the zero interaction case (U = 0), but also
in first order of U .

The exchange (Fock) correction for the nonlocal interaction
V is not included in the slave-boson evaluation. The free
energies F (n0), as functions of the electron density n0 =∑

σ nσ , differ pronouncedly close to their minima for sizable

FIG. 1. Comparison of free energies in slave-boson evaluation
(black) and conventional perturbation theory within Hartree (dashed
green line) and Hartree-Fock (dotted red line) approximation for
U = t , t ′ = −0.45t and (a) V = −0.1t and (b) V = −0.4t . Panels
(c) and (d) display the second derivatives of the free energy with
respect to the electron density n for the respective nearest-neighbor
interaction. The cusp is observed at the electron density where the
van Hove singularity is positioned at the Fermi energy.

V : these minima are shifted from n0 = 1 on account of the
particle-hole symmetry breaking through a finite t ′. However,
for the compressibility we rather have to compare the second
derivate of the free energies with respect to n0: the largest
corrections from the Fock term arise for small densities
(below the filling which displays the van Hove singularity
related cusp). For long-range Coulomb interaction, it is well
known that the Fock term dominates the direct Coulomb
interaction only in the low-density limit. This statement is also
confirmed in our evaluation for a nearest-neighbor attractive
interaction (see insets of Fig. 1). Consequently, we argue
that the weak coupling regime is attained in the slave-boson
approach even for finite but small interaction parameters,
provided that the electronic density is not too low. We test this
assertion again in Appendix B where we compare the results
for the capacitance of a heterostructure in Hartree-Fock and
slave-boson evaluation.

III. COMPRESSIBILITY AND CAPACITANCE
OF A POLAR HETEROSTRUCTURE

We first consider a setup with two metallic 2D electron
systems separated by a polar dielectric material. Such a
configuration is realized, for instance, in gated LaAlO3/SrTiO3

(LAO/STO) heterostructures where a polar LaAlO3 film
is placed on a SrTiO3 substrate. With a top gate on the
LaAlO3 film and with electronic reconstruction at the interface
between LaAlO3 and SrTiO3 into a (laterally) confined
mobile electronic system, the heterostructure may be presented
approximately as a multilayer system of the kind shown in
Fig. 2 (left panel, the topmost plane is the gate and the

FIG. 2. (a) Polar heterostructure with a charge density of ±entot

on the polar layers and −en1 on the interface and their corresponding
electric fields (magenta). Electrons are transferred from the surface
to the interface by an external voltage, which is included in Vext.
(b) Equivalent circuit with the same electrostatic energy as (a). The
distance between the electrodes and the layer of positive charge da /db

is given by the sum of distances between the polar layers dl
a /dl

b of
panel (a).
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lowest plane represents the interface). The charging of such a
capacitance and the electronic density at the interface is tuned
through the gate. The total mobile electronic density is ntot,
and n1 denotes the electron density which is transferred from
the top plane to the interface. We investigated this type of
heterostructure in a recent publication with focus on Rashba
spin-orbit coupling at the interface [27]. Here, we analyze
the compressibility and capacitance of such a structure in
dependence on electronic interaction parameters. We calculate
the differential capacitance, which is the differentiation of the
charge of a conducting plate with respect to the voltage, that is,
the difference of the electrochemical potential with respect to
the reference plate. Generally, the capacitances of the conduct-
ing subsystems define a capacitance matrix, but for the simple
system comprised of two conducting 2D plates the matrix
elements merge into a single capacitance parameter C [50].

The electronic compressibility is to be evaluated for the
entire system, assuming that no subsystem decouples. Then,
the compressibility signals if the electronic system is prone to
develop an instability towards a charge-separated state. Such
a phase-separated state might be formed on a nanoscale with
distinct properties, such as localization. However, we will not
investigate the various realizations of the symmetry-broken
state. We allow, right from the onset, a charge redistribution
between mobile electrons on the surface electrode and the
interface which is the electronic reconstruction driven by the
polar dielectric in-between the two metallic systems.

In our model, the total mobile electron charge density in the
system −entot is compensated by an equal amount of immobile
positive background charge. The two electrodes (for example,
surface plane and interface) are connected by an external
voltage source, so that the difference in electrochemical
potentials between the plates is given by Vext. A possible offset
in chemical potentials between the two layers is included in
this quantity. The electron density on the interface n1 and on
the surface n2 = ntot − n1 is tuned by applying the voltage
Vext. The free energy of the total system,

F (ntot,n1) = F1(n1) + F2(ntot − n1) + Fes(ntot,n1)

− eVextn1A, (8)

is the sum of the free energy on the interface F1(n1) and
surface F2(ntot − n1), an electrostatic contribution Fes(ntot,n1),
and the term due to the difference in electrochemical potentials
between the electrode plates. Here, A is the area of one plate
and e the elementary charge.

The free energy of the correlated electron system confined
to the either plate, F1,2, can be derived by the evaluation of
Hamiltonian (1), either by slave-boson technique or within the
Hartree (-Fock) approximation.

The electrostatic energy for a polar heterostructure
[Fig. 2(a)], the equivalent circuit of which is depicted in
Fig. 2(b), is

Fes(ntot,n1) = 2daπe2A

εa

n2
1 + 2dbπe2A

εb

(ntot − n1)2, (9)

where da (db) is the distance between the interface (sur-
face) and the plane of positive charge in the equivalent
circuit, while εa (εb) is the corresponding dielectric con-
stant. Here, we assume the configuration to be symmetric,

i.e., da/εa = db/εb ≡ d/(2ε). In LAO/STO a conducting
interface develops for a distance d of four unit cells, while
the dielectric constant ε is approximately 20. So, we assumed
that the effective distance between the plates is d/ε = 4aB.

The total density ntot is a thermodynamic variable, and
the second derivative of the free energy with respect to ntot

determines the stability of the system. In contrast, the density
on the interface n1 is an internal variable that is fixed by the
values of ntot and Vext and has to minimize the free energy of
Eq. (8):

∂F

∂n1
= ∂F1

∂n1
+ ∂F2

∂n1
+ ∂Fes

∂n1
− eVextA = 0. (10)

The differential capacitance is the differential change of the
charge on one plate with applied voltage:

C−1
diff = ∂Vext

eA∂n1

(10)= 1

e2A2

(
∂2F1

∂n2
1

+ ∂2F2

∂n2
1

+ ∂2Fes

∂n2
1

)
(11)

which implies that

A/Cdiff = 1

e2A

∂2F

∂n2
1

. (12)

The last term in Eq. (11) constitutes the classical geometric
capacitance. If the sum of the partial derivatives of F1 and
F2 is negative, the differential capacitance is larger than
the geometric capacitance. Note that for an isolated system,
∂2Fi/∂ni corresponds to an inverse compressibility, and a
negative value would signify instability. But, here the interface
and surface are coupled by the electric field and voltage source,
so that the stability of the system is determined by the total
derivative of the total free energy with respect to ntot:

κ−1 = n2
tot

d2(F/A)

dn2
tot

. (13)

For isolated (sub)systems the quantities compressibility and
capacitance are (up to a constant factor) the same. However,
for the considered coupled system they can differ quite
substantially (see Appendix C):

1

n2
tot

κ−1 = e2A

Cdiff

(
1 − ∂n1

∂ntot

)
∂n1

∂ntot
+ DFes, (14)

where the differential operator D is defined through D ≡
(∂2

ntot
+ ∂n1∂ntot ). In the case of the considered polar layout

[see Figs. 2(a) and 2(b)], DFes = 0, and the compressibility is
negative if the “charge-transfer function” ∂n1/∂ntot is smaller
than 0 or larger than 1, assuming a positive differential
capacitance. Equation (14) represents a generalization of a
relation with DFes = 0 that was derived in Ref. [27]. There,
the polar layout was considered exclusively; here, we will
investigate more general layouts in Sec. V.

The weak coupling results for the compressibility and
capacitance are discussed in Appendix A. Here, we focus on
the strong coupling analysis (Fig. 3) for the heterostructure of
Fig. 2. For comparison, we provide the inverse compressibility
of an isolated 2D planar electron system (see Ref. [36]) in the
topmost line of panels. In this section we assume that the
electron systems and their respective parameters are the same
for both plates.
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2

FIG. 3. (a)–(c) Inverse compressibilities of an isolated 2D strongly interacting electron system with U = 9t for three different values t ′

(panels) and five different V [see color code of (f) or (i)] as function of the electron density. (d)–(f) Inverse total compressibilities κ−1 of
a system composed of two identical interacting electron systems, as presented in (a)–(c), with t = 0.5 eV, lattice constant a = 10aB, and
electrodes at a mutual effective distance d/ε = 4aB. The inverse compressibilities are displayed as functions of the electron density n1 on the
lower electrode. The electrostatic layout is illustrated in Fig. 2. The total charge ntot (orange) is chosen in such a way that at n1 = ntot/2 both
systems have their Fermi energies at their respective van Hove singularities. (g)–(i) Differential capacitances of the above system normalized
to the capacitance of two 2D electron systems with U = 0 and V = 0. The weak coupling results (U = t) are presented in Appendix A with
Fig. 11.

First, for t ′ = 0, the density dependence of the com-
pressibility of the heterostructure [Fig. 3(d)] is similar to
that of the single 2D plane [Fig. 3(a)]: strong correlations
(U = 9 t) produce a significant decrease in compressibility
close to half-filling. We characterize the peak structure in
the inverse compressibility as “correlation peak.” Here, we
took ntot = 2.0 for the heterostructure. Consequently, n1 = 1.0
signifies that the single bands of the two plates (interface
and surface) are each half-filled, and the correlation peak
has its maximum at this value of n1. Other values of n1 are
obtained by applying a corresponding voltage. Whereas the
compressibility of the isolated 2D system becomes negative
away from half-filling for sufficiently attractive nearest-
neighbor interaction, this is not the case for the heterostructure.
The polar dielectric material in-between the plates provides
an additional electrostatic energy and thereby stabilizes the
system. The density dependence of the capacitance of the
heterostructure [Fig. 3(g)] reflects the density dependence of
the compressibility. The slight decrease of the capacitance for
small and large n1 (either most of the charge at the interface or

at the surface) is caused by the fact that the attractive interaction
is less effective at the band edges.

A finite value of t ′ moves the van Hove singularity (vHs)
from the center of the band. We take a filling of ntot = 1.75 for
t ′ = −0.15t so that for equal filling in the two plates, the corre-
sponding Fermi energies are placed at the vHs. The proximity
to the vHs for both plates for n1 	 ntot/2 makes the structure
in the compressibility more pronounced [Fig. 3(e)]. At ntot/2
the inverse compressibility κ−1 displays a cusp on account of
the vHs. For n1 larger than ntot/2, the interface approaches
half-filling and the strong correlations lead to an increase in
κ−1, producing the correlation peak. Similarly, for n1 smaller
than ntot/2, the surface electron system approaches half-filling
and κ−1 increases. The capacitance has (correlation-induced)
minima at fillings where either plate is in an electronic state
close to half-filling [Fig. 3(h)]. In the center we find a peak in
the capacitance that originates from the attractive interaction
V augmented by the vHs which, for this filling, is positioned
at the Fermi energies of both plates. This leaves a broad filling
range where the capacitance is considerably enhanced with
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FIG. 4. Normalized capacitance in dependence on the onsite Coulomb interaction U for different electronic densities. The mutual effective
distance of the electrodes is d/ε = 4aB. The nearest-neighbor interaction V is tuned from positive to negative values. Next-nearest-neighbor
hopping is t ′ = 0 (solid lines) and t ′ = −0.45t (dotted lines). The voltage is adjusted so that the electronic density n1 at the interface is n1 = 0.1
(a), n1 = 0.8 (b), n1 = 0.98 (c), and n1 = 1.0 (d).

respect to its U = 0 = V value. This happens when the filling
in both plates is not close to half-filling.

Eventually, for t ′ = −0.45t and ntot = 0.93, the correlation
effects from the onsite repulsion U are of minor importance be-
cause neither plate is close to half-filling. The nearest-neighbor
interaction V dominates the behavior of the compressibility
and capacitance [see Figs. 3(f) and 3(i)]. A strongly attractive
V increases the compressibility and capacitance. The strongest
enhancement of the capacitance is at the van Hove filling (both
plates have fillings so that the Fermi energies are placed at the
vHs) at n1 = ntot/2. At the largest and smallest value of n1,
one of the plates carries an electron system with filling close to
ntot = 0.93, and the onsite repulsion reduces the capacitance
enhancement.

For weak coupling (we present the results for U = t in
Appendix A) the correlation peak in the inverse compress-
ibility at half-filling is absent. Instead, one observes a dip in
the inverse compressibility at the position of the van Hove
singularity.

IV. CAPACITANCE OF STRONGLY CORRELATED
ELECTRONIC SYSTEMS

In Landau Fermi liquid theory, the electronic compress-
ibility is controlled by the effective mass ratio m∗/me and
the Landau parameter F s

0 (for a slave-boson evaluation of F s
0

and m∗/me see Ref. [36] for 2D, and for 3D see Ref. [47]
and the review by Vollhardt [51] for the Gutzwiller approach
to the Hubbard model). For fixed electronic densities on
either metallic electrode, it is therefore expected that the
capacitance decreases with increasing onsite interaction U : As
F s

0 is determined by U , the inverse compressibility increases
correspondingly and the capacitance is suppressed. Indeed, the

capacitance decreases monotonically with U for n1 = 0.1 at
the interface and n2 = ntot − n1 = 1.9 at the surface (top) elec-
trode [see Fig. 4(a)]. In the following considerations, we keep
the total density of electrons on the two metallic electrodes
fixed to ntot = 2.0. The electrostatic layout is still that of Fig. 2.

Introducing a finite nearest-neighbor Coulomb interaction
V suppresses the capacitance further for repulsive interaction,
albeit the dependence on U is then rather weak [see the red line
with V = 2.7t in Fig. 4(a)]. An attractive interaction V allows
for an enhancement of the capacitance beyond its geometrical
value for small U [see the blue line with V = −2.7t in
Fig. 4(a)] and the decrease of C with increasing U is more
distinct.

If the two electronic systems are each tuned to half-filling,
that is n1 = 1.0 = n2, this decrease of C with U is even
more pronounced and C is zero beyond a critical value of Uc

where the electronic systems are in the incompressible Mott
insulating state, independent of the value of V [see Fig. 4(d)].
Here, the transition from the Fermi liquid to a Mott insulating
state is reached at Uc 	 13t .

The striking observation is, however, that for intermediate
densities the capacitance depends nonmonotonically on U [see
Fig. 4(b)]. We identify this behavior for densities in the range
0.6 � n1 < 1.0 (and n2 = 2.0 − n1) but it is most pronounced
close to half-filling [n1 = 0.98, n2 = 1.02 in Fig. 4(c)]. In
fact, C(U ) assumes a minimum at U0 	 12 t and increases for
larger values of U . For positive values of V , the minimum
persists but is less distinct than for attractive nearest-neighbor
interaction. The U0 values are above U0 	 10t and approach
Uc in the vicinity of half-filling.

Inspection of the density-dependent compressibility of a
single 2D plane allows to draw conclusions on the origin
of the nonmonotonic behavior of C(U ) (see Fig. 5). We
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FIG. 5. Inverse compressibility of a 2D electron system as
calculated from the second derivate of the free energy with respect
to the electronic density n0. The onsite interaction is U = 4t

(black), U = 8t (red), U = 12t (green), U = 16t (blue), and U = 20t

(orange). Here, V = 0 and t ′ = 0.

determine the inverse compressibility of the single plane
directly from the second derivative of the free energy with
respect to its electronic density n0. The black curve (U = 4t)
corresponds to a weakly correlated 2D electron system, and
a dip in the inverse compressibility is formed at the position
of the van Hove singularity [cf. Fig. 11(a) in Appendix A].
All other curves display a “correlation peak” in the inverse
compressibility centered at half-filling [cf. Fig. 3(a)]. At low
densities and symmetrically at high densities (for t ′ = 0), the
inverse compressibility is larger, the higher the value of U is.
This holds for weak coupling as well as for strong coupling.
However, at densities closer to half-filling the curves intersect
in the strong coupling regime for U � 10t . This signifies a
narrowing of the correlation peak and eventually leads to an
enhancement of the capacitance with increasing U . The curve
with U = 8t is at intermediate coupling and crosses the curves
with larger U twice.

The observed narrowing of the correlation peak is caused
by the interplay of two factors in the inverse compressibility: in
Fermi liquid theory the inverse compressibility is controlled by
the Landau parameter F s

0 and the effective mass ratio m∗/me

according to

κ0(U = 0)

κ0(U )
= (

1 + F s
0

)
(me/m∗). (15)

The dimensionless Landau parameter F s
0 is obtained from the

evaluation of the charge susceptibility (see Ref. [36] for the
2D system); F s

0 (U ) diverges at half-filling for U → Uc: 1 +
F s

0 (U ) = (1 − U/Uc)−2. The second factor in Eq. (15) is the
inverse effective mass ratio me/m∗ = z2

0 which is identified as
the quasiparticle residue z2

0 that approaches zero at half-filling
for U → Uc: z2

0 = 1 − (U/Uc)2 [36,47,51]. At half-filling, the
inverse susceptibility diverges for U → Uc.

Away from half-filling, the divergence is lifted and the
compressibility is nonzero also for U above Uc. An increase of
1/κ0(U ) with the Landau parameter F s

0 (U ) is counteracted by

1 20 n0

(a)

(b)

0

4

8

0

0.5

1

F 0s
m

e 
/m

*
FIG. 6. Density dependence of the dimensionless Landau pa-

rameter F s
0 (a) and the effective mass ratio me/m∗ (b) for a 2D

electron system. The onsite interaction is U = 4t (black), U = 8t

(red), U = 12t (green), U = 16t (blue), and U = 20t (orange). Here,
V = 0 and t ′ = 0.

a decrease with me/m∗(U ) [cf. Figs. 6(a) and 6(b)]. For small
n0 � 0.5 and also for large n0 � 1.5, the U dependence of the
Landau parameter F s

0 (U ) dominates the product in Eq. (15),
however, close to half-filling the effective mass enhancement
leads to a reduction of 1/κ0(U ) with increasing U . In fact,
F s

0 (U ) starts to saturate beyond U 	 U0 [Fig. 7(a)] whereas
m/m∗ decreases further beyond U 	 U0 albeit at a reduced
rate [Fig. 7(b)].

With this decomposition of the inverse compressibility
into a Landau quasiparticle interaction term and an (inverse)
effective mass term, the result that the capacitance increases
with U beyond a critical value is plausible. When the next-
nearest-neighbor hopping t ′ is finite, the van Hove singularity
is shifted away from half-filling (for t ′ = −0.45t to a density
of approximately 0.47). Yet, the minimum in C(U ) is still
observable for densities n1 and n2 = ntot − n1 around half-
filling [see the dotted lines in Figs. 4(b) and 4(c)]. This
observation illustrates that the nonmonotonic behavior of
C(U ) is a pure strong coupling effect.

V. COMPRESSIBILITY AND STABILITY IN
DISTINCT LAYOUTS

Even though the 2D electronic system may display a
negative compressibility and consequently a tendency towards
phase separation [see, e.g., Figs. 3(a)–3(c)], the entire het-
erostructure, which is composed of one or two of these 2D
layers, is not necessarily instable towards charge separation
[see, e.g., Figs. 3(d)–3(f)]. It is the electrostatics that stabilizes
the homogeneous state for the considered setup of Fig. 2. The
question arises if other layouts, with the same mobile electronic
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FIG. 7. U dependence of the dimensionless Landau parameter
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system. The electronic densities are n0 = 0.1 (black), n0 = 0.3 (red),
n0 = 0.5 (green), n0 = 0.7 (blue), and n0 = 0.9 (orange).

systems F1 and F2 and the same distance d between the
electrodes, are more prone to phase separation. It is evident that
a different distribution of the positive background charge alters
the electrostatic terms and thereby the total compressibility.

In order to resolve this issue, we introduce a generalized
effective layout of positive background charge, characterized
by the set of three parameters {α,β,m1} (cf. Fig. 8). The
distance d between the two electrodes, which comprise
the electron systems, is kept fixed. Two 2D layers with
positive charge densities +m1ntote and +(1 − m1)ntote (where
0 � m1 � 1) are located at a distance αd and βd (where
0 � α � β � 1) from the bottom electrode. This effective
model covers a variety of physical configurations, inter alia:
The specific choice α = 0 and β = 1 refers to the standard

FIG. 8. Generalized electrostatic layout with fixed effective
distance d/ε between the planes of the electrons (orange). The
positions of the two planes of positive background charge (blue)
are parametrized by α and β and the fractions of the total charge
residing on them by 0 � m1 � 1.

two-plate capacitor, where the positive charge populates the
same layers as the electrons. The parameter m1 allows for
tuning the allocation of the positive charge between the plates.

For α = β, all positive background charge of the effective
model is placed in one plane and the setup is that of the polar
heterostructures [cf. Figs. 2(a) and 2(b)]. The distance between
the positively charged (effective) plane and the top electrode
can be tuned either by using polar materials with different
distances between the atomic layers dl

a and dl
b, or by adding

an insulating film and a terminating electrode on top of the
polar heterostructure. Note that α = β = 1 (or α = β = 0)
corresponds to the case where electrons from an electrode
with neutralizing positive background ions are transferred into
empty bands of a charge-neutral electrode (by minimizing the
free energy in the presence of a bias).

The electrostatic energy of this generalized effective layout
is

Fg
es = 2D

[
αn2

1 + (β − α)(m1ntot − n1)2

+ (1 − β)(ntot − n1)2], (16)

where

D = πe2Ad/ε = 1
4e2A/Cgeo (17)

is closely related to the inverse geometric capacitance Cgeo.
With the free energy of Eq. (8), we rewrite the second derivative
with respect to the total electron density (see Appendix C):

d2F

dn2
tot

= 1

F ′′
1 + F ′′

2 + 4D

[
(F ′′

1 + F ′′
2 + 4D)

(
F ′′

2 + ∂2F
g
es

∂n2
tot

)

−
(

∂2F
g
es

∂ntot∂n1
− F ′′

2

)2]
, (18)

where F ′′
1,2 ≡ ∂2F1,2/∂n2

1. The inverse compressibility can be
easily extracted from this quantity via Eq. (13). We emphasize
that the capacitance is not affected by the distribution of the
positive charge and is given (up to a factor of e2A2) by the
fraction in front of the brackets.

We now analyze three special configurations of the positive
background charge:

(i) the symmetric polar heterostructure (SPH) with α =
β = 1

2 , as shown in Fig. 9(a1);
(ii) the symmetric standard capacitor (SSC) with α = 0,

β = 1, m1 = 1
2 , displayed in Fig. 9(a2);

(iii) the asymmetric standard capacitor (ASC) with α =
β = 1 [see Fig. 9(a3)]; the positive charge is on one electrode.

Corresponding setups of capacitors are displayed in Fig. 9,
jointly with the respective results for the inverse compressibil-
ity and the charge-transfer function ∂n1/∂ntot.

We can rewrite Eq. (18),

Aκ−1
i = n2

tot
F ′′

1 F ′′
2 + DAi

F ′′
1 + F ′′

2 + 4D
(19)

with i = {SPH,SSC,ASC} and

ASPH = 2(F ′′
1 + F ′′

2 + 2D),

ASSC = F ′′
1 + F ′′

2 , (20)

AASC = 4F ′′
2 .
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FIG. 9. Inverse compressibility (upper panels) and charge-transfer function (lower panels) for different distributions of the positive
background charge (middle panels). The interacting electron systems on both electrodes are parametrized by t = 0.5 eV, U = 9t , t ′ = −0.45t ,
a = 10aB, and d/ε = 4aB. The upper (lower) electrode comprises the electron system labeled 1 (2). For the three configurations n2 = ntot − n1

holds, and all three capacitors have equal capacitances, but unequal compressibilities.

For nanoelectronics applications, an enhancement of the ca-
pacitance beyond the geometrical value is often desirable (see
the discussion in Refs. [14,20]). A stable solution to C > Cgeo

requires that F ′′
1 + F ′′

2 < 0, with a positive compressibility of
the total system. However, the SSC system becomes instable
for F ′′

1 + F ′′
2 < 0 [see Appendix C, Eq. (C13)]. Consequently,

an enhancement of the capacitance above the geometrical value
is not possible for the SSC layout (provided the electronic
compressibility κSSC stays positive). For F ′′

1 + F ′′
2 > 0 the

compressibility κSSC is always larger than the compressibility
in the SPH system. This implies that the SPH is better suited to
realize an enhanced capacitance in a thermodynamically stable
state. In fact, the electrostatic energy in the SPH stabilizes the
thermodynamic state.

The stability of the ASC layout depends on the sign of
F ′′

2 , i.e., it is best for a capacitance enhancement to pair the
positive background layer with the electronic system, that is
represented by a free energy with a positive second derivative.
The electronic system of the second electrode should have
a free energy with a negative second derivative in order to
enhance the capacitance.

The strikingly different compressibilities of the three lay-
outs with the same capacitance are shown in Figs. 9(a1)–9(a3).
For this plot we took the same parameters for the two electron
systems which were introduced in Sec. II A. The total density
is adjusted in such a way that both electron systems on the two
electrodes are at the van Hove singularity for n1 = n2. The
density n1 on the lower electrode is adjusted by an external
voltage between the plates. In the thermodynamically unstable

regime with negative compressibility, κ−1 is represented by
dashed lines. The SSC result is shifted to lower values of κ−1

with respect to the SPH result; this observation is explained
below.

The relation between compressibility and capacitance is
controlled by the charge-transfer function ∂n1/∂ntot and by
DFes, as introduced in Eq. (14). In Appendix C we show that
∂n1/∂ntot is in fact equal for the SPH and the SSC layouts, so
that the compressibilities of these two systems differ only by
DFes [see Eq. (14)]. For the three model capacitors the DFes

values are

DF SPH
es = 0, DF SSC

es = −D, DF ASC
es = 0. (21)

This shift by D of the inverse compressibility in the SSC
(with respect to κ−1 in the SPH) is visible in Fig. 9 [compare
Figs. 9(a1) and 9(a2)]. The ASC layout displays a negative
inverse compressibility in the V = −0.9t case for densities
larger than ntot/2 [see Fig. 9(a3)]. This results from F ′′

2 being
negative for this filling [cf. Fig. 3(c) and Eqs. (19) and (20)].

In systems with DFes = 0, the compressibility is positive
for 0 < ∂n1/∂ntot < 1, as is apparent from the comparison
of Figs. 9(b1) and 9(b3) with the corresponding upper panels
9(a1) and 9(a3), respectively. For the SSC DFes = −πe2Ad/ε

and one verifies for n1 = 1
2ntot = n2 that ∂n1/∂ntot = 1

2
[compare Fig. 9(b2)] and that, with Eq. (14), the well-
known relation κ−1/n2

1 + 4πe2d/ε = e2A/Cdiff holds (see,
for example, Ref. [20]).
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FIG. 10. (a), (b) Inverse compressibility of a system with Rashba
spin-orbit coupling at the interface and a metallic surface for
parameters as in Ref. [27] [see Fig. 6(a) therein]. The corresponding
configuration of the positive background charge is depicted in the
panels below. For α = 0.5 the SPH setup is recovered, which was
used in Ref. [27].

In experimental setups, the top electrode is often a metallic
electrode for which correlation effects can be neglected. Lay-
outs with unequal electrodes are investigated in Appendix B.
There, the top electrode is chosen to be an uncorrelated 2D
metallic system and the bottom electrode a correlated 2D
metal.

The dependence of the compressibility on the electrostatic
layout is also relevant for heterostructures with electronic
systems other than those represented by the extended Hubbard
model: Which configurations allow for a negative compress-
ibility with phase separation? In Refs. [7,26,28] an electron
system at the interface of LaAlO3 and SrTiO3 was suggested
to display electronic phase separation on account of a finite
Rashba spin-orbit coupling. In Ref. [27], this system was sup-
plemented by electronic surface states, resembling the SPH,
and the possibility of a state with negative compressibility was
analyzed. For values of the spin-orbit coupling consistent with
experiments, the compressibility of the system was found to
be positive [27].

Here, we investigate two realizations of the electrostatic
layout which are variants of the general scheme in Fig. 8: in
the first, the total positive background charge is split in half
and both charge fractions are moved from the center plane
by the same distance towards the electrodes [Figs. 10(a) and
10(c)]. The second variation keeps the background charge in
plane [Figs. 10(b) and 10(d)]. The spin-orbit coupling and all
electronic system parameters are fixed.

For the first alternative, the layout of the positive back-
ground charge is symmetric. Then, the charge-transfer func-
tion is identical for all values of the distance parameter
α (see Appendix C) and the compressibilities differ only
by the (density-independent) electrostatic term DFes(α) [cf.

Fig. 10(a)]. For α = 0, the SSC is recovered and we find that
the inverse compressibility of the total system can become
negative. In the case of the layout shown in Fig. 10(d), a
reduction of α merges the layout finally with the ASC layout
(for α = 0) which may also acquire a negative electronic
compressibility. We argue that the electrostatic energy in the
polar heterostructure prevents a phase separation; the SPH is
represented by the purple curves with α = 0.5 in Fig. 10. Other
configurations, however, have a stronger tendency towards
phase separation, such as the SSC [Figs. 10(a) and 10(c) with
α = 0] or the ASC [Figs. 10(b) and 10(d) with α = 0].

VI. CONCLUSIONS

The electronic compressibility characterizes the electronic
state of capacitive heterostructures through its dependence on
the gate bias; this voltage controls the electronic density in
the system. For an isolated 2D layer, the qualitative density
dependence of the compressibility can be readily understood
[compare Figs. 3(a)–3(c) and Figs. 14(a)–14(c) for the strongly
and weakly interacting 2D systems, respectively]: for weak
coupling the compressibility represents the density of states
and one observes a pronounced dip in κ−1

0 for the density
where the Fermi energy is tied to the van Hove singularity.
For strong coupling, electronic correlations are responsible
for the peak structure in κ−1

0 in a sizable filling range around
n0 = 1 (“correlation peak”). For a negative nearest-neighbor
interaction V , introduced as antagonist to the repulsive onsite
interaction U , one observes a shift of κ−1

0 (n0) towards smaller
or even negative values. It should be emphasized here that
our results are not limited to the model with nearest-neighbor
interaction. In fact, they apply to systems with arbitrary
screened Coulomb interaction as well since the latter enters κ0

and the saddle-point equations only through its k = 0 Fourier
component [47]. In our analysis of the (inverse) electronic
compressibility of a 2D system, we do not find an interplay
of the onsite Coulomb repulsion U and the nearest-neighbor
interaction V . This might be due to the slave-boson saddle-
point evaluation, but it may well be that inhomogeneous 2D
states have a more complex dependence on these interaction
scales. Such inhomogeneous states have not been considered
in this work.

These findings are to be reexamined for a heterostructure
with at least two coupled metallic 2D systems [see Figs. 3(d)–
3(f) for the strongly interacting 2D system with a polar film be-
tween the metallic plates, as in Fig. 2]. The total compressibil-
ity is always positive provided that the compressibilities of the
subsystems are positive. One result is of particular importance:
The total electronic compressibility κ of the heterostructure
can stay positive even if the compressibilities of the metallic
subsystems are negative, that is, the heterostructure is more
stable with respect to the formation of a phase-separated
electronic state. It is the interlayer electrostatic term which,
apart from the intralayer electronic interaction, influences the
electronic reconstruction in the heterostructure and keeps the
total compressibility positive.

There is no general recipe to identify systems with negative
or positive compressibility from the outset. Each system has
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to be evaluated self-consistently with respect to its charge
distribution, depending on coupling parameters such as U , V

or the spin-orbit coupling and the layout of the heterostructure.
We investigated different layouts and identified the symmetric
polar heterostructure (SPH setup in Fig. 9) as the configuration
in a large class of systems (continuously characterized by
three parameters) which is most robust (smallest positive κ)
with respect to other configurations with the same capacitance.
A system that is more susceptible to phase separation is the
standard capacitor with two electrodes and no polar dielectric,
provided that an electronic coupling such as an attractive
nearest-neighbor interaction or a Rashba spin-orbit coupling
(see Figs. 9 and 10) drives the metallic plates into a negative
compressibility state. The standard capacitor always displays
a negative total compressibility if the two electrodes are in a
negative compressibility state, that is, it is thermodynamically
instable if no further terms (e.g., from the lattice) keep the total
compressibility positive.

The capacitance is distinct from the compressibility of the
heterostructure. It is the response of the charge density of a
plate to a voltage difference applied to the two electrodes,
whereas the compressibility is the response of the total charge
density to the chemical potential of the electronic system.
In our model system, the capacitance can achieve a large
enhancement with respect to its geometric value. In particular,
this is realized for sizable t ′ so that the van Hove singularity,
which may drive the enhancement for attractive V , is moved
from the band center. Otherwise, a repulsive V reduces the
capacitance, and a repulsive onsite interaction U is very
effective to suppress the capacitance when the electronic
systems are close to half-filling. However, we also find that the
capacitance can be enhanced when U is larger than a critical
value. In this regime of very strong coupling, the U -induced
enhancement of the effective mass dominates the counteracting
increase of the effective quasiparticle interaction parametrized
by F s

0 in the compressibility. Such an anomalous behavior
of C(U ) is most pronounced close to half-filling. In order to
identify heterostructures with large capacitance, one should in
general avoid electronic systems with strong onsite interaction
on the electrodes. However, it is also necessary to work with a
sufficiently stable system, and we find that the heterostructures
with polar dielectrics abide by this characterization.

ACKNOWLEDGMENTS

We thank F. Loder and J. Mannhart for helpful discussions.
The authors acknowledge the financial support of the DFG
through the TRR 80, and of the French Agence Nationale de
la Recherche (ANR), through the program “Investissements
d’Avenir” (Grant No. ANR-10-LABX-09-01), LabEx EMC3.

APPENDIX A: WEAK COUPLING RESULTS

We analyze the same setup as described in Fig. 3, here
with U = t instead of U = 9t , that is, the electron systems are
characterized by weak correlations. Since for smaller onsite
repulsion it is also reasonable that the intersite attraction
is smaller, we used the same ratio of U/V as in Fig. 3.
As this means smaller values of |V |, the inverse compress-
ibilities of the single isolated Hubbard systems shown in

Figs. 11(a)–11(c) are larger than in Fig. 3. Moreover, the
inverse compressibilities do not display “correlation peaks,”
in marked contrast to the results for U = 9t .

The absence of the correlation peak is reflected in the
inverse compressibilities of the total system [Figs. 3(d)–
3(f)], the structure of which is controlled by the single-layer
compressibilities. Again, the chosen densities ntot for different
values of t ′ ensure that at n1 = ntot/2 the Fermi energy of both
systems is at the van Hove singularity. This is accomplished
by ntot = 2.0 for t ′ = 0, ntot = 1.75 for t ′ = −0.15t , and
ntot = 0.93 for t ′ = −0.45t .

With no correlation peak in the inverse compressibility,
the differential capacitance [Figs. 3(g)–3(i)] does not display
a dip at n1 = ntot. We normalized the capacitance to that
of a U = 0 and V = 0 system. It is evident that for weak
intersite attraction (black and red curves), the finite onsite
repulsion U = t induces a differential capacitance smaller
than CU=0,V =0. Since |V | is taken to be smaller, the isolated
single-layer inverse compressibilities Figs. 11(a)–11(c) are
larger (and mostly positive) and, hence, the achieved increase
of the capacitance is smaller than in Figs. 3(g)–3(i).

APPENDIX B: HETEROSTRUCTURE WITH
UNEQUAL ELECTRODES

In experimental setups the surface electrode is typically
distinct and comprises a weakly correlated electron system.
Here, we consider a heterostructure with an uncorrelated
electron system at the surface electrode (labeled “2”) whereas
the interface electrode (labeled “1”) comprises a strongly
correlated electron system.

For plate 2 (surface), a two-dimensional metal with free
electrons of effective mass ratio m2/me yields

F2(ntot − n1) = πaBe2

m2/me

(ntot − n1)2 (B1)

for the free energy, where aB is the bare Bohr radius. We
take m2/me to be 5 throughout this section. A (more realistic)
effective Bohr radius can be integrated into a modified effective
mass m2. For plate 1 (interface), we take strongly correlated
electrons with U = 9t and t ′ = −0.15t .

The second derivative with respect to n1 does not depend
on the density,

F ′′
2 = 2πaBe2

m2/me

, (B2)

so that the only density-dependent quantity in the compress-
ibility and capacitance enters via F ′′

1 [cf. Eqs. (18) and (12)].
This is reflected in Figs. 12 and 13, where we analyzed the
system described in Fig. 3 and replaced the surface by a
two-dimensional metal with free electrons. The total electron
density is fixed to ntot = 2.0. The more complex structure
of a double peak and double dip around n1 = ntot/2 present
in Figs. 3(e) and 3(h), respectively, is not observed for the
asymmetric system of this section; the structure of the inverse
compressibility in Fig. 12 is more reminiscent to that of
Fig. 3(b). The capacitance in Fig. 13 is normalized to CU=0,V =0
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FIG. 11. (a)–(c) Inverse compressibilities of an isolated 2D weakly interacting electron system with U = t for three different values t ′

(panels) and five different V [see color code of (f) or (i)] as function of the electron density. (d)–(f) Inverse total compressibilities κ−1 of
a system composed of two identical interacting electron systems, as presented in (a)–(c), with t = 0.5 eV, lattice constant a = 10aB, and
electrodes at a mutual effective distance d/ε = 4aB. The inverse compressibilities are displayed as functions of the electron density n1 on the
lower electrode. The electrostatic layout is illustrated in Fig. 2. The total charge ntot (orange) is chosen in such a way that at n1 = ntot/2 both
systems have their Fermi energies at their respective van Hove singularities. (g)–(i) Differential capacitances of the above system normalized
to the capacitance of two 2D electron systems with U = 0 and V = 0.

and shows clearly the “correlation dip” when the density of
the interface electrons is close to half-filling.

The capacitance for an extended Hubbard system with U =
t and t ′ = −0.45t coupled to a two-dimensional free electron
gas is shown in Fig. 14. As before, since the contribution
of F ′′

2 to the capacitance is constant, the density dependence
is dominated by F ′′

1 [cf. Fig. 11(c)]. The normalization to
the geometric capacitance reveals a slight increase of C for
V = −0.4t above Cgeo = 4πd/ε when the system is at one
of the van Hove singularities for fillings n1 = 0 or n1 ≈ 0.47.
Elsewhere, the compressibility of the single layer κ0 is positive
and hence the capacitance is reduced below the geometric
value. The compressibility of the total system (Fig. 15) is
approximately that of Fig. 11(c), up to a constant.

Figures 14 and 15 include also a comparison between
the slave-boson, Hartree, and Hartree-Fock approximations.
The slave-boson technique agrees excellently with the Hartree
calculations. The difference between Hartree and Hartree-
Fock is due to the second derivative of the Fock term. This
contribution is most notable for empty and full bands, and at
the vHs at intermediate filling.

APPENDIX C: COMPRESSIBILITY AND CAPACITANCE

For the derivation of a general relation between total
compressibility and differential capacitance, we assume two
conditions to be fulfilled: First, the free energy of the total
system can be written in the form of Eq. (8),

F (nt,n1) = F1(n1) + F2(nt − n1) + Fes(nt,n1) − eVextn1A,

(C1)

where we introduced the abbreviation nt ≡ ntot for this section.
Second, the internal variable n1 minimizes the free energy and
is not a boundary value, i.e., n1 �= 0 and n1 �= nt. This stays
valid for a differential change of the total charge nt:

d

dnt

∂F

∂n1
= 0 (C2)

⇐⇒ ∂2F

∂n1∂nt
= − ∂2F

∂n2
1

∂n1

∂nt
. (C3)
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The inverse compressibility of the system is proportional to
the second derivative with respect to the total charge density:

κ−1A/n2
t = d2F

dn2
t

(C4)

= ∂2F

∂n2
t

+ 2
∂2F

∂n1∂nt

∂n1

∂nt
+ ∂2F

∂n2
1

(
∂n1

∂nt

)2

(C3)= ∂2F

∂n2
t

− ∂2F

∂n2
1

(
∂n1

∂nt

)2

. (C5)

We make use of the form of the free energy

∂2F

∂n1∂nt
= − F ′′

2 + ∂2Fes

∂n1∂nt

(C3)= −∂2F

∂n2
1

∂n1

∂nt
, (C6)

∂2F

∂n2
t

= F ′′
2 + ∂2Fes

∂n2
t

(C6)= ∂2F

∂n2
1

∂n1

∂nt
+ ∂2Fes

∂n1∂nt
+ ∂2Fes

∂n2
t

. (C7)

The last line is inserted in the relation for the compressibility
(C5):

A

n2
t

κ−1 = ∂2F

∂n2
1

∂n1

∂nt

(
1 − ∂n1

∂nt

)
+

(
∂2

∂n2
t

+ ∂2

∂n1∂nt

)
Fes

= e2A2

Cdiff

∂n1

∂nt

(
1 − ∂n1

∂nt

)
+ DFes, (C8)

where we introduced the differential operator D ≡
(∂2

nt
+ ∂n1∂nt ). This relation corresponds to Eq. (14) in Sec. III.

A generalized distribution of the positive background
charge is depicted in Fig. 8. We assume that the distance
between the electrodes is given by d. The fraction m1 of the
total positive charge resides at distance αd from the lower

FIG. 12. The inverse compressibility when the surface electron
system of Fig. 3(e) is replaced by a metal with m2/me = 5. The
interface electron system is characterized by strong correlations U =
9t , and by t ′ = −0.15t . κ−1 is smaller than that of Fig. 3(e). The color
coding for the different values of V is the same as in Fig. 3(f).

FIG. 13. The capacitance for the heterostructure of Fig. 12
becomes less enhanced above the U = 0, V = 0 value as compared
to the symmetric setup with both electrodes comprising a strongly
correlated electron system.

electrode, while the rest of the positive charge is at a distance
βd from the lower electrode. For α = β = 0.5 we recover the
polar heterostructure of Fig. 2 (with dl

a = dl
b and εa = εa), and

for α = 0, β = 1 the standard configuration where the layers
of positive charge are identical with the layers of negative
charge. The electrostatic energy of the general layout is

Fg
es = 2D

[
αn2

1 + (β − α)(m1nt − n1)2

+ (1 − β)(nt − n1)2
]
, (C9)

FIG. 14. The capacitance of a system with electrons on the lower
electrode described by the extended Hubbard model for different
approximations is normalized to the geometric capacitance Cgeo =
4πd/ε. The mass of the metallic electrons on the surface is m2/me =
5 and the parameters of the interface electrons are t = 0.5 eV, U = t ,
t ′ = −0.45t , and a = 10aB. The system is in the SPH configuration
and the effective interplate distance is given by d/ε = 4aB.
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FIG. 15. The difference of the inverse compressibilities for the
system described in Fig. 14 is largest for low densities and around
the vHs filling.

with D = πe2Ad/ε. This generalized model allows to analyze
the effect of a variety of electrostatic configurations on the
compressibility in one framework. The respective contribution
to the differential capacitance,

∂2F
g
es

∂n2
1

= e2A

Cgeo
= 4D, (C10)

is independent of the layout of the positive charge and
determined by the distance between the electrodes. The
differential operator

DFg
es = 4D(β − α)m1(m1 − 1) (C11)

is zero if all positive charge resides in one plane (α = β) and
otherwise negative. These two results can be combined with
Eq. (C8):

κ−1A

n2
t

= e2A2

Cdiff

∂n1

∂nt

(
1 − ∂n1

∂nt

)
− e2A2

Cgeo
(β − α)m1(1 − m1).

(C12)

Equation (C12) yields the condition for a system to be stable
(κ > 0):

Cdiff

Cgeo
(β − α)m1(1 − m1) <

∂n1

∂nt

(
1 − ∂n1

∂nt

)
. (C13)

This relation limits the enhancement of the differential
capacitance over its geometric value since the right-hand side
of the last inequality is � 1

4 .
We now select three special cases for the distribution of

positive background charge:
(i) βa = αa: the asymmetric case a, where the whole

positive charge is concentrated in one layer;
(ii) βs = 1 − αs , ms

1 = 1
2 : the symmetric distribution s of

the positive charge;
(iii) αt = 0, βt = 1, 0 � mt

1 � 1: the standard configura-
tion t with the planes of positive charge coinciding with the
electrodes.

For αa = αs = 1
2 the first two cases are equal and recover

the symmetric polar heterostructure (SPH) introduced in
Sec. V. The symmetric standard capacitor (SSC) is obtained
for αs = 0 and mt

1 = 1
2 for the last two cases and the

asymmetric standard capacitor (ASC) for αa = 1 and mt
1 = 0.

For the asymmetric layout a the differential operator (C11)
vanishes so that there is no limitation to the capacitance
enhancement. In the standard configuration, on the other hand,
a necessary condition for its stability is given by

Ct
diff

Cgeo
� 1

4mt
1

(
1 − mt

1

) . (C14)

This implies that for mt
1 = 1

2 , which is the symmetrical
standard configuration, no enhancement above the geometrical
capacitance is possible. The more asymmetric the positive
charge is distributed, the larger the allowed capacitance
enhancement is.

The differential capacitance of the symmetric configuration
is limited by

Cs
diff

Cgeo
� 1

1 − 2αs
. (C15)

In this layout, the condition used to determine n1,

∂n1F
s = ∂n1F1 + ∂n1F2 + 4D

(
n1 − nt

2

)
− eVextA

!= 0,

is independent of αs . Hence, the solution ns
1 and the charge-

transfer function ∂ntn
s
1 are equal for all αs . Note that, due to

DF s
es = − D(1 − 2αs) (C16)

and Eq. (C8), the inverse compressibilities for different
symmetric layouts differ by a constant proportional to 1 − 2αs .
The nearer the positive charge is to the electrodes, the more
compressible the total system becomes.

Finally, we derive Eq. (19) which specifies the compress-
ibility for the SPH, SSC, and ASC layouts. First, we can replace
∂n1/∂nt in Eq. (C5) by Eq. (C3),

d2F

dn2
t

= ∂2F

∂n2
t

−
(

∂2F

∂n1∂nt

)2/
∂2F

∂n2
1

=
(

∂2F

∂n2
1

)−1[
∂2F

∂n2
1

∂2F

∂n2
t

− ∂2F

∂n1∂nt

]
, (C17)

and then make use of the special form of the free energy (8):

d2F

dn2
t

= 1

F ′′
1 + F ′′

2 + 4D

[
(F ′′

1 + F ′′
2 + 4D)

(
F ′′

2 + ∂2Fes

∂n2
t

)

−
(

−F ′′
2 + ∂2Fes

∂n1∂nt

)2]
, (C18)

where F ′′
1,2 = ∂2F1,2/∂n2

1. The electrostatic energies for the
different layouts are

F SPH
es = D

[
n2

1 + (nt − n1)2
]
,

F SSC
es = 2D

(nt

2
− n1

)2
, (C19)

F ASC
es = 2Dn2

1
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and the corresponding derivatives yield

∂2F SPH
es

∂n2
t

= 2D,
∂2F SPH

es

∂n1∂nt
= −2D,

[4pt]
∂2F SSC

es

∂n2
t

=D,
∂2F SSC

es

∂n1∂nt
= −2D, (C20)

[4pt]
∂2F ASC

es

∂n2
t

= 0,
∂2F ASC

es

∂n1∂nt
= 0.

Inserting these expressions into Eq. (C18) yields Eq. (19).
Systems with F ′′

1 > 0 and F ′′
2 > 0 are always stable,

irrespective of the electrostatic layout: Substitution of the
general electrostatic energy F

g
es of Eq. (C9) in Eq. (C18), with

the partial derivatives

∂2F
g
es

∂n1∂nt
= −4D[(β − α)m1 + (1 − β)] ≡ −4D	,

∂2F
g
es

∂n2
t

= 4D
[
(β − α)m2

1 + (1 − β)
] ≡ 4D


yields

d2F

dn2
t

= 1

F ′′
1 + F ′′

2 + 4D
[(F ′′

1 + F ′′
2 + 4D)(F ′′

2 + 4D
)

− (−F ′′
2 − 4D	)2]. (C21)

Hence, the compressibility of the total system has the same
sign as the expression:

(F ′′
1 + F ′′

2 + 4D)(F ′′
2 + 4D
) − (F ′′

2 + 4D	)2

= 4DF ′′
2 (
 + 1 − 2	) + (4D)2(
 − 	2)

+F ′′
1 (F ′′

2 + 4D
) (C22)

The last summand is positive since 
 > 0. For the other two
terms we find


 + 1 − 2	 = (β − α)(m1 − 1)2 + α > 0,


 − 	2 = α[(β − α)m1 + (1 − β)]

+ (β − α)(1 − β)(1 − m1)2 > 0

so that the total expression is always positive. Hence, we
conclude that the total compressibility is always positive
provided that the compressibilities of the subsystems, i.e., the
two electrodes, are positive.
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[50] M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993).
[51] D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).

035143-17

https://doi.org/10.1103/PhysRevB.93.195137
https://doi.org/10.1103/PhysRevB.93.195137
https://doi.org/10.1103/PhysRevB.93.195137
https://doi.org/10.1103/PhysRevB.93.195137
https://doi.org/10.1088/1742-6596/702/1/012003
https://doi.org/10.1088/1742-6596/702/1/012003
https://doi.org/10.1088/1742-6596/702/1/012003
https://doi.org/10.1088/1742-6596/702/1/012003
https://doi.org/10.1088/0305-4608/6/7/018
https://doi.org/10.1088/0305-4608/6/7/018
https://doi.org/10.1088/0305-4608/6/7/018
https://doi.org/10.1088/0305-4608/6/7/018
https://doi.org/10.1088/0305-4608/7/12/022
https://doi.org/10.1088/0305-4608/7/12/022
https://doi.org/10.1088/0305-4608/7/12/022
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292002395
https://doi.org/10.1142/S0217979292002395
https://doi.org/10.1142/S0217979292002395
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1002/andp.201100197
https://doi.org/10.1002/andp.201100197
https://doi.org/10.1002/andp.201100197
https://doi.org/10.1002/andp.201100197
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1209/0295-5075/15/3/016
https://doi.org/10.1209/0295-5075/15/3/016
https://doi.org/10.1209/0295-5075/15/3/016
https://doi.org/10.1209/0295-5075/15/3/016
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1007/BF01357181
https://doi.org/10.1007/BF01357181
https://doi.org/10.1007/BF01357181
https://doi.org/10.1007/BF01357181
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1088/0953-8984/5/50/017
https://doi.org/10.1088/0953-8984/5/50/017
https://doi.org/10.1088/0953-8984/5/50/017
https://doi.org/10.1088/0953-8984/5/50/017
https://doi.org/10.1103/RevModPhys.56.99
https://doi.org/10.1103/RevModPhys.56.99
https://doi.org/10.1103/RevModPhys.56.99
https://doi.org/10.1103/RevModPhys.56.99



