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Since the discovery of half-filled cuprate to be a Mott insulator, the excitation spectra above the chemical
potential for the unoccupied states has attracted much research attention. There were many theoretical works
using different numerical techniques to study this problem, but many have reached different conclusions. One
of the reasons is the lack of very detailed high-resolution experimental results for the theories to be compared
with. Recently, the scanning tunneling spectroscopy [P. Cai et al., Nat. Phys. 12, 1047 (2016); C. Ye et al., Nat.
Commun. 4, 1365 (2013)] on lightly doped Mott insulator with an antiferromagnetic order found the presence
of in-gap states with energy of order half an eV above the chemical potential. The measured spectral properties
with doping are not quite consistent with earlier theoretical works. Although the experiment has disorder and
localization effect, but for the energy scale we will study here, a model without disorder is sufficed to illustrate
the underlying physics. We perform a diagonalization method on top of the variational Monte Carlo calculation
to study the evolution of antiferromagnetic Mott state with doped hole concentration in the Hubbard model.
Our results found in-gap states that behave similarly with ones reported by STS. These in-gap states acquire a
substantial amount of dynamical spectral weight transferred from the upper Hubbard band. The in-gap states
move toward chemical potential with increasing spectral weight as doping increases. Our result also provides
information about the energy scale of these in-gap states in relation with the Coulomb coupling strength U .
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I. INTRODUCTION

The spectral properties of the Mott insulators as a function
of doping has been one of the key issues in studying the
physics of high-Tc cuprate superconductors. There are many
theoretical works on this topic including exact diagonalization
(ED) [1–3], quantum Monte Carlo (QMC) [4] method,
dynamical cluster approximation (DCA) [5], dynamical mean
field theory (DMFT) and cluster-DMFT [6–10], and also
real-space Green’s function approach [11]. According to their
results, generally, a clear spectral weight transferred from
the upper Hubbard band (UHB) to lower Hubbard band
(LHB) that situated at the chemical potential can be seen as
doping increases. However, the details are different. There
are in-gap signals found in many works. In Refs. [2,5,6],
these signals become farther away from chemical potential
together with the UHB as doping increases. Similarly, in Ref.
[7], there are two peaks near Fermi energy that also move
away from each other as doping increases. On the other hand,
in several cluster-DMFT works [8,9], the in-gap signals move
toward the chemical potential as doping increases. In Ref.
[8] the in-gap signal exists at half-filling in paramagnetic
or antiferromagnetic (AFM) states. There were also several
results reported by using the cluster perturbation theory (CPT).
For the electron-doped case [12], an in-gap state was found at
the lower edge of UHB, which is in agreement with the in-gap
states seen by STS on Ca2CuO2Cl2 [13] near an impurity. For
the hole-doped case [14–18], there were low-energy in-gap
states with energy less than 0.2U . On the experimental side,
the x-ray absorption spectra (XAS) [19,20] have observed
the spectral weight transferred from UHB to LHB as doping
increases but the broadness of the peaks makes it difficult to
make a detailed comparison.

Recently, STS [13,21] reported for very underdoped
cuprates with a long range AFM order probed the spectral

function across the charge-transfer (CT) gap. It found some
new results unexpected from earlier theoretical works. In Ref.
[21], finite density of states appears inside and throughout the
CT gap and only a small energy range at the chemical potential
remains empty of spectral weight after holes are doped into
the sample. This small gap seems to be related to the disorder
that causes localization of the states near chemical potential.
On the other hand, those in-gap states at lower doping can
be high above chemical potential reaching up to 40% of CT
gap. This is much larger than the in-gap states reported earlier
[9,12,14–18] for HM calculations with U representing the CT
gap. Besides the presence of in-gap states, when the system is
doped with holes, there is also a systematic evolution in the
spectral weight distribution or local density of states (LDOS)
measured at different positions. The in-gap states with larger
spectral weight are situated closer to the chemical potential,
while at the same time the spectral weight of UHB moves to
higher energy. This relation is opposite to that found in earlier
works [2,5,6], where in-gap peak moves to higher energy
as doping increases. Finally, the positions are anticorrelated
between sites with higher spectral weight for UHB and in-gap
states. This is consistent with an effective doping picture. That
is, at the position where the UHB has strong intensity, the
effective doping is close to zero or no doping and the in-gap
states are not seen. On the other hand, at the position where
the in-gap states show up, doping is finite and the intensity
of the UHB becomes weaker. Note that similar results have
been found previously in optical conductivity measurements
[22–24], where there are also peaks around the scale of half
an eV at low doping which moves to the lower energy as
hole concentration increases. The discrepancy between this
newly measured weight distribution and its doping dependence
with earlier theoretical works has motivated us to examine the
theoretical prediction again and more carefully.
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In this work we study the spectral evolution of Mott state
with hole doping by a variational approach but with explicit
presence of the AFM long range order as in the experiment
[13]. We are particularly interested in the spectra of the
unoccupied states above the chemical potential. In the strong
coupling regime (U � 8t), at half-filling or in the parent
compound, each site is already occupied by an electron with
spin 1/2. Hence, when an electron is inserted into the half-filled
state, it must create a doubly occupied site (doublon) with final
states in the UHB and there are no states inside the CT gap.
However, after hole doping, when an electron is inserted into
the lattice, there are two possible final states. The original LHB
splits into upper and lower spin density wave (SDW) bands in
the presence of AFM order. In this case, finite in-gap spectral
weight that corresponds to the upper SDW states shows up.
These states, according to our calculation, behave in a similar
manner to the in-gap states recently found by STS [13,21]
with respect to the energy scale and evolution. Although the
experiment exhibits disorder and localization effect, here we
only consider the simple case without disorder but it already
catches the main behavior.

These in-gap states also have components of states in the
UHB with doublons despite the main contribution from upper
SDW states. Thus these in-gap states are a mixture of upper
SDW and UHB states and they absorb most of the spectral
weight transferred from UHB. As hole doping increases, in-
gap states move toward the chemical potential with increasing
spectral weights and the energy separation between UHB and
LHB is effectively getting smaller. This provides a slightly
different version from the ED result [1] without including
the AFM order, which shows that the weights are transferred
from UHB to LHB as the holes are doped but the band-edge
separation has little dependence on the hole concentration.

Below we first calculate the ground state of a one-band
Hubbard model (HM) in the presence of the AFM order by
means of the variational Monte Carlo (VMC) method. Then
several states with one electron added to the ground state are
proposed. These states contributing to the unoccupied states or
the inverse photoemission spectra (IPES) are orthogonalized
to find the quasiparticle states. Then the spectral weights of
these states are all calculated and compared with experiment
[13,21] with respect to the energy evolution and the spectral
weight redistribution. In addition, we also examine our results
for different values of U to study the changes from weak to
strong coupling.

II. FORMALISM AND METHOD

A well-known model which includes the low energy physics
in CuO2 planes is the three-band HM [25]. In this model, the
parent compound without any extra doped holes has every Cu
in 3d9 configuration with a spin 1/2 hole. This is like a half-
filled one-band HM with very large on-site Coulomb repulsion
U and every site has a spin 1/2. When a hole is doped into the
CuO2 plane, it resides at the oxygen site [26]. Due to the strong
superexchange interaction between the Cu spin and the doped
hole on oxygen, Zhang and Rice [27] found the interaction
of two oxygen p orbitals and Cu d orbital leading to three
bands, the nonbonding states, antibonding triplet states, and the
bonding singlet states known as the Zhang-Rice (ZR) singlet.
There are large energy differences between the three states and

only ZR singlet is assumed to be important for consideration.
This ZR singlet in the three-bands model is similar to the
vacant site when the hole is doped into the one-band HM.
When the energy difference between ZR singlet and the Cu
3d10 state, which is the effective CT gap, is not punitively
large, the Cu hole can jump to its neighboring oxygen to form
ZR singlet while the original Cu turns into a 3d10 configuration
without spin. This is similar to the charge fluctuation process
in one-band HM to turn the two nearest neighbor opposite
spins into the short lived configuration of a doublon-hole pair.
By making the correspondences of the doublon in one-band
HM with the Cu 3d10, the Hubbard gap with the CT gap, and
the vacant site or hole with the ZR singlet, we could clarify
the physics by studying the one-band HM instead of the more
complicated three-band model [28,29].

The one-band HM we consider is

H = −t
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) +

∑
i

Uni,↑ni,↓, (1)

where t is the hopping integral of a single electron and 〈i,j 〉
denotes the nearest-neighbor sites. U/t is the on-site repulsion
which will be taken to be 10 in the present work unless
otherwise specified.

The variational ground state we choose in the VMC method
is the Jastrow type state with coexisting antiferromagnetism
and d-wave superconductivity [30,31]:

|�variational〉 ≡ P̂d−hP̂d |�af m−ds〉, (2)

where P̂d = gd̂ is the Gutzwiller projection operator with
d̂ = ∑

i d̂i = ∑
i n̂i↑n̂i↓ representing the doublon number.

The Gutzwiller factor g suppresses the double occupancy or
doublon number when it is less than one. The Jastrow factor for
doublon-hole binding [32] is P̂d−h ≡ ∏

i[1 − Qd−hd̂i

∏
τ (1 −

ĥi+τ )], where τ connects the nearest neighbors and ĥi ≡
(1 − n̂i↑)(1 − n̂i↓) is the number of holes on site i. This factor
ensures the insulating phase at half filling. Such factor may
come in different forms. Here we restricted the occurrence of
free doublons that aren’t bound with holons with a variational
parameter Qd−h � 1. The wave function |�af m−ds〉 with
coexisting antiferromagnetism and superconductivity has been
proposed before [30],

|�af m−ds〉 ≡ P̂ Ne
∏

k∈MBZ

(uk− + vk−α
†
k↑α

†
k↓)

× (uk+ + vk+β
†
k↑β

†
−k↓)|0〉, (3)

where P̂ Ne restricts the state to have Ne electrons. The
operators

α
†
kσ ≡ akc

†
k,σ + σbkc

†
k+Q,σ ,

β
†
kσ ≡ −σbkc

†
k,σ + akc

†
k+Q,σ (4)

correspond to the lower (α) and upper (β) spin density wave
states with coefficients a2

k ≡ 1
2 (1 − εk√

ε2
k +M2

v

),b2
k ≡ 1 − a2

k , Mv

being a variational parameter proportional to staggered mag-
netization. Here we consider commensurate SDW and Q is
chosen to be (π,π ), and k is within the magnetic Brillouin
zone (MBZ). The coherent coefficients uk± and vk± are
defined by u2

k± ≡ 1
2 (1 − (Ek±−μ)√

	2
k+(Ek±−μ)2

) and v2
k± ≡ 1 − u2

k±,

035133-2



SPECTRAL EVOLUTION WITH DOPING OF AN . . . PHYSICAL REVIEW B 95, 035133 (2017)

FIG. 1. Ground state staggered magnetization 〈M〉 and coexisting
long range pair-pair correlation function Pd as a function of hole
concentration for U = 10t in a 12 × 12 lattice. The AFM order
disappears around 0.18 doping in this model.

respectively. The plus/minus sign denotes upper/lower SDW
states; Ek± ≡ ±

√
M2

v + ε2
k is the mean field SDW energy with

εk ≡ −2t(cos kx + cos ky). The chemical potential μ is also
taken to be a variational parameter. Finally, 	k = 	(cos kx −
cos ky) is the d-wave gap. For numerical convenience, our
boundary condition is chosen to be periodic in x direction and
antiperiodic in y direction.

Figure 1 shows the ground state staggered magnetiza-
tion 〈M〉 = 1

Ns

ie

iQ·Ri 〈Siz〉, where Ns denotes number of
sites, and the long range pair-pair correlation Pd ≡ Pd (R =
(L/2,L/2)) = 
i
α,α′λα,α′ 〈	†

i+R,α	i,α′ 〉/Ns , where 	i,α =
1√
2
(ci↑ci+α̂↓ − ci↓ci+α̂↑), α̂ = ±x̂ or ±ŷ, and λα,α′ = 1 if α

and α′ are in the same axis and λα,α′ = −1 otherwise. The
result that AFM order disappears around 18% as well as the
value of coexisting Pd agrees with Ref. [31] even though they
have used a more sophisticated trial wave function [33]. Since
the trial wave function we used has pairing in it, there is
coexistence of superconductivity and antiferromagnetism as
seen in Ref. [31]. This issue will be discussed further in the
conclusion.

By adding an electron to the ground state we can now
calculate the IPES. We shall consider the simplest quasiparticle
states and there are four kinds for each k point within the MBZ:

|1k,σ 〉 ≡
∑

i

n̂i,σ̄ (eik·Ri c
†
i,σ )|gN 〉, (5)

|2k,σ 〉 ≡
∑

i

n̂i,σ̄ (ei(k+Q)·Ri c
†
i,σ )|gN 〉, (6)

|3k,σ 〉 ≡
∑

i

{
(1 − n̂i,σ̄ )

∏
τ

[
1 − d̂i+τ

∏
ρ 
=−τ

(1 − ĥi+τ+ρ)

]

× (eik·Ri c
†
i,σ )

}
|gN 〉, (7)

|4k,σ 〉 ≡
∑

i

{
(1 − n̂i,σ̄ )

∏
τ

[
1 − d̂i+τ

∏
ρ 
=−τ

(1 − ĥi+τ+ρ)

]

× (ei(k+Q)·Ri c
†
i,σ )

}
|gN 〉, (8)

where ρ and τ connect nearest neighbors and |gN 〉 denotes the
variational ground state we found with N electrons. States |1〉
and |2〉 both create an extra doublon in the ground state, so they
belong to the UHB in the atomic limit. On the contrary, states
|3〉 and |4〉 add an electron to a vacant site, and they belong to
the LHB. Note that at low hole concentration, there are finite
doublon-hole bound pairs generated by quantum fluctuation.
If we add an electron to the hole site bound with a doublon, it
would create a free doublon. these states are also in the UHB,
which we had confirmed by direct calculation of their energy.
These states have large overlaps with |1〉 and |2〉 and they also
contribute very little spectral weight which is proportional to
the doublon number. So without loss of generality we shall
exclude the process of creating free doublon from states |3〉
and |4〉.

To find the eigenstates within the chosen basis, for each k

point in MBZ, we calculated the Hamiltonian matrix element
by Monte Carlo algorithm 〈H (k,σ )〉ij = 〈ik,σ |H |jk,σ 〉 (i,j =
1–4). Since it is a nonorthonormal basis, we also need the
metric tensor, 〈G(k,σ )〉ij = 〈ik,σ |jk,σ 〉. Next, we solve the 4 ×
4 generalized eigenvalue problem and obtain four eigenstates
with one quasiparticle added to the ground states which are
denoted by the wave functions |�i

N+1(k,σ )〉 (i = 1–4) with
total energy Ei

N+1(k,σ ). The energy to insert a quasiparticle is
defined as

ξ i+(k,σ ) = Ei
N+1(k,σ ) − EN+1, min, (9)

where the minimum eigenenergy, EN+1, min ≡
min{Ei

N+1(k,σ )|i,k}, is considered to be at the chemical
potential.

The spectral weight of inserting a particle of momentum
k to the ground state contains two contributions Z+(k,σ ) and
Z+

Q(k,σ ), which are defined by

Zi+(k,σ ) = ∣∣〈�i
N+1(k,σ )

∣∣c†k,σ |gN 〉∣∣2
, (10)

Zi+
Q (k,σ ) = ∣∣〈�i

N+1(k,σ )
∣∣c†k+Q,σ |gN 〉∣∣2

. (11)

A similar procedure is also applied to study states with
an electron removed from the ground state; this is for
the photoemission spectra (PES). The states can be simply
obtained by a transformation c† → c. The basis states are

|1−
k,σ 〉 ≡

∑
i

n̂i,σ (e−ik·Ri ci,σ̄ )|gN 〉, (12)

|2−
k,σ 〉 ≡

∑
i

n̂i,σ (ei(−(k+Q)·Ri )ci,σ̄ )|gN 〉, (13)

|3−
k,σ 〉 ≡

∑
i

{
(1 − n̂i,σ )

∏
τ

[
1 − d̂i+τ

∏
ρ 
=−τ

(1 − ĥi+τ+ρ)

]

× (e−ik·Ri ci,σ̄ )

}
|gN 〉, (14)

|4−
k,σ 〉 ≡

∑
i

{
(1 − n̂i,σ )

∏
τ

[
1 − d̂i+τ

∏
ρ 
=−τ

(1 − ĥi+τ+ρ)

]

× (e−i(k+Q)·Ri )ci,σ̄ )

}
|gN 〉. (15)
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After diagonalization we have four eigenstates with a particle
removed |�i−

N−1(k,σ )〉 (i = 1–4) from the ground state and
their corresponding energies are Ei−

N−1(k,σ ) for each k. The
energy to remove a particle becomes

ξ i−(k,σ ) = −Ei
N−1(k,σ ) + EN−1, min. (16)

Similarly, the minimum eigenenergy EN−1, min ≡
min{Ei

N−1(k,σ )|i,k} is considered to be at the chemical
potential. The spectral weights to remove a particle are related
to Z−(k,σ ) and Z−

Q(k,σ ) defined by

Zi−(k,σ ) = ∣∣〈�i
N−1(k,σ )

∣∣c−k,σ |gN 〉∣∣2
, (17)

Zi−
Q (k,σ ) = ∣∣〈�i

N−1(k,σ )
∣∣c−k+Q,σ |gN 〉∣∣2

. (18)

Finally we combine the PES and IPES together. Due to
the finite size effect, we employed Lorentzian broadening
L(x; x0,�) = 1

π

�/2
(x−x0)2+(�/2)2 with � = 0.15t for the delta

functions corresponding to each of the eigenstates:

ρ(ω) = 1

Ns

∑
i,k,σ

[(
Zi+(k,σ ) + Zi+

Q (k,σ )
)
L(ω; ξ i+(k,σ ),0.15t)

+ (
Zi−(k,σ ) + Zi−

Q (k,σ )
)
L(ω; ξ i−(k,σ ),0.15t)

]
.

(19)

The summation is over i, k, and σ . Results reported here are
mainly carried out on a 12 × 12 lattice.

III. RESULTS

The spectral function for U/t = 10 is plotted as a function
of energy for three hole concentrations in Fig. 2. A sharp
UHB peak around 9t is seen. More importantly, a broad band
of in-gap states appears in the range 0.1U–0.35U which we
believed to be mostly unoccupied upper SDW states. These
states are about the same energy range as the newly found
signals in the STS [13,21] if we consider U as the CT gap
energy about 1.7 eV. As hole concentration increases, the
UHB weight shifts toward higher energy while the in-gap
states moves toward the chemical potential, i.e., the energies
of in-gap states decrease. The spectral weights of these in-gap

FIG. 2. Spectral function for doping x = 0.0417, 0.0833, and
0.125. ω = 0 corresponds to the chemical potential. A Lorentzian
broadening with width � = 0.15t is applied to the delta functions for
the eigenstates. The arrows indicate the value of ξ0 as defined in the
text.

FIG. 3. IPES for several doping in different system size with
L = 12, 14, and 16. The systematic evolution of the spectra with
doping is preserved for different lattice sizes.

states also increase with doping. There is clearly a spectral
weight transferred from UHB to low energy states (LES)
that are between chemical potential and UHB. In Fig. 3,
we compare the spectra obtained with three sizes of lattice.
It is in good agreement with Fig. 2 that the peak positions
of the in-gap states decrease with increased spectral weight,
while UHB peaks move toward higher energies with reduced
spectral weight as hole concentration increases. Note that since
the chosen broadening parameter � = 0.15t is larger than the
SC energy scale, the linear density of states near chemical
potential from d-wave superconductivity is not visible in the
spectral function.

To verify the relationship between in-gap states and the
upper SDW states, we calculate the inner product between
these states. The upper SDW states can be constructed in the
same way as wave functions |3〉 and |4〉 except now we restrict
the electron to be inserted into the upper SDW band defined
in Eq. (4),

|ψu−SDW (k,σ )〉≡
∑

i

{
(1−n̂i,σ̄ )

∏
τ

[
1−d̂i+τ

∏
τ 
=−τ

(1−ĥi+τ+τ )

]

× (βk,σ (i)c†i,σ )

}
|gN 〉, (20)

where βk,σ (i) = −σbke
ik·Ri + ake

i(k+Q)·Ri is the coefficient of
the upper SDW state, with momentum k and spin σ , at site
i. At each of the k points, we found large overlap (> 0.8)
between |ψu−SDW (k,σ )〉 and the in-gap states. Thus these in-
gap states are essentially the upper SDW states although there
are contributions from states |1k,σ 〉 and |2k,σ 〉 which are in the
UHB. Besides these states near the chemical potential, there
are also contributions from lower SDW states that are now
vacant due to hole doping. The energy scale of these states is
roughly determined by the coupling between the states |3k,σ 〉
and |4k,σ 〉. Considering the transition between upper and lower
SDW states, our result gives a possible explanation of the half
an eV peak in optical conductivity measurements [22–24] that
shows a decreasing absorption energy and an increasing weight
with more doping. This will be left for future works.

In the presence of AFM long range order, staggered
magnetization opens a gap between the upper and lower
SDW states. In our case, the effective staggered magnetization
is proportional to the variational magnetic field Mv . To
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FIG. 4. ξ0 of the upper SDW states as a function of magneti-
zation. The energy together with magnetization are collected from
four different doping x = 0.0417, 0.0833, 0.125, and 0.1667; here
magnetization is inversely proportional to hole concentration.

illustrate this relation, we define ξ0 by the lowest eigenenergy
of the quasiparticle states that has an inner product with
|ψu−SDW (k,σ )〉 larger than 0.8 [34], which provides a good
indicator of the lower edge of the in-gap states. Thus positive
correlation is expected between the upper SDW band edge
ξ0 and AFM strength 〈M〉 as shown in Fig. 4. Since 〈M〉
is inversely correlated with doping, this gives a natural
explanation of the reduction of energies of in-gap states as
doping increases. Next we shall examine the spectral weight
transferred from UHB to LES. We calculated the total weight
WUHB and WLES :

WUHB ≡
∫ ∞

4t

ρ(ω)dω,

WLHB ≡
∫ 4t

0
ρ(ω)dω = 1 + x − WUHB. (21)

WUHB and WLES at different doping are shown in Fig. 5. This
agrees quantitatively with the previous results from ED [1],
ED + cluster-DMFT [35], and CPT [17] despite the fact that
AFM order was not considered in these works. This shows
that the appearance of AFM order doesn’t affect total spectral
weight transferred as the sum rule should be satisfied.

If we consider each site at the atomic limit, UHB is
completely unoccupied at half filling hence it has a spectral
weight equal to 1. This weight WUHB reduces to 1 − x when
x holes are doped into the system. Upon doping, an electron

FIG. 5. Total spectral weight for UHB and LES. In under-doped
regime, WUHB and WLES evolve linearly. By fitting, we found the
slope to be −1.66 for WUHB and 2.69 for WLES .

FIG. 6. (a) IPES for different U at x = 0.0556. (b) ξ0/t at
different U . (c) ξ0/t as a function of 〈M〉/(U/t) for U � 8t . This
shows that the virtual exchange interaction J accounts for the results.

could be added to the empty or hole site in two choices from the
spin degrees of freedom; hence the spectral weight for WLES

is 2x. However, it is known that beyond this atomic limit
there should be a dynamical correction [36] that comes from
the coupling between these states which enhances the weight
transfer and would give WUHB = 1 − x − α and WLES =
2x + α. According to our calculation, the renormalization α

at U/t = 10 is around 0.65x.
Since the AFM order depends on U , it is important to

examine the evolution of spectral functions with different
values of U . In Fig. 6(a), the spectral functions for inserting a
quasiparticle in the ground state are plotted for a range of U

values. For U/t � 6, the separation between UHB and LES is
clear and, as expected, UHB energy scales with U . The trend
suggests that as U becomes smaller, weight of in-gap state at
x = 0.0556 becomes larger and their component of |1〉 and
|2〉 increases. For weak or intermediate U/t the weight of the
in-gap state is comparable or even larger than that of UHB. To
further examine the U dependence of these spectra, we plot
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FIG. 7. (a) WLES for different U at x = 0.0417, 0.0833, and
0.125. (b) Slope of WLES for different U determined by the differences
at x = 0.0417 and x = 0.0833.

the upper SDW band edge ξ0 as a function of U in Fig. 6(b).
Before U reaches Uc ∼ 8t to enter the Mott region, the ξ0

is proportional to U/t . This is expected from a mean-field
treatment for a weak or intermediate coupling U in the
one-band HM, as the gap due to AFM order is proportional to
〈M〉U . Once the system enters the Mott region with U greater
than Uc, it is the superexchange interaction J that determines
the AFM order. Hence ξ0 ∼ 〈M〉J ∼ 〈M〉/(U/t). ξ0 is plotted
as a function of 〈M〉/(U/t) in Fig. 6(c) for U � Uc. This
shows that one could expect a maximum energy for in-gap
states when U/t is near the critical value for a Mott transition.

Now let us examine the spectral weight for LES. As shown
in Fig. 7(a), WLES is extrapolated to zero at half filling for
U much larger than Uc. It has a sudden increase below
U/t = 6. This suggests that this in-gap weight won’t disappear
at half filling in the intermediate coupling case. Moreover,
as U decreases to the weak coupling regime, as shown in
the U/t = 4 case in Fig. 6(a), the major peak appears at the
location of upper SDW states. Those upper SDW states begin
to merge with the UHB and the excitation gap becomes an
SDW gap and there is no clear separation between UHB and
upper SDW states. This is in accordance with the mean field
theory. Therefore, the disappearance of SDW states at half
filling as U increases is a characteristic of Mott transition.
Furthermore, we can also examine the slope of the WLES . An
important feature of the Mott insulator is the spectral weight
of 2x + α for the LES. In the infinite U limit, according to
Ref. [36], α is proportional to 1/U and the slope of WLES

approaches but greater than 2. In this regime, as U decreases,
there is an increase in the slope of WLES . In the weak coupling
regime, on the other hand, there is no UHB and all of the

weight 1 + x is distributed close to the chemical potential. The
transition between strong and weak coupling can be clearly
seen in Fig. 7(b). As U decreases from U/t = 16, there is an
increase in the slope of WLES . As soon as U crosses the Mott
transition (Uc), the slope has a sudden drop. At U/t = 6, the
slope is much less than 2, suggesting that it has crossed Uc and
Mott physics no longer applies.

IV. CONCLUSION

In summary, by using a variational approach to study the
HM in the AFM phase, we construct several quasiparticle
states to study the evolution of PES and, in particular, IPES,
with hole doping. The substantial amount of spectral weight
inside the Mott gap is due to the mostly unoccupied upper SDW
bands. These states interact strongly with the UHB so that there
is a large spectral weight transferred from UHB to these in-gap
states. Although we use one-band HM instead of specific
oxygen orbitals, we are able to capture the detail evolution
of the spectrum with doping observed in the recent STS
on cuprates. Our results also agree with previous numerical
works with respect to the dynamical spectral-weight transfer
with a renormalization of about α ∼ 0.65x at U/t = 10. This
agreement is a bit surprising as previous works have not
included AFM order [1,35]. This may be due to the fact that
for IPES, there is a much smaller incoherent spectral weight
[37] and quasiparticle states we considered have almost all the
spectral weights.

We would like to point out that in the lightly doped cuprate
samples [21] in experiments, there is no density of states at the
chemical potential. Since the sample is quite inhomogeneous,
we believe that there is a strong localization effect that depletes
the density of states at chemical potential. Since we have
not considered the localization or disorder in our calculation,
our result has a small peak near chemical potential when an
electron is added to the lower SDW states. Fortunately, the
in-gap states that we focused on have energy much larger
than this localization gap, so that we can account for them
without considering the disorder. An interesting possibility of
localization may be due to the checkerboard pattern observed
in [21]. In the strong coupling limit of the HM or the t-J
model, it is recently shown [38] that at very low doping, there
are states with checkerboard patterns involving SDW. Hence
our account of SDW as the source of in-gap states may be a
reasonable approximation.

One thing we want to emphasize is that the SDW gap has
a much larger energy scale than the superconducting scale as
well as the pseudogap scale. From our point of view, in-gap
states may be found for other patterns such as pair density wave
or charge density wave orders. Therefore, to look further into
the pseudogap phase in the paramagnetic region, we probably
need to consider inhomogeneous phases as in Ref. [38] to
address these low energy scales, which is beyond our present
scope and will be left for future work. Also, it is well known
from other experiments and the experiment in Ref. [21] that,
in the very underdoped regime, the AFM state is likely a spin
glass or disordered state. Hence the superconducting phase
coherence could be suppressed. In this work the disorder is
not considered, so there is coexistence of superconductivity
and antiferromagnetism. Nevertheless, the in-gap states we
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considered here are not related to the superconducting property
as the gap size is much larger than the pairing scale and its
variation with U is essentially a SDW gap.

Our result also shows that the spectral distribution has a
nonmonotonic behavior when U is increased above Uc to enter
the Mott physics. At half filling, there is a small SDW gap at
small U , and also a finite spectral weight at low energy (WLES)
above chemical potential. But the gap changes to the much
larger Hubbard gap as U becomes larger than Uc and there is
absolutely no spectral weight within the gap. After doping the
energy of in-gap states changes from mean field type (∝ U ) to
t-J (∝ 1/U ) type and leaves a peak around Uc. At small doping

the low energy spectral weight above chemical potential is
proportional to doping for U > Uc. These properties might be
useful to study the Mott transition in organic superconductors
[39,40], where U/t can be varied by applying pressure.
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