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Electrons at the monkey saddle: A multicritical Lifshitz point
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We consider two-dimensional interacting electrons at a monkey saddle with dispersion ∝p3
x − 3pxp

2
y . Such a

dispersion naturally arises at the multicritical Lifshitz point when three Van Hove saddles merge in an elliptical
umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz
point of this kind can be identified by its signature Landau level behavior Em ∝ (Bm)3/2 and related oscillations
in thermodynamic and transport properties, such as de Haas–Van Alphen and Shubnikov–de Haas oscillations,
whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the
noninteracting electron fixed point is unstable to interactions under the renormalization-group flow, developing
either a superconducting instability or non-Fermi-liquid features. Biased bilayer graphene, where there are two
non-nested monkey saddles at the K and K ′ points, exhibits an interplay of competing many-body instabilities,
namely, s-wave superconductivity, ferromagnetism, and spin- and charge-density waves.

DOI: 10.1103/PhysRevB.95.035137

I. INTRODUCTION

Systems of two-dimensional (2D) electrons close to Van
Hove (VH) singularities [1–9] are of interest because of their
displayed logarithmic enhancement of the electron density of
states (DOS), which translates into a propensity to many-body
instabilities [1]. Among many exciting possibilities opened
by proximity to VH singularities is that unconventional
d + id chiral superconductivity could occur in a strongly
doped graphene monolayer [10].

The transition of the Fermi level through a VH singularity
can be interpreted essentially as a Lifshitz transition of a
neck-narrowing type [11], wherein two disconnected regions
of the Fermi surface (FS) merge together. Alternatively, if
the touching occurs at the edge of the Brillouin zone, which
happens for the square lattice, it may be interpreted as
a FS turning inside out (from electronlike to holelike). A
multicritical Lifshitz point (MLP) arises as both a crossing
of several Lifshitz transition lines and a singularity in the
electronic dispersion ξ ( p). MLPs of bosonic type have been
analyzed and classified in the context of phase transitions,
where terms in the free-energy-density functional with higher-
order derivatives of an order parameter, say the magnetization,
need to be kept at special points in the phase diagram [12–14].
However, MLPs of fermionic type, with a singularity in the
fermionic dispersion ξ ( p), have been largely unexplored,
discussed only in a scenario involving Majorana fermions
and spin liquids [15] where the monkey saddle was produced
because of symmetries of the low-energy Hamiltonian as
opposed to a merging of several VH singularities.

In this paper we study fermionic MLPs, using biased
bilayer graphene (BLG) as a concrete example of a physical
realization. In the case of BLG, three VH saddles merge
into a monkey saddle at a critical value of the interlayer
voltage bias (see Figs. 1 and 2). Mathematically, the monkey
saddle is a genuine mathematical singularity with a degenerate
quadratic form as opposed to a VH saddle, which is not a true
singularity in a mathematical sense, having a nondegenerate
quadratic form of the (+−) signature, ∝p2

x − p2
y . Physically,

we identify key differences between the case of a MLP
and that of the usual VH singularity. First, the monkey-
saddle-like dispersion ∝p3

x − 3pxp
2
y at the MLP exhibits a

stronger, power-law divergence in the DOS and thus leads to
even stronger many-body instabilities, with higher transition
temperatures as a result. These stronger DOS divergences
greatly simplify the renormalization-group (RG) analysis of
the problem, yielding a superrenormalizable theory. We find
that the noninteracting electron fixed point is unstable to

FIG. 1. Pictorial representation of Fermi surface families in a
biased bilayer graphene system for three different values of the
interlayer voltage bias δ. Three Van Hove saddles with dispersions
∝(p2

x − p2
y) are shown with black dots (δ �= δc), while arrows indicate

their displacement upon increasing the value of δ. At the critical value
of the bias δc they merge into a monkey saddle ∝(p3

x − 3pxp
2
y) that

closes into a trifolium-shaped Fermi surface.
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FIG. 2. There are four phases with different Fermi surface
topologies in biased bilayer graphene. They are separated by two
lines of phase transitions, one of a band-edge type (dash-dotted line)
and the other of the Van Hove or, equivalently, a neck-narrowing type
(solid line). The multicritical Lifshitz point is located at the crossing
of these two lines. In the gray area the Fermi level lies within the
gap with no FS. Note different scales for the voltage δ and the Fermi
energy EF .

interactions, developing either a superconducting instability or
non-Fermi-liquid behavior. In the case of BLG, which has two
non-nested monkey saddles at the K and K ′ points, interactions
lead to instabilities to the s-wave superconducting state,
ferromagnetism, spin-density wave, and charge-density wave,
depending on the nature of interactions. Second, the monkey
saddle possesses a signature Landau level (LL) structure
with energy levels Em ∝ (Bm)3/2. In addition, oscillations
in different thermodynamic and transport properties, such as
de Haas–van Alphen and Shubnikov–de Haas oscillations, are
sensitive to the presence of the multicritical point. The monkey
saddle can be identified by the scaling of the period of these
oscillations with the Fermi energy as �(1/B) ∝ E

2/3
F and with

an abrupt tripling of the period as Fermi level goes from below
to above the saddle due to a change of the FS topology.

The presentation of the results in the paper is organized
as follows. In Sec. II we present how the monkey saddle
arises in voltage-biased BLG. We show how four different
FS topologies can be attained by varying the bias voltage
and the chemical potential and identify the MLP in the phase
diagram as the location where these four different phases meet
at a point. There we also discuss the nature of the divergence
in the density of states for the monkey saddle dispersion. In
Sec. III we obtain the energies of the quantized Landau orbits
within a quasiclassical approximation and present arguments
for the period tripling of the magnetic oscillations as the system
undergoes a FS topology change; these features may serve as
clear experimental telltales of the MLP in BLG. In Sec. IV
we present an RG analysis of the case when interactions are
present in a system with an isolated monkey saddle, where we
show that the system is either unstable to superconductivity
or flows to a non-Fermi liquid, depending on the sign of the

interactions. The RG analysis for the case of BLG with two
monkey saddles at the K and K ′ points is studied in Sec. V,
where we discuss the possible instabilities of the system. We
close the paper by summarizing the results and discussing open
problem in Sec. VI.

II. HAMILTONIAN AND DISPERSION

Here we explicitly show how the monkey saddle arises in
BLG. We consider AB-type stacked BLG, with the layers
labeled by 1 and 2 and the two sublattices within each
layer labeled by A and B. The spinor representing the
electronic amplitudes is chosen in the order (A1,B1,A2,B2).
We consider an extended tight-binding model that includes
next-nearest-neighbor hopping, where the Hamiltonian of the
system linearized near the K point is [16]

Ȟ0 =

⎛
⎜⎜⎝

1
2V vp− 0 v3p+
vp+ 1

2V γ1 0
0 γ1 − 1

2V vp−
v3p− 0 vp+ − 1

2V

⎞
⎟⎟⎠. (1)

Here v is the band velocity of monolayer graphene, γ1 =
0.4 eV is an interlayer coupling constant, and v3 ≈ 0.1v

describes trigonal warping that arises as a result of the
next-nearest-neighbor hopping. V is an interlayer voltage bias,
and p± = px ± ipy is the momentum. BLG has four energy
bands, and in this paper we are focused solely on the lowest
upper band with an electron dispersion [17]

ξ 2( p) = V 2

4

(
1 − 2

v2p2

γ 2
1

)2

+ v2
3p

2 + . . .

+ 2
v3v

2

γ1
p3 cos 3φ + v4p4

γ 2
1

. (2)

For voltage biases V of the order of the trigonal warping energy
scale γ1 the ∝p4 contribution arising from the first term can be
safely neglected. It is convenient to introduce dimensionless
variables, redefining energies as ξ → (v3γ1/v)ξ and momenta
as p → (v3γ1/v

2) p,

ξ 2( p) = (δ/2)2 + u2
3[(1 − δ2)p2 + 2p3 cos 3φ + p4], (3)

where u3 ≡ v3/v ≈ 0.1 is a dimensionless measure of the
warping strength and δ ≡ V/(v3γ1/v). The dispersion near
the K ′ point can be obtained from the one near the K point by
inversion, p → − p.

Unlike in the case of a monolayer graphene, where the
warping merely distorts the Dirac cone with low-energy
dispersion being unaffected, BLG behaves in a very different
way. In the absence of interlayer voltage bias, the trigonal
warping destroys the parabolic dispersion, breaking it down
into four Dirac cones. A nonzero interlayer voltage V gaps out
these Dirac cones while also gradually inverting the central
electron pocket into a holelike pocket at the critical value of the
bias Vc = (v3/v)γ1 (δc = 1 in dimensionless units introduced
above). This critical value of the bias marks a singularity in
the electronic dispersion ξ ( p).

At the subcritical interlayer voltage bias δ < 1 the elec-
tronic dispersion ξ ( p) has seven extremal points, four elec-
tronic pockets and three VH saddle points. While the three
outer electronic pockets are robust and are present at all voltage
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biases, the central extremum and three VH saddle points merge
at the critical voltage, falling apart again into three saddles and
a holelike pocket at the supercritical bias δ > 1 (see Fig. 1).

In the vicinity of the singular point the electronic dispersion
behavior is governed by the lowest powers of the momentum:

ξ ( p) ∝ (1 − δ2)p2︸ ︷︷ ︸
Pert(2,1)

+p3 cos 3φ︸ ︷︷ ︸
CG(2)

. (4)

This momentum behavior corresponds exactly to the
symmetry-restricted elliptic umbilic elementary catastrophe
(D−

4 within ADE classification) [18]. From the point of view
of the catastrophe theory the cubic term p3 cos 3φ ≡ CG(2)
is a catastrophe germ defining the nature of the singularity
in the ξ ( p) function, while the quadratic term (1 − δ2)p2 ≡
Pert(2,1) is a lattice-symmetry-restricted perturbation with one
parameter δ, which regularizes the singularity. Qualitatively,
the behavior of the system can be viewed as a bifurcation
of a monkey saddle p3 cos 3φ ≡ p3

x − 3pxp
2
y into three VH

(ordinary) saddles and a maximum/minimum:

p3
x − 3pxp

2
y︸ ︷︷ ︸

monkey saddle

←→ 3 × (
p2

x − p2
y

)︸ ︷︷ ︸
VH saddle

+ 1 × p2︸︷︷︸
e/h pocket

. (5)

A. Strong density of states divergence

The monkey saddle leads to a strong IR divergence in the
DOS. While the VH saddle has a logarithmic DOS, any generic
higher-order saddle ξ ( p,n) = apn cos nφ has a power-law
divergence in the DOS. To obtain the DOS for a higher-order
saddle, it is convenient to work on generalized hyperbolic
coordinates (ξ,η) = a(pn cos nφ,pn sin nφ) (where n = 1,2
correspond to polar and hyperbolic coordinates, respectively).
The dispersion of the saddle is given by the ξ variable,
while η plays the role of the hyperbolic angle, parametrizing
displacements along the FS. The density of states is given by

ν(ξ,n) =
∮

FS

(d p)

dξ
= a−2/n

(2π )2n

∫ +∞

−∞

dη

(ξ 2 + η2)
n−1
n

= a−2/n

4nπ3/2



(

1
2 − 1

n

)



(
1 − 1

n

) ξ− n−2
n , (6)

where (d p) ≡ d2p/(2π )2 and we set Planck’s constant to unity
(� = 1).

B. Fermi surface topology phase diagram

The electron FS at a given Fermi energy is defined as a cross
section of the electron dispersion ξ ( p,δ) = EF . There are four
distinct Fermi surface topology phases within the (δ,EF ) plane
(see Fig. 2). All of them have the same threefold symmetry but
can be discerned by their topological invariants, the number
of connected components, and the number of holes. Namely,
in our case the four phases can be labeled uniquely by the first
two Betti numbers of their FS (b0,b1) as (1,0), (4,0), (3,0), and
(1,1).

These four phases are separated by two lines of topological
phase transitions. One of the lines is of a weaker, band-edge
transition type, while another is of a stronger VH type
(the former has a jump in the DOS, while the latter has a

= c

Em < 0
Em > 0

FIG. 3. Quasiclassical LL orbits in momentum space for energies
slightly below and slightly above the monkey saddle (and critical
voltage bias). The number of connected FS components changes
from three to one as the Fermi level crosses zero.

log divergence). The multicritical Lifshitz point lies at the
intersection of these two lines.

III. MAGNETIC OSCILLATIONS AT
THE MONKEY SADDLE

Within a quasiclassical approximation, the LLs can be
obtained by quantization of the area enclosed by quasiparticle
orbit in momentum space (Fig. 3),∫

(d p) = m

2πl2
B

, (7)

where lB = √
c/eB is a magnetic length and m is the LL

index. For a system tuned exactly to the monkey saddle (or
any higher-order saddle), the behavior is dominated by the
singularity itself, so that∫ Em

0
ν(ξ )dξ = 1

8π1/2



(

1
2 − 1

n

)



(
1 − 1

n

) (
Em

a

) 2
n

⇒ Em = α

(
a

lnB

)
mn/2 ∝ (Bm)n/2, (8)

with a numerical coefficient

α =
(

4
√

π



(
1 − 1

n

)



(
1
2 − 1

n

)
) n

2

=
(n=3)

2.27. (9)

As always, LLs imply oscillations of various transport and
thermodynamic properties in an applied magnetic field since
such oscillations happen as LLs cross the Fermi level of the
system. At the critical voltage bias δc = 1 but with a small
positive detuning from the energy of the saddle point, i.e., EF

slightly higher than δc/2, we can see from Eq. (8) that we have
a periodicity in inverse magnetic field with a period

�

(
1

B

)
= e�

c

(
EF

αa

)2/n

, (10)

where we reinserted Planck’s constant �.
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Equations (8) and (10) are given for positive LL energies,
when EF is slightly higher than δc/2 and the FS consists of
one connected component (see Figs. 1 and 2). The situation is
different for negative energies, when EF is slightly lower than
δc/2 and the Fermi surface has three disconnected components.
In this case the LLs are triply degenerate (on top of the valley
degeneracy) and are three times as sparse,

E−m = −αal−n
B (3m)n/2, (11)

and the oscillation period in the inverse magnetic field is three
times smaller as well. (All equations above are for spinless
electrons: in a real system Zeeman splitting should be taken
into account as well.)

The tripling of the periodicity of oscillation is a telltale
of the Fermi surface topology change and can be viewed
physically as follows. The area of the Fermi surface is not
very different slightly before or slightly after it undergoes the
topology change. At the critical point, the area that fits just one
electron orbit is brought inside the Fermi surface upon inser-
tion of a flux quantum. When there is a single surface, one can
indeed fit a physical electron within that orbit. However, when
the Fermi surface contains the three pockets, the additional
area brought inside each pocket due to a single flux quantum
insertion is only 1/3 of what is needed to fit one electron. If
there were quasiparticles with charge 1/3, then they could fill
separately the area in the three pockets, but there are no such
particles in the system. Hence, the flux periodicity is tripled
when the Fermi surfaces are disconnected, as one can add only
a full electron at each pocket, requiring the addition of three
flux quanta. This is the physical origin of the period tripling.

IV. RG FLOW AT THE MONKEY SADDLE

Here we analyze a single monkey saddle within a one-loop
RG framework. Assuming short-range interaction, an electron
action is given by

S =
∫

(dτd r)

[
ψ†[∂τ − ξ (−i∇) + μ]ψ − g

2
(ψ†ψ)2

]
,

(12)

with interaction
g

2
(ψ†ψ)2 = g(ψ†

↑ψ
†
↓ψ↓ψ↑). (13)

We focus on the system tuned exactly to the monkey saddle,
so that the dispersion is determined by the catastrophe germ
ξ ( p) = p3 cos 3φ and the nonsingular part of FS is irrelevant
(see Fig. 4). Tree-level RG involves rescaling of frequency and
momenta as

ω → s−1ω, p → s−1/3 p, ψ → s−1/3ψ (14)

and results in the interaction constant scaling as

g → gs+1/3, (15)

entailing superrenormalizability of the theory.
Superrenormalizability brings crucial simplifications with

respect to the case of the ordinary VH saddle: while the
separation of the saddle from the nonsingular part of the FS
requires two cutoffs in the case of VH singularities (n = 2), it
requires only one cutoff for higher-order singularities (n > 2;

2

1

FIG. 4. Left: A Fermi surface near a Van Hove saddle calls for a
two-cutoff RG scheme. The gray area represents occupied electron
states. The hatched region of the phase space corresponds to a step
dξ in electron energy. Normally, one cutoff d�1 ∼ dξ is sufficient,
but here we see that the logarithmic DOS at the Van Hove saddle
together with an open hyperbolic Fermi surface leads to tails of the
hatched region that reach out to the rest of the Fermi surface away
from the Van Hove saddle. The purpose of the second cutoff �2 is
to cut these tails and isolate the Van Hove saddle. Right: No second
cutoff is needed at the monkey saddle.

see Fig. 4). This difference can be traced back to the behavior
of the DOS obtained in Eq. (6). In the case of the VH saddle
(n = 2), the integral over the anglelike variable η diverges
logarithmically, requiring an additional cutoff in the problem
that is interpreted as a Fermi velocity cutoff in Refs. [9,11].
In contrast, for any higher-order saddle with n > 2, the DOS
at a given energy is well defined and is determined solely by
the saddle and does not require a large momentum cutoff. This
means that for n > 2 the theory is free of UV divergences and
contains only (meaningful) IR divergences that are regularized
by temperature T and chemical potential μ.

We introduce a dimensionless coupling constant in a natural
way as

λ(ϒ) = ν(ϒ)g(ϒ), (16)

with a smooth infrared cutoff ϒ that we take to be either μ

or T , so that the β function for the dimensionless coupling
constant is (see Appendix A)

dλ

d ln ν(ϒ)
= λ − cλ2, (17)

with a non-negative coefficient

c = d�pp

dν(ϒ)
− d�ph

dν(ϒ)
� 0, (18)

where �pp and �ph are particle-particle and particle-hole
polarization operators.

The scaling behavior of the system strongly resembles that
of one-dimensional interacting electrons. Namely, exactly at
the monkey saddle at μ = 0 the one-loop contribution to the β

function vanishes, leaving a critical theory with only tree-level
scaling,

dλ

d ln ν(T )
= λ (μ = 0,∀ T ). (19)

This behavior is linked to an additional symmetry [9] that arises
exactly at the monkey saddle and is a combination of time-
reversal transformation (ε, p) → (−ε,− p) plus a particle-hole
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transformation ψ† � ψ . This symmetry is present only for
odd saddles with ξ (− p) = −ξ ( p) and is absent for even
saddles that have a dispersion that is invariant under spatial
inversion.

At the same time, away from the monkey saddle

dλ

d ln ν(μ)
= λ − 1

2
λ2 (T � |μ| �= 0), (20)

and the system either flows to a nontrivial fixed point λ = 2
for any positive initial coupling constant λ0 > 0 or develops a
superconducting instability with λ diverging as (for λ0 < 0)

λ(μ) = ν(μ)g0

1 + 2g0[ν(μ) − ν0]
� 3μc

2(μc − μ)
. (21)

Here ν0 and g0 are the DOS and coupling constant at the initial
energy scale, while μc marks the energy scale corresponding
to the instability. This leads to a non-BCS type of behavior for
the critical energy scale,

μc,Tc ∝ g
n

n−2
0 =

(n=3)
g3

0 . (22)

In fact, the one-loop RG equations can be integrated out for
any μ,T , and the solution is equivalent to resummation of
a leading diagrammatic series in the language of Feynman
diagrams. The resulting expression for a dimensional coupling
constant g reads

g−1|(μ,T ) = (�pp − �ph)|(μ,T ) + g−1
0 . (23)

Thus, within a one-loop approximation, the phase transition
line for attractive interaction g < 0 is determined by the
equation

g0(�pp − �ph)|(μ,T ) + 1 = 0, (24)

and the resulting phase diagram is given in Fig. 5.
As to the quasiparticle width, it is zero within the one-loop

approximation. A nonzero result can be obtained from a two-
loop diagram that yields a quasiparticle width at the monkey
saddle (μ = 0) that signals non-Fermi-liquid behavior,


 ∼ λ2(T ) T ∝ T 1/3, (25)

since for μ = 0 there is only a tree-level scaling and λ(T ) =
g ν(T ) ∝ T −1/3 for an invariant value of the dimensionful

SC SC

g(0)<0

−1.0 −0.5 0.0 0.5 1.0

0.05

0.10

0.15

0.20

| |

T

FIG. 5. Phase diagram (blue solid line) for an isolated monkey
saddle and attractive coupling constant. The critical chemical poten-
tial is determined by the equation |g0|ν(μc) = 2, and the plot is given
in units of μc for both temperature and chemical potential. Any odd
saddle (n = 3,5, . . . ) has qualitatively the same phase diagram, but
the situation is different for even saddles (n = 2,4, . . . ). The even
case is illustrated with a red dashed line for n = 4.

coupling constant g. This implies that our analysis breaks
down at energy scales T ∗ ∼ 
(T ∗), or, equivalently, when
dimensionless coupling constant λ(T ∗) � 1 becomes too large.

The situation is the same for any odd saddle, n = 3,5, . . . ,
but is very different for even saddles. For even saddles there
is no cancellation of the one-loop contribution, so that c �= 0
at μ = 0, and the dimensionless coupling constant flows to a
fixed point λ = 1/c, yielding marginal Fermi-liquid behavior
with decay rate 
 ∼ T . While this implies a dimensionless
coupling constant of order 1, the existence of this fixed point
could be justified within 1/N expansion techniques.

V. RG FLOW FOR BILAYER GRAPHENE

In BLG there are two copies of the monkey saddle at the K

and K ′ points, which are related by time-reversal symmetry,
with dispersions ξ±( p) = ±ξ ( p). The four-fermion interaction
now has three coupling constants:

++

+

(26)

where i,j =↑↓ indices stand for spin and α = ± correspond
to K/K ′ valley isospin, respectively. Our notation for coupling
constants is the same as in Refs. [1,10]. The umklapp g3

coupling is forbidden because the K and K ′ points are
inequivalent in the sense of momentum conservation modulo
reciprocal lattice vector, Q = 2 pKK ′ �� 0.

There are now four polarization operators that drive the
RG flow, particle-particle and particle-hole at zero and Q
momentum transfer. We focus on BLG tuned exactly at the
monkey saddle with both critical voltage bias δ = 1 and
chemical potential μ = 0. The relative roles of polarization
operators are

d0 ≡ d�pp( Q)

d�pp( Q)
= 1, d2 ≡ d�ph(0)

d�pp( Q)
= 1, (27)

d1 ≡ d�ph( Q)

d�pp( Q)
= 3, d3 ≡ d�pp(0)

d�pp( Q)
= 3. (28)

Since �pp( Q) ∼ ν(T ), it is reasonable to define dimen-
sionless interaction constants as λi = gi�pp( Q) and take
d[ln �pp( Q)] as RG time. This gives RG equations

λ̇1 = λ1 − 6λ2
1 + 2λ1λ4, (29)

λ̇2 = λ2 + 2(λ1 − λ2)λ4 − 3λ2
1, (30)

λ̇4 = λ4 + λ2
1 + 2λ1λ2 − 2λ2

2, (31)

and the RG flow is, in fact, similar to that of the square lattice
[1] with parameters di given by Eqs. (27) and (28) and one
interaction channel turned off, g3 ≡ 0.

The crucial difference from the case of a single monkey
saddle is that the solution λ1 = λ2 = 0 describing two decou-
pled saddles is now always unstable. The analysis of the RG
flow is presented in the Appendix B, and it shows that there are
four possible many-body instabilities, s-wave superconducting
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FIG. 6. RG phase diagram showing a leading instability as a
function of initial coupling constants. Left: The case of positive
λ1 > 0. Right: The case of λ1 < 0. (λ1 never changes sign under
the RG flow.) There are four possible instabilities: superconducting
(SC), ferromagnetic (FM), charge-density wave (CDW), and a
competing spin-/charge-density wave (SDW/CDW). The Hubbard
model initial conditions λ1 = λ2 = λ4 > 0 lead to the development
of FM instability.

(SC), ferromagnetic (FM), charge-density wave (CDW), and a
competing spin-/charge-density wave (SDW/CDW). However,
only three instabilities, SC, FM, and SDW/CDW, are possible
for initially repulsive interactions, as shown in Fig. 6. For
the Hubbard model the initial conditions correspond to all
interaction constants being equal and positive, λi = (λ)0 > 0,
and lead to the FM phase.

VI. CONCLUSIONS

We studied the properties of electronic systems tuned
to a monkey saddle singularity, where the dispersion is
∝p3

x − 3pxp
2
y . We showed that such a situation occurs in a

MLP where three VH singularities merge. We showed that
such a singular point is accessible in BLG by controlling
two parameters, the interlayer bias voltage and the chemical
potential. We identified a number of experimentally accessible
features associated with the monkey saddle dispersion when
the system is subject to a magnetic field. The Landau level
structure has a trademark behavior where Em ∝ (Bm)3/2,
different from the behavior of both linearly and quadratically
dispersing systems. The oscillations of either thermodynamic
or transport properties with the applied magnetic field (de
Haas–van Alphen or Shubnikov–de Haas oscillations) contain
a signature tripling of the oscillation period when the Fermi
energy crosses the saddle point energy. This tripling, associated
with the topological transition between a single- and three-
sheeted FS, can be viewed as the smoking gun of the monkey
saddle singularity.

Generically, the singular electronic dispersion in such a
MLP implies a strong tendency towards development of many-
body instabilities. We found that the stronger divergence of
the DOS in monkey saddle singularities (n = 3), compared to
the case of ordinary VH singularities (n = 2), brings about
crucial simplifications in the field theoretical analysis of the
effect of interactions. We showed that the theory for systems
with higher-order singularities (n > 2) is superrenormalizable.
Thus, in contrast to the case of VH singularities where an RG
analysis requires two cutoff scales to properly account for

the singular and nonsingular parts of the FS, the analysis of
higher-order saddles requires no large momentum (UV) cutoff
since there are only IR divergences, which are regularized by
temperature T and chemical potential μ.

Via an RG analysis of the superrenormalizable theory,
we showed that the noninteracting electron fixed point of a
system with a single monkey saddle is unstable to interactions,
developing either a superconducting instability or non-Fermi-
liquid behavior. We also showed that the electronic lifetime
depends crucially on the symmetry of the dispersion, with odd
and even saddles displaying non-Fermi-liquid and marginal
Fermi-liquid behavior, respectively. For BLG, which has two
non-nested monkey saddles at the K and K ′ points, we showed
that interactions (depending on their nature) lead to s-wave
superconductivity, ferromagnetism, charge-density wave, or
spin-density wave.

The studies of MLP in electronic systems suggest an
exciting link to catastrophe and singularity theories. Namely,
the monkey saddle could be considered as a lattice-symmetry-
restricted elliptical umbilic elementary catastrophe D−

4 . Catas-
trophe theory may be a useful language to classify the different
possible singularities where FS topology changes. The relevant
classification at criticality is not that of the FS topologies but
that of the singularity itself. Controlling the chemical potential
and the interlayer bias voltage in BLG is a clear example of how
to engineer a catastrophe in an electronic system, the monkey
saddle. Crystalline symmetries may reduce the possible types
of catastrophes in the ADE classification that could be realized
in solid-state systems. Which other singularities could occur
in electronic systems remains an open problem. However, our
analysis of the physical consequences of such singularities
should be applicable to other types of catastrophe in systems
of electrons.
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APPENDIX A: RG ANALYSIS FOR AN ISOLATED
MONKEY SADDLE

1. RG flow

The RG flow equation for the dimensionless interaction λ

constant is connected to renormalization of the dimensional
coupling constant g as

dλ

d ln ν
= d(νg)

d ln ν
= λ + ν2 dg

dν
. (A1)

The one-loop renormalization of g is given by two diagrams
shown in Fig. 7 and yields

δg = −g2�pp(μ,T ) + g2�ph(μ,T ). (A2)

Combining Eqs. (A1) and (A2), we obtain the RG equation
for λ,

dλ

d ln ν(ϒ)
= λ − cλ2, c = d�pp

dν(ϒ)
− d�ph

dν(ϒ)
� 0, (A3)
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+

FIG. 7. Top: One-loop contribution to renormalization of the
interaction constant for an isolated monkey saddle. Bottom: Two-loop
contribution to the quasiparticle decay rate.

presented in the main text as Eqs. (17) and (18).
The polarization operators are defined as

�ph(q,μ,T ) = − T
∑∫

l, p
G(iεl, p + q)G(iεl, p), (A4)

�pp(q,μ,T ) =T
∑∫

l, p
G(iεl, p + q)G(−iεl, − p), (A5)

and the particle-hole polarization operator can be evaluated to
be

�ph = −T

∫
p

∑
l

1

iεl − ξ p+q + μ

1

iεl − ξ p + μ
(A6)

= 1

2

∫
p

f (ξ p+q − μ) − f (ξ p − μ)

ξ p+q − ξ p
(A7)

=
q→0

1

2

∫
ν(ξ ) f ′(ξ − μ) dξ , (A8)

where f (ξ ) = tanh ξ/2T .
Similarly, the particle-particle polarization operator is

�pp = 1

2

∫
p

f (ξ p − μ) + f (ξ− p − μ)

ξ p + ξ− p − 2μ
(A9)

= 1

2

∫
ν(ξ )

f (ξ + μ) − f (ξ − μ)

2μ
dξ. (A10)

The difference in polarization operators that drives RG flow
has the following asymptotic behavior:

�pp − �ph =
{

0 μ = 0, T �= 0,
1

2
ν(μ) T = 0, μ �= 0,

(A11)

where the cancellation at μ = 0 in fact holds for any external
frequency and momentum.

The chemical potential also has a correction due to a
Hartree-type diagram,

δμ = g
∑∫

l, p
G(iεl, p), (A12)

corresponding to the shift in the monkey saddle’s Fermi
energy. (This contribution is the equivalent of the fluctuational
renormalization of the critical temperature in thermodynamic
phase transitions.)

Finally, we point out that the cancellation of the one-loop
contribution at μ = 0 is a feature specific to odd saddles. For
an nth-order saddle with a dispersion ξ = pn cos nφ the DOS
behaves as ν(ε) ∝ ε−(n−2)/n, while the polarization operators
behave as

�pp − �ph =
{

1+(−1)n

n
Cnν(μ) μ = 0, T �= 0,

n−2
2 ν(μ) T = 0, μ �= 0,

(A13)

with a (positive) numerical constant

Cn =
∫ ∞

0
dx x−(n−2)/n[2 cosh2(x/2)]−1

= 2(22/n − 1)


(
2 − 2

n

)[
−ζ

(
1 − 2

n

)]
. (A14)

As we mentioned in the main text, this difference leads to
non-Fermi-liquid and marginal Fermi-liquid behavior for odd
and even saddles, respectively.

2. Quasiparticle decay rate

The quasiparticle decay rate is related to the imaginary part
of the electron self-energy, which can be written (using the
real-time Keldysh technique) as

��(ε, p) =−
∫

ω,q
[B(ω) + f (ε − ω)]

×�G(ε − ω, p − q)�L(ω,q)

=−i

∫
q
[B(ε − ξ p−q) + f (ξ p−q)]

×�L(ε − ξ p−q,q), (A15)

where B(x) = coth(x/2T ) and f (x) = tanh(x/2T ) are
bosonic and fermionic distribution functions, L is an inter-
action propagator, and �(· · · ) = (· · · )R − (· · · )A stands for
the difference between retarded and advanced components.
The interaction propagator within the one-loop approximation
is essentially

��(ε, p) =−ig2
∫

k,q
δ(ε + ξk+q− p − ξq − ξk)

×{f (ξq)[f (ξk) − f (ξk + ξq − ε)]

+ 1 − f (ξk)f (ξk + ξq − ε)}, (A16)

where we made use of the relation between equilibrium
distribution functions [f (x + y) − f (x)]B(y) = 1 − f (x +
y)f (x) and redefined integration variables k,q. This equation
is essentially a statement of Fermi’s golden rule.

Rescaling momenta as (k,q) → T 1/3(k,q), we see that
the quasiparticle width at the monkey saddle for zero chem-
ical potential and zero external frequency and momenta
behaves as


 = i

2
��(0,0)

∣∣∣∣
μ=0

∼ [ν(T )g︸ ︷︷ ︸
λ(T )

]2T ∝ T 1/3. (A17)
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On the other hand, for nonzero chemical potential we find
regular Fermi-liquid-like behavior [19],


 ∼ λ2(μ)
ε2

μ
ln

μ

ε
, T � ε � |μ|. (A18)

APPENDIX B: RG ANALYSIS FOR BLG

1. Polarization operators

In BLG there are two additional polarization operators with
nonzero momentum transfer Q,

�ph( Q,μ,T ) = − T
∑∫

l, p
G(iεl, p)G(iεl, Q + p), (B1)

�pp( Q,μ,T ) = T
∑∫

l, p
G(iεl, p)G(−iεl, Q − p). (B2)

Once calculated, they yield

�ph( Q) = 1

2

∫
ν(ξ )

f (ξ − μ) − f (−ξ − μ)

2ξ
dξ, (B3)

�pp( Q) = 1

2

∫
ν(ξ )

f (ξ + μ)

ξ + μ
dξ. (B4)

In this paper we focus on the case when the system is tuned
to the monkey saddle, μ = 0, where

�ph(0) = �pp(0) = C3 ν(T ), (μ = 0) (B5)

�ph( Q) = �pp( Q) = 3C3 ν(T ), (B6)

with numerical constant

C3 =
∫ ∞

0
dx x−1/3 1

2 cosh2(x/2)
= 1.14. (B7)

2. RG equations

The RG flow equations for a square lattice with two hot
spots were derived in Ref. [1]. These equations are very
general, and in their infinitesimal form, after an elementary
RG step, they give

δg1 = 2g1(g2 − g1)δ�ph( Q) + 2g1g4δ�ph(0)

− 2g1g2δ�pp( Q),

δg2 = (
g2

2 + g2
3

)
δ�ph( Q) + 2(g1 − g2)g4δ�ph(0)

− (
g2

1 + g2
2

)
δ�pp( Q),

δg3 =−2g3g4δ�pp(0) + 2(2g2 − g1)g3δ�ph( Q),

δg4 =−(
g2

3 + g2
4

)
δ�pp(0)

+ (
g2

1 + 2g1g2 − 2g2
2 + g2

4

)
δ�ph(0). (B8)

In the case of BLG there is no umklapp scattering between
the K and K ′ points, and thus, we set g3 ≡ 0. The coupling
constants gi are dimensionful, but we introduce dimension-
less coupling constants as follows. Since �pp(0) ∝ ν [see
Eq. (B5)], it is appropriate and convenient to define the di-
mensionless constants as λi = �pp(0)gi and take d ln �pp(0)

for RG time ds:

λ̇1 = λ1 + 2d1λ1(λ2 − λ1) + 2d2λ1λ4 − 2d3λ1λ2,

λ̇2 = λ2 + d1λ
2
2 + 2d2(λ1 − λ2)λ4 − d3

(
λ2

1 + λ2
2

)
, (B9)

λ̇4 = λ4 − d0λ
2
4 + d2

(
λ2

1 + 2λ1λ2 − 2λ2
2 + λ2

4

)
,

where for the sake of generality we introduced an additional
parameter d0. Parameters di are defined in the main text by
Eqs. (27) and (28), and their explicit numerical values follow
from Eqs. (B5) and (B6). This scheme gives the RG flow
presented in the main text,

λ̇1 = λ1 − 6λ2
1 + 2λ1λ4, (B10)

λ̇2 = λ2 + 2(λ1 − λ2)λ4 − 3λ2
1, (B11)

λ̇4 = λ4 + λ2
1 + 2λ1λ2 − 2λ2

2. (B12)

At the brink of a many-body instability the coupling
constants diverge as

λi = λ
(0)
i

sc − s
, (B13)

where sc is a critical RG time corresponding to the instability.
By seeking solutions of this form we get a system of algebraic
equations

λ
(0)
1 = − 6

(
λ

(0)
1

)2 + 2λ
(0)
1 λ

(0)
4 ,

λ
(0)
2 = 2

(
λ

(0)
1 − λ

(0)
2

)
λ

(0)
4 − 3

(
λ

(0)
1

)2
,

λ
(0)
4 = (

λ
(0)
1

)2 + 2λ
(0)
1 λ

(0)
2 − 2

(
λ

(0)
2

)2
.

(B14)

This system has the following four stable solutions:

λ1 : λ2 : λ4 = 2 : 1 : (3 +
√

12) (FM), (B15)

= 0 : 1 : (−1) ([S/C]DW), (B16)

= (−2) : (−1) : (
√

12 − 3) (CDW), (B17)

= 0 : (−1) : (−1) (SC), (B18)

which correspond to ferromagnetic (FM), competing spin-
and charge-density-wave ([S/C]DW), charge-density-wave
(CDW), and s-wave SC instabilities, respectively.

The nature of instabilities is identified with the help of the
susceptibilities calculated in Refs. [1,2,20]. Susceptibilities to
different order parameters diverge as χj ∝ (sc − s)αj , so the
leading instability is the one with the most negative value of
αj , given by

αsPQ = 2λ0
4, (B19)

αs±PQ = 2λ0
4, (B20)

αCDW = 6
(
2λ0

1 − λ0
2

)
, (B21)

αSDW = −6λ0
2, (B22)

αspin = −2
(
λ0

1 + λ0
4

)
, (B23)

αcharge = 2
(−λ0

1 + 2λ0
2 + λ0

4

)
, (B24)

αsP = 6
(−λ0

1 + λ0
2

)
(B25)
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for finite-momentum s-wave and s±-wave superconducting,
charge-density-wave, spin-density-wave, ferromagnetic (uni-
form spin), uniform charge (κ), and s-wave superconducting
instabilities, respectively.

Susceptibilities can be calculated by studying renormal-
ization of test vertices [10]. The first group of instabilities
correspond to uniform densities with a test Lagrangian density,

δL =
∑
i=↑↓

∑
α=+−

niαψ
†
iαψiα, (B26)

where renormalization of test vertices niα within one-loop
approximation is given by

d

ds

⎛
⎜⎝

n+↑
n+↓
n−↑
n−↓

⎞
⎟⎠ = d2

⎛
⎜⎝

0 −λ4 λ1 − λ2 −λ2

−λ4 0 −λ2 λ1 − λ2

λ1 − λ2 −λ2 0 −λ4

−λ2 λ1 − λ2 −λ4 0

⎞
⎟⎠

×

⎛
⎜⎝

n+↑
n+↓
n−↑
n−↓

⎞
⎟⎠ (B27)

and susceptibilities are equal to α = −2γ , where γ is an
eigenvalue of (B27). Solving for the eigensystem of (B27),
we find four instabilities with susceptibilities

αspin = −2
(
λ0

1 + λ0
4

)
, (B28)

αcharge = 2
(−λ0

1 + 2λ0
2 + λ0

4

)
, (B29)

αvalley = 2
(
λ0

1 − 2λ0
2 + λ0

4

)
, (B30)

αspin-valley = 2
(
λ0

1 − λ0
4

)
. (B31)

The second group of instabilities is charge- and spin-density
waves,

δL =
∑
i=↑↓

nQiψ
†
−iψ+i + H.c., (B32)

d

ds

(
nQ↑
nQ↓

)
= d1

(
λ2 − λ1 −λ1

−λ1 λ2 − λ1

)(
nQ↑
nQ↓

)
, (B33)

αCDW = 6
(
2λ0

1 − λ0
2

)
, (B34)

αSDW = −6λ0
2. (B35)

The third group represents superconducting s- and s±-wave
instabilities,

δL = �1ψ
†
+↑ψ

†
−↓ + �2ψ

†
−↑ψ

†
+↓ + H.c., (B36)

d

ds

(
�1

�2

)
= d3

(−λ2 −λ1

−λ1 −λ2

)(
�1

�2

)
, (B37)

αsP = 6
(
λ0

2 + λ0
1

)
, (B38)

αs±P = 6
(
λ0

2 − λ0
1

)
. (B39)

Finally, the last group corresponds to finite-momentum super-
conductivities,

δL = �s Q+ψ
†
+↑ψ

†
+↓ + �s Q−ψ

†
−↑ψ

†
−↓ + H.c., (B40)

d

ds

(
�s1

�s2

)
= d0

(−λ4 0
0 −λ4

)(
�s1

�s2

)
, (B41)

αsPQ = λ4, (B42)

αs±PQ = λ4. (B43)

Going back to the analysis of RG flow (B10), since λ1

cannot change sign (right-hand side for λ̇1 is equal to zero when
λ1 = 0), it is convenient to analyze the RG flow in y2 = λ2/λ1

vs y4 = λ4/λ1 coordinates,

ẏ2 = λ1(−3 + 6y2 + 2y4 − 4y2y4), (B44)

ẏ4 = λ1
[
1 + 2y2 + 6y4 − 2

(
y2

2 + y2
4

)]
. (B45)

We can then reparametrize the RG flow eliminating λ1 to get
a system of equations

y ′
2 = −3 + 6y2 + 2y4 − 4y2y4, (B46)

y ′
4 = 1 + 2y2 + 6y4 − 2

(
y2

2 + y2
4

)
, (B47)

which can be solved exactly in the coordinates y±,

y± = (y4 − 3/2) ± (y2 − 1/2) : y ′
± = 6 − y2

±. (B48)

This allows us to identify all phases and phase boundaries on
the y2y4 plane. Thus, the plot in λ2/λ1 vs λ4/λ1 coordinates
explicitly shows the fate of the system for different initial
coupling constants. Figure 6 (left) shows the phase diagram
of RG flow for λ1 > 0. FM, SC, or competing [S/C]DW
instabilities are possible with phase boundaries

λ2 − λ1/2 = 0 (SC/SDW), (B49)

λ2 + λ4 − (2 −
√

3)λ1 = 0 (FM/SC), (B50)

λ2 − λ4 − (
√

3 − 1)λ1 = 0 (FM/[S/C]DW), (B51)

and the lines cross at the point

λ1 : λ2 : λ4 = 2 : 1 : (3 −
√

12). (B52)

For negative values λ1 < 0 we get options of SC, CDW,
and [S/C]DW [see Fig. 6 (right)]. The phase boundaries are
now

λ2 + |λ1|/2 = 0 (SC/[S/C]DW), (B53)

λ2 + λ4 − (2 −
√

3)|λ1| = 0 (SC/CDW), (B54)

λ2 − λ4 − (
√

3 − 1)|λ1| = 0 (CDW/[S/C]DW), (B55)

crossing at the point

|λ1| : λ2 : λ4 = 2 : 1 : (3 −
√

12). (B56)
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