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Dijkgraaf-Witten (DW) theories are of recent interest to the condensed matter community, in part because they
represent topological phases of matter, but also because they characterize the response theory of certain symmetry
protected topological (SPT) phases. However, as yet there has not been a comprehensive treatment of the spectra
of these models in the field theoretic setting even for Abelian gauge groups, the goal of this work is to fill the gap
in the literature, especially for a selection of DW models with Abelian gauge groups but non-Abelian topological
order. Particularly, we focus on the appearance of non-Abelian statistics in type-III twisted DW theories with
Abelian gauge groups Z⊗3

2 . There are only 22 distinguishable line operators, and their fusion rules and correlation
functions are calculated. The flux insertion operators have quantum dimension 2, which clearly demonstrates the
non-Abelian topological order of type-III twisted DW theories.
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I. INTRODUCTION

Landau-Ginzburg symmetry breaking formalism is one of
the fundamental building blocks for conventional condensed
matter physics [1–3]. Historically, it applies successfully to
understanding magnets, BCS superconductors, etc. Within
the Landau-Ginzburg paradigm, phases are characterized by
their global symmetries and which of those symmetries are
spontaneously broken. The result is that phases can be para-
magnetic with short-ranged correlations, or have long-range
correlations associated with spontaneously broken symme-
tries. More recently, it has been found that this characterization
is (a) too coarse, and (b) needs to be extended. First, not all
paramagnetic phases with a certain global symmetry group are
identical. Indeed, there exist paramagnetic symmetry protected
topological (SPT) phases which have a global symmetry that
is not broken spontaneously [4–31], but which nevertheless
cannot be adiabatically connected to one another in the
presence of the protecting global symmetry. Secondly, the
Landau-Ginzburg paradigm does not account for topologically
ordered states [32,33], which are not characterized by the
spontaneous breaking of global symmetries and the long-
distance correlations of local order parameters.

The mentioned SPTs and topological phases both have a
connection to topological quantum field theories (TQFTs).
The low-energy long-distance behavior of topological phases
is described by TQFTs. Bosonic SPTs on the other hand, can
be characterized by gauging their protecting global symmetry
as done in Ref. [6]. After gauging the global symmetry, any
SPT phase becomes topologically ordered, and it turns out
that distinct SPT phases become distinct topological orders
when gauged. For example, there are two different SPTs
with a Z2 global symmetry in (2+1)D. After gauging the
Z2 symmetry of these two SPTs, one becomes deconfined Z2

gauge theory and the other becomes the distinct double semion
topological order [6]. The classification of a large class of SPTs
then simply becomes the classification of different possible
topological orders or TQFTs with gauge group G. When G is
unitary and finite, such TQFTs are called “Dijkgraaf-Witten”
(DW) models, which are classified by the cohomology group

Hd+1(G,U(1)) [34], where G is the given on-site global
symmetry and d is the spatial dimension. Hence bosonic
SPTs with finite on-site global unitary symmetry group G are
classified by an element of Hd+1(G,U(1)) (called a “cocycle”),
and are in 1-to-1 correspondence with DW models. In addition
to their connection to bosonic SPTs, DW models are them-
selves interesting examples of topological orders. Therefore,
by studying DW models, we learn something about SPTs and
gain insight into a wide range of possible topological orders.

We are thus motivated to study DW field theories, and in this
work we focus on (2+1)D. We further focus on DW theories
with finite Abelian gauge groups. Topological field theories
with nonsemisimple gauge groups were studied in Refs. [35–
37]. On the one hand, the DW theories were originally intro-
duced as field theories with topological terms directly related
to the cocycle in question [34]. Subsequently, the same cocycle
data were found to encode an algebraic structure called a quasi-
quantum double [38], which it was proposed should describe
the algebra of anyon excitations in the DW model. The goal
of the present work is to provide a clearer bridge between the
field theory for the DW model, and the algebraic theory of its
anyonic excitations. We do this by explicitly constructing line
operators in the DW field theory, and calculating their braiding
and fusion rules. Ribbon operators creating anyons in the
lattice Hamiltonian formulation were discussed in Ref. [39].

Some DW theories (called type I and type II [38]) can be
thought of as continuum “K-matrix” Chern-Simons theories,
and their line operators are already well understood [25,40].
However, the line operators in more exotic “type-III” DW
field theories have remained elusive (field theories of type III
DW model were also discussed in Refs. [14,15,41,42]). In this
work, we focus on the very simplest such theory—the type-III
twisted DW model with gauge group Z⊗3

2 . We construct all
line operators (Wilson lines, flux insertion lines and their
composites). Instead of the naive 64 line operators (eight
Wilson operators, eight flux insertion operators and their
composites), we find that the number of distinct line operators
is only 22, reproducing an algebraic result in Ref. [38].
Moreover, we can compute the correlation functions and fusion
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rules for these operators and confirm that the type-III twisted
Z⊗3

2 theory is a non-Abelian topologically ordered phase.
We also explain how these results extend to more general
Abelian gauge groups. Our results should not be considered
as completely mathematically rigorous—we use a continuum
field theory formalism on the understanding that at certain
key points in the calculation the lattice regularization needs
to be considered carefully. In this manner, our approach is of
a similar level of rigor to other continuum approaches used
to understand similar models [14,43,44]. The utility of our
formalism is that it readily allows us to derive a number of
nontrivial results in a reasonably intuitive manner, without
the need for understanding some the more abstract algebraic
machinery behind the existing group cohomology results.

The rest of the paper is organized as follows. In Sec. II,
we briefly summarize the K-matrix formulation of type-I
and type-II cocycles. Then we attack the problem of type-III
cocycles. In Sec. III, we construct all of the line operators for
the type-III twisted Z⊗3

2 theory in (2+1)D and work out their
correlation functions, and fusion rules. This theory turns out
to be a non-Abelian topologically ordered state. Section IV
further generalizes these results to the type-III twisted Z⊗3

N

theory.

II. DW MODELS IN CONTINUUM FORMALISM

DW theories were first formulated as lattice gauge theories
[34]. Consider a (2+1)D theory with Abelian gauge group G.
The DW theory action is encoded by some 3-cocycle ω : G ×
G × G �→ U(1). The DW action is obtained by performing
a simplicial decomposition of the manifold in question and
orders the vertices, to write down a partition function weight

∏
t

ω
(
A01

t ,A12
t ,A23

t

)
, (1)

where Ae
t is a G-valued flat gauge field living on an edge e,

t are 3-simplices obtained by triangularizing the spacetime
manifold, and 01, 12, 23 are specific edges in t determined by
the ordering on the simplicial decomposition [59]. Note that
in this construction, A is assumed to be flat; one goal in this
work is to extend the construction above so as to relax this
constraint on A whilst maintaining gauge invariance. This in
turn allows us to examine the full spectrum of the DW model,
and explicitly construct all the line operators in the theory. In
addition, the lattice actions considered in Ref. [34] are difficult
to work with. A second goal of this work is to formulate in
detail a more convenient and transparent continuum version of
these field theories much like those in Ref. [44]—it will turn
out that the explicit regularization of the models is for many
purposes unimportant.

Our discussion is organized as follows: in Sec. II A, we
briefly discuss the type-I and type-II cocycles, which leads
to Abelian topological phases; in Sec. II B, we construct the
continuum action for type-III DW models.

A. Type-I and type-II cocycles

Before we delve into the field theory for type-III cocycle,
let’s briefly comment on the type-I and type-II cocycles.
The cocycles of Abelian discrete groups

∏
i Zki

have been

categorized into three types [16,38]. Type-III cocycle is the
focus of this paper and will be explained in the following
texts. Here we only briefly discuss continuum field theories
corresponding to the type-I and type-II cocycles, as they are
just special cases of Abelian K-matrix theories.

As an example, for a discrete group in the form of (ZN )⊗L,
the type-I and type-II cocyles can be written uniformly as [38]

ωij (A,B,C) = exp

(
2π iMij

N2
ai(bj + cj − [bj + cj ])

)
, (2)

where A,B,C ∈ Z⊗L
N ; ai,bi,ci ∈ {0,1 . . . ,N − 1} for i =

1,2, . . . ,L label the ith component of these group elements
in the L copies of ZN , respectively; Mij are integers valued in
{0,1, . . . ,N − 1}. The bracket notation is defined by [x] := x

mod N with [x] ∈ {0,1, . . . ,N − 1}.
The continuum field theories corresponding to the type-

I and type-II cocycles Eq. (2), have action 1
4π

∫
Kijaidaj ,

where i ∈ 1, . . . ,2L and each ai is a compact U(1) connection
1-form. The corresponding K matrix is(

0 NIL

NIL M + MT

)
, (3)

where IL is L-by-L identity matrix, M is an L-by-L integer
matrix whose elements are just Mij in Eq. (2). The type-I and
type-II theories hence only produce Abelian topological order
and all line operators and their statistics/correlations are well
known [60].

B. Type-III cocyles

Having summarized the story for type-I and type-II cocy-
cles, we describe the so-called type-III twisted DW theory.
These are characterized by a 3-cocycle of form

ω(A,B,C) = e2πipa1b2c3/k1k2k3 , (4)

where A,B,C ∈ Zk1 × Zk2 × Zk3 and ai,bi,ci = 0,1 . . . ,ki −
1 for i = 1,2,3 label the components of these three group
elements in the three copies ofZk1 ,Zk2 ,Zk3 , respectively. Here,

p = nk1k2k3/ gcd(k1,k2,k3), (5)

where n ∈ Zgcd(k1,k2,k3) labels the distinct possible choices of
cocycle. Using the above prescription, the DW models are rig-
orously formulated on the lattice. However, many of the known
Abelian examples of these theories are more conveniently for-
mulated in the continuum. For instance Refs. [14,16,18,44,45]
characterize certain Abelian DW topological orders in terms
of continuum toy models. In this spirit, we start by writing
down the most naive interpretation of the 3-cocycle Eq. (4) in
the continuum and examine under which conditions it is gauge
invariant. The Lagrangian for Zk1 × Zk2 × Zk3 theory is

L = ki

2π
bi ∧ dAi + pεijk

6(2π )2
Ai ∧ Aj ∧ Ak, (6)

where the repeated indices imply summation. We now clarify
the above notation: Ai=1,2,3 are the components of A in
Zk1 × Zk2 × Zk3 , and where i,j,k are summed over {1,2,3}.
The first term is a bF term which enforce the flatness condition
of Ai fields in the partition function, and the second term is the
type-III twist term. For G = Z⊗3

2 , we have ki = 2(i = 1,2,3).
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In this case, there are two possible choices for p: p = 0
corresponds to plain Z⊗3

2 gauge theory (3 copies of Z2 model),
while p = 4 we refer to as “twisted” Z⊗3

2 gauge theory.
Following previous work on these theories [16], we detail
how to fix the possible values of the coefficients of the twist
terms in Eq. (6) in Appendix A.

As written, the action is invariant under transformations

bi → bi + dβi + pεijk

2πki

(
Ajαk − 1

2
αjdαk

)
,

(7)
Ai → Ai + dαi, i = 1,2,3,

where α,β is a scalar field and we have omitted wedge products
for brevity [61]. In addition both gauge fields are presumed to
be compact insofar as

bi ≡ bi + 2π,
(8)

Ai ≡ Ai + 2π.

Here, bi and Ai are understood as the value of gauge field on
a bond of space-time lattice.

As mentioned before, in the partition function,

Z :=
∫

D[Ai]D[bi] exp

(
i
∫

L
)

, (9)

bi fields play the role of Lagrangian multipliers and enforce the
flatness constraint on Ai . However, once b sources are inserted
in the path integral, Ai fields are no longer flat. To see this,
note that in the presence of b sources, the path integral takes
the form

Z[γ ] =
∫

D[Ai]D[bi] exp

(
i
∫

L + i
∮

γ

bi . . .

)
. (10)

Once the bi fields are integrated out, dAi is enforced to
be nonzero on γ , i.e., dAi = 2π

ki
γ (2) where γ (2) is the 2-

form Hodge dual to the contour γ . However, a single term,
exp (i

∮
γ

bi), is not gauge invariant. Hence it cannot be a valid

operator for the twisted type-III Z⊗3
2 theory. We discuss the all

valid line operators in the following section, and we coin the
operators involving exp (i

∮
γ

bi) “flux insertion operators” for
the following text.

III. LINE OPERATORS IN TYPE-III DW MODELS

In this section, we construct and discuss line operators in
the type-III twisted DW models with Z⊗3

2 symmetry. The
organization of this section is as follows. In Sec. III A, we
construct all possible line operators. In Sec. III B, we argue
that there are only 22 distinct line operators (in agreement
with Ref. [38]), instead of the naive 64 operators one expects
in a Z⊗3

2 gauge theory. In Secs. III C and III D, we calculate
correlation functions and fusion rules of these line operators.
Further generalizations to Z⊗3

N can be found in Sec. IV.

A. Line operators

In this section, we construct all the Wilson operators and
flux insertion operators on a given loop γ , for the type-III
twisted Z⊗3

2 field theory mentioned above, Eq. (6). We adopt
the notation Upqr for Wilson operators, and Vpqr for flux

insertion operators, where p,q,r = 0,1. We will see that when
p,q,r ≡ 0 mod 2, the resulting operators are trivial in the
sense that they have trivial correlations with other operators.

An essential requirement of constructing these loop op-
erators is that they are invariant under gauge transformation
Eq. (7). Moreover, the line operators should also be invariant
under Ai �→ Ai + 2π and bi �→ bi + 2π , because the gauge
fields are assumed to be compact with 2π periodicity.
Following the gauge invariance principle, the Wilson operators
can be written as

Upqr (γ ) = exp

(
i
∮

γ

pA1 + qA2 + rA3

)
, p,q,r = 0,1,

(11)

which are gauge invariant under gauge transformations Eq. (7).
Using the form of the Lagrangian Eq. (6), the compactness
condition on bi in Eq. (8) breaks Ai down toZ2, so the operator
Upqr only depends on the values of p,q,r modulo 2.

Flux insertion operators are more complicated, since a
single term exp(i

∮
γ

bi),i = 1,2,3 is not gauge invariant under
transformation Eq. (7). One can construct the flux insertion
operators by introducing auxiliary fields φi and λi living on
the loop γ , Indeed, we find that the following operator defined
via a path integral is gauge invariant:

V100(γ ) = 1

N

∫
D[φ2]D[φ3]D[λ2]D[λ3] exp

[
i
∮

γ

b1

+
3∑

ij=2

ε1ij

π

(
1

2
φidφj + (dφi − Ai)λj

)]
, (12)

where i and j are actually summed over {2,3} because of
ε1ij ; N is a normalization factor which we determined later
in Sec. III C by insisting on a consistent set of fusion rules for
the flux insertion operators. The operator of Eq. (12) is gauge
invariant under gauge transformation Eq. (7) with additional
transformations, φi �→ φi + αi and λi �→ λi + αi .

The auxiliary fields in Eq. (12), φ2, φ3, λ2, and λ3 can be
integrated out exactly—the details of the calculation can be
found in Appendix B. The result is conveniently expressed as

V100 = 2 exp

⎛
⎝i

∮
γ

b1 +
3∑

i,j=1

ε1ij

2π
ωidωj

⎞
⎠δ(ω̄2|γ )δ(ω̄3|γ ),

(13)
where ωi is the holonomy function for Ai , which is defined
explicitly on the loop γ as

ωi(x) :=
∫ x

γ,x0

Ai, (14)

while ω̄i := ∮
γ

Ai , i = 1,2,3. The choice of origin of inte-
gration x0 is arbitrary. The δ functions appearing in Eq. (13)
project onto configurations for which the A2,A3 fluxes thread-
ing γ are zero. They are not the usual δ functions encountered
in the continuum—rather they are defined to be a projector
to the trivial holonomy state: δ(ω̄i |γ ) := 1

2 (1 + exp(iω̄i |γ )).
By trivial holonomy, we mean ω̄i = 2πn for any n, where
n is an integer. We will come back to the overall factor of
2 in Eq. (13) when fusion rules are discussed in Sec. III C.
Note that the expression

∮
γ

ωidωj resulting from integrating
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out the scalar fields is not local in terms of the gauge fields Ai . The other flux insertion operators have similar expressions

V010(γ ) = 1

N

∫
D[φ1]D[φ3]D[λ1]D[λ3] exp

⎡
⎣i
∮

γ

b2 +
3∑

i,j=1

ε2ij

π

(
1

2
φidφj + (dφi − Ai)λj

)⎤⎦

= 2 exp

⎛
⎝i

∮
γ

b2 +
3∑

i,j=1

ε2ij

2π
ωidωj

⎞
⎠δ(ω̄1|γ )δ(ω̄3|γ ), (15)

V001(γ ) = 1

N

∫
D[φ1]D[φ2]D[λ1]D[λ2] exp

⎡
⎣i
∮

γ

b3 +
3∑

i,j=1

ε3ij

π

(
1

2
φidφj + (dφi − Ai)λj

)⎤⎦

= 2 exp

⎛
⎝i

∮
γ

b3 +
3∑

i,j=1

ε3ij

2π
ωidωj

⎞
⎠δ(ω̄1|γ )δ(ω̄2|γ ). (16)

Before moving on to the remaining flux insertion operators,
let us further motivate the path integral form of the operators
V100, Eq. (12), and similarly for V010 Eq. (15) and V001

Eq. (16). Gauge invariance strongly constrains the forms of
these operators. If we write down an operator of the form

V100 = exp

(
i
∮

γ

b1

)
g(A), (17)

and insist on gauge invariance, we find that the functional
g is necessarily a nonlocal functional of A—it must have
something like the Ai dependence of Eq. (13), involving
constraints ω̄2 = ω̄3 = 0, and phase terms like

∫
γ

ωidωj . In
order to realize the operator Eq. (13) in a local form, one
possible solution is to introduce auxilliary fields into the path
integral living on γ which once integrated out, realize Eq. (13).
This is the approach which led to Eq. (12).

While the introduction of these auxiliary fields may seem
ad hoc, there is a neat underlying physical interpretation for
this procedure. To understand this interpretation, we briefly
return to the quantum double theory approach of Ref. [38].
Within that algebraic framework, the flux quasiparticles for

the Z2 × Z2 × Z2 theory considered here carry a projective
representation. In other words, the fluxes carry an internal
degree of freedom which transforms projectively under the
gauge group. The flux insertion operators we consider insert
precisely such fluxes, so should also carry some such internal
degree of freedom. And indeed they do; one way of interpreting
the φ,λ fields is that they are matter fields which on net
transform projectively under the gauge group.

To further substantiate this idea, note that in the study of
SPT phases, the boundary of a (1+1)D SPT bulk transforms
projectively under the bulk symmetry [4,20,30]. This state-
ment, curiously enough, is helpful in interpreting our line
operators. Suppose we have an abstract form of V100 as follows:

V100 =
∫

D[φ]D[λ] . . . exp

(
i
∮

γ

b1 + f (A,φ,λ, . . .)

)
,

(18)
where f is a function of A and auxiliary fields such as φ, λ

etc. Also we try to calculate the expectation value of V100. We
need

〈V100〉 =
∫

D[bi]D[Ai]D[φ]D[λ] exp

[
i
∫

L + i
∮

γ

(b1 + f (A,φ,λ, . . .))
]

=
∫

D[Ai]D[φ]D[λ] exp

(
i
∫

1

π2
Ā1Ā2Ā3 + i

∮
γ

f (Ā,φ,λ, . . .)

)

=
∫

D[Ai]D[φ]D[λ] exp

(
i
∫

[Ā1]

1

π
Ā2Ā3 + i

∮
γ

f (Ā,φ,λ, . . .)

)
. (19)

We have omitted all the wedges “∧” in the above, and will
continue this convention in the following texts if without mis-
understanding. The second equality comes from integrating
out all bi fields. In this case, A2 and A3 will be flat and thus be
exact on a simple spacetime manifold, while A1 will not. And
these fields after integrating out bi fields are denoted as Ā1,
Ā2 and Ā3. Note that the integral

∫
Ā1Ā2Ā3 can be written as

the integral over A1 flux sheet [Ā1] (see Ref. [43] for a similar

discussion) whose boundary is ∂[Ā1] = γ :

∫
Ā1Ā2Ā3 =

∫
[Ā1]

πĀ2Ā3 , (20)

where π comes from the normalization. We still need the
rest of the terms in the second equality of Eq. (19) to be
gauge invariant. Then the gauge anomalies of two integrals
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∫
[Ā1]

1
π
Ā2Ā3 and

∮
γ

f (Ā,φ,λ, . . .) need to cancel each other.
Notice that

∫
[Ā1] Ā2Ā3 is just the SPT Lagrangian on the

manifold [Ā1] with symmetry Z⊗2
2 , when Ā2 and Ā3 are both

exact. Hence f should look like the boundary action of an
SPT, insofar as it should transform to compensate for the gauge

anomaly from the bulk action. Indeed, the particular f chosen
in Eq. (12) looks very much like the boundary action of the
SPT in Ref. [44].

We can similarly write down the direct generalizations of
flux insertion operators from Eq. (12), which insert two types
of fluxes and three types of flues:

V110 = 1

N ′

∫
D[φi]D[λi] exp

⎡
⎣i
∮

γ

b1 + b2 +
∑
i=1,2

3∑
j,k=1

εijk

π

(
1

2
φjdφk + (dφj − Aj )λk

)⎤⎦

= 2 exp

⎛
⎝i

∮
γ

b1 + b2 +
∑
i=1,2

3∑
j,k=1

εijk

2π
ωjdωk

⎞
⎠δ(ω̄1|γ − ω̄2|γ )δ(ω̄3|γ ), (21)

V111 = 1

N ′′

∫
D[φi]D[λi] exp

⎡
⎣i
∮

γ

b1 + b2 + b3 +
∑

i,j,k=1,2,3

εijk

π

(
1

2
φjdφk + (dφj − Aj )λk

)⎤⎦

= 2 exp

⎛
⎝i

∮
γ

b1 + b2 + b3 +
∑

i,j,k=1,2,3

εijk

2π
ωjdωk

⎞
⎠δ(ω̄1|γ − ω̄2|γ )δ(ω̄2|γ − ω̄3|γ ). (22)

The notations are the same as in Eqs. (12) and (13). The second
equalities of both the above equations follow by integrating
out all φi and λi fields. Start by integrateing out λ1. Then
we have a constraint dφ2 − dφ3 = A2 − A3, the solution of
which can be written as φ2 = φ3 + ω2 − ω3 + C2 where C2 is
a constant. Similarly integrating out λ2 yields φ1 = φ3 + ω1 −
ω3 + C1. Lastly, the constraint obtained by integrating out λ3

is automatically satisfied. Plugging these two solutions back
in produces the second equality, where C2 and C3 have been
shifted away. Notice that the solutions for the two constraints
exists with the condition that ω̄1 = ω̄2 = ω̄3, which is actually
a similar phenomenon in the cases of V110 and V111.

The operators V100, V110, and V111 share formal similarities
as we have seen from their closed form. However, they differ
from V100, V010, and V001 in that the projector δ function
changes. In the operator V110, Eq. (21), we need the projector
that forces ω̄1 = ω̄2, while ω̄3 is forced to be trivial. Similarly
for V101 and V011. In the operator V111, Eq. (22), ω̄1, ω̄2,
and ω̄3 are forced to be the same by the δ function. These δ

functions will be essential when we compute the correlation
functions in Sec. III D.

We have listed all possible Wilson operators and flux
insertion operators, using gauge invariance and locality as our
principle constraints. Our ansatz is inspired by considering
anomaly inflow in lower dimensions. We have found eight
types of Wilson operators Upqr , (p,q,r = 0,1), and eight types
of flux insertion operators Vpqr , (p,q,r = 0,1). Therefore
there should be 64 types line operators including all the
composites of Wilson and flux insertion operators. However, in
the next section, Sec. III B, we will show that many operators
are identified due to the δ function, and there are only 22
distinguishable line operators in total. This agrees with the
quantum double calculation in Ref. [38].

B. 22 Distinguishable line operators

In this section, we will show that in the type-III twisted
Z⊗3

2 field theory Eq. (6), there are only 22 distinguishable line

operators rather than naively 64 line operators. To show this,
we argue that some operators always have the same correlation
functions. Hence many of the naive 64 operators should be
identified since they have identical correlation functions with
all other operators. The essential point is that Vpqr are always
associated with certain constraints (δ functions) on the gauge
fields Ai . See the δ functions in Eq. (13), (21), and (22)
resulting from integrating out the matter fields λi,φi . As a
result, the insertion of a flux insertion operator along loop
C fixes certain combinations of holonomies of the gauge
fields along the same loop C. The flux insertion operator then
has trivial fusion rules with Wilson lines corresponding to
the mentioned holonomies, simply because the flux insertion
operator fixes the values of the Wilson lines. So fusing the flux
insertion line with certain Wilson lines is precisely the same
as inserting just the flux insertion line.

Let us argue more concretely with an example. We have
already listed eight pure Wilson operators Upqr , which insert
charges, and eight pure flux insertion operators Vpqr , which
insert fluxes. We now consider composites of the two kinds
of operator. First, consider V100 along loop γ and fuse it
with Wilson operator Upqr . One can compute the correlation
function of the composite operator with arbitrary operator
〈OV100 × Upqr〉, and measure the effect of the additional
Wilson operator. We assume that the support of the operator
O excludes γ .

Multiplying V100 by U010(γ ) or U001(γ ) or their combina-
tion will not change the correlation function, because A2 and
A3 fields have trivial holonomy along γ —this follows from
the δ function constraint in Eq. (13), which directly implies
exp(i

∮
γ

A2) and exp(i
∮
γ

A3) equal 1. Then U010 = 1 and
U001 = 1 within the correlation functions 〈V100(γ )U010(γ )O〉
and 〈V100(γ )U001(γ )O〉 for any O.

On the other hand, there is no constraint on ω̄1 in V100, so
the holonomy of A1 around γ is unconstrained, and indeed we
can (and will) construct operatorsO such that V100 × U100O �=
V100O within a correlation function. To summarize, we find
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that

〈V100(γ )O〉 = 〈V100(γ )U010(γ )O〉
= 〈V100(γ )U001(γ )O〉,
= 〈V100(γ )U010(γ )U001(γ )O〉,

〈V100U100(γ )O〉 = 〈V100U100(γ )U010(γ )O〉
= 〈V100U100(γ )U001(γ )O〉
= 〈V100U100(γ )U010(γ )U001(γ )O〉. (23)

Therefore all of the distinguishable operators associated
with V100 are divided into two equivalence classes, that is,
they have the same correlation functions as one of V100(γ ),
V100(γ )U100(γ ). We adopt the quantum double notation by
denoting the two classes of V100(γ ) and V100(γ )U100(γ ) as
(100,α1

±) respectively, where 100 represents V100 and the plus
sign corresponds to V100(γ ) while the minus sign corresponds
to V100(γ )U100(γ ). Similar arguments can also be applied for
V010 and V001, where the operators are denoted similarly by
(010,α2

±) and (001,α3
±).

Using the same ideas, we consider fusing V110(γ ) with
various Wilson lines. Once again the δ function constraints
arising from integrating out the φ,λ matter fields Eq. (21) are
useful. In this case, the constraints imply that A1 and A2 share
the same holonomy along γ , while A3 has no holonomy along
γ . As a result V110U100 always gives the same correlation
functions as V110U010 does, and V110U110 and V110U001 give
the same correlation functions as V110. Therefore we there are
two equivalence classes of V110 operator with representatives
(for example) V110 and V110U100. We denote them by (110,β3

±),
respectively. The same line of reasoning also applies to V011

and V101. We denote the operators by a similar notation,
(011,β1

±) and (101,β2
±).

Finally, let us consider the possible fusions of V111(γ ) with
Wilson lines. Using the constraint in Eq. (22), A1, A2, and
A3 must share the same holonomy along γ . Therefore we
find that U100, U010, U001, and U111 are equivalent along γ .
Moreover, U110, U011, and U101 are all equal to 1 and do not
contribute any phases to the correlation functions. Therefore,
once again, there are two equivalence classes of line operators
which we denote (111,γ±), where “+” sign corresponds to
V111 itself, or its decorations by U110, U011, and U101, and “−”
sign corresponds to the equivalence class V111U100, V111U010,
V111U001, and V111U111.

In summary, we have 22 distinguishable operators in
total: Upqr (p,q,r = 1,2,3), (100,α1

±), (010,α2
±), (001,α3

±),
(011,β1

±), (101,β2
±), (110,β3

±), and (111,γ±). The same result
also arises from quantum double calculation with type-III
cocycles, cf. Ref. [38]. We have therefore established a 1-to-1
map between field theoretical operators and the projective
representations in quantum double models.

C. Fusion rules of line operators

Having identified the various possible gauge invariant line
operators, we calculate their fusion rules. This allows us to
motivate the normalizations used in defining the line operators,
e.g., the factor of two appearing in Eq. (13). In quantum
field theory, the fusion of two line operators is defined via
the process of dragging two lines operators close to each

other. The outcome of the product of two line operators
can be decomposed as a sum of a set of line operators.
If the fusion outcome can only contain one operator, we
will call such theories and operators, “Abelian” theories and
“Abelian particles,” respectively. Similarly, we will call them
“non-Abelian” theories and “non-Abelian” particles if there
exists more than one fusion outcome.

To begin with, we can calculate fusion rules of Wilson
operators quite straightforwardly:

Upqr (γ ) × Uxyz(γ ) = U(q+x)(q+y)(r+z)(γ ), (24)

where the sums are defined modulo 2. The fusion rules,
Eq. (24), also demonstrate that all Wilson operators are
Abelian.

Next, we address the flux insertion operators. Henceforth,
for simplicity, we adopt the closed form of flux insertion
operators Vpqr written in terms of the holonomy functions
ωi’s, for example, Eq. (13). To begin, let us fuse the same two
flux insertion operators (100,α1

+),

(100,α1
+) × (100,α1

+) ≡ V100 × V100, (25)

where we have used the fact established in the last section that
V100 is a representative in the class of (100,α1

+). By definition
of V100 in Eq. (13), we have

V100 × V100

= 4 exp

(
i
∮

γ

(
2b1 + 2

π
ω2dω3

))
(δ(ω̄2|γ ))2(δ(ω̄3|γ ))2

= 4δ(ω̄2|γ )2δ(ω̄3|γ )2

= 4δ(ω̄2|γ )δ(ω̄3|γ )

= (1 + exp(iω̄2))(1 + exp(iω̄3))

= 1 + exp(iω̄2) + exp(iω̄3) + exp(iω̄2) exp(iω̄3)

= U000 + U010 + U001 + U011. (26)

This rather bizarre looking calculation requires some explana-
tions. The first equality just follows from definition of V100, and
the δ function is actually a projector that projects into zero flux
state [more explicitly, δ(ω̄i |γ ) := 1

2 (1 + exp(iω̄i)),(i = 1,2,3)
as noted below Eq. (14)]; the second equality follows from the
fact that all variables are Z2 variables valued in {0,π}, then
the exponential is actually trivial because it is always 2π [62].
The third equality follows from the fact that the δ function
satisfies (δ(ω̄i))2 = δ(ω̄i); the fourth equality just expresses
the δ functions explicitly as δ(ω̄i |γ ) = 1

2 (1 + exp(iω̄i)).
Using quantum double notation, Eq. (26) is expressed as

(100,α1
+) × (100,α1

+) = 1 + U010 + U001 + U011. (27)

As promised in Sec. III A, we need to motivate the normal-
ization factors for the flux insertion operators. Indeed, the fact
insisting that fusion rules like Eq. (27) involve positive integer
combinations of line operators fixes the overall normalization
factors [e.g., the 2 factor in Eq. (12)].

As another example, consider the fusion rule

(010,α2
+) × (001,α3

+) ≡ V010 × V001. (28)
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100V 010V

γ1 γ2

FIG. 1. An illustration of a linking correlation of V100(γ1) and
V010(γ2).

To see how this comes about, we use our explicit expressions
for the line operators [Eqs. (15) and (16)]:

V010 × V001 = 4 exp

[
i
∮

γ

b2 + b3 + 1

π
(−ω1dω3 + ω1dω2)

]

× δ(ω̄1|γ )δ(ω̄2|γ )δ(ω̄3|γ ). (29)

The right-hand side (RHS) of this equation can be manipulated
into the form

V010 × V001 = V011 + V011U010 = V011 + V011U001. (30)

To see why, in Eq. (29) rewrite δ(ω̄2|γ )δ(ω̄3|γ ) = δ(ω̄2|γ −
ω̄3|γ )δ(ω̄3|γ ) and expand δ(ω̄3|γ ) = 1

2 (1 + exp(iω̄3|γ )). Then
compare the result with the definition of V011 from Eq. (21),

V011 = 2 exp

[
i

∮
γ

b2 + b3 + 1

π
(−ω1dω3 + ω1dω2)

]

× δ(ω̄1|γ )δ(ω̄2|γ − ω̄3|γ ). (31)

In terms of the quantum double notation we have shown that

(010,α2
+) × (001,α3

+) = (011,β1
+) + (011,β1

−). (32)

We can readily find the quantum dimensions of all of the
operators above. The Wilson lines all have quantum dimension
1. This follows most readily from the fact that Upqr ×
Upqr = 1 in Eq. (24), along with some general constraints
on the structure of fusion algebras [63]. Moreover, the fusion
(100,α+) × (100,α+) in Eq. (27) gives a sum of four Wilson
lines. Again using Ref. [46], this implies that the quantum
dimension of (100,α+) is 2. Similarly, for other flux insertion
operators. The overall factor 2 in the definitions of the flux
insertion lines operators, for example, Eq. (13), is actually the
quantum dimension for the operators.

D. Correlation functions of line operators

In this section, we calculate correlation functions for line
operators that link one another. Typically, we will consider two
line operators forming a Hopf link in (2+1)D, Fig. 1. If we
have a link of two t’ Hooft operators corresponding to gauge
fluxes φ1,φ2, then the holonomy along the first loop is φ1 while
that along the second loop is φ2. As we have seen before,
the flux insertion operators are associated with constraints
on the holonomies of Ai along the loop. As a result, we will
see that for many of the possible links the holonomies are not
compatible with the constraints, so the expectation value for
the link is simply zero.

To demonstrate this point, examine a link of V100(γ1) and
V010(γ2): V010(γ2) will insert a holonomy π of A2 along γ1

(see Fig. 1). However, we know from Eq. (12) that V100(γ1)
is associated with two constraints

∮
γ1

A2 = ∮
γ1

A3 = 0. The
mismatch between the holonomy and the constraint leads to
a zero expectation value. For explicit path integral calculation
details for the linking correlation of V100(γ1) and V010(γ2),
please refer to Appendix B.

The mismatching of the constraints and flux insertion mean
that most of the Hopf links we consider disappear. Here in the
main text, we present only one subtle calculation, the corellator
〈V111(γ1)V111(γ2)〉 where γ1 and γ2 form a link in (2+1)D:

〈V111(γ1)V111(γ2)〉

= 4
∫

DbiDAi exp(iS0) exp

⎛
⎝i

∮
γ1

(b1 + b2 + b3) + i

2π

∮
γ1

∑
ijk

εijkωidωj

⎞
⎠δ

(
ω̄1

∣∣
γ1

− ω̄2

∣∣
γ1

)
δ
(
ω̄2

∣∣
γ1

− ω̄3

∣∣
γ1

)

× exp

⎛
⎝i

∮
γ2

(b1 + b2 + b3) + i

2π

∮
γ2

∑
ijk

εijkωidwj

⎞
⎠δ

(
ω̄1

∣∣
γ2

− ω̄2

∣∣
γ2

)
δ
(
ω̄2

∣∣
γ2

− ω̄3

∣∣
γ2

)

= 4 exp

(
i
∫

1

π2
Ã1Ã2Ã3

)
exp

⎛
⎝ i

2π

∮
γ1

∑
ijk

εijkω̃idω̃j

⎞
⎠ exp

⎛
⎝ i

2π

∮
γ2

∑
ijk

εijkω̃idω̃j

⎞
⎠

= 4 exp

⎛
⎝ i

2π

∮
γ1

∑
ijk

εijkω̃idω̃j

⎞
⎠ exp

⎛
⎝ i

2π

∮
γ2

∑
ijk

εijkω̃idω̃j

⎞
⎠. (33)

The first equality follows from our definitions of the line operators. The second equality is obtained by integrating out all bi

fields. This yields the constraints

1

π
dAi = �(j (γ1) + j (γ2)), (34)
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where j (γ1) and j (γ2) are the unit vectors tangential to γ1 and
γ2, respectively. Here, � is the Hodge dual. For positions away
from the support of the loops γ1,2 we have dAi = 0. We denote
by Ãi a particular reference solution to the constraints on Ai .
One thing we certainly know about the Ãi is that they have
nontrivial holonomies along γ1 and γ2, i.e.,

∮
γ1

Ãi =
∮

γ2

Ãi = π mod 2π,∀i = 1,2,3. (35)

Therefore the δ functions in the first equality in Eq. (33)
is automatically satisfied. Moreover, since all Ai obey the
same equations of motion set by integrating out bi fields,
their solutions Ãi are the same up to gauge transformations.
Therefore we are free to choose a gauge for which the Ãi are
identical, so that the integral of 1

π2 Ã1Ã2Ã3 vanishes at least
in this quasicontinuum setting. All we need to do now is to
evaluate the last two line integrals in the last line of Eq. (33).

In the last line, ω̃i’s are the holonomy functions for each
field Ai . As we have chosen a gauge for which the Ãi are
identical, the corresponding holonomy functions are identical.
As a result, on each loop the ω̃i are identical multi-valued
staircase functions which sharply step up by π modulo 2π

upon moving around the loop once.
In order to evaluate these line integrals, we need to think

more carefully about the regularization of the field theory. To
this end, we consider using discrete derivatives on a lattice of
form

dω̃i(r) = ω̃i(r + 1) − ω̃i(r),
(36)

d̄ω̃i(r) = ω̃i(r) − ω̃i(r − 1),

where d̄ is the adjoint operator to d on the lattice, and r is
the position on the lattice. In terms of these operators, the line
integrals over γ1 and γ2 are regularized as

∮
γ1/γ2

ω̃idω̃j − ω̃j d̄ω̃i

=
L/2∑

r=−L/2

[ω̃i(r)(ω̃j (r + 1) − ω̃j (r))

− ω̃j (r)(ω̃i(r) − ω̃i(r − 1))]

= ω̃i(−1)π − ω̃j (0)π

= −π2. (37)

More details of the particular choice of derivatives can be
found in the Sec. IV when we verify that the operators for
type-III twisted Z⊗3

N theories are gauge invariant on lattice.
Hence we have

∑
ijk

εijkω̃idω̃j ≡ (ω̃2dω̃3 − ω̃3d̄ω̃2) + (ω̃3d̄ω̃1 − ω̃1dω̃3)

+ (ω̃1dω̃2 − ω̃2d̄ω̃1)

= −π2 + π2 − π2

= −π2. (38)

Substituting these results back into the line integral, we obtain

〈V111(γ1)V111(γ2)〉 = 4 exp

⎛
⎝ i

2π

∮
γ1+γ2

∑
ijk

εijkω̄idω̄j

⎞
⎠

= −4. (39)

The correlation function suggests that the topological spin of
V111 is either i or −i. A similar calculation for the linking corre-
lation 〈Vn1n2n3 (γ1)Vm1m2m3 (γ2)〉 for type-III twisted Z⊗3

N theory
can be found in Sec. IV. And we provide more comments on
the topological spins there, and find the topological spin can
actually fixed to be −i for V111, and hence i for V111U111.

In summary for this section (and Appendix B) we have
constructed the distinguishable line operators, calculated
their fusion rules and the correlation functions of linked
line operators. The non-Abelian fusion rules and vanishing
correlation functions (Appendix B) are indications that type-III
twisted Z⊗3

2 is a non-Abelian topological theory. The modular
matrices of type-III twisted Z⊗3

2 are explicitly written down in
Appendix D.

IV. TYPE-III TWISTED Z⊗3
N THEORY

In this section, we generalize the gauge group from Z⊗3
2 to

Z⊗3
N . More explicitly, we construct the line operators and their

correlation functions etc for the type-III twistedZ⊗3
N theories in

(2+1)D. The basic idea of the constructing these line operators
is still introducing the auxiliary fields and gauge invariance.
Once we obtain the valid line operators, we can obtain their
linking correlation function by path integral.

This section is divided into the following. In Sec. IV A, we
again introduce the Lagrangian and gauge transformations. In
Sec. IV B, we list our line operators. In Sec. IV C, we work
out correlation functions of flux insertion operators.

Moreover, two appendices are associated with this section.
In Appendix C, we verify the gauge invariance of flux insertion
operators with lattice regularization. In Appendix E, we
provide with a quantum double calculation, which gives the
same results of correlation functions as in the field theory
approach derived in the following main text.

A. Lagrangian and gauge transformation

In this section, we introduce the Lagrangian for the twisted
Z⊗3

N theory and its gauge transformation, as a preparation for
the following sections. The Lagrangian for the theory is

L = N

2π
bidAi + pN2

(2π )2
A1A2A3, (40)

where p ∈ ZN = {0,1,2, . . . ,N − 1}, which can be deter-
mined by the same method in Appendix A. The gauge
transformations, by Eq. (7), are

bi → bi + dβi + pNεijk

2π

(
Ajαk − 1

2
αjdαk

)
,

Ai → Ai + dαi, i = 1,2,3.

(41)

In the following sections, we will find out all line operators that
are gauge invariant under the gauge transformation Eq. (41),
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and work out some of their fusion rules and correlation
functions etc.

B. Line operators

In this section, we find out all possible gauge invariant line
operators. First of all, by gauge invariance, the Wilson line
operators are

Un1n2n3 = exp

(
i
∮

γ

niAi

)
,ni ∈ {0,1,. . . . ,N − 1}. (42)

Similar to the type-III twisted Z⊗3
2 example in Sec. II, the

flux insertion operators can be constructed by introducing
the auxiliary fields, φi and λi . From the decorated domain
wall picture, the single type flux can be inferred from SPTs

boundary with symmetry group Z⊗2
N instead of Z⊗3

N . The
reason is that in the path integral with a single flux insertion
operator, for example V100, we have flat connections A2 and
A3 and nonflat connection A1. Thus the flux sheet of A1 is
actually aZ⊗2

N SPT whose boundary is the flux loop. Therefore,
by gauge anomaly inflow, we can construct the operator V100

explicitly where auxiliary fields need to be introduced.
The auxiliary fields can be integrated out to produce a closed

form for these flux insertion operators. However, instead of
writing them down directly, we explain from the single type
flux insertion operators to the triple type fluxes, mainly because
the quantum dimensions of these operators are not written in
a uniform way.

The single type of flux insertion operators Vr00 are

Vr00 = 1

N

∫
D[φ2]D[φ3]D[λ2]D[λ3] exp

[
i
∮

γ

rb1 + irpN

2π

∮
γ

ε1ij

(
1

2
φidφj + (dφi − Ai)λj

)]

= Nr00 exp

(
i
∮

γ

rb1 + irpN

4π

∮
γ

ε1ijωidωj

)
δ(rpω̄2)δ(rpω̄3), r = 0,1, . . . ,N − 1. (43)

It is clearly gauge invariant as the φi , λi fields transform exactly
the same as in Z⊗3

2 case. And the integration over the auxiliary
fields are also the same. We emphasis that delta function
δ(x) is still a projector, imposing any element x ∈ 2πZ.
The subtle difference from Z⊗3

2 is the normalization constant
Nr00, which is determined by fusion rules, for example,
Vr00 × V(N−r)00. The flux is trivial after fusion. Hence we only
expect charges appear in the fusion channels if the fusion is
possibly nontrivial.

Nr00 is fixed to be

Nr00 = N

gcd(N,rp)
. (44)

The reason for it is that the fusion rule of Vr00 and V(N−r)00 is
with Eq. (44):

Vr00 ⊗ V(N−r)00 =
Nr00−1⊕
i,j=0

U0(ipr)(jpr), (45)

where the fusion channels on the RHS has the greatest common
divisor 1, and the identity operator U000 only appears once.
The fusion rule is derived by taking the product of Vr00 and
V(N−r)00, canceling the exponential phases and expanding the
δ function as follows:

δ(rpω̄j ) = gcd(N,rp)

N

N
gcd(N,rp) −1∑

m=0

exp(imrpω̄j ), (46)

where j = 2,3. And we also use the fact for the derivation of

fusion rule Eq. (45):

Nr00 = N

gcd(N,rp)
= N

gcd(N,(N − r)p)
= N(N−r)00. (47)

For the Z⊗3
2 example discussed in the previous section,

where N = 2,p = 1, we have

N100 = 2

gcd(2,1)
= 2 . (48)

Having fixed the normalization for Vr00, the quantum di-
mensions for these flux insertion operators are justNr00, which
can be manifested by calculating 〈Vr00〉. (More rigorously, the
quantum dimension is obtained via fusion rules.) The explicit
calculation is omitted here since it is exactly the same as in
Z⊗3

2 situation.
Other types of single flux insertion operators V0r0 and V00r

can be obtained by simply permuting the indices, as in the
previous section, Sec. II. Hence we omit their expressions
here for simplicity.

One can also consider inserting two types of fluxes and
three types of fluxes. We follow the same prescription as in
Eq. (22) by introducing the auxiliary fields φi and λi . And
integrating the auxiliary fields out yields a closed form of flux
insertion operators in terms of the holonomy functions ωi’s:

Vn1n20 = 1

N ′

∫
D[φi]D[λi] exp

[
i
∮

γ

n1b1 + n2b2 + n1pN

2π
ε1ij

(
1

2
φidφj + (dφi − Ai)λj

)

+ n2pN

2π
ε2ij

(
1

2
φidφj + (dφi − Ai)λj

)]

= Nn1n20 exp

(
i
∮

γ

n1b1 + n2b2 − iNp

2π

∮
γ

(n2ω1 − n1ω2)dω3

)
δ(pn2ω̄1 − pn1ω̄2)δ(n1pω̄3)δ(n2pω̄3), (49)
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Vn1n2n3 = 1

N ′′

∫
D[φi]D[λi] exp

[
i
∮

γ

(
nibi + nipN

2π
εijk

(
1

2
φjdφk + (dφj − Aj )λk

))]

= Nn1n2n3 exp

[
i
∮

γ

(
nibi + ni

Np

4π
εijkωjdωk

)]
δ(n2pω̄1 − n1pω̄2)δ(n3pω̄2 − n2pω̄3)δ(n1pω̄3 − n3pω̄1), (50)

where in Eq. (50), only two of the three δ functions are
independent; andNrs0 andNn1n2n3 can be determined similarly
as in Nr00. More explicitly,

Nn1n20 = N

gcd(N,pn1,pn2)
,

Nn1n2n3 = N

gcd(N,pn1,pn2,pn3)
.

(51)

And similarly as before, the quantum dimensions of Vn1n20

and Vn1n2n3 are Nn1n20 and Nn1n2n3 respectively. They are also
consistent with the case of N = 2,p = 1. We write them in a
uniform way: 〈

Vn1n2n3

〉 = Nn1n2n3 . (52)

In the following, we will use the natural convention:

gcd(a,b,0,0) ≡ gcd(a,b),

gcd(a,b,c,0) ≡ gcd(a,b,c),
(53)

to simplify our notations and discussions below. We can write
all the flux insertion operators uniformly by using this notation.

We do not elaborate on how many different line operators
here, but only comment that because of the δ functions
in the flux insertion operators Vn1n2n3 , attaching a Wilson
line onto Vn1n2n3 may actually contribute nothing, but trivial
phases, to the correlation functions. Hence some operators

are identified in the sense of producing the same correlation
functions, although their appearances are different.

C. Correlation functions

In this section, we provide general linking correlation func-
tions for two flux insertion operators, 〈Vn1n2n3 (γ1)Vm1m2m3 (γ2)〉,
for the type-III twisted Z⊗3

N theory. Before we calculate
〈Vn1n2n3 (γ1)Vm1m2m3 (γ2)〉, we first comment on other simpler
linking correlation function, for example, the linking of two
Wilson lines, or Wilson lines and flux insertion operators.

The linking correlations between any two Wilson lines are
simply identity. And the linking correlations between flux
insertion operators and Wilson line operators remain to be
simple. Flux insertion operator Vn1n2n3 simply inserts n1 units
of A1 flux, n2 units of A2 flux and n3 units of A3 flux.
Thus Wilson lines that are linked to Vn1n2n3 simply take three
Aharonov-Bhom phases according to the charges of the Wilson
lines. However, as we have seen in Z⊗3

2 section, the linking
correlation functions may vanish due to the constraint part of
these operators, or pick up nontrivial phases from the ωidωj

terms.
In the following formulas, we do not distinguish the lattice

derivatives d and d̄ until necessary. And more importantly, we
assume gcd(N,p) = 1, which simplifies the calculations. The
explanations for the assumption will be explained after the
calculations. The detailed calculation goes as follows:

〈
Vn1n2n3 (γ1)Vm1m2m3 (γ2)

〉

= Nn1n2n3Nm1m2m3

∫
DbiDAi exp

(
i
∫

N

2π
bidAi + pN2

(2π )2
A1A2A3

)

× exp

(
i
∮

γ1

nibi + iNp

4π

∮
γ1

εijkniωjdωk

)∏
i

δ
(
εijkpniω̄k

∣∣
γ1

)

× exp

(
i
∮

γ2

mibi + iNp

4π

∮
γ2

εijkmiωjdωk

)∏
i

δ
(
εijkpmiω̄k

∣∣
γ2

)

= Nn1n2n3Nm1m2m3 exp

(
i
pN2

(2π )2

∫
Ã1Ã2Ã3

)
exp

(
iNp

4π

∮
γ1

εijkniω̃j dω̃k

)
exp

(
iNp

4π

∮
γ2

εijkmiω̃j dω̃k

)

×
∏

i

δ

(
εijkpnj

2πmk

N

)∏
i

δ

(
εijkpmj

2πnk

N

)

= Nn1n2n3Nm1m2m3 exp

(
iNp

4π

∮
γ1

εijkniω̃j dω̃k

)
exp

(
iNp

4π

∮
γ2

εijkmiω̃j dω̃k

)∏
i

δ

(
εijk 2πp

N
njmk

)∏
i

δ

(
εijk 2πp

N
mjnk

)

= Nn1n2n3Nm1m2m3 exp
(
− ipπ

N
εijk(nimjmk + minjnk)

)∏
i

δ

(
εijk 2πp

N
njmk

)∏
i

δ

(
εijk 2πp

N
mjnk

)
. (54)
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The equations deserves certain explanations: the first equality
just lists all the terms, following the same convention as before.
In the second equality, we integrate out all bi fields, which
yields the equations of motion as follows:

dAi = 2π

N
(ni � j1 + mi � j2) mod 2π,i = 1,2,3, (55)

where j1 and j2 are the currents representing γ1 and γ2,
respectively, � is the Hodge dual. The solutions of such
equations of motion are denoted as Ãi,i = 1,2,3. As a result
of the equations of motion, we have

ω̄i(γ1) ≡
∮

γ1

Ai = 2π

N
mi,

ω̄i(γ2) ≡
∮

γ2

Ai = 2π

N
ni, i = 1,2,3.

(56)

Now notice that due to the δ function constraints, the
correlation will vanish if they are not satisfied. One subtlety
is that the δ functions associated with Vn1n2n3 and Vm1m2m3 are
slightly different, because the summation periods as in Eq. (46)
are determined by Nn1n2n3 and Nm1m2m3 , respectively,

δ

(
εijk 2πp

N
njmk

)

= 1

Nn1n2n3

Nn1n2n3 −1∑
q=0

exp

(
iqεijk 2πp

N
njmk

)

× δ

(
εijk 2πp

N
mjnk

)

= 1

Nm1m2m3

Nm1m2m3 −1∑
q=0

exp

(
iqεijk 2πp

N
mjnk

)
. (57)

These δ functions lead to the following equations:

n2m3 − n3m3 = 0 mod
N

gcd(N,p)
,

and permuted equations.

(58)

For the convenience of the following calculations, we
assume that gcd(N,p) = 1. Thus the above equations are
valid mod N . Therefore the RHS of the equations of motions
Eq. (55) are proportional to each other, for i = 1,2,3. Hence,
the solutions, Ãi,i = 1,2,3, can be set to proportional to each
other, up to gauge transformations. Hence the first integral of
the second equality will vanish at least in the continuous limit,
leading to the third equality. Note that if gcd(N,p) �= 1, the
argument that

∫
Ã1Ã2Ã3 vanishes may not be true.

The fourth equality is obtained by using the lattice deriva-
tives, d and d̄ . For example,

∮
γ1

ω̃2dω̃3 − ω̃3d̄ω̃2 = −
(

2π

N

)2

m2m3. (59)

Thus we have completed the calculation of 〈Vn1n2n3 (γ1)
Vm1m2m3 (γ2)〉.

FIG. 2. An illustration of self-twist. The left panel is a ribbon
without self-twists. The dotted line is the illustration of framing for
the solid line. The right panel is a ribbon with one self-twist. The
dotted line, the framing, winds around the solid line once [47]. We
can simply view the right panel as a link of the solid and dotted line.

One particular simple and nonvanishing example of these
linking correlations is

〈
Vn1n2n3 (γ1)Vn1n2n3 (γ2)

〉 = N 2
n1n2n3

exp

(−2π ip

N
n1n2n3

)
,

(60)
where we need to recall that

Nn1n2n3 = N

gcd(N,pn1,pn2,pn3)
. (61)

The linking correlation function (60) also suggests the
topological spin for Vn1n2n3 is


(
Vn1n2n3

) = exp
(
−π ip

N
n1n2n3

)
, (62)

although it is a non-Abelian topological phase. The reason
is the following: suppose we have a “self-twist” loop γ (see
Fig. 2 for an illustration of self-twist). Then Vn1n2n3 (γ ) itself
inserts n1,2,3 units of A1,2,3 fluxes through γ . Hence in the path
integral of 〈Vn1n2n3 (γ )〉, we only have one contribution for the
phase, instead of two contributions as in the last two equalities
of Eq. (54). The δ functions in the Vn1n2n3 are automatically
satisfied and hence do not contribute.

Restricting to the Z⊗3
2 situation where N = 1,p = 1, we

actually have (V111) = −i [38]. In terms of quantum double
notations in Sec. III C, ((111,γ+)) = −i. Moreover, when the
Wilson line contributing a minus sign in the path integral is
attached to V111, the topological spin obtains one more minus
sign. Hence we find that ((111,γ−)) = i [38].

In Appendix E, we provide a quantum double calculation
and calculate the projective representations determined by the
slant product of type-III cocycles with group Z⊗3

N . And we
show that it gives the same correlation functions as by the field
theoretical approach above.
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In summary for this whole section, we constructed the line
operators, and calculated the linking correlation functions of
flux insertion operators explicitly, Eq (54), with an assumption
gcd(N,p) = 1. And as a consequence, we obtain the topolog-
ical spins for the flux insertion operators, Eq. (62).

V. CONCLUSION

In this work we considered a continuum formulation of
Abelian Dijkgraaf-Witten field theories in (2+1)D. These
theories come in three varieties: types I, II, and III. We
constructed all the possible gauge invariant line operators,
which correspond to the possible quasiparticle excitations.
The quasiparticles of type-I and type-II theories are readily
understood using a K-matrix Chern-Simons theory approach.
We mostly consider the subtler issue of type-III DW models
focusing on type-III twisted Z⊗3

2 and more generally Z⊗3
N

DW theory. Despite the fact these theories have Abelian
gauge groups, their excitations have non-Abelian fusions and
statistics. We demonstrated this by directly constructing all
Wilson and flux insertion operators, and computing all of their
associated braiding and fusion rules. The guiding principle in
constructing these operators is gauge invariance which, once
imposed, leads to the introduction of auxiliary fields which
live on the line operators in question. These auxiliary fields
can be viewed as internal degrees of freedom of the particle in
question.

Our work thus provides a field-theoretical platform for
analyzing non-Abelian (2+1)D SPTs and topological orders.
It would be useful to extend some of the constructions here
to higher dimensions, where topological phases are less well
understood [17,48–55].

ACKNOWLEDGMENTS

H.H. and Y.Z. thank B. A. Bernevig, E. Witten for useful
comments and discussions. CvK acknowledges the support
of the Princeton Center for Theoretical Science. H.H. and
Y.Z. acknowledge the support from Department of Physics,
Princeton University.

APPENDIX A: CLASSIFICATION OF TWIST TERMS

In this Appendix, we will basically repeat the main idea
of Ref. [16], for the purpose of completeness for this work.
We will explain how to fix the coefficients of the twist terms
in the Lagrangian in (2+1)D. Of course, the method can be
generalized to other types of twists, other gauge groups, and
other dimensions. For details, please refer to Ref. [16]. We
check our results by noting that in (2+1)D, the spectra of DW
models are described algebraically as quasiquantum double
models twisted by cocycles [38] (see also Refs. [55,56]).

Presumably, the fields in the Lagrangian (6) areZ2 variables
valued in {0,π}. And their holonomies satisfy:∮

Ai = niπ,ni ∈ Z,∀i. (A1)

In order to fix the coefficient of A1A2A3. We need two
requirements: invariance under large gauge transformation,
and flux identification. The generator of the large gauge

transformation is defined as∮
Ai �→

∮
Ai + 2π,∀i. (A2)

a. Large gauge transformation. Under large gauge
transformation, supposing only to A1, then

∫
A1A2A3 �→∫

A1A2A3 + ∫
δA1A2A3 = ∫

A1A2A3 + 2π3n2n3. The in-
variance of the action (6) under large gauge transformation
gives

pn2n3

4
∈ Z. (A3)

Symmetrically, we have

pn1n2

4
,
pn1n3

4
∈ Z. (A4)

For arbitrary integers n1, n2, and n3, we have

p ∈ 4Z. (A5)

b. Flux identification. The integral of A1A2A3 term is
actually

p

(2π )2

∫
A1A2A3 = p

(2π )2
n1n2n3π

3 = pn1n2n3

4
π. (A6)

So when p is shifted to p + 8, the integral does not change,
which implies that p should be identified with p + 8.

c. Summary. Combining the two requirements, we con-
clude that p is valued in {0,4}. In the main text, we simply
choose the nontrivial value of p:

L = 2

2π
bidAi + 4

(2π )2
A1A2A3 . (A7)

Generalization from group Z2 to group ZN is direct. The
holonomies are quantized to∮

Ai = 2π

N
ni,ni ∈ Z,∀i. (A8)

And large gauge transformations remain to be∮
Ai �→

∮
Ai + 2π,∀i. (A9)

Repeat the same calculation, we can fixed the coefficients of
type-III twisted Z⊗3

N to be

L = N

2π
bidAi + pN2

(2π )2
A1A2A3 , (A10)

where p ∈ ZN = {0,1,2, . . . ,N − 1}.

APPENDIX B: DETAILS OF CALCULATING THE PATH
INTEGRAL IN (2+1)D

The path integrals of DW models can be rigorously
calculated especially when they are regulated on lattice. In
this section, we will explain the methodology by doing two
examples of path integral calculation which we have constantly
been using in this work.

The rest of the appendix is divided into two parts. In the
first one, we derive the closed form of flux insertion operators
by integrating out the auxiliary fields; in the second part, we
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show two correlation functions as we promised in our main
text. The first correlation is simple 〈V100〉, and the second one
is a linking correlation 〈V100(γ1)V010(γ2)〉. Both correlation
functions suggest that the theory is actually the non-Abelian
topologically ordered: 〈V100〉 is the quantum dimension for the
operator V100, which is larger than 1, while 〈V100(γ1)V010(γ2)〉
vanishes other than a U(1) phase.

1. Closed form of flux insertion operators

We begin with V100 operator in Eq. (12), and show how the
closed form of the V100 is deduced. Suppose the calculation is
well-regulated on lattice, and γ is a closed line with L bonds.
The variables in the functional integral are Z2 variables valued
in {0,π}.

The calculation details go as follows:

V100(γ ) = 1

N

∫
D[φ2]D[φ3]D[λ2]D[λ3] exp

[
i
∮

γ

b1 + ε1ij

π

(
1

2
φidφj + (dφi − Ai)λj

)]

= 22L

N

∫
D[φ2]D[φ3] exp

(
i
∮

γ

b1 + 1

π
φ2dφ3

)
δ(dφ2 − A2)δ(dφ3 − A3)

= 22L

N

∫
D[φ2]D[φ3] exp

(
i
∮

γ

b1 + 1

π
φ2dφ3

)
δ(φ2 − ω2 − C2)δ(φ3 − ω3 − C3)

= 22L

N exp

(
i
∮

γ

b1 + 1

π
ω2dω3

)
δ(ω̄2)δ(ω̄3)

= 2 exp

(
i
∮

γ

b1 + 1

π
ω2dω3

)
δ(ω̄2)δ(ω̄3). (B1)

The notations in the above equations include: ω2 and ω3 are holonomy function w2 = ∫ x

0 A2, w3 = ∫ x

0 A3. And ω̄2 = ∫ L

0 A2

and ω̄3 = ∫ L

0 A3. Note that we need the constraint δ(ω̄2)δ(ω̄3) in order to define V100, otherwise it is not gauge invariant. The
above calculation deserves certain explanations: in the second equality, the λ2 and λ3 are actually Lagrangian multipliers and
integrating them out yields two constraints; in the third equality, we just solve the constraints; the rest of the calculations are
natural, except that the reason of choosing normalization factor N = 22L−1 is to have the coefficients of fusion rules integers.
That was explained in the main text.

V110 and V111 can be deduced similarly. For completeness, we provide one more example, V111, while V110 is less subtle:

V111 = 1

N

∫
D[φi]D[λi] exp

[
i
∮

γ

b1 + b2 + b3 + εijk

π

(
1

2
φjdφk + (dφj − Aj )λk

)]

= 23L

N

∫
D[φi] exp

(
i
∮

γ

b1 + b2 + b3 + εijk

2π
φjdφk

)

× δ(dφ1 − dφ2 − A1 + A2)δ(dφ2 − dφ3 − A2 + A3)δ(dφ3 − dφ1 − A3 + A1)

= 23L

N

∫
D[φi] exp

(
i
∮

γ

b1 + b2 + b3 + εijk

2π
φjdφk

)
δ(φ1 − ω1 − f0 − C1)δ(φ2 − ω2 − f0 − C2)δ(φ3 − ω3 − f0 − C3)

= 23L

N exp

(
i
∮

γ

b1 + b2 + b3 + εijk

2π
(ωj + f0)d(ωk + f0)

)
δ(ω̄1 − ω̄2)δ(ω̄2 − ω̄3)

= 23L

N exp

(
i
∮

γ

b1 + b2 + b3 + εijk

2π
ωjdωk

)
δ(ω̄1 − ω̄2)δ(ω̄2 − ω̄3). (B2)

The calculation is quite similar to V100. The only thing
that changes is the constraints by the δ functions. The
solution of the constraints in the second equality is φ2 =
ω2 − ω1 + φ1 + C2 and φ3 = ω3 − ω1 + φ1 + C3. A more
symmetric way of expressing the same solutions are φi =
ωi − ω0 + φ0 + Ci,i = 1,2,3 by using a common “reference”
ω0 and φ0. The constants Ci can be shifted away. One subtlety
needs our attention: the existence of the solutions requires
that ω̄1 = ω̄2 = ω̄3. However, we choose a more symmetric
way to express the solutions as in the third equality, which

will simplify the expansion from the fourth equality to the
fifth.

2. Correlation function

As we promised in the main text, in this section, we will
illustrate how to work out the correlation functions by doing
two examples: the first one is 〈V100〉; the second one is the
correlation of V100(γ1) and V010(γ2) where γ1 and γ2 form a
link in (2+1)D.
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The correlation of a single V100(γ ) is

〈V100(γ )〉 =
∫

D[bi]D[Ai] exp

(
i
∫

1

π
bidAi + 1

π2
A1A2A3

)
2 exp

(
i
∮

γ

b1 + ε1ij

2π
ωidωj

)
δ(ω̄2|γ )δ(ω̄3|γ )

= 2 exp

(
i
∫

1

π2
Ã1Ã2Ã3

)
exp

(
i
∮

γ

1

π
ω̃2dω̃3

)
δ(ω̄2|γ )δ(ω̄3|γ )

= 2. (B3)

We denote the Ai,i = 1,2,3 after integrating out bi,i = 1,2,3 as Ãi,i = 1,2,3. Integrating out b2 and b3 will yield a flat A2 and
A3. And we choose the gauge Ã2 = Ã3 = 0. So the phases in the right above equations will be trivial. And the δ functions are all
satisfies: δ(ω̄2) = δ(ω̄3) = 1. Integrating out b1 will make Ã1 have a π flux surrounding γ . For other loops that do not surround
γ , Ã1 has a trivial flux.

The correlation of V100(γ1) and V010(γ2) goes as follows:

〈V100(γ1)V010(γ2)〉 =
∫

D[bi]D[Ai] exp

(
i
∫

1

π
bidAi + 1

π2
A1A2A3

)
2 exp

(
i
∮

γ1

b1 + ε1ij

2π
ωidωj

)
δ
(
ω̄2

∣∣
γ1

)
δ
(
ω̄3

∣∣
γ1

)

× 2 exp

(
i
∮

γ2

b2 + ε2ij

2π
ωidωj

)
δ
(
ω̄1

∣∣
γ2

)
δ
(
ω̄3

∣∣
γ2

)

= 4 exp

(
i
∫

1

π2
Ã1Ã2Ã3

)
exp

(
i
∮

γ1

1

π
ω̃2dω̃3

)
exp

(
i
∮

γ2

1

π
ω̃3dω̃1

)
δ
(

˜̄ω1

∣∣
γ2

)δ
(

˜̄ω2

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ2

)

= 4 exp

(
i
∮

γ1

1

π
ω̃2dω̃3

)
exp

(
i
∮

γ2

1

π
ω̃3dω̃1

)
δ
(

˜̄ω1

∣∣
γ2

)
δ
(

˜̄ω2

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ2

)

= 4 exp

(
i
∮

γ1

1

π
ω̃2Ã3

)
exp

(
−i
∮

γ2

1

π
Ã3ω̃1

)
δ
(

˜̄ω1

∣∣
γ2

)
δ
(

˜̄ω2

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ2

)

= 4δ
(

˜̄ω1

∣∣
γ2

)
δ
(

˜̄ω2

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ1

)
δ
(

˜̄ω3

∣∣
γ2

)
= 0. (B4)

Once we integrate out b1 and b2, A1 will have a unit π

flux surrounding γ1 and A2 have a π flux surrounding γ2.
Integrating out b3 will produce a flat A3. Suppose we choose
the gauge orbit for A3 = 0. The notation Ãi,ω̃i ,i = 1,2,3 are
denoted for the fields after integrating out bi,i = 1,2,3, and
Ã3 = 0. Then most of the phases in the calculation will end up
being trivial. Therefore we only have four δ functions in the
last two equality in the right above. Note that γ1 and γ2 form
a link. So that γ1 and γ2 will surround each other. Integrating
out bi will yield

∮
γ2

Ã1 = ∮
γ1

Ã2 = π . The δ function will be
violated. Therefore the correlation is simply 0.

APPENDIX C: GAUGE INVARIANCE OF
Vn1n2n3 ON LATTICE

We could easily verify that the flux insertion operators
Vn1n2n3 is gauge invariant in the continuous limit. However,
as we have utilized a lattice regularization in the main text to
calculate the partition function, it is necessary to verify the
operators Vn1n2n3 are still gauge invariant on lattice. In this
section, we will verify the gauge invariance explicitly for flux
insertion operators on lattice.

Before we start, we need to do some basic mathematical
preparations for the lattice derivatives and lattice integral.
Note that in the gauge transformation of b1, Eq. (41), A2,3

and α2,3 are coupled. We need to firstly specify how it is
coupled on lattice. For convenience, we use our notations ω2,3

and lattice derivatives d,d̄ to make the coupling obvious. For

clearness, we repeat the definitions here although they have
been mentioned in the main text. At r − th site, the lattice
derivatives are defined as below:

dωi(r) = ωi(r + 1) − ωi(r),
(C1)

d̄ωi(r) = ωi(r) − ωi(r − 1), i = 1,2,3.

Note that either d or d̄ is chosen, we still have
∮

dωi =
∮

d̄ωi = ω̄i , i = 1,2,3. (C2)

And we have the lattice version of integral by part for
arbitrary functions f and g (they may not be periodic on the
lattice of size L). We start with considering the following
integral on lattice:
∮

f dg + gd̄f

=
L−1∑
r=0

f (r)(g(r + 1) − g(r)) +
L∑

r=1

g(r)(f (r)−f (r−1))

= f (L)g(L) − f (0)g(0). (C3)

It can be put in a integral-by-part-theorem way:
∮

f dg = f (L)g(L) − f (0)g(0) −
∮

gd̄f. (C4)
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For f and g that are single valued on the lattice ring, the
integral-by-part theorem reduces to∮

f dg = −
∮

gd̄f. (C5)

With these preparations of lattice derivatives and lattice
integrals, we can start to verify the gauge invariance. First of
all, we consider the gauge transformations for the b1 related
terms,

∮
b1 + pN

4π
(ω2dω3 − ω3d̄ω2), as follows:

∮
b1 + pN

4π
(ω2dω3 − ω3d̄ω2)

⇒
∮

b1 + pN

4π
(2d̄ω2α3 − 2dω3α2 − α2dα3 + α3d̄α2) + pN

4π
((ω2 + α2 − α2(0))(dω3 + dα3)

− (ω3 + α3 − α3(0))(d̄ω2 + d̄α2))

=
∮

b1 + pN

4π
(ω2dω3 − ω3d̄ω2) + pN

2π
(d̄ω2α3 − dω3α2) + pN

4π
[ω2dα3 + (α2 − α2(0))dω3 − ω3d̄α2 − (α3 − α3(0))d̄ω2]

= pN

4π
(α3(0)ω̄2 − α2(0)ω̄3) +

∮
b1 + pN

4π
(ω2dω3 − ω3d̄ω2) + pN

2π
(d̄ω2α3 − dω3α2)

+ pN

4π
(ω2dα3 + α2dω3 − ω3d̄α2 − α3d̄ω2)

= pN

2π
(α3(0)ω̄2 − α2(0)ω̄3) +

∮
b1 + pN

4π
(ω2dω3 − ω3d̄ω2) + pN

2π
(d̄ω2α3 − dω3α2) + pN

2π
(α2dω3 − α3d̄ω2)

= pN

2π
(α3(0)ω̄2 − α2(0)ω̄3) +

∮
b1 + pN

4π
(ω2dω3 − ω3d̄ω2). (C6)

The calculation deserves certain explanations. In the first line after the right arrow, we have specified a particular way of coupling
A2,3 and α2,3 by choosing the lattice derivatives d and d̄. For example, at site r , we have

A2(r)α3(r) ≡ d̄ω2(r)α3(r) = (ω2(r) − ω2(r − 1))α3(r). (C7)

And similarly for other terms. The first equality just expands and throws away the terms either obviously canceling each other or
simply vanishing. α2,3(0) is just the gauge transformation parameters at site 0. In the second equality, we just pull out the integral
involving α2,3(0). In the third equality, the lattice integral by part is performed to the first and the third term in the square bracket.
The boundary terms, resulting from the integral by part, double the terms in front of the loop integral. The last equality only
contains the leftover terms. Using the same method, we could also find similar expressions for b2 and b3 related terms. Then all
the terms we have are

pN

2π
n1(α3(0)ω̄2 − α2(0)ω̄3) +

∮
n1

[
b1 + pN

4π
(ω2dω3 − ω3d̄ω2)

]

+ pN

2π
n2(α1(0)ω̄3 − α3(0)ω̄1) +

∮
n2

[
b2 + pN

4π
(ω3d̄ω1 − ω1dω3)

]

+ pN

2π
n3(α2(0)ω̄1 − α1(0)ω̄2) +

∮
n3

[
b3 + pN

4π
(ω1dω2 − ω2d̄ω1)

]

=
∮

n1

[
b1 + pN

4π
(ω2dω3 − ω3d̄ω2)

]
+
∮

n2

[
b2 + pN

4π
(ω3d̄ω1 − ω1dω3)

]
+
∮

n3

[
b3 + pN

4π
(ω1dω2 − ω2d̄ω1)

]
.

(C8)

Note that the terms involving α1,2,3(0) will vanish because of the δ function constraints associated with Vn1n2n3 , Eq. (50). Therefore
we have completed the verification for the gauge invariance of the operator Vn1n2n3 on lattice.
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APPENDIX D: MODULAR MATRICES

In this section, we provide the modular matrices of the type-III twisted Z⊗3
2 DW theory, as follows:

S = 1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 −2 2 2 −2 2 2 −2 −2 2 −2 −2 2 −2 −2
1 1 1 1 1 1 1 1 2 −2 2 2 −2 2 −2 2 −2 −2 2 −2 −2 −2
1 1 1 1 1 1 1 1 2 2 −2 2 2 −2 2 −2 −2 2 −2 −2 −2 −2
1 1 1 1 1 1 1 1 −2 −2 2 −2 −2 2 2 −2 −2 2 −2 −2 2 2
1 1 1 1 1 1 1 1 −2 2 −2 −2 2 −2 −2 2 −2 −2 2 −2 2 2
1 1 1 1 1 1 1 1 2 −2 −2 2 −2 −2 −2 −2 2 −2 −2 2 2 2
1 1 1 1 1 1 1 1 −2 −2 −2 −2 −2 −2 2 2 2 2 2 2 −2 −2
2 −2 2 2 −2 −2 2 −2 4 0 0 −4 0 0 0 0 0 0 0 0 0 0
2 2 −2 2 −2 2 −2 −2 0 4 0 0 −4 0 0 0 0 0 0 0 0 0
2 2 2 −2 2 −2 −2 −2 0 0 4 0 0 −4 0 0 0 0 0 0 0 0
2 −2 2 2 −2 −2 2 −2 −4 0 0 4 0 0 0 0 0 0 0 0 0 0
2 2 −2 2 −2 2 −2 −2 0 −4 0 0 4 0 0 0 0 0 0 0 0 0
2 2 2 −2 2 −2 −2 −2 0 0 −4 0 0 4 0 0 0 0 0 0 0 0
2 −2 −2 2 2 −2 −2 2 0 0 0 0 0 0 4 0 0 −4 0 0 0 0
2 −2 2 −2 −2 2 −2 2 0 0 0 0 0 0 0 4 0 0 −4 0 0 0
2 2 −2 −2 −2 −2 2 2 0 0 0 0 0 0 0 0 4 0 0 −4 0 0
2 −2 −2 2 2 −2 −2 2 0 0 0 0 0 0 −4 0 0 4 0 0 0 0
2 −2 2 −2 −2 2 −2 2 0 0 0 0 0 0 0 −4 0 0 4 0 0 0
2 2 −2 −2 −2 −2 2 2 0 0 0 0 0 0 0 0 −4 0 0 4 0 0
2 −2 −2 −2 2 2 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 −4 4
2 −2 −2 −2 2 2 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 4 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T = diag(1,1,1,1,1,1,1,1,1,1,1,−1,−1,−1,1,1,1,−1,−1,−1,−i,i). (D1)

The basis order for modular matrices is U000, U100, U010, U001, U110, U101, U011, U111, (100,α1
+), (010,α2

+), (001,α3
+), (100,α1

−),
(010,α2

−), (001,α3
−), (110,β3

+), (101,β2
+), (011,β1

+), (110,β3
−), (101,β2

−), (011,β1
−), (111,γ+), (111,γ−).

APPENDIX E: QUANTUM DOUBLE CALCULATION

In this section, we will show how quantum double calcula-
tion yields the same correlation in the right above section.
We need to use two assumptions in our quantum double
calculation: the first one is that we only choose a prime N ,
otherwise we will encounter integer equations without an
explicit solution to our knowledge; the second assumption is
that we will pick a particular solution of some integer equations
we encounter. This is the same thing as we pick up particular
operators to calculate correlation functions. For more details
and the philosophical reasons of quantum double arising from
discrete gauge theories of 2 spatial dimension, please refer to
Ref. [38]. This section will be divided into two parts: the first
one we will produce the projective representation, while the
second one we will calculate the correlation function via the
R symbol.

1. Projective representation

In this part, we will introduce the projective representation
of quantum double calculation. For simplicity, we denote

ω = exp

(
2π ip

N

)
, (E1)

where p is the same parameter in the Lagrangian (40). Now
given by the group Z⊗3

N , we use the 3-cocycle as follows:

α(A,B,C) = exp

(
2π ip

N
A1B2C3

)
≡ ω{A1B2C3}, (E2)

where A,B,C ∈ Z⊗3
N and more explicitly A = (A1,A2,A3),

B = (B1,B2,B3) and C = (C1,C2,C3) for the three compo-
nents of Z⊗3

N . Now we can define the slant product:

cA(B,C) = α(A,B,C)α(B,C,A)

α(B,A,C)
. (E3)

And the projective representation MA(g)(g ∈ Z⊗3
N ) is specified

by cA(B,C) as follows:

MA(B)MA(C) = cA(B,C)MA(BC). (E4)

In particular, for A = (n1n2n3), we have the slant product
cA(B,C) explicitly:

cA(B,C) = α(A,B,C)α(B,C,A)

α(B,A,C)

= ω{n1B
2C3 + n3B

1C2 − n2B
1C3}. (E5)
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Then the representation of the generators in Z⊗3
N will satisfy

the following equation according to Eq. (E4):

MA(100)MA(010) = ωn3MA(110),

MA(010)MA(100) = MA(110),

MA(100)MA(001) = ω−n2MA(101),

MA(001)MA(100) = MA(101),

MA(010)MA(001) = ωn1MA(011),

MA(001)MA(010) = MA(011),

(E6)

where A = (n1n2n3) and we use this convention for the rest of
the calculation until specified. Moreover, we will require that

MA(000) ≡ MA(N00) = (MA(100))N = 1,

MA(000) ≡ MA(0N0) = (MA(010))N = 1,

MA(000) ≡ MA(00N ) = (MA(001))N = 1.

(E7)

One solution for the representation of the generators, which
we will use to compare with field theory calculations, are

MA(100) = �3,

MA(010) = c2�
n3
1 �v

3 ,

MA(001) = c3�
−n2
1 �

y

3 ,

(E8)

where �3, �1 are the generalized Pauli matrix satisfying
�3�1 = ω�1�3. And c2, c3, v and y are parameters satisfying

n1 + n2v + n3y ≡ 0 mod N,

c2 = ω

{
−n3v

N − 1

2

}
,

c3 = ω

{
n2y

N − 1

2

}
,

(E9)

as a result of Eqs. (E6) and (E7). Hence we have completed
the calculation of the representations of the projective repre-
sentation determined by the slant product of 3-cocycle, with
several parameters.

2. Braiding statistics

In quantum double, the braiding statistics of two particles a

and b is generally given by the trace of squared R symbol,
T r(RabRba). For more details, please refer to the second
chapter of Ref. [38]. As a summary of the Ref. [38], the
braiding statistics can be written as

Tr
(
Mn1n2n2 (m1m2m3)

)
Tr
(
Mm1m2m2 (n1n2n3)

)
. (E10)

Later in this section, we will verify that the correlation
〈Vn1n2n3 (γ1)Vm1m2m3 (γ2)〉, which is the field theoretical coun-
terpart of braiding statistics, will appear in the solutions
of Eq. (E10), with an assumption about the solution of
an integer number equation. Now we start with calculating
Mn1n2n2 (m1m2m3):

Mn1n2n3 (m1m2m3)

= ω{−n1m2m3 + n2m1m3 − n3m1m2}
×Mn1n2n3 (m100)Mn1n2n3 (0m20)Mn1n2n3 (00m3)

= ω{−n1m2m3 + n2m1m3 − n3m1m2}
×Mn1n2n3 (100)m1Mn1n2n3 (010)m2Mn1n2n3 (001)m3

= ω{−n1m2m3 + n2m1m3 − n3m1m2}
× (�3)m1

(
c2�

n3
1 �v

3

)m2
(
c3�

−n2
1 �

y

3

)m3
. (E11)

Notice that the trace of Mn1n2n3 (m1m2m3) will vanish except
when

m1 + m2v + m3y ≡ 0 mod N,

n3m2 ≡ n2m3 mod N.
(E12)

If we select other ways of representing the solutions of the
projective representations, we would also yield

n1m2 ≡ n2m1 mod N,

n1m3 ≡ n3m1 mod N.
(E13)

Now the matrix Mn1n2n3 (m1m2m3) is proportional to iden-
tity with the coefficient:

Mn1n2n3 (m1m2m3)

= ω{−n1m2m3 + n2m1m3 − n3m1m2}cm2
2 c

m3
3

×ω

{
n3v

m2(m2 − 1)

2
− n2y

m3(m3 − 1)

2
− n3m

2
2v

}

= ω

{
− n1m2m3 + n2m3

2
(2m1 + Ny − m3y)

− n3m2

2
(Nv + m2v + 2m1)

}
. (E14)

Symmetrically, we can yield that

Mm1m2m3 (n1n2n3)

= ω
{

− m1n2n3 + m2n3

2
(2n1 + Nỹ − n3ỹ)

− m3n2

2
(Nṽ + n2ṽ + 2n1)

}
, (E15)

which parameters satisfying

n1 + n2ṽ + n3ỹ ≡ 0 mod N,
(E16)

m1 + m2ṽ + m3ỹ ≡ 0 mod N.

Now we make the following assumptions about the solution,
or we select a particular solution for the parameters in order
to compare a particular correlation function in the previous
section:

mi = mti, ni = nti, i = 1,2,3,
(E17)

y = ỹ,v = ṽ.

And m and n are mutual prime numbers. Therefore we can
conclude that t1 + t2v + t3y ≡ kN,k ∈ Z .

Finally, the mutual statistics is

Tr
(
Mn1n2n3 (m1m2m3)

)
Tr
(
Mm1m2m3 (n1n2n3)

)

= N2ω

{
−nm2 + n2m

2
t1t2t3 − mn

2
t2t2(m + n)kN

}
.

(E18)

Note that mn(m + n) is always an even number. Therefore the
mn
2 t2t2(m + n)kN is a multiple of N . Therefore the second
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term is only a trivial phase. Hence we have the final result to be

Tr
(
Mn1n2n3 (m1m2m3)

)
Tr
(
Mm1m2m3 (n1n2n3)

) = N2ω

{
−nm2 + n2m

2
t1t2t3

}
= N2 exp

(
−2π ip

N

nm2 + n2m

2
t1t2t3

)
. (E19)

Remember that the condition to prevent the trace from vanishing is that ni and mi are proportional to each other. Until
now, we have completed the calculation of the braiding statistics and it is the same value as its field theoretical counterpart
〈Vn1n2n3 (γ1)Vm1m2m3 (γ2)〉, which we have calculated in the previous section.
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