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The GW approximation is a well-known method to obtain the quasiparticle and spectral properties of systems
ranging from molecules to solids. In practice, GW calculations are often employed with many different
approximations and truncations. In this work, we describe the implementation of a fully self-consistent GW

approach based on the solution of the Dyson equation using a plane wave basis set. Algorithmic, numerical, and
technical details of the self-consistent GW approach are presented. The fully self-consistent GW calculations
are performed for GaAs, ZnO, and CdS including semicores in the pseudopotentials. No further approximations
and truncations apart from the truncation on the plane wave basis set are made in our implementation of the
GW calculation. After adopting a special potential technique, a ∼100 Ry energy cutoff can be used without
the loss of accuracy. We found that the self-consistent GW (sc-GW ) significantly overestimates the bulk band
gaps, and this overestimation is likely due to the underestimation of the macroscopic dielectric constants. On
the other hand, the sc-GW accurately predicts the d-state positions, most likely because the d-state screening
does not sensitively depend on the macroscopic dielectric constant. Our work indicates the need to include the
high-order vertex term in order for the many-body perturbation theory to accurately predict the semiconductor
band gaps. It also sheds some light on why, in some cases, the G0W0 bulk calculation is more accurate than the
fully self-consistent GW calculation, because the initial density-functional theory has a better dielectric constant
compared to experiments.
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I. INTRODUCTION

Density-functional theory (DFT) [1,2] in the Kohn-Sham
(KS) scheme has been widely used to study the electronic
structure in solid-state physics. In spite of its success in
describing the ground state properties, DFT suffers from a
severe band gap problem [3]. Thus the KS eigenvalues cannot
be used to interpret quasiparticle excitations as measured by
photoemission spectroscopy or optical absorption. In the past
two decades, the GW approximation [4] derived from many-
body perturbation theory has been widely used to study the
quasiparticle energy and excitation spectra for real materials.
In practice, large numbers of procedures employing different
approximations have been used [5–10]. The simplest GW

approach is performed non-self-consistently for the evalua-
tion of the quasiparticle self-energy [11,12]. The excitation
energies are then obtained from the first-order perturbation
theory as corrections to the DFT single-particle eigenenergies.
For simple s-p bonded materials, the calculated band gaps
with single-shot approximation (also called as G0W0) are
considerably improved upon the DFT results and show good
agreement with experiments [11–16]. However, there could
be a strong dependence of G0W0 results on the initial single-
particle Hamiltonian [e.g., DFT or Hartree-Fock (HF) or its
hybrid method like HSE]. Different initial wave functions and
eigenenergies can yield widely different band gaps, e.g., differ
by 1 eV for some oxides [17]. Furthermore, traditional G0W0

approximation does not fulfill some microscopic conservation
laws. Schindlmayr [18] found that there was a genuine
violation of particle number conservation if the self-energy was
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not calculated self-consistently. In addition, the total energy
which can be regarded as an explicit function of the Green’s
function G varies a lot when it is implemented in different GW

methods without self-consistency [19]. For all these reasons,
it becomes interesting to try self-consistent GW (sc-GW)
calculations with the hope that many of these problems will
be rectified.

However, there could be drawbacks for the self-consistent
procedure. Not only is it more expensive, Holm and von Barth
[20] concluded that the self-consistency for homogeneous
electron gas in the GW calculation tends to worsen the
agreement of the band structure to the experimental results
(when compared to G0W0). In addition, the weight of the
plasmon satellite disappeared in the spectral function due to the
self-consistent calculations. For real and nonmetallic systems,
Schöne and Eguiluz [21] found that GW calculations under the
shielded-interaction approximation and a full updated Green’s
function G and screened potential W can overestimate the band
gap of silicon by as much as the DFT underestimates it. These
conclusions seem to be in conflict with recent studies [22–24]
on isolated molecule systems. They found that the accuracy
of sc-GW ionization energies is comparable with that of
non-self-consistent G0W0 with a DFT starting point. Thus, it is
interesting to revisit this problem for bulk materials, especially
using approaches where many of the approximations in the
truncations are removed. We would like to know, what are the
true effects of GW self-consistency for periodic systems?

There are many approaches to achieve self-consistency in
the GW approximation. Many self-consistent GW calcula-
tions employ the noninteracting expression [25–28] to describe
the Green’s function G:

G(r1,r2,ω) =
∑

i

ψ∗
i (r1)ψi(r2)/(εi − μ − ω ± iδ). (1)
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Here ψi(r) is the single-particle eigenwave functions, εi

is its eigenenergy, and the +/− sign depends on whether
εi is above or below the Fermi energy μ. Although, as will
be discussed below, in true self-consistent GW calculations,
the Green’s function can no longer be described by Eq. (1),
in practice, the self-consistency in many studies is realized
by only changing the eigenenergy εi and updating the wave
function ψi(r) while keeping the formulation of Eq. (1).
There are also other options, e.g., only updating W in the
G0W method, or only updating G in the GW0 approach.
There could be an improved version of Eq. (1), replacing the
energy-dependent denominator by a more general term fi(ω),
which is called the diagonal approximation. Unfortunately,
there is no unique way to carry out the updating of Eq. (1) and
one can propose different self-consistent schemes [17]. The
true Green’s function G should be described by solving the
Dyson equation self-consistently:

G−1(iω) = iω + μ − H −
∑

(iω). (2)

Here the H is the single-particle Hamiltonian, μ is the
Fermi energy, and � is the self-energy term. Under GW

approximation, � = iGW , and the corresponding Dyson
equation is a variational solution of the Klein total energy [29]
expressed as a functional of the Green’s function G. This is
very much like the Kohn-Sham equation is the variational total
energy minimum solution of the DFT energy. Furthermore, it
can be proved that the quasiparticle eigenenergy of Eq. (2) is
the difference of the Klein energies of N + 1 and N electron
systems [30,31], much like the Kohn-Sham eigenenergy is
the DFT total energy difference of the N + 1 and N electron
systems. In addition, according to Baym and Kadanoff [32,33]
many conservation laws (such as momentum, total energy, and
particle numbers) are preserved following Dyson’s equation.
The conserving character is an important property in transport
calculations [34].

In order to satisfy the variational Dyson equation (2), the
Green’s function G can no longer be described by the single-
particle expression of Eq. (1). Instead, it is a full matrix for a
given ω, either expanded by the plane wave basis set exp(iqr),
or by the single-particle eigenstate basis set ψi . In contrast,
Eq. (1) contains only the diagonal term under the basis set
of ψi . Thus, using Eq. (1) is taking into account only the
diagonal terms under the basis set ψi . There are some previous
works for the importance of the off-diagonal terms. Fleszar
and Hanke [35] concluded that the role of the off-diagonal
elements is negligible. However, Sakuma et al. [36] reported
that the off-diagonal elements of the self-energy are crucial
and have a large influence on the quasiparticle band gap of
correlated materials.

The choice of basis set is also an important issue in
solving the GW problem. A majority of GW calculations
are carried out using pseudopotentials. For some systems,
this could be problematic. Ku and Eguiluz [37] claimed that
pseudopotential-based GW schemes carry a built-in error and
the preferred procedure is to perform all-electron calculations
based on the full-potential linearized augmented plane wave
(FP-LAPW) or the linearized muffin-tin orbital, although this
work was later questioned by Tiago et al. [38] for its conduc-
tion band convergence. Faleev et al. [28] also questioned the

validity of pseudopotential in the GW calculations and showed
that G0W0 with pseudopotential can lead to systematic errors.
This is because the pseudopotentials are generated for DFT
calculation using a semilocal exchange-correlation functional.
In GW calculation, the pseudo wave functions can yield an
incorrect screened exchange integral. Thus a semicore will be
needed, which will make the valence pseudo wave functions
have the right shape, hence the correct exchange integral.
In the work of Lilienfeld and Schultz [39], the effects of
the semicore were discussed for DFT calculations. It shows
that the inclusion of semicore can significantly change the
band gap, making it closer to the all-electron results. It
is now accepted by many groups that the inclusion of the
semicore is necessary to make the pseudopotential-based
GW result similar to that of the all-electron calculation.
As we will show later, our pseudopotential results including
semicores are indeed close to the all-electron results for G0W0

calculations. Another option of the basis set is the use of
atomic orbitals or other localized basis sets (such as a Gaussian
basis set) [23,24,34,40,41], which could be more efficient for
molecular systems. In the current study, we will use plane
wave pseudopotentials with semicores.

One common problem of the GW calculations is the
lack of numerical convergence caused by a finite number of
unoccupied states. Ideally, the complete sets of unoccupied
states need to be included to expand the Green’s function.
In practice, this inclusion is often truncated. According to
Delaney et al. [42], high energy (8–10 Ry above Fermi energy)
eigenstates are required to provide accurate numerical results.
Shih et al. [43] have calculated the quasiparticle band gap of
ZnO and found that 3000 bulk conduction bands were needed
to obtain a converged GW band gap. However, in many GW

calculations, only a few hundred conduction bands are used,
which can result in an unconverged band gap as shown for
ZnO [8,10,44].

In this work, we employ a sc-GW calculation without
resorting to diagonal-G approximation and conduction band
truncations. We would like to know (1) whether the true
Dyson equation results improve upon the G0W0 results; (2)
how much error remains; and (3) what causes the remaining
errors. The full solution of Eq. (2) is only made possible
with the use of large supercomputers. In this work, the
Green’s function G(r1,r2,ω) is represented numerically in its
full matrix form under the plane wave basis set at different
ω points without the truncation for the conduction bands.
Three prototype semiconductors—GaAs, ZnO, and CdS—are
studied to elucidate the effects of self-consistency for periodic
solids. The semicores are explicitly taken into account in
the pseudopotential representation. We will introduce the
numerical methods and techniques to deal with the � point
divergence problem in the evaluation of the self-energy term
and dielectric function. The computation is done with tens of
thousands of processors on one of the largest supercomputers,
Titan, at the Oak Ridge Leadership Computing Facility
(OLCF). The rest of the paper is organized as follows. Our
fully sc-GW approach is presented in Sec. II. In Sec. III,
we elaborate the numerical methods and technical details in
implementing our sc-GW approach. Results and discussions
are then presented in Sec. IV, followed by the main conclusion
in Sec. V.
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II. THE BASIC FORMALISM

To avoid the singularity in the real axis, we follow the
“space-time” method first used by Rojas et al. [16], where the
Green’s function is solved along the imaginary axis iω + μ [to
be denoted as G(iω)] in the ω complex plane. Here, μ is the
electron Fermi energy (both ω and μ are real numbers). In our
previous work for isolated systems [22], the Green’s function
G(iω) defined through the Dyson equation can be expressed
in Eq. (2). In a periodic system, the Green’s function at one k

point can be written down as (see the derivations from isolated
molecule systems to periodic systems in Appendix A)

G−1(k,iω) = iω + μ − H (k) −
∑

(k,iω), (3)

where G, H , and � are all matrices for a given (k,iω) and k

is the wave vector in the first Brillouin zone (BZ). The G, H ,
and � are represented either in real-space r index or reciprocal
space q index. The transformations between r and q space for
matrix X(k,z) (e.g., G and �) are

X(q1,q2,k,z) = 1

�

∫
X(r1,r2,k,z)eiq1r1e−iq2r2d3r1d

3r2;

X(r1,r2,k,z) = 1

�

∑
q1,q2

X(q1,q2,k,z)e−iq1r1eiq2r2 . (4)

Here � is the volume of the periodic unit cell and z can be
either iω or iτ . H (k) = − 1

2∇2
k + V (r) + ∑

l |φl,k〉〈φl,k| is the
noninteractive one-electron Hamiltonian, including the kinetic
energy operator − 1

2∇2
k , the nonlocal pseudopotential projector∑

l |φl,k〉〈φl,k|, and the single-particle potential V (r). V (r) is
obtained as V (r) = ∑

R vat(r − R) + ∫
ρ(r ′)
|r−r ′ |d

3r ′, where νat

is the local part of the atomic pseudopotential, R is atomic
position, and ρ is the electron charge density calculated as
ρ(r) = −iG(r,r,iτ )|τ→0+ . During the self-consistent itera-
tions, the potential V (r) is recalculated through Pulay-Kerker
potential mixing [45]. � is the electron self-energy that
encompasses all exchange-correlation effects. Within Hedin’s
GW approximation [4], the self-energy term is given by the
product of Green’s function G and the dynamically screened
interaction W . To avoid the time-consuming convolution in
frequency domain, the self-energy � for each k is evaluated in
real space and time domain as

�(r1,r2,k,iτ ) = i
∑
k2

G(r1,r2,k − k2,iτ )W (r1,r2,k2,iτ )wk2 ,

(5)

where wk2 is used to represent a summation weight to
represent the possible symmetry reduction of the k points. The
W represents the dynamically screened Coulomb potential.
The expression of W in reciprocal space with frequency
dependence reads

W (q1,q2,k,iω) = 4π

|q1 + k||q2 + k|ε
−1(q1,q2,k,iω), (6)

where 4π/(q + k)2 is the Fourier transform of the bare
Coulomb interaction and ε is the dielectric function expressed
as

ε(q1,q2,k,iω) = δq1,q2 − χ (q1,q2,k,iω)
4π

|q1 + k||q2 + k| .
(7)

Finally, the irreducible polarizability χ is given by the
product of two Green’s functions from different k vectors:

χ (r1,r2,k,iτ ) =−i
∑
k2

G(r1,r2,k + k2,iτ )

×G(r2,r1,k2, − iτ )wk2 . (8)

All the matrices in the above equations are represented
either in real space (r1,r2,z) or reciprocal space (q1,q2,z)
(z can be either iω or iτ ). The most time-consuming parts
of the sc-GW calculations are the Fourier transformation
between these two representations as well as the inversion of
Green’s function G and dielectric function ε [Eqs. (3) and (6)].
The GW calculations using the “space-time” method on the
imaginary iω axis have been performed by Rojas et al. [16] a
long time ago. However, only the one-shot G0W0 calculations
were carried out, hence an analytical expression for G0(iτ )
was available, which avoided the need to do the ω space to τ

space Fourier transform, which is particularly time consuming.
Very often, the Matsubara time and frequency mesh with an
artificial temperature [19] can also be used to facilitate the
ω integration. Under such approximation, the final results are
extrapolated from a series of artificial temperatures [19,41].
In this work, a special integration algorithm was carried out
without the use of artificial temperature. Discrete exponential
numerical grid points both in iω and iτ are used, with the
maximum ω being 3 × 106 hartree, while the minimum ω

interval is 2 × 10−4 hartree. The details of the numerical
Fourier transformation between the iτ and iω space can be
found in our previous work for isolated molecule systems [22].
For periodic bulk systems, particular attention is needed for
Eqs. (5) and (8) to deal with the � point divergence problem.
In the following, we will introduce the numerical methods and
techniques to deal with these divergence problems. A plane
wave energy cutoff Ecut is used to select the plane wave vectors
q1 and q2 in G(q1,q2,k,iω) and �(q1,q2,k,iω). However, in
the expressions of matrices of W , ε, and χ , the plane wave
vectors should be defined by an energy cutoff Ecut2 = 4Ecut.
The reason for this is that these matrices are proportional to
the squares of Green’s function [Eq. (8)]. In practice, a smaller
Ecut2 = 2Ecut can be used to converge the final results, much
like in traditional plane wave DFT calculations. After using
these techniques, our sc-GW calculations are well converged
with regard to k-point summation. Equations (3)–(8) constitute
a close set of equations to find the self-consistent solution of the
Green’s function G. Note, the first iteration of the calculation is
equivalent to the conventional G0W0 calculations (in this work,
the non-self-consistent G0W0 results are calculated using
local-density approximation (LDA) Kohn-Sham eigenvalues
and eigenfunctions as inputs).

III. IMPLEMENTATION OF THE GW METHOD

A. Evaluation of dielectric function

In the preceding section, we have mentioned that special
care is required for the � point (k = 0) divergence problem in
the periodic systems. For the calculation of dielectric function
using Eq. (7), there is an obvious singularity if q1 = q2 = 0
(the “head”) or q1 = 0 or q2 = 0 (the “wings”) for very small
k. One solution of this problem is to expand the polarizability
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χ (q1,q2,k,iω) as a function of k for the “head” and “wings” of
the polarizability matrices. Hybertsen and Louie [46] derived
one such expression using the Adler-Wiser formulation [47,48]
for single-particle expression more than 30 years ago. Here
we use a similar technique to get the “head” and “wings”
expansion of polarizability χ for a general matrix expression
of G. For the “head” case, the polarizability χ (q1 = 0,q2 =
0,k,iτ ) at the limit of k → 0 is expanded as

χ (q1 = 0,q2 = 0,k,iτ )

= χ (q1 = 0,q2 = 0,k = 0,iτ )

+χ
(2)
α,β (q1 = 0,q2 = 0,k,iτ )kαkβ

= χ
(2)
α,β (q1 = 0,q2 = 0,k = 0,iτ )kαkβ, (9)

where kα(α = x,y, or z) is the αth component of k ap-
proaching the � point (k = 0). Since the first term χ (q1 =
0,q2 = 0,k = 0,iτ ) equals zero, the “head” expression for
χ (q1 = 0,q2 = 0,k,iτ ) goes to zero as kαkβ when k → 0. The
second order kαkβ in the “head” expansion as a function of k

will cancel with the k2 in the denominator of Eq. (7) for their
magnitudes, although the result depends on the direction of
the vector k (which gives rise to the well-known directional
singularity of the dielectric constant for the low symmetry
crystal). To get the term χ

(2)
α,β (q1 = 0,q2 = 0,k = 0,iτ )kαkβ in

Eq. (9), a middle step term χ
(0)
α,β (q1 = 0,q2 = 0,k = 0,iτ )kαkβ

based on Eq. (8) is defined as

χ
(0)
α,β(q1 = 0, q2 = 0, k = 0,iτ )kαkβ

=−ikαkβ

∑
k2

∫ [∇α
k2

H (r1)G(r1,r2,k2,iτ )∇β

k2
H (r2)

×G(r2,r1,k2, − iτ )wk2

]
d3r1d

3r2. (10)

Here ∇α
k2

H (r) is the derivation of the single-particle
Hamiltonian with respect to k2α (k2 belongs to the original
k grid in the first BZ). In the calculation, ∇k2H (r) is written as
a matrix to represent the nonlocal term.

In the noninteractive single-particle formalism, χ
(2)
α,β (q1 =

0,q2 = 0,k = 0,iτ ) is related to χ
(0)
α,β(q1 = 0,q2 = 0,k =

0,iτ ) with an extra eigenenergies square term in the denomina-
tor [46,47]. This extra term in the denominator can be obtained
by a second-order integration of τ in the form

χ
(2)
α,β(q1 = 0,q2 = 0,k = 0,iτ )

=−
∫ τ

∞

[
−

∫ τ

∞
χ

(0)
α,β(q1 = 0,q2 = 0,k = 0,iτ )dτ

]
dτ

=
∑
k2

−i

{
−

∫ τ

∞

[
−

∫ τ

∞

{ ∫ [
∇α

k2
H (r1)G(r1,r2,k2,iτ )

×∇β

k2
H (r2)G(r2,r1,k2, − iτ )wk2

]
d3r1d

3r2

}
dτ

]
dτ

}
.

(11)

Equation (11) is used to calculate χ
(2)
α,β(q1 = 0,q2 = 0,k =

0,iτ ) from G when a full matrix form of G is represented. Note
that Eq. (11) is only rigorous for the noninteractive Green’s
function. Nevertheless, it should capture the main contribution

of the k expansion. Furthermore, in the final result (e.g., the
self-energy), this only affects the dielectric constant at k = 0.
As we use larger and larger k-point grids, the contribution of
this k = 0 point becomes smaller and smaller. Thus, our final
convergence in regard to the number of k points indicates that
the approximation at k = 0 is fine, or at least the error in this
approximation does not affect the final result.

After χ
(2)
α,β (q1 = 0,q2 = 0,k = 0,iτ ) is in hand, we can

get the polarizability χ (q1 = 0,q2 = 0,k,iτ ) for any k points
near k → 0 using Eq. (9). To get the frequency-dependent
polarizability χ (q1 = 0,q2 = 0,k,iω) used in Eq. (7), a Fourier
transform is carried out to change χ (q1 = 0,q2 = 0,k,iτ ) from
iτ to iω space.

χ (q1 = 0,q2 = 0,k,iω)

= −ikαkβ

∫
χ

(2)
α,β (q1 = 0,q2 = 0,k = 0,iτ )e−iωτ dτ.

(12)

The “wings” case can be dealt with similar fashion, where
only one derivative is used. The detailed expression is given
in Appendix B.

From Eqs. (10) to (12), we find that the polarizability
χ (q1 = 0,q2 = 0,k,iω) at the limit of k → 0 involves con-
tribution from each k2 point. For simplicity, we would like to
write the frequency-dependent polarizability χ (q1 = 0,q2 =
0,k,iω) in the form below:

χ (q1 = 0,q2 = 0,k,iω) = kαkβ

∑
k2

χ̄α,β(k2)wk2 . (13)

Here χ̄α,β(k2) denotes the polarizability contribution from
each k2 point in Eq. (11). To obtain the dielectric function
ε(q1,q2,k,iω) in reciprocal space is straightforward after
taking into account the nonanalyticities of the “head” and
“wings” cases using the formula above. As discussed above,
the εα,β(0,0,k,iω) at the limit of k → 0 depends on the
direction k̂ = k/|k|. Taking into account the k2 summation
in Eq. (13), for small k, we can write

εα,β (0,0,k,iω) = 1 − 4π
kαkβ

k2

∑
k2

χ̄α,β (k2)wk2

= 1 − 4π · k̂αk̂β

∑
k2

χ̄α,β (k2)wk2 . (14)

Here, k̂α(α = x,y, or z) is the αth Cartesian component of
the unit vector:kα/|k|. For materials considered in this work,
they all have cubic symmetry, thus the 3 × 3 tensor εα,β is
an identity matrix multiplied by a constant. As a result, the
orientation dependence disappears, and Eq. (14) can further
be simplified as

ε(0,0,k,iω)= 1 − 4π
∑
k2

χ̄α,β(k2)wk2 . (15)

Thus, the dielectric constant ε can be directly approximated
as ε(q1 = 0,q2 = 0,k = 0,ω) for small k. Note, when com-
pared to experiments, the macroscopic dielectric constant ε

is defined as 1/ε−1(q1 = 0,q2 = 0,k = 0,ω) including local
field effects [ε−1 is the inversion of the ε(q1,q2,k = 0,ω)
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TABLE I. The LDA macroscopic dielectric constant calculated
for various k2 grid sets. Nk2 is the number of k2 points in the k2

grid set. ε is the original calculated dielectric constant, εinter is the
interpolated dielectric constant using Eq. (18), and εmask is the final
fitted dielectric constant using Eq. (19).

Systems Nk2 ε εinter εmask

GaAs 7 × 7 × 7 22.33 15.69 11.81
9 × 9 × 9 16.47 13.25 11.81

13 × 13 × 13 13.18 12.05
17 × 17 × 17 12.67 11.83
21 × 21 × 21 11.94 11.80
23 × 23 × 23 11.85
25 × 25 × 25 11.83

CdS 7 × 7 × 7 8.77 7.55 6.84
9 × 9 × 9 7.78 7.21 6.84

13 × 13 × 13 7.03 6.85
15 × 15 × 15 6.88 6.87

ZnO 7 × 7 × 7 8.64 6.25 4.68
9 × 9 × 9 6.63 5.66 4.68

13 × 13 × 13 5.69 5.17
15 × 15 × 15 5.26 4.71
19 × 19 × 19 4.67 4.65

matrix]. The local field effects are essential in predicting the
correct quasiparticle spectrum [49].

The convergence of the dielectric constant ε is often related
to k-point summation and the number of conduction bands
used [46,50]. In our approach, we use the full matrices without
conduction band truncation, so the only concern is the k-point
BZ summation, especially for the “head” and “wing” using
Eq. (15). The calculated LDA macroscopic dielectric constants
for GaAs, CdS, and ZnO with respect to the number of k2 points
are illustrated in Table I. We can see that the convergence
of the LDA dielectric constant ε is notoriously slow. It is
also clear that the convergence is more difficult for small gap
semiconductors. For GaAs, even a 21 × 21 × 21 �-centered
grid does not yield fully converged results. The main reason
for this problem is that the term of χ̄α,β (k2 = 0) (at the �

point) in Eq. (15) is very large, hence a large number of k2

FIG. 1. Schematic diagram of the tetrahedron interpolation (also
called the linear tetrahedron). The 1, 2, 3, and 4 points belong to the
original k2 grid and the k1 point is from the dense grid.

points are needed to average out the influence of this single �

point. The simplest solution is to use a shifted Monkhorst-Pack
grid without the � point. We found that a shifted Monkhorst-
Pack grid with 8 × 8 × 8 k2 points yields a converged LDA
dielectric constant of 11.86 for GaAs. However, it is clear
from Eq. (11), this will require one to define G at these shifted
grid points, thus not being able to obtain the �-point band
gap. Here we will introduce a numerical technique to yield
converged ε(q1 = 0,q2 = 0,k = 0,ω) of Eq. (15) without an
excessively large k2-point grid. We first extend the discrete k2

sum in Eq. (15) to a continuous k1-point sum (in practice, with
a much denser k1-point grid). The polarizability contribution
χ̄α,β (k1) at each k1 point is interpolated from χ̄α,β (j ) (j = 1,m)
of the nearest m k2 points of the original k2 grid in the form

[χ̄α,β(k1)]1/n =
m∑

j=1

fk1 (j )[χ̄α,β(j )]1/n, (16)

where fk1 (j )(j = 1,m) is defined as the j th-point interpolation
weight such that they sum to 1 and the exponential factor n = 3
is chosen to make the resulting χ̄α,β (k1)1/n as linear as possible.
The linear interpolation coefficients fk1 (j ) are determined
from a tetrahedron interpolation scheme as illustrated from
Fig. 1, and obtained by solving the linear equations:

fk1 (1) + fk1 (2) + fk1 (3) + fk1 (4) = 1, dx(1)fk1 (1) + dx(2)fk1 (2) + dx(3)fk1 (3) + dx(4)fk1 (4) = dx(k1),

dy(1)fk1 (1) + dy(2)fk1 (2) + dy(3)fk1 (3) + dy(4)fk1 (4) = dy(k1),

dz(1)fk1 (1) + dz(2)fk1 (2) + dz(3)fk1 (3) + dz(4)fk1 (4) = dz(k1). (17)

Here dx(j ), dy(j ), and dz(j ) (j = 1,2,3,4 or k2) are the
coordinates of the j th corner (or k2 point) of the tetrahedron.
When the k1 point falls to the edge or corner of the
tetrahedron, multiple tetrahedrons are used, and the results
are averaged from different tetrahedron interpolated results.
With the interpolated polarizability contribution χ̄α,β (k1) in
hand, the summation of Eq. (15) can be rewritten as a much
denser grid sum over k1:

ε(0,0,k,iω) = 1 − 4π
∑
k1

χ̄α,β (k1)wk1

= 1 − 4π
∑
k1

χ̄α,β (k1) 1
Nk1

.
(18)

Here Nk1 is the total number of k1 points in the dense grid.
The resulting dielectric constant εinter obtained using Eq. (18)
is also presented in Table I. We can see that this dielectric
constant εinter converges much faster than the original formula
and the convergence for GaAs can be reached by a 17 × 17 ×
17 k2 grid [the k1 grid used is (126)3]. Nevertheless, this is still
computationally demanding. We note that much of this slow
convergence is still due to the dramatic change of χ̄α,β(k1) near
the � point. A possible good approximation is that the shape of
χ̄α,β (k1) near the � point for a given system might not change
much, from LDA to GW results, but the overall amplitude
might change near that region. To capture this feature, we
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have defined a mask prefactor λLDA(k1) = χ̄mask
α,β (k1)/χ̄α,β(k1)

to describe the shape of χ̄α,β(k1). Here χ̄α,β(k1) is interpolated
from a small k2 grid (e.g., the 9 × 9 × 9 grid to be used in
our sc-GW calculations) using Eq. (16), while χ̄mask

α,β (k1) is
interpolated from a dense grid (e.g., the 21 × 21 × 21 grid)
from Eq. (16). The k1 grid is still a dense grid, e.g., (126)3. To
calculate λLDA(k1), both χ̄α,β(k1) and χ̄mask

α,β (k1) are calculated
with LDA. Then this fixed LDA mask function λLDA(k1) will
be used in GW calculations in the following formula:

ε(0,0,k,iω) = 1 − 4π
∑
k1

χ̄α,β(k1)λLDA(k1)
1

Nk1

. (19)

Here χ̄α,β(k1) are interpolated from the small (e.g., 9 ×
9 × 9) k2 grid using Eq. (16) during the sc-GW iterations,
and λLDA(k1) is fixed throughout the iterations. For the LDA
calculation, almost by definition, different k2 grids will get
the same result (e.g., all equal to the 21 × 21 × 21 grid
result) under this procedure, as shown in Table I. To test the
convergence of this procedure for sc-GW calculations, we
have calculated the dielectric constant with a 7 × 7 × 7 grid
(εGW = 4.96) and a 9 × 9 × 9 grid (εGW = 4.98) for GaAs;
they only differ by 0.02. To be conservative, we will use
a 9 × 9 × 9 k grid in our following sc-GW calculations to
guarantee a full convergence.

We would like to point out that all of the above discussions
from Eq. (9) to Eq. (19) are concerning the ε(q1 = 0,q2 =
0,k2 = 0,ω) value (also the “wing” values). The ε(q1,q2,k2,ω)
for all the other k2 points, or nonzero q1,q2 for k2 = 0 are
well defined using Eq. (7). The small difference between the
7 × 7 × 7 grid and 9 × 9 × 9 k grid sc-GW results (including
the small quasiparticle energy difference of 15 meV) indicates
the adequacy of using Eq. (11). As the k2-point grid is getting
larger, the relative roles of Eqs. (10) and (11) [which are only
used to get the k2 = 0 value of ε(q1 = 0,q2 = 0,k2 = 0,ω)]
are getting smaller. Thus, even if there were some small errors
in Eqs. (10) and (11), the final sc-GW quasiparticle energies
would not be affected, as long as the results are converged
regarding the k-point grid.

B. Evaluating the self-energy

In the GW approximation, the self-energy � is obtained
from the product of the Green’s function G and the screened
interaction W sum over many different k points as shown
in Eq. (5). However, the screened interaction W at k = 0 is
divergent as shown in Eq. (6). Thus, a discrete k-point sum
including the k = 0 point in Eq. (5) will also get a divergent
result. To solve this divergence problem, we use a technique
similar to that proposed by Gygi and Baldereschi [51] for
unscreened Fock exchange term calculation. A reference term
which has the same singularities as the right side of Eq. (5) is
added and subtracted in the formula as below:

�(r1,r2,k,iτ ) = i
∑
k2

{G(r1,r2,k − k2,iτ )W (r1,r2,k2,iτ )

−G(r1,r2,k,iτ )W (r1,r2,k2,iτ )}wk2

+ iG(r1,r2,k,iτ )
∑
k1

W (r1,r2,k1,iτ )wk1 .

(20)

Note the singularities will be canceled out when k2 = 0
for the first two terms. The k2-point summation in the
last term is replaced by a continuous k1 point integration∑

k1
W (r1,r2,k1,iτ )wk1 . To avoid the divergence problem, k1

is defined in a dense grid through the first BZ. In the reciprocal
space, we have∑

k1

W (q1,q2,k1,iω)wk1

=
∑
k1

4π

|q1 + k1||q2 + k1|wk1ε
−1(q1,q2,k1,iω)

=
∑
k1

4π

|q1 + k1||q2 + k1|wk1

⎡
⎣ m∑

j=1

fk1 (j )ε−1(q1,q2,j,iω)

⎤
⎦.

(21)

Here, the same interpolation technique of Eq. (17) is used to
get ε−1(q1,q2,k1,iω) for an arbitrary k1 from its nearest neigh-
bor values on the k2 grid. Note, since ε−1(q1,q2,k1,iω) should
be relatively smooth (compared to the 4π/|q1 + k1||q2 + k1|
factor), such interpolation should work fine. From Eq. (21), it
is clear that the singularities are caused by the bare Coulomb
potential term 4π/|q1 + k1||q2 + k1| when q1 = q2 = 0 and
k1 = 0. The summation of this point should represent a k-space
region of dimension �k1 = 2π/(aN ); here a is the lattice
constant of the crystal, and N is the grid point number along
each direction [e.g., for a (400)3 k1 grid, N is 400]. Since the
volume is proportional to (�k1)3, and the W is proportional
to ε−1(0,0,0,iω)/(�k1)2, overall this single k1 = 0 term in
Eq. (21) should have a contribution of βε−1(0,0,0,iω)�k1.
The β is a geometric factor depending on the crystal lattice.
As a result, Eq. (21) for q1 = q2 = 0 can be rewritten as∑

k1

4π

(k1)2 wk1ε
−1(0,0,k1,iω)

=
∑
k1 
=0

4π

(k1)2 wk1ε
−1(0,0,k1,iω) + β�k1ε

−1(0,0,0,iω).

(22)

Note that β depends only on the crystal lattice, not on the
dielectric constant. β can be obtained by fitting the unscreened
Coulomb interaction result of Eq. (22) for a moderate N (e.g.,
100) to the converged result using an extremely large N (e.g.,
1000) (with an arbitrary preset β, e.g., β = 1). For the face-
centered primary cell lattice used in this study, we found β =
0.902 can yield a very fast convergence of Eq. (22), as shown
in Fig. 2. After this β is fixed in Eq. (22), in the following, we
will use a 1003 k1-point grid to carry out Eqs. (20)–(22). This
will give us a converged self-energy �.

C. Calculating quasiparticle energy

The Green’s function G is updated by solving Eq. (3)
after the self-energy � is obtained. Note, the Hamilto-
nian H (k,iω) = H (k) + �(k,iω) = iω + μ − G−1(k,iω) is
non-Hermitian. Although strictly speaking, the quasiparticle
energy should be defined from the peaks in the spectral
function, or say the poles of G(k,iω), in practice, for a
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FIG. 2. The solid line is the convergence of the
∑

k1 
=0
4π

(k1)2 wk1 +
β�k1 summation for β = 1 with respect to the number of N points.
The continuous dashed line is the summation using prefactor β =
0.902.

post calculation analysis, it will be convenient to have a set
of eigenstates of a Hermitian Hamiltonian, and use that to
represent the quasiparticle states. To do so, we have first
Hermitized H (k,iω) as H ′(k,iω) = 1

2 [H (k,iω) + HT (k,iω)],
then diagonalized it to get the wave function ψjk(iω), where
j and k are the band and k-point indices, respectively. We
found that ψjk(iω) is almost independent of ω at least for the
occupied states and a few conduction band states near the band
gap [22]. As a result, the wave function ψjk(iω) can be well
approximated by ψjk(0) [which is ψjk(iω = 0)]. This allows
us to define an expectation value of the self-energy matrix
�̄jk(iω) = 〈ψjk(0)|�(k,iω)|ψjk(0)〉, which is shown in Fig. 3
on the imaginary ω axis. It is clear that both the real and
imaginary parts change significantly with iω. In addition, the
expectation value of the non-Hermitian part (indicated by the
imaginary part) can be as large as the Hermitian part. All of this

FIG. 3. The expectation value �̄jk(iω) = 〈ψjk(0)|�(k,iω)|
ψjk(0)〉 of GaAs for the j = 20 state (j = 22 is the VBM) at the
� point on the imaginary axis.

means the true Green’s function is far from the noninteractive
single-particle description of Eq. (1) [35,36].

To get the corresponding quasiparticle energies that can
be measured in the experiment, knowledge of G and
� in the real frequency domain is required. The corre-
sponding poles can then be obtained with the ω solution
of 〈ψjk(0)|G−1(k,ω)|ψjk(0)〉 = 0. This requires us to get
�̄jk(ω) = 〈ψjk(0)|�(k,ω)|ψjk(0)〉 on the real axis according
to the Dyson equation. With the above calculated �̄jk(iω) on
the imaginary axis, �̄jk(ω) can be obtained by analytically
extending �̄jk(iω) to the real axis as proposed by Rojas et al.
[16]. We have tested that this procedure is very reliable in
obtaining �̄jk(ω) for ω within 1 or 2 hartrees from Fermi
energy μ [22]. The quasiparticle energies εjk(ω) for each
j state and k vector are then determined by solving the
equation ω + μ = εjk(0) + Re[�̄jk(ω) − �̄jk(0)]; εjk(0) is
the eigenenergy of H ′(k,iω) when ω equals 0.

The excitation spectrum is also an important quantity that
is often measured in experiment. The spectral function which
can be compared with experiment for the periodic solids is
calculated as

A(k,ω) = 1/π Tr[ImG(k,ω)]. (23)

Here “Tr” is the trace of the matrix G. Within the above
approximation, the spectral functions can be directly obtained
as

A(k,ω) = 1

π

∑
j

Im

[
1

ω − μ − εjk(0) − [�̄jk(ω) − �̄jk(0)]

]
.

(24)

In our test of the convergence of the sc-GW iterations, the
eigenenergies εjk(0) of H ′(k,iω) when ω equals 0 are used
as marks for the convergence. The energy gaps measured by
εjk(0) as a function of self-consistent iterations are presented
in Fig. 4(a). We can see that the energy gaps for GaAs, ZnO,
and CdS converge within about four to five iterations with LDA
input eigenenergies and eigenfunctions. In our previous work
for isolated molecule systems [22], we have demonstrated that
the final quasiparticle energies are independent of the initial
input eigenfunctions and eigenenergies. We found this is also
true for our bulk system calculations. The self-consistent loops
are also measured with the change of dielectric constant ε in
Fig. 4(b). On the one hand, it confirms the convergence of
the self-consistent iterations. On the other hand, we found
that there is a strong correlation between the energy gap and
the dielectric constant; the energy gap of the N + 1 iteration
increases with the decrease of the dielectric constant from the
N iteration. An accurate prediction of the quasiparticle band
gap requires an accurate prediction of the dielectric matrix.

D. The use of pseudopotentials

In this work, we use the plane wave basis set for the
implementation of the fully self-consistent GW calculations.
The norm-conserving pseudopotential with semicore electrons
is used to give a good description of the valence pseudo wave
functions. The outmost two shells of atomic orbitals are treated
as valence states for Ga, As, Zn, and Cd atoms to avoid
the errors in the quasiparticle energies as shown by Rohlfing
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FIG. 4. (a) The minimum energy gaps measured by εjk(0) as a
function of self-consistent iterations. (b) The change of the dielectric
constant ε with respect to the iteration steps.

et al. [52]. More specifically, for Ga, As, Zn, and Cd atoms,
their corresponding valence electrons in the pseudopotentials
are 3s23p6 3d104s24p1, 3s23p6 3d104s24p3, 3s23p6 3d104s2,
and 4s24p6 4d105s2, respectively, while the valence electrons
for O and S are 2s22p4 and 3s23p4, respectively. Since the
semicore states are highly localized, a large energy cutoff Ecut

is often required to get well converged results, as indicated
by LDA calculations. Figure 5 shows the dependence of LDA
band gaps for CdS, GaAs, and ZnO on the energy cutoff Ecut.
For CdS, the band gap can converge with a relatively small Ecut

(around 80 Ry). However, a significantly larger Ecut (more than
300 Ry) is needed to get an accurate band gap with an accuracy
better than 0.01 eV for GaAs and ZnO.

The increased Ecut can significantly increase the dimension
of matrices, computational cost, and the memory requirement.
This is shown for GaAs in Table II. Here, Nq is the
resulting number of plane waves within Ecut for k = 0 in
our calculations. As a result, the matrix for G(q1,q2,k,iω)
or �(q1,q2,k,iω) at each k point and ω point is a (Nq)2

matrix. It can be seen in Table II that the dimension of Nq

has been increased by 20 times due to the inclusion of the

FIG. 5. The LDA band gaps (in eV) for (a) CdS, (b) GaAs, and
(c) ZnO as a function of the energy cutoff Ecut.

semicore. For W , ε, and χ defined by the energy cutoff Ecut2,
the dimension of these matrices for each k point and ω point
is about three times bigger than those of G and �. All of
this makes the computation extremely expensive with a large
memory requirement.

We would like, however, to reduce this dimension for GaAs
and ZnO to some degree. The purpose of including core level
is twofold: one is to make the valence electron have the proper
shape, so the screened exchange integral will be accurate;
the second is to include the core level in the calculation in
case they have any mixing with the valence states. We like
to reduce the Ecut in some degree (e.g., reduce it to 100 Ry
range), but still keep these two features intact. As shown in
Fig. 5 and Table III, when Ecut ∼ 100 Ry, the LDA band gap
will have a small error (e.g., 0.1 eV), meanwhile the core

TABLE II. The energy cutoff Ecut (Ecut2) (in Ry) and resulting
number of plane waves Nq (NqL) in the initial converged LDA
calculations for GaAs with and without semicores.

Systems Ecut Nq Ecut2 NqL

GaAs 38 1240 76 3480
GaAs with semicore 300 26700 600 75000
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TABLE III. The comparison of the LDA results for GaAs with
respect to the two different energy cutoffs. Eg is the minimum energy
gap (eV) and Ed is the average cation d-states binding energy (eV)
of Ga. Some selected eigenvalues (eV) relative to the valence band
maximum (�22v) at the � point are also presented.

Systems Ecut = 300 Ry Ecut = 85 Ry

Eg 0.132 0.135
�1v(As 3s) −183.43 −191.45
�2v(Ga 3s) −142.65 −146.79
�3v(As 3p) −127.67 −140.38
�6v(Ga 3p) −93.98 −100.69
�12v(As 3d) −35.18 −35.91
�17v(Ga 3d) −14.81 −14.77
Ed −14.85 −14.82

level energy will have a slightly larger error (∼10 eV out of
100–200 eV). The exact energy of the core level is a lesser
concern due to the expected small mixing with the valence
state. Overall, the plane wave truncation can be considered as
a small perturbation to the Hamiltonian. We can thus add a
counter term to balance the effects of this perturbation. More
specifically, we have added a small Gaussian function f (r) to
the original s, or p or d potentials. The Gaussian function f (r)
reads as

f (r) = βe−[(r−rpeak)/rcut]2
, (25)

where r is the radius, rpeak is the position of the peak in radial
direction, and rcut is the width of the Gaussian in units of bohr.
Using preselected rpeak and rcut, by adjusting the factor of β, the
modified pseudopotentials can recover the original converged
LDA results by using Ecut ∼ 100 Ry. The comparison is given
in Table III for GaAs with Ecut = 85 Ry. Compared to the
300 Ry result, the band gap difference is less than 0.01 eV,
the Ga 3d states energy difference is within 0.1 eV, and the
deep semicore level difference is about 10 eV out of ∼150 eV.
Since the direct involvement of the semicore level is small,
the 10 eV error in its energy is likely nonconsequential. The
comparison for ZnO and the parameters of β, rpeak, and rcut

used for the modified pseudopotentials of GaAs and ZnO are
given in Appendix C.

However, as we discussed above, the main purpose of
including semicore is to correct the Fock exchange integral
using pseudo wave functions. The LDA Hamiltonian does not
test the exchange integral effects of reducing the 300 Ry cutoff
to ∼100 Ry. In order to test this, we have carried out one-shot
(non-self-consistent, much like the G0W0, with LDA wave
function as the input) HF calculations for GaAs and ZnO,
and compared the resulting band gaps of the 300 Ry cutoff
and the 85/105 Ry cutoff with the Eq. (25) correction term.
The results are shown in Table IV. The band gap difference
between the two cutoff schemes is only about 20 meV, mostly
coming from the exchange integral difference. Consider that, in
the GW method, the exchange integral is screened (reduced),
roughly by an order of 5; then the band gap error introduced by
changing the 300 Ry to 85/105 Ry cutoff should be in the order
of 4 meV. After using the above techniques, a numerically
accurate self-consistent GW calculation can be achieved.

TABLE IV. The one-shot HF band gap Eg in (eV) for ZnO and
GaAs with respect to the two different Ecut’s (in Ry) with Eq. (25)
correction. In this test, we used a 3 × 3 × 3 k-point mesh.

System Ecut (Ry) Eg (eV)

ZnO 105 11.09
350 11.11

GaAs 85 6.68
300 6.66

E. The computational details

The fully sc-GW calculation has been applied to study
the quasiparticle energies of three prototype semiconductors:
GaAs, CdS, and ZnO. We have adopted the experimental
zinc-blende lattice constants for a meaningful comparison
with experiment and other theoretical results. The lattice
constants and cutoff energies are listed in Table V, along with
the resulting number of plane waves Nq and the number of
real-space grid points Nr . Nq shown in Table V is the number
of plane waves for k = 0 within Ecut in our calculations. The
Ecut2 is for the plane wave expansion of χ , W , and ε. We note
that, in many of the previous works [38,53,54], although Ecut

used could be large, the Ecut2 used were rather small, e.g.,
30 Ry (much smaller than Ecut). The number of plane waves
Nq is around 3000, while Nr could be about ten times bigger
(e.g., ∼30 000). (A spherical Ecut is used to determine the
plane wave vectors, while Nr is defined by the full fast Fourier
transform grid points).

The matrix for G(q1,q2,k,iω) at each k point and ω point
is a 3000 × 3000 matrix, requiring about 0.2 GB of memory.
Typically, we have used 400 ω points along the imaginary axis
of iω (from −3 × 106 to 3 × 106 hartree), and 40 τ points
(from −200 to 200 hartree−1) The exponential iω and iτ

grid points were shown in our previous publications [22].
The smallest intervals for ω and τ in our calculations are
2 × 10−4 hartree and 0.01 hartree−1, respectively, while the
maximum ωmax and τmax are 3 × 106 hartree and 200 hartree−1.
The grid convergence has been tested to ensure that the
resulting error in quasiparticle eigenenergy is less than 0.01 eV.
The techniques to carry out the Fourier transformation between
G(iω) and G(iτ ) were described in detail in our previous publi-
cation [22]; the accuracy of such numerical Fourier transform
is shown to be 10−7 hartree−1. In doing this transformation,
massive parallelization is used to distribute the k points and
q2 vectors. The message passing interface communicator is
first divided into the number of k subcommunicators. In each

TABLE V. The experimental equilibrium lattice parameter (in Å)
used in this work. The Ecut (Ecut2) is the plane wave cutoff energy (in
Ry) used for the sc-GW calculation. Nq is the resulting number of
plane waves, while Nr is the total number of grid points in real space.

Systems Lattice constant Ecut Ecut2 Nq Nr

GaAs 5.66 85 170 3735 32768
ZnO 4.62 105 210 2980 27000
CdS 5.83 80 160 3479 27000
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TABLE VI. Results of LDA, G0W0, and sc-GW band gaps (in eV) for bulk GaAs, ZnO, and CdS. Others’ G0W0 calculations (using the
LDA as initial input) and experimental values Eexp (in eV) are also provided. εLDA is the dielectric constant used for G0W0 calculations, εGW

is the final converged dielectric constant, and εexp is the experimental high-frequency dielectric constant. Etest (in eV) is the converged GW

band gap using the fixed experimental dielectric constant. (For ZnO, we use the εLDA as the fixed value.) Strictly speaking, the ε shown here
are actually the 1/ε−1(q1 = 0,q2 = 0,k = 0,ω = 0).

Systems LDA G0W0 Others’ G0W0 sc-GW Eexp εLDA εGW εexp Etest

GaAs 0.13 1.29 1.30,a1.29b 2.04 1.52c 11.81 4.98 10.89d 1.03
ZnO 0.61 2.51 2.31e 4.43 3.44f 4.68 1.86 2.37
CdS 0.82 2.10 2.06,a 2.03e 3.35 2.42g 6.84 2.44 5.20h 2.28

aReference [27].
bReference [7].
cReference [59].
dReference [60]
eReference [55].
fReference [61].
gReference [62].
hReference [63].

subcommunicator, q2 is divided into different processors. Each
processor group might only have a few q2 points. To further
decrease the computational cost, the crystal symmetry is used.
Therefore, the first BZ can be represented with a reduced set
of k vectors within the irreducible BZ. The calculations were
carried out on the Titan supercomputer at OLCF using about
100 000 CPU processors. It takes about four hours for one
fully converged sc-GW calculation.

IV. RESULTS AND DISCUSSIONS

We first study the quasiparticle energies. The calculated
LDA, G0W0 (with LDA inputs) and sc-GW band gaps for
bulk GaAs, ZnO, and CdS are tabulated in Table VI. When
the non-self-consistent G0W0 calculations are performed, the
band gaps for GaAs and CdS are 1.29 and 2.10 eV, respectively.
These values are in relatively good agreement with other
theoretical results [7,27,55], including the all-electron results
[7,55]. For ZnO, the values of the G0W0 band gap are
very scattered, ranging from 2.11 to 4.23 eV [27,44,55,56],
due to different approximations, truncations, and initial input
eigenenergies and wave functions. In one recent work [43],
Shih et al. found that the conventional G0W0 method can
yield a band gap that is very close to the experimental value
for wurtzite ZnO, if one uses LDA + U as initial inputs,
high cutoff energies, and enough conduction bands (about
3000 empty states). On the one hand, this example highlights
the importance of high cutoff energies and the number of
conduction bands to reach numerical convergence. On the
other hand, it also shows that G0W0 quasiparticle energy
could be highly sensitive to the input DFT eigenenergies
and wave functions (e.g., using LDA instead of LDA + U

will have a major difference). Some later studies [57,58] also
discussed the issue of plasmon pole approximation used in
the work of Shih et al. [43]. For zinc-blende ZnO as listed in
Table VI, Chu et al. reported a 2.31 eV G0W0 band gap based
on all-electron implementation [55] using LDA eigenenergies
and wave functions as input. Our computed G0W0 band gap
is 0.2 eV higher than their result. However, since only 150
conduction bands are included in their GW calculations, this

could lead to a numerically unconverged result. Figure 6 shows
the dependence of the G0W0 band gap of ZnO on the number
of conduction bands. The red dashed line is the band gap
calculated using the full Green’s function without truncation.
It shows clearly that the quasiparticle gap of ZnO including
500 conduction bands does not converge completely, which
is in agreement with the conclusion made by Shih et al. [43].
For systems with strongly localized states like ZnO, the con-
vergence regarding the number of conduction band states can
be very slow. As a result, it is crucial to use the nontruncated
Green’s function in the GW calculations. According to Fig. 6,
our G0W0 using 150 conduction bands would yield a 2.2 eV
band gap, which is quite close to the results in Ref. [55].
This close agreement of our semicore-pseudopotential G0W0

calculation and the all-electron calculation (when the same
number of conduction bands is used) also confirms that the
use of our semicore pseudopotential is accurate. For all three
systems, it can also be noted that although the G0W0 band

FIG. 6. G0W0 band gap of ZnO as a function of the number of
conduction bands in evaluating the Green’s function. The red dashed
line is the full result without any conduction band truncation.
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gaps considerably improved those at the LDA level, they
systematically underestimate the experimental values.

The band gaps from sc-GW calculations are increased com-
pared to the G0W0 band gaps and significantly overestimate
the experimental values as can be seen in Table VI. Although
similar phenomena have been discussed in previous literature
[21,27,55], most of such works were under approximations
more severe than the current work, and the previously reported
overestimations were not as large as we reported here. We
also noticed that our conclusion is different from a recent
all-electron FP-LAPW sc-GW calculation by Chu et al. [55].
They emphasized the need of all-electron calculation and
sc-GW calculation, and in many of their systems (including
ZnO and CdS), their sc-GW results are much closer to
the experiment than the G0W0 results. As we have shown
above, our semicore-pseudopotential result is rather close to
their all-electron G0W0 results (when the finite number of
conduction band truncation in their calculation is taken into
account), thus we believe the all-electron is not an issue here.
There are several possible reasons for the differences between
their results and ours. First is the diagonal approximation used
in their approach, where the Green’s function G has been
approximated with a diagonal form similar to Eq. (1) [although
the frequency-dependent denominator has been replaced by a
general function of fi(ω) during the self-consistent iteration],
and the ψi(r) basis is not updated. Instead, the G in our
method is represented in the full matrices form that both
the diagonal and off-diagonal elements are included in the
self-consistent calculations. According to Shishkin and Kresse
[27], the inclusion of off-diagonal elements has the tendency to
open the band gaps. Thus, the relatively good agreement for the
G0W0 result compared to Ref. [55], and the large difference
for the sc-GW results, might indicate the importance of the
off-diagonal term in the sc-GW calculation. Another possible
reason is the finite number of conduction bands used in their
diagonal representation of the G. Only150 conduction bands
are used and the energy of the highest eigenstate above the
Fermi level is only 1.2 Ry. For strongly localized materials,
these parameters might be far from converged as we discussed
above [38].

From Table VI, we can see that, for GaAs, the sc-GW band
gap is more than 30% larger than the experimental value,
while G0W0 is about 14% smaller than the experimental one.
It seems that the sc-GW results are worse than the G0W0

results. The same can be said for ZnO and CdS. This is in
contrast to the conclusions made based on molecular sc-GW
calculations [22,64], where the overall quality of the sc-GW
results is similar to the G0W0 results. To analyze the origin
for this overestimation, the converged macroscopic dielectric
constants εGW of the sc-GW for GaAs, ZnO, and CdS are
shown in Table VI as 4.98, 1.86, and 2.44, respectively. They
are significantly smaller than the experimental values [60,63].
Due to the underestimated screening, it is natural the GW

will give an overestimation of the band gap. Such sensitivity
to the macroscopic dielectric constant does not exist in the
molecular systems. We also noticed that the LDA dielectric
constants εLDA are quite close to the experimental values. This
partially explains why the G0W0 can yield a better band gap
than the sc-GW results. To test this idea further, we have
carried out the following tests. In these tests, we have used

the experimental macroscopic dielectric constant εexp. Then at
every iteration step, according to the calculated macroscopic
dielectric constant 1/ε−1(q1 = 0,q2 = 0,k = 0,ω = 0), we
defined a correction prefactor β = εexp/ε

−1 (0,0,0,0), and
multiplied this prefactor β to all the ε−1(q1,q2,k,iω) in the
calculation of W in Eq. (6). The resulting band gaps Etest

are also reported in Table VI. We can see that these test
results significantly reduce the sc-GW band gaps, making them
smaller than the experimental values. This indicates that the
underestimation of the dielectric constant plays a determining
role for the overestimation of the band gap. The fact that the
resulting band gaps are smaller than experimental values is
probably because the factor β overestimates the dielectric
constant at other (q1,q2,k,iω) points [since ε(q1 = 0,q2 =
0,k = 0,ω = 0) is most sensitive to the band gap at k = 0,
while the other (q1,q2,k,iω) is less sensitive, one might need a
smaller prefactor]. To yield a better dielectric constant without
fitting, one needs to include the higher order vertex terms in
the Feynman diagram of the many-body perturbation theory.

We note that there are some recent works for the effects
of lattice screening (electron-phonon coupling) to the semi-
conductor band gap [65–68]. Such lattice screening generally
reduces the band gap, thus it could bring our sc-GW results
into better agreement with the experiment. However, the
reported lattice screening effects on GaAs [68] are rather small,
only 0.06 eV, although there are reports of surprisingly large
(0.7 eV) zero temperature lattice screening effects for diamond
[65,66]. Nevertheless, in general, for semiconductors with a
band gap smaller than 3 eV and for heavy elements, it looks
like the lattice screening effect is less than 0.1 eV [66,68], and
thus should not be enough to explain the difference between
our sc-GW and experimental results.

Another important aspect is the accurate description of
the d-state energies. We have computed the outmost cation
d-state binding energy Ed at the � point, which is estimated
as the average of all the corresponding d-state energies with
respect to the valence band maximum (VBM), as presented
in Table VII. It is clear that Ed predicted by LDA are
underestimated by at least 2 eV compared to the experimental
values. The too shallow LDA cation d-state energies are mainly
caused by the well-known self-interaction error of d electrons
within LDA. As expected, the G0W0 calculations perform
better than LDA and place these d states at deeper binding
energy for all the systems studied. However, the discrepancy
can still be very large (around 1–2 eV). There are works [43,69]
using LDA + U as initial inputs, in which the self-interaction
is effectively removed, to give a good description of the ground
states. In our self-consistent calculation, the energies of the

TABLE VII. The average semicore d-state binding energies
(in eV) of GaAs, ZnO, and CdS at � calculated using LDA, G0W0,
and sc-GW methods. The experimental value Expt. (in eV) is given
for comparison.

Ed LDA G0W0 sc-GW Expt.

GaAs −14.82 −16.73 −18.32 −(18.7–18.82)a

ZnO −5.16 −5.97 −7.10 −(7.5–8.81)a

CdS −7.51 −8.38 −9.67 −(9.2–10.0)a

aReference [70].
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cation d state are significantly improved when compared with
experiment [70]. It seems like the d-state energy is relatively
unaffected by the dielectric constant error, at least for the
error at 1/ε−1(q1 = 0,q2 = 0,k = 0,ω = 0); probably this is
because the localized d state is mostly screened by finite k

and q components of the dielectric constant, rather than by
1/ε−1(q1 = 0,q2 = 0,k = 0,ω = 0). Since the ε at other k and

FIG. 7. The spectral functions for (a) GaAs, (b) ZnO, and (c)
CdS. The dashed lines are for the G0W0 results and the solid lines
are for the sc-GW results. The Fermi energies μ for GaAs, ZnO, and
CdS are around 0.5, 6.1, and 1.5 eV, respectively.

q points depends less sensitively on the band gap at the � point,
they might have smaller errors. It is worth pointing out that the
d-state energy is affected by the self-interaction energy, which
has been corrected in the sc-GW calculation.

Finally, we reported the spectral functions using Eq. (24),
and they are shown in Fig. 7 for k = 0. The GW spectral
function shows sharp peaks at the quasiparticle energies. Note
the peak positions are exactly the same as the ones shown in
Tables VI and VII. As expected, the sharper peaks close to the
Fermi energy are associated with the longer lifetimes of the
corresponding quasiparticle states. In the work of Holm and
von Barth for homogeneous electron gas [20], they observed
a transfer of spectral weight from the plasmon satellite to
the quasiparticle peak in the self-consistent GW calculations.
This results in a weaker plasmon peak and a broader valence
band. Similar to what they found, the valence band width of
our sc-GW is slightly wider than that of G0W0 as shown in
Fig. 7. In addition, we do not see any satellite peaks deep in the
valence band. Such satellite peaks representing the plasmon
excitations could be found by the cumulant method as a post
process procedure [71].

V. CONCLUSIONS

In summary, we have implemented a fully self-consistent
GW approach based on the solution of the Dyson equation
using a plane wave basis set. We use this method for a detailed
study of the quasiparticle energies and spectral properties
for bulk GaAs, ZnO, and CdS using pseudopotentials with
semicores. The Green’s function is expressed as a full matrix
without truncation. Algorithmic, numerical, and technical
details of the self-consistent GW approach are presented to
deal with the nonanalyticity and convergence issues in a bulk
calculation. All these systems converge in four to five self-
consistent iterations. We found that the sc-GW significantly
overestimates the band gap due to the underestimation of
the macroscopic dielectric constants during the self-consistent
iterations. The results indicate that an accurate prediction of the
quasiparticle band gap requires an accurate prediction of the
dielectric function, which could be achieved by including the
vertex correction beyond GW . Our work also sheds some light
on why the G0W0 with LDA input could yield a better band
gap compared to the sc-GW , since LDA often has relatively
more accurate dielectric constants. We also demonstrated that
the number of conduction bands and off-diagonal elements
are very important in the GW calculation. After correcting
the self-interaction error, sc-GW can yield accurate d-state
energies, which less sensitively depend on the dielectric
constant at k = 0.
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APPENDIX A: DERIVATION OF GW FORMULA
IN PERIODIC SYSTEMS

In this Appendix, the derivation of the GW formula for
periodic systems is outlined. The noninteracting Green’s
function G0 can be explicitly written in terms of the single-
particle eigenfunctions ψn(r) and eigenvalues εn as

G0(r1,r2,ω) =
∑

n

ψn(r1)ψ∗
n (r2)

ω − εn ± iδn

, (A1)

where n is the orbital numbers. According to the Bloch’s
theorem, the noninteracting Green’s function G0 in the

periodic environment has the form

G0(r1,r2,ω) =
∑

k

∑
n

unk(r1)u∗
nk(r2)e−ik(r1−r2)

ω − εnk ± iδnk

wk. (A2)

Here, unk(r) is a periodic function with the same periodicity
as the system and k is the wave vector and wk is the weighting
factor of each k point (wk is omitted in the equations below for
simplicity). For interacting systems, it can be proved that the
Green’s function G in the time space iτ has a similar form:

G(r1,r2,iτ ) =
∑

k

G(r1,r2,k,iτ )e−ik(r1−r2). (A3)

The basic formalism of our fully self-consistent GW

approach for an isolated molecule system can be found in
our previous paper [22]. Here we will present the derivation
of these equations in periodic systems. The irreducible
polarization χ within random-phase approximation is given
by the product of two Green’s functions as

χ (r1,r2,iτ ) = −iG(r1,r2,iτ )G(r2,r1, − iτ ). (A4)

Substituting Eq. (A3) into Eq. (A4), we can get

χ (r1,r2,iτ ) =−i

{∑
k1

G(r1,r2,k1,iτ )e−ik1(r1−r2)

}{∑
k2

G(r2,r1,k2, − iτ )e−ik2(r2−r1)

}

=
∑

k

−i

{∑
k2

G(r1,r2,k + k2,iτ )G(r2,r1,k2, − iτ )

}
e−ik(r1−r2) =

∑
k

χ (r1,r2,k,iτ )e−ik(r1−r2)

So : χ (r1,r2,k,iτ ) =−i
∑
k2

G(r1,r2,k + k2,iτ )G(r2,r1,k2, − iτ ). (A5)

Using Eq. (A5), the dielectric function ε is calculated as

ε(r1,r2,iω) = δ(r1 − r2) −
∫

χ (r1,r3,iω)υ(r3 − r2)dr3

= δ(r1 − r2) −
∫ {∑

k1

χ (r1,r3,k1,iω)e−ik1(r1−r3)

}{∑
k2

υ(r3 − r2,k2)e−ik2(r3−r2)

}
dr3. (A6)

Note,
∫

dr3 = ∫
�

dr3
∑

R , where � is the unit cell and R is the lattice vector. So
∑

R e−i(k1−k2)R = δk1,k2 . As a result, the
dielectric function can be defined as

ε(r1,r2,iω) =
∑

k

δ(r1 − r2,k)e−ik(r1−r2) −
∫ {∑

k

χ (r1,r3,k,iω)υ(r3 − r2,k)e−ik(r1−r2)

}
dr3

So : ε(r1,r2,k,iω) = δ(r1 − r2,k) −
∫

χ (r1,r3,k,iω)υ(r3 − r2,k)dr3. (A7)

Unlike the polarization χ , there is no k mix in the formula
of dielectric function ε, as well as in the inverse function
ε−1. Using a similar way, we can get the screened Coulomb
potential W and the self-energy � for periodic systems in the
below forms:

W (r1,r2,k,iω) = υ(r1 − r3,k)ε−1(r3,r2,k,iω), (A8)

�(r1,r2,k,iτ ) = i
∑
k2

G(r1,r2,k − k2,iτ )W (r1,r2,k2,iτ ).

(A9)

Finally, after Eqs. (A5)–(A9) are yielded, the Dyson
equation for periodic solid is given as

G−1(r1,r2,k,iω) = (iω + μ)δ(r1 − r2,k) − H (r1,r2,k)

−�(r1,r2,k,iω). (A10)

In the reciprocal space, it is expressed as

G−1(q1,q2,k,iω) = (iω + μ)δq1,q2 − H (q1,q2,k)

−�(q1,q2,k,iω). (A11)
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TABLE VIII. The comparison of the LDA results for ZnO with
respect to the two different cutoff energies. Eg is the minimum energy
gap (eV) and Ed is the average d-state binding energy (eV) of Zn.
Some selected eigenvalues (eV) relative to the valence band maximum
(�13v) at the � point are also presented.

Systems Ecut = 350 Ry Ecut = 105 Ry

Eg 0.613 0.617
�1v(Zn 3s) −122.65 −136.03
�2v(Zn 3p) −77.34 −83.27
�5v(O 2s) −17.34 −17.52
�6v(Zn 3d) −5.71 −5.70
Ed −5.19 −5.16

APPENDIX B: CALCULATION OF POLARIZABILITY
OF k → 0

In this Appendix, details about the special case for k → 0
are presented. To test the “head” expression of Eq. (11) in the
main text, the noninteracting Green’s function G0 in iτ space
is used and its analytical expression can be written down as

G(r1,r2,k,iτ )

=
∑

n,εnk<μ

ψnk(r1)ψ∗
nk(r2)e−(εnk−μ)τ , for τ > 0

=−
∑

n,εnk<μ

ψnk(r1)ψ∗
nk(r2)e−(εnk−μ)τ , for τ < 0. (B1)

Here ψnk(r) is the single-particle eigenwave function,
εnk is its eigenenergy, and n is the index for the band
states. Substituting Eq. (B1) into Eq. (8), the single-particle
polarizability χ (r1,r2,k,iτ ) in the limit for k → 0 is obtained
as (for τ > 0)

χ (r1,r2,k,iτ ) =−i
∑
k2

∑
n,n2

ψn(k2+k)(r1)ψ∗
n2k2

(r1)

×ψn2k2 (r2)ψ∗
n(k2+k)(r2)e−(εn(k2+k)−εn2k2 )τ . (B2)

Transforming to reciprocal space, the resulting expression
for χ (q1,q2,k,iτ ) is

χ (q1,q2,k,iτ )

= −i

�

∑
k2,n,n2

〈n,k2 + k|ei(q1+k)r1 |n2,k2〉

× 〈n2,k2|e−i(q2+k)r2 |n,k2 + k〉e−(εn(k2+k)−εn2k2 )τ . (B3)

Using first-order perturbation theory, the wave function at
(k2 + k) can be obtained in terms of those at the k2 point. The
result is

〈n2,k2|e−ikr |n,k2 + k〉 = 〈n2,k2|kα∇α
k2

H (r)|n,k2〉
εnk2 − εn2k2

. (B4)

TABLE IX. The parameters of β, rpeak, and rcut used for the
pseudopotentials of GaAs and ZnO. Each row of the table stands
for the parameters used in the Gaussian function f (r) added to the
original s, or p or d potentials of Zn or Ga atoms.

Atom B (hartree) rpeak (bohr) rcut (bohr)

Zn vs −0.90 0.49 0.97
Zn vp 0 0.06 1.15
Zn vd 0 0.06 0.97
Ga vs 0 0.47 0.60
Ga vp 0.60 0.05 1.18
Ga vd −0.36 0.05 1.18

kα∇α
k2

H (r) is the same as that defined in the main text. The
“head” expression of χ (q1 = 0,q2 = 0,k,iτ ) at the k = 0 point
is given by

χ (q1 = 0,q2 = 0,k = 0,iτ )

= −i

�

∑
k2,n,n2

× 〈n,k2|kα∇α
k2

H (r1)|n2,k2〉〈n2,k2|kβ∇β

k2
H (r2)|n,k2〉(

εnk2−εn2k2

)2

× e−(εnk2 −εn2k2 )τ . (B5)

After twice derivation of τ , Eq. (B5) is just the same as the
intermediate term χ

(0)
α,β (q1 = 0,q2 = 0,k = 0,iτ )kαkβ defined

in Eq. (10). As a result, the “head” expression of χ (q1 =
0,q2 = 0,k,iτ ) for the special case of k → 0 expanded using
Eq. (9) is correct. Similarly, the “wings” of χ (q1 = 0,q2,k,iτ )
used in our approach is

χ (0)
α (q1 = 0,q2,k,iτ )kα

=−ikα

∑
k2

∫ [∇α
k2

H (r1)G(r1,r2,k2,iτ )

×G(r2,r1,k2, − iτ )wk2e
−q2r2

]
d3r1d

3r2

So : χ (q1 = 0,q2,k,iτ )

=−
∫ τ

∞

[
χ (0)

α (q1 = 0,q2,k,iτ )kα

]
dτ. (B6)

The first-order kα in the “wings” expansion as a function of
k will cancel with the k in the denominator of Eq. (7).

APPENDIX C: POTENTAIL DETAILS

In this Appendix, the comparison for ZnO with respect to
the above two different energy cutoffs is given in Table VIII
and the parameters of β, rpeak, and rcut used for the modified
pseudopotentials of GaAs and ZnO are presented in Table IX.
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