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We report a diagrammatic method to solve the general problem of calculating configurationally averaged
Green’s function correlators that appear in quantum transport theory for nanostructures containing disorder.
The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random
impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our
diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution
can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels
of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of
transport calculations within the formalism. The theory is applied to calculate the quantum transport properties
such as average ac conductance and transmission moments of a disordered tight-binding model, and results
are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all
possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety
of physical systems where disorder scattering is important.
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I. INTRODUCTION

With the down scaling of semiconductor technology and
the constant discovery of emerging electronic materials and
device concepts [1], electronic device physics is facing new
realities and challenges. A particularly important issue is
how to approach quantum transport in the nanometer regime
[2,3], where detailed atomistic information of the device
structure is required for both qualitative and quantitative
predictions. In particular, disorder effects can have significant
influence on transport properties of electronic nanostructures.
In practical materials, disorder includes impurities, surface and
interface roughness, grain boundary, material inhomogeneity,
etc.. These imperfections of the material cause disorder
scattering of charge carriers that result in fluctuations in the
measured transport data. In transistor design, random dopant
position in the transistor channel gives rise to the phenomenon
of device-to-device variability, which severely reduces the
reliability of the resulting circuit, a problem that must be
controlled in nanoelectronics [4–6].

Theoretically, it is extremely demanding to formulate a
first principles formalism for quantum and atomistic device
simulation in the presence of random impurities. While solving
the quantum transport problem for a single microscopic
configuration of random imperfections is now possible from
atomic first principles [7], for nanostructures containing dis-
order such calculations are insufficient: A statistical approach
that averages over an ensemble of atomic configurations is
necessary for revealing the intrinsic physics and for predicting
the general trend of quantum transport. The central quantity
in the Green’s function formalism that is most relevant to this
topic is the configurationally averaged correlator

L(n)({p,p′,Xp}) ≡ 〈GX1 (1,1′) . . .GXn(n,n′)〉{vi }, (1)
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where 1, p, and n are space-time variables, G denotes the
Green’s function under a specified disorder potential profile
{vi}, and X = {retarded (R), advanced (A), Keldysh (K)}
denotes the specific type of the real-time Green’s function
[8,9]. Note that as the Keldysh component of the Green’s
function has been included in Eq. (1), the correlators can
incorporate quantum statistical information of transport far
from equilibrium. The quantity (1) is of general interest since
many quantum transport properties can be expressed in terms
of it. For instance, linear response conductivity [10–12] and
quantum transmission coefficient [2,13] are associated with
L(2), nonlinear conductance and Hall coefficient [14,15] can
be related to L(3), conductance fluctuation [5,16–19] and shot
noise [20–22] can be expressed with L(4), etc.

The simple and direct way to evaluate quantity (1) is to
sample a sufficiently large number of microscopic atomic
configurations, perform Green’s function calculations on each
of them, and then average over the products. Such a brute-force
averaging, apart from being theoretically inelegant, suffers
from several problems. For instance, as the translational
symmetry of a periodic structure is broken in the presence
of random impurities, one needs a large supercell in order to
mimic a realistic disorder environment. In addition, when the
impurity concentration is small, which is often the case in semi-
conductors, e.g., x ∼ 0.1%, 10 000 atomic sites are needed to
just accommodate 10 disordered sites and, with the resulting
huge configurational ensemble, such calculation is not possible
from first principles even using modern supercomputers.

Therefore, to predict disorder effects in nanostructures from
quantum first principles, it is necessary to develop a theoretical
formalism to directly evaluate quantity (1) without relying on
the brute-force sampling of enormous disorder ensembles. In
this regard, the most commonly applied theoretical formalism
is the coherent potential approximation (CPA) [23]. Ever
since the pioneer work of Soven [24] and Taylor [25], the
CPA formalism has been developed to be able to handle all
Green’s function correlators up to L(2) in both linear response
[11,26] and the far-from-equilibrium regime [13,20,27–29].
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Atomistic implementations from first principles in conjunction
with CPA have also been developed and used to make accurate
predictions for a variety of nanoelectronic structures even at
relatively high impurity concentrations [13,26,30–35].

Despite its practical success, there are still unsolved
theoretical issues remaining in the current CPA formalism.
First of all, to the best of our knowledge all existing CPA
theories on the L(2) level rely on the so-called single-site
decoupling approximation (SSA) [11,13,20], which seems an
additional approximation on top of CPA. Although SSA is fully
consistent with the single-particle CPA Green’s functions as
demonstrated in Refs. [23,27,28], it is not obvious whether
SSA is necessary or fully compatible in the CPA calculation
of L(2) correlators in the Keldysh formalism [20]. Based on a
diagrammatic extension of SSA, attempts to formulate a CPA
theory for L(3) and L(4) correlators were made by Levin et al.
[14] and Zhu et al. [5] respectively. However, for these higher
order correlators, the compatibility of SSA with CPA turns
out to be unclear and could even lead to unphysical results at
relatively high impurity concentrations, as shown numerically
in Ref. [5]. Finally, it is so far not clear how to evaluate the
L(3),(4) correlators when GK is involved.

To solve these important theoretical issues and to push
the frontier of quantum transport theory for disordered
nanostructures, in this paper we report a unified diagrammatic
theory for consistently evaluating the quantity (1) under CPA.
The internal consistency of our theory is guaranteed by the
requirement that all the diagrammatic building blocks be
derived from the basic CPA single-particle self-energy and
therefore no other approximations such as SSA are needed. In
addition, we show that our diagrammatic approach displays
conserving properties on all levels so that it is especially well
suited for quantum transport calculations.

The rest of this paper is organized as follows. In Sec. II,
by means of the functional derivative technique, we derive
the consistent diagrammatic approach to the general disorder-
averaging problem defined in Eq. (1) and then demonstrate how
the diagrammatic method is implemented in conjunction with
CPA. In Sec. III, the theory is applied to a tight-binding numer-
ical model of a two-probe transport junction to demonstrate
its usage. Higher order moments of transmission probability
distribution due to random disorder are calculated and the
predictions are compared with the exact results obtained from
the brute-force calculation of all possible disorder configura-
tions. We also employ our method to investigate the disorder-
averaged dynamic conductance under ac bias, where we find
that charge conservation is ensured thanks to the internal
consistency of our theory. Finally, some technical details about
the diagrams and further mathematical analysis regarding the
consistency of our theory are provided in the appendices.

II. THEORETICAL METHOD

A. General theory of disorder averaging

We consider in this paper the model of noninteracting
electrons subjected to a random diagonal disorder potential,
which is described by the Hamiltonian

H =
∑
ij

θij a
†
i aj +

∑
i

via
†
i ai,

where θij is the disorder-independent hopping matrix and a
†
i

(ai) is the creation (annihilation) operator for an electron on
site i. The disorder is modeled by the onsite energy vi , which
is a site-dependent random variable.

To derive the diagrammatic scheme for calculating L(n)

of Eq. (1), we shall utilize the functional derivative method
adapted from Ref. [36] and apply it in the Keldysh path-integral
formalism [9]. The basics of the Keldysh path-integral formal-
ism relevant to our methodology are provided in Appendix A.
We start with the definition of the generalized configurationally
averaged n-particle Green’s function [8,9,36–40]:

G(n)(1, . . . ,n; 1′, . . . ,n′; U )

≡ 1

in
〈ψ(1) . . . ψ(n)ψ̄(n′) . . . ψ̄(1′)〉S[U ]

= 1

in

∫
D[ψ,ψ̄]eiSψ(1) . . . ψ(n)ψ̄(n′) . . . ψ̄(1′)∫

D[ψ,ψ̄]eiS
, (2)

where ψ and ψ̄ are the fermionic Grassmann variable and
its conjugate [9]. The collective index is understood as 1 ≡
{i1,t1,k1}, where i denotes an atomic site, t is a real-time
variable, and k denotes a Keldysh component which takes
either “cl” (classical) or “q” (quantum) [9]. The total action is
defined as S = S0 − SU − Sd, where S0 and Sd are defined
in Eqs. (A5), (A2), and (A6) in terms of the cl/q-field
components. The auxiliary source field U , which will be taken
as zero at the end, enters the action via

SU =
∫

d1d2ψ̄(1)U (1,2)ψ(2).

Since Sd contains nonquadratic terms, in order to approach
G(n) we expand e−iSd in its Taylor series and, with the
aid of Wick’s theorem [9,38], G(n) is then expressed with
a series of Feymann diagrams, which can be constructed
according to the standard procedure: Each kth-order diagram
consists of k interaction vertices, 2n external legs labeled
by 1, . . . ,n,1′, . . . ,n′, and a topologically distinct connection
between all vertices and legs with directed Green’s function
lines [8,9,38,39].

Particularly, for the generalized single-particle Green’s
function we have the following Dyson equation preserved in
its regular form [8,36]:

G−1(11′,U ) = G−1
0 (11′) − U (11′) − �̃(11′,U ). (3)

Here we use �̃ to denote the full set of self-energy diagrams
including the ones containing internal loops [see Fig. 1(b)].
These loop-containing diagrams all vanish at the end upon
taking U → 0 because each loop then induces a factor of the
form [GR(t,t) + GA(t,t)], which equals zero by construction
of the Keldysh formalism [9]. However, note that these
diagrams should be taken into account along our derivation in
order to get correct diagrams for higher order correlators. Later,
� will be used to denote the part of �̃ with all loop-containing
diagrams excluded, i.e., the actual self-energy for the disorder
scattering problem [9,39] [see the illustration in Fig. 1(a)].

The central quantities of our interest are the real-time
single-particle Green’s functions [9] defined in Eq. (A4) and
the nth-order correlator [see Eq. (1)], which can be expressed
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FIG. 1. Diagrammatic visualization of self-energies �, �̃ and
correlators L(2), L̃(2). The directed thick line represents the average
Green’s function. Dashed lines represent disorder vertices.

with the Grassmann algebra as

L(n)(11′, . . . ,nn′) = 1

in
〈 ̂ψ(1)ψ̄(1′) . . . ̂ψ(n)ψ̄(n′)〉S[U→0].

(4)

Here we use the hat notation to emphasize a particular pairing
of the external Grassmann variables: In the diagrammatic
language, only those diagrams with every external leg (e.g.,
m) connected to its counterpart (e.g., m′) via Green’s functions
(represented by directed lines) make nonzero contributions to
L(n). Therefore, L(n) can be viewed as a particular part of G(n)

with a restricted diagram topology.
In principle, all the diagrams of G(n), and hence those

of L(n), can be enumerated according to the diagram rule.
However, apart from being inefficient, such brute-force ap-
proach does not provide much insight into the internal relation
between the Green’s function correlators and is thus not very
useful for deriving our consistent scheme of calculating L(n).
In contrast, we find the functional derivative technique to be a
suitable method for our purpose.

From the definition Eq. (2) it can be seen that G(n+1)[U ] is
associated with the nth-order derivative of G[U ] with respect
to U [36]. For example, the first-order derivative yields

δG(12′)
δU (1′2)

= G(2)(12; 1′2′) + G(12′)G(21′)

≡ L̃(2)(11′,22′), (5)

where an auxiliary quantity L̃(2) has been introduced. Similar to
the Dyson equation, L̃(2) satisfies a recursive relation, namely
the Bethe-Salpeter equation [36,37,39] (repeated indices are
assumed to be integrated over):

L̃(2)(11′22′) = G(11′)G(22′) + G(13̄)G(4̄2′)K̃ (2)

× (3̄6̄5̄4̄)L̃(2)(6̄1′25̄). (6)

The kernel is defined as K̃ (2)(3̄6̄5̄4̄) ≡ δ�̃(3̄4̄)/δG(6̄5̄), where
the functional derivative means removing one Green’s function
line from each of the �̃ diagrams [37]. The derivation for

FIG. 2. Diagrammatic illustration of high-order kernels and their
relations. Dashed lines represent disorder vertices.

Eq. (6) is analogous to the one presented in Ref. [36] except
that here each collective index contains a Keldysh component
in addition to the space-time variable. Diagrams of L̃(2) can
be generated according to Eq. (6) and we provide some
of the examples in Fig. 1. As can be seen, L̃(2) involves
diagrams of both the horizontal channel, where 1, 2 are
connected to 1′,2′ respectively, and the vertical channel where
1, 2 are connected to 2′,1′ respectively; diagrams of the
latter type are irrelevant to L(2) [see Eq. (4)]. Besides, all
the loop-containing L̃(2) diagrams should vanish at the end
[9,39]. All these noncontributing diagrams can be excluded by
keeping those kernel diagrams derived from � only, that is,
using K (2) ≡ δ�/δG [see Figs. 1(a) and 2(a)] to replace K̃ (2)

in the Bethe-Salpeter equation:

L(2)(11′22′) = G(11′)G(22′) + G(13̄)G(4̄2′)K (2)

× (3̄6̄5̄4̄)L(2)(6̄1′25̄). (7)

FIG. 3. Diagrammatic visualization of the correlators L(2), L(3),
L(4), and auxiliary functions A(2) and A(3). Directed double lines
represent the average Green’s function. The same diagrammatic
building blocks are marked by same colors. Internal indices are to
be integrated over.
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To simplify the notations we introduce the symbols • for direct
product operations, � for inner product operations, and

←−
G

(
−→
G ) for the left-going (right-going) Green’s function lines in

the diagrams of Figs. 1(c) and 1(d), so that Eq. (7) can be
rewritten as

L(2) =
(−→

G•←−
G

)
+

(−→
G•←−
G

)
� K (2) � L(2). (8)

The interpretation of such algebraic expression should be clear
according to its diagrammatic representation in Fig. 3(a).

Next, we look to derive the diagrams for L(3). Since L(3) is
embraced by G(3) and G(3) is in turn associated with δ2G/δU 2,
we differentiate both sides of Eq. (6) with respect to U :

δL̃(2)

δU
= δ

δU

[(−→
G•←−
G

)
+

(−→
G•←−
G

)
� K̃ (2) �

(−→
G•←−
G

)
+ · · ·

]

= · · · +
⎡
⎣· · · K̃ (2) �

⎛
⎝ −→

G•
δ
←−
G/δU

⎞
⎠ � K̃ (2) � · · ·

⎤
⎦

+
⎡
⎣· · · K̃ (2) �

⎛
⎝δ

−→
G/δU•←−
G

⎞
⎠ � K̃ (2) � · · ·

⎤
⎦

+
[
· · · K̃ (2) �

(−→
G•←−
G

)
� δK̃ (2)

δU
� · · ·

]
+ · · ·

= · · · +
[
· · · K̃ (2) �

( −→
G•

L̃(2)

)
� K̃ (2) � · · ·

]

+
[
· · · K̃ (2) �

(
L̃(2)

•←−
G

)
� K̃ (2) � · · ·

]

+
[
· · · K̃ (2) �

(−→
G•←−
G

)
�

(
L̃(2)

�
K̃ (3)

)
� · · ·

]
+ · · · , (9)

where we have used Eq. (5) and the chain rule δK̃ (2)/δU =
[δK̃ (2)/δG] � [δG/δU ] = K̃ (3) � L̃(2). Again Eq. (9) involves
diagrams with all kinds of external leg pairings; filtering out
irrelevant terms, we arrive at

L(3) = · · · +
[
· · ·

(−→
G•←−
G

)
� K (2) �

(
L(2)

•←−
G

)
� K (2) � · · ·

]

+
[
· · · K (2)�

(−→
G•←−
G

)
�

(
L(2)

�
K (3)

)
�

(−→
G•←−
G

)
� · · ·

]
+ · · ·

= A(2) �
(

L(2)

•←−
G

)
� A(2) + L(2) �

(
L(2)

�
K (3)

)
� L(2). (10)

where A(2) ≡ 1 • 1 + K (2) � L(2) [see Fig. 3(a) and Eq. (B2)]
and K (3)[G] ≡ δK (2)/δ

−→
G (see Fig. 2). The diagrammatic

visualization of Eq. (10) is shown in Fig. 3(b) and its explicit
expression is given by Eq. (B3) in Appendix B. In principle
one can continue to generate the diagrams of L(4), L(5), and
so forth. Although the higher-order diagrams become more
complex, the generating procedure remains tractable with

the functional derivative method. As the final example, L(4)

is given by Fig. 3(c) and Eq. (B4), with examples of K (4)

provided in Fig. 2(c).
One central observation from the functional derivative

approach is that the building blocks of all the L(n) diagrams,
i.e., the kernels K (n), are derived from the single-particle self-
energy diagrams by successively removing Green’s function
lines [41]:

K (n+1)[G] = δn�

δGn
. (11)

Consequently, in principle if one could obtain the analytical
expression of �[G] or could enumerate all the � diagrams,
the correlators L(n) would hence be solved exactly with the
diagrammatic scheme of Fig. 3. Unfortunately this is generally
impractical and therefore one has to approximate K (n) using
certain subset of diagrams according to specific physical
concerns or accuracy demands. Naively, one may consider
that as one takes into account more diagrams, the results are
the more accurate. This consideration may or may not be valid
depending on whether the elaborated approximations at differ-
ent diagrammatic levels preserve some consistency. Here the
consistency is considered from two aspects. First, if a quantity
can be evaluated by diagrams on different levels of L(n) within
the same framework, same result should be obtained at the
end regardless of what diagrams are actually used; we refer to
this as the interlevel consistency. For example, the disorder-
averaged dc shot noise of a two-probe transport junction can be
expressed either with L(2) or with L(4) [5,20]; thus a consistent
diagrammatic method should yield the same final result for the
shot noise (a physical quantity) regardless of which L(n) was
actually used in middle steps of the derivation. This point will
be further illustrated in Sec. III below. The second consistency
is whether the averaged transport properties calculated by
the diagrammatic method can meet the basic conservation
requirements [11,12,36,42–45], which we refer to as the
conservation consistency. The conservation consistency is
usually associated with the Ward identity [11,12,43–45]. These
consistency requirements lead to constraints on the choice
of K (n) diagrams. To elucidate such constraints we hereby
propose a unified approximation scheme, which we call the
�-derivable theory, for all the K (n) diagrams: Namely we
require that all kernels be derived from the approximated
self-energy in the way suggested by Eq. (11) once the
approximation method for the latter has been specified. The
interlevel consistency of �-derivable theory is verified in
Sec. III by examining a two-probe transport junction. In terms
of conservation consistency, we find that our theory satisfies a
group of Ward-type identities, to be presented in Sec. II B. In
addition, the �-derivable theory can be shown to be consistent
with the nonequilibrium vertex correction (NVC) theory under
CPA [13,20] (see Appendix D), which is by far the most
accurate two-particle CPA theory for nonequilibrium quantum
transport. We conclude that the �-derivable scheme amounts
to the consistent approximation method that we are looking for.

B. Ward-type identities

If the system is in a steady state, all the quantities can
be transformed into frequency domain by means of Fourier
transform with respect to the time difference (t − t ′) [3]. In
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this case, we have

GR/A(ω) = {[
G

R/A

0 (ω)
]−1 − V

}−1

= {[G0(z±)]−1 − V }−1 ≡ G(z±), (12)

where z± = ω ± i0+ is the complex frequency [12] and V

denotes the potential profile of a particular disorder configu-
ration. From Eq. (12) we obtain the following identity:

Gij (z1)Cjk(z1,z2)Gkl(z2) = Gil(z1) − Gil(z2),

where C(z1,z2) ≡ [G0(z2)]−1 − [G0(z1)]−1 and the Latin let-
ters in subscripts denote the matrix elements in real-space basis
(repeated indices are assumed to be summed over). Taking
configurational average on both sides, we get

〈Gij (z1)Cjk(z1,z2)Gkl(z2)〉 = Gil(z1) − Gil(z2). (13)

Note that this identity is not trivial because the right-hand side
consists of single-particle Green’s functions only while the
left-hand side is associated with L(2). Equation (13) is known
as the Velický’s version of Ward identity [11], which is viewed
as a consistent relation between G and L(2).

Similarly, we can generate other Ward-type identities:〈
Gij (z1)Cjk(z1,z2)Gkl(z2)Gp3p

′
3
(z3) . . .Gpnp′

n
(zn)

〉
= 〈

Gil(z1)Gp3p
′
3
(z3) . . .Gpnp′

n
(zn)

〉
− 〈

Gil(z2)Gp3p
′
3
(z3) . . .Gpnp′

n
(zn)

〉
, (14)

which link L(n) with L(n−1). All these Ward-type identities are
supposed to hold if the disorder-averaging method is consistent
on all levels. In Appendix C we shall rigorously prove that
our �-derivable diagrammatic method indeed satisfies these
identities and in Sec. III B we find in our ac transport simulation
that it is these Ward-type identities that ensure the preservation
of charge conservation after disorder average is performed in
the transport calculation.

C. Coherent potential approximation

In this section, we combine the CPA theory with the �-
derivable method presented in Sec. II A to derive our final
numerical scheme for calculating L(n).

In the sense of dynamical mean field theory, CPA consists
in assuming that the self-energy functional �[G] is purely
local in space and that it equals the one of the single-impurity
Anderson model (SIAM): namely �ii[G] = �SIAM[Gii]
[46–48]. In other words, the average (medium) Green’s
function under CPA should satisfy the following functional
equation:

G−1 = G−1
0 −

∑
i

�SIAM[Gii]. (15)

To solve SIAM we start with its effective action:

Si =
∫

d1d2ψ̄i(1)

[
i

∂

∂t1
δ(1,2) − �i(1,2)

]
ψi(2) − W (ñi),

(16)

where the auxiliary quantity �i is usually termed as the
hybridization function in the literature [46,47,49]. The self-
energy �SIAM[Gii] can again be visualized by the diagrams
shown in Fig. 1(a), but with all vertices restricted on the ith site

[46,48]. The analytical expression of �SIAM[Gii] is in general
very hard to approach and thus the functional relation between
�SIAM and Gii can only be obtained in a numerical manner.
The procedure goes as follows. By unfolding W (ñi) using its
explicit expression [see Eq. (A2)], the SIAM Green’s function
can be solved exactly by brute-force averaging [40,49]:

G
k1,k1′
SIAM,i(ω) = −i

∫
dt eiωt

〈
ψ

k1
i (t)ψ̄k1′

i (0)
〉
Si

=
∫

dvi p(vi)g
k1,k1′
vi

(ω), (17)

where k1 and k1′ denote Keldysh components, and gvi
is a

2 × 2 matrix defined in the Keldysh space [20,27,28]:

gvi
(ω) ≡ (ω − Vi − �i)

−1

=
[
ω − vi − �R

i (ω) −�K
i (ω)

0 ω − vi − �A
i (ω)

]−1

. (18)

Here all relevant quantities have been transformed into the
frequency domain, since we only consider steady systems
in this paper; the two-time-dependent version of the single-
particle CPA theory can be formulated in parallel with Ref. [47]
in a straightforward manner. Next, the SIAM self-energy is
obtained from the Dyson equation [46,47]:

�SIAM,i(ω) = ω − �i(ω) − G−1
SIAM,i(ω). (19)

Therefore, by specifying the value of �i , both GSIAM and
its corresponding �SIAM can be exactly calculated. In other
words, the functional �SIAM[Gii] can be expressed in the form
of a numerical table by sweeping the �i parameter, which
in this sense just plays the role of a dummy variable never
entering the final form of �SIAM[Gii]. Thus Eqs. (15), (17),
and (19), together with the self-consistent condition GSIAM,i =
Gii , form a closed set of equations, from which the solutions
of �i , �ii , and G can all be obtained [27].

Now we turn to look into how to get the higher-order kernels
K (n) in the CPA framework. As stated above, for consistency
concerns, all the K (n)[G] should be derived from the self-
energy �[G]:

K (n+1)[G] =
∑

i

K
(n+1)
SIAM [Gii] =

∑
i

δn�SIAM

δGn
ii

.

Deriving K
(n)
SIAM[Gii] from �SIAM[Gii] analytically is rather

formidable since the analytical expression of �SIAM[Gii] is
generally unavailable. This problem can be circumvented by
exploiting the fact that K

(n)
SIAM must be the exact kernel for the

local correlator

L
(n)
i =

∫
dvip(vi)g

k1,k1′
vi

(ω1)gk2,k2′
vi

(ω2) . . . gkn,kn′
vi

(ωn), (20)

which can be computed exactly by means of brute-force
averaging. Therefore, given the SIAM local correlators we
can solve for the corresponding kernels K

(n)
SIAM by running the

program inversely using the same set of diagrams presented
in Fig. 3. After the SIAM problem has been solved, we plug
K (n)[G] = ∑

i K
(n)
SIAM[Gii] back into those diagrams (Fig. 3)

and hence all the correlators L(n) can be calculated. The CPA
numerical scheme is summarized as follows:

(1) Make an initial guess for �, including �R and �K .
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(2) Calculate the local Green’s function GSIAM using
Eqs. (17) and (18).

(3) Calculate �SIAM using Eq. (19).
(4) Calculate the CPA medium Green’s function G via

Eq. (15).
(5) Substitute the local part of G for GSIAM in Eq. (19) and

update �.
(6) Go back to step 2 and iterate the procedures until � is

fully converged.
(7) Use the converged � to compute L

(n)
i via Eqs. (18) and

(20).
(8) Restrict Eqs. (B1)–(B4) on single sites: For each site i

substitute L
(n)
i for L(n) and Gii for G to solve for K

(n)
SIAM,i .

(9) Plug K
(n)
SIAM back into Eqs. (B1)–(B4) while using the

full CPA medium Green’s function G to obtain L(n).
Before closing this section, it is worth remarking on

the limitation of the CPA method. Although the numerical
accuracy achieved by CPA in transport calculations of various
disordered nanostructures is remarkable [13,20,26–29], it is
well known that due to its single-site nature CPA is unable
to capture nonlocal correlation effects such as band tailing,
localization, and universal fluctuation [40,50]. Admittedly,
retrieving nonlocal correlations omitted by CPA on different
length scales while keeping the numerical algorithm econom-
ical is a nontrivial task and still remains an open problem
[40,45,49–52]. However, we would like to stress that the
�-derivable approach presented in Sec. II A is a general
diagrammatic theory. Whereas in the CPA formalism only
self-energy diagrams that are spatially local (from �SIAM) are
taken into account, it is possible to add nonlocal self-energies
on top of �SIAM to restore nonlocal correlations to some extent
[40,50]. After the self-energy functional �[G] is constructed,
kernels for higher-order Green’s function correlators can hence
be derived according to Eq. (11).

III. APPLICATIONS

As an example, we implement our method presented above
for a tight-binding chain model of a disordered two-probe
transport junction as depicted in Fig. 4. The Hamiltonian for
such system is partitioned as follows [3]:

H = Hcen + Hlead + HT,

Hcen =
∑

i

vid
†
i di +

∑
〈ij 〉

θd
†
i dj ,

Hlead =
∑

α∈L,R

(εα − μα)c†iαciα +
∑
〈ij〉,α

θc
†
iαcjα,

HT =
∑
〈ij〉,α

θc
†
iαdj + H.c.,

FIG. 4. Diagram of the tight-binding chain model. The external
leads are disorder free while the central region contains disordered
sites.

where θ is the nearest-neighbor hopping probability. The leads
are assumed to be disorder free and the disorder enters the
model only through the onsite term of the central region
Hamiltonian. Each disorder site can be occupied either by
the atomic species A or by B, with a probability xA/B =
0.5 ± (0.5 − x) and an onsite energy εA/B .

The Hamiltonian of the leads Hlead can be folded into
the central region with the standard procedure [2,27] and the
resulting medium Green’s functions of the central region read
[5,13,27]

GR,A(E) = [
E ± i0+ − Hcen − �

R,A
LR (E) − �R,A(E)

]−1
,

GK (E) = GR(E)
[
�K

LR(E) + �K (E)
]
GA(E),

where �LR = �L + �R is the lead self-energy and � is
the self-energy due to disorder. The quantum statistical
information of leads is encoded in the lesser lead self-energy

�<
LR(E) = i[fL(E)�L(E) + fR(E)�R(E)],

where �L/R ≡ i[�R
L/R − �A

L/R] is the linewidth function [2,3]
and fL/R denotes the Fermi-Dirac distribution in the left/right
lead. In the subsequent numerical simulations the temperature
is set at 0 K and we set εL/R = μL/R = 0 when the system is
at equilibrium. A lesser function, generally denoted by F<, is
related to other components via [8]

F< = 1
2 (−FR + FA + FK ). (21)

It is worth mentioning that the transport junction model
offers a platform for checking the interlevel consistency of our
diagrammatic method: Due to the Keldysh relation [2,3], the
identities

GK = 〈
GR�K

LRGA
〉
L(2),

〈GKGR,A〉L(2) = 〈
GR�K

LRGAGR,A
〉
L(3) , (22)

〈GKGK〉L(2) = 〈
GR�K

LRGAGR�K
LRGA

〉
L(4) ,

where G denotes the Green’s function of the central region
under a specified atomic configuration, must hold if the
consistency is respected; these identities have been checked
to very high precision in our numerical simulations.

A. Moments of the transmission probability distribution

As can be deduced from the Landauer-Büttiker formula [2]

I =
∫

dE

2π
T (E)[fL(E) − fR(E)],

the dc conductance of the system under low bias is determined
by the transmission coefficient [2]

T (E) ≡ Tr[GR�LGA�R]. (23)

Therefore, the first step toward portraying the probability
distribution of the dc conductance in the presence of random
disorder is to calculate the moments 〈T n(E)〉. Equation
(23) can be converted into a more compact form, T (E) =
Tr[G<�R], if one assumes fL(E) = 1 and fR(E) = 0 during
the numerical procedure [20,27]. In this way, the moments can
be expressed as

〈T n〉 = 〈[Tr(G<�R)]n〉. (24)
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FIG. 5. Disorder-induced transmission moments 〈T n(E)〉 of a tight-binding transport junction containing four disordered sites in its central
region. The numerical results are obtained with two methods: CPA and brute-force computation. The onsite energies of the two atomic species
are εA/B = ∓0.25θ and the disorder concentration x varies from 0.01 to 0.5. The energy (E) is in units of the hopping probability (θ ).

With the aid of Eq. (21), it can be immediately seen that
Eq. (24) can be computed by means of L(n).

Using both our CPA-based theoretical scheme presented in
the last section and the brute-force computation, we evaluated
up to 〈T 4(E)〉 for a one-dimensional transport junction with
four disordered sites in the central region. The on-site energies
are εA/B = ∓0.25θ [53,54] and the concentration x varies
from 0.01 to 0.5. Numerical results are shown in Fig. 5. In the
brute-force computation, all possible disorder configurations
are calculated to obtain the exact average results. By comparing
to the exact results, it can be seen in the plot that our CPA-based
method works very well at all impurity concentrations. As
the calculations involve all types of correlators up to L(4),
the accuracy of our CPA-based method is therefore verified.
Furthermore, we find that our CPA results satisfy the basic
inequality 〈T n(E)〉 − 〈T (E)〉n � 0, which could be violated
at relatively high impurity concentrations by the SSA-based
method as known before [5]. From Fig. 5, at high impurity
concentrations (x � 0.3), curves of the exact results (e.g.,
〈T 3(E)〉 and 〈T 4(E)〉) around E = 0 exhibit a very slight
lump shape, which our CPA-based method does not capture.
This tiny difference may be attributed to nonlocal interference
effects of the impurity scattering which is beyond the local
mean-field theory presented here [18,40,45,49]. Nevertheless,
the �-derivable theory presented in this paper serves as a
universal guidance on how to construct diagrams consistently.

B. Disorder-averaged ac conductance

The dynamic ac conductance Dc
αβ is defined via the linear

response relation I c
α(�) = ∑

β Dc
αβ(�)vβ(�), where � is the

response frequency, I c
α denotes the charge current in lead

α, and vα denotes the applied voltage. By Green’s function
theory, the dynamic ac conductance can be expressed as
[55–57]

Dc
αβ(�,E) = −

∫
dE

2π
Tr

[
G<

β

(
�A

α − �R
α+

) + GR
β �<

α

− GA
β �<

α+ + δαβ

(
GR

+σ<
α − GAσ<

α

+ G<
+σA

α − G<σR
α

)]
, (25)

where the abbreviation �
γ
α+ denotes �

γ
α (E + �) (γ =

R/A/ <), and similarly Gγ
+ ≡ Gγ (E + �). Gγ

β (E) is defined
as

GR,A
β (E) =GR,A(E + �)σR,A

β (E)GR,A(E),

G<
β (E) =GR(E + �)σ<

β (E)GA(E)

+ GR(E + �)σR
β (E)G<(E)

+ G<(E + �)σA
β (E)GA(E)

σ
γ

β (E) = [
�

γ

β (E) − �
γ

β (E + �)
]
/�.

As Eq. (25) involves products of various real-time Green’s
functions, it is necessary to employ the disorder-averaging
method derived in Sec. II for the evaluation of the average con-
ductance 〈Dc

αβ〉. Note that for correlators 〈G<(E + �)GA(E)〉
and 〈GR(E + �)G<(E)〉, which are involved viaG<

β (E), either
L(2) or L(3) can be used; the applicability of L(3) in this context
is due to the fact that G< can be expanded as G< = GR�<

LRGA

[2,3]. We have checked to high numerical precision that both
methods yield exactly the same result, as required by the
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FIG. 6. Disorder-averaged ac dynamic conductance (vs response
frequency �) of a one-dimensional transport junction with nine
disordered sites in the central region. Each disordered site can be
occupied either by species A or species B with an equal probability
and the onsite energy of A is fixed at the equilibrium chemical
potential, i.e., εA = 0, while εB is adjustable. The solid (dashed)
lines denote the real (imaginary) part of the conductance. The
response frequency (�) is in unit of θ/�, where θ is the hopping
probability.

interlevel diagrammatic consistency. It should be pointed out
that L(2) is easier for numerical implementation while L(3)

is useful for elucidating the conservation consistency of the
theory (to be explained later).

As a concrete example, we consider the one-dimensional
transport junction with nine disordered sites in the central
region, where each disordered site can be occupied by species
A or B with an equal probability (x = 0.5). The onsite energy
of species A is fixed at the Fermi energy (εA = 0) while εB

is adjustable: The disorder scattering can be intensified by
increasing εB . Both the real and imaginary parts of the CPA-
averaged Dc

LL/LR are plotted in Fig. 6 as a function of �.
We first look at the dc limit, i.e., � → 0, where we observe

that both Im〈Dc
LL〉 and Im〈Dc

LR〉 approach to zero no matter

how strong the disorder scattering is, which confirms the fact
that in dc limit the transport junction displays a pure resistance-
like property. Another observation at � → 0 is that the real
parts Re〈Dc

LL〉 and Re〈Dc
LR〉 both coincide with the disorder-

averaged dc transmission coefficient.
Interestingly, for Re〈Dc

LL〉 [Fig. 6(a)] we find a frequency
range � ∈ [0.5,1.8] ∪ [2.7,3.25] where the value of Re〈Dc

LL〉
has a very weak dependence on the disorder strength, indi-
cating that for the given electron energy, the related high-
frequency transport is governed by a response length scale that
is shorter than the disorder limited mean-free-path. In Fig. 6(b)
a typical oscillation profile of both Re〈Dc

LR〉 and Im〈Dc
LR〉 as

functions of � is observed. Similar oscillating profiles have
been reported before for a variety of ac transport junctions
with a finite central device region [58–63]. This phenomenon
is usually attributed to the photon-assisted tunneling effect
[56,63,64]. As can be seen in Fig. 6(b), introducing disorder
does not destroy the oscillation profile, although both the
amplitude and the position of the tunneling peaks are altered
due to the disorder strength. This simply reflects the fact that
disorder scattering influences both the width and the position
of quasiparticle energy levels in the central device region [29].

Before closing this section, we provide another consis-
tency check of our theory from the perspective of charge
conservation. In the linear response ac transport theory, charge
conservation requires that [55,56]

∑
α
Dc

αβ =�

∫
dE

2π
Tr[G<

β ]. (26)

Namely, the charge accumulation rate in the central device
region should equal to the net incident current. Upon taking
disorder average on both sides, Eq. (26) is supposed to
be preserved if conservation consistency is respected by
the disorder-averaging method, as Eq. (26) involves Green’s
function correlators of different types. We have numerically
checked that our CPA-based method does meet this require-
ment and, analytically, it can be verified as follows. By writing
G< as GR�<

LRGA and then employing the cyclical property of
the trace operator, the conservation requirement Eq. (26) is
equated with

0 = σ<
β

〈
GA

(
�A

LR − �R
LR+ + �

)
GR

+
〉

+ σR
β

〈
GR�<

LRGA
(
�A

LR − �R
LR+ + �

)
GR

+
〉

+ σA
β

〈
GA

(
�A

LR − �R
LR+ + �

)
GR

+�R
LR+GA

+
〉

+ σR
β

〈
GR�<

LRGR
+
〉 − σA

β

〈
GA�<

LR+GA
+
〉

+ σ<
β GR

+ − σ<
β GA + σA

β G<
+ − σR

β G<. (27)

By means of substitution

�A
LR − �R

LR+ + � = [
GR

0 (E + �)
]−1 − [

GA
0 (E)

]−1

= C(E − i0+,E + i0+ + �),

Eq. (27) can be easily verified by employing the Ward identities
(C1) and (C8) presented in the appendix. Therefore, the charge
conservation of ac transport in disordered systems is confirmed
under our formalism.
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IV. SUMMARY

Solving the problem of multiple impurity effects in quantum
transport of atomic nanostructures is a very important but
difficult theoretical challenge. To this end significant progress
has been achieved in recent years where CPA has been com-
bined with atomic first principles methods to make material
specific predictions of disorder effects in quantum transport of
nanoelectronic devices. So far, existing two-particle CPA the-
ories have relied on the single-site decoupling approximation
(SSA) [11,13,20], which may bring consistency and accuracy
issues when extended for calculating the disorder-average
of higher order Green’s function correlators. In addition,
existing theories beyond two-particle CPA have not dealt with
correlators containing the Keldysh component of the Green’s
function, which appears in many theoretical derivations of
quantum transport formulas. This work advances a theoretical
formulation that solves these theoretical problems lying in the
current CPA formalism.

In particular, here we report a Feynman diagrammatic ap-
proach for calculating the configurationally averaged Green’s
function correlators that widely appear in quantum trans-
port theories of disordered nanostructures. Our theory treats
equilibrium and nonequilibrium quantum statistics on an
equal footing by taking into account the Keldysh Green’s
function in a unified manner. The theory emphasizes on two
consistency requirements. The first is an interlevel consistency
for diagrams at different levels of the correlators: Namely if a
physical quantity can be evaluated in two ways using diagrams
belonging to different L(n), we demand that the final results
agree precisely. The second regards the conservation consis-
tency of transport calculations, which amounts to requiring that
the disorder-averaged charge continuity equation be satisfied.
These are found to be bonded with the satisfaction of a set
of Ward-like identities, which are very strong demands to be
imposed on a diagrammatic theory.

This theory is then applied to a tight binding atomic model
with disorder to calculate its quantum transport properties
such as ac conductance and higher order moments of the
transmission probability distribution. The results agree at
very high precision with the exact results obtained from
enumerating all possible disorder configurations. Therefore,
we conclude that our formalism can be applied to predict both
dc and ac quantum transport properties of disorder-containing
nanoelectronic devices.
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APPENDIX A: BASICS OF THE KELDYSH
PATH-INTEGRAL METHOD FOR THE
DISORDER-AVERAGING PROBLEM

The timeline used in the Keldysh formalism is the so-
called closed time contour [9] as depicted in Fig. 7. A time
dependence is assigned to the Hamiltonian defined along the

FIG. 7. Diagram of the closed time contour used in the Keldysh
formalism. The contour begins and ends both at −∞. It consists of
a forward branch (denoted by +) and a backward branch (denoted
by −). The complex time is denoted by τ as opposed to t for the real
time.

contour

H (τ ) = H0(τ ) +
∑

i
vi(τ )a†

i ai,

where τ is a complex-time variable and H0(τ ) is the
Hamiltonian of the clean system. vi(τ ) denotes the quenched
impurity potential which is assumed to be switched on and
off adiabatically: vi(τ ) = e−η|τ |vi , where η is an infinitesimal
positive number [9]. Note that H (τ ) is the same at τ+ and τ−.
At τ → −∞ the system is assumed to be at equilibrium with
the density matrix ρ0 = e−βH0(−∞)/Z0, where the partition
function Z0 ≡ Tr{e−βH0(−∞)}.

In the path-integral language, the n-particle Green’s func-
tion under a given impurity potential is expressed as [9,37,38]

G(n)
v (1, . . . ,n; 1′, . . . ,n′)

≡ 1

in
〈ψ(1) . . . ψ(n)ψ̄(n′) . . . ψ̄(1′)〉v

= 1

in
Z−1

0

∫
D[ψ,ψ̄]eiS0−iSvψ(1) . . . ψ(n) (A1)

× ψ̄(n′) . . . ψ̄(1′),

where 1, . . . ,n are space-time collective indices of the form
(i,τ ), and ψ and ψ̄ are respectively the Grassmann variable
assigned to the collective index and its conjugate. The actions
in Eq. (A1) are defined as [9,38]

S0 =
∫

C

dτ ′
1dτ ′

2

∑
ij

ψ̄i(τ
′
1)G−1

0,ij (τ ′
1,τ

′
2)ψj (τ ′

2)

Sv =
∫

C

dτ ′ ∑
i

vi(τ
′)ψ̄i(τ

′)ψi(τ
′),

where G0 is the contour-ordered single-particle Green’s
function [9] of the clean system which satisfies the equation
of motion

i∂τ1G0,ij (τ1,τ2) −
∑

k
H0,ik(τ1)G0,kj (τ1,τ2) = δij δ(τ1 − τ2).

on the contour [3].
One major advantage of using the Keldysh technique for

the disorder-averaging problem is that the normalization factor
in Eq. (A1), namely Z0, is disorder independent due to
the adiabatic assumption [9], while in the imaginary-time
formalism one has to resort to the replica trick in order to
deal with the disorder-dependent normalization factor therein
[39]. Thus the disorder-average of (A1) is achieved by simply
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replacing Sv with [40,49]

Sd =
∑

i
W (ñi),

W (ñi) ≡ −ln
∫

dvi p(vi)exp(−viñi)

=
∞∑
l=2

1

l!

〈
vl

i

〉
c
(ñi)

l , (A2)

where 〈vl
i〉c is the lth cumulant of the impurity potential

probability distribution p(vi) and

ñi ≡
∫

C

dτ ′ψ̄i(τ
′)ψi(τ

′).

For convenience of diagram constructions of Green’s
functions, we shall explore the expression of the normalization
factor Z0 in the path-integral language. Taking n = 0 in
Eq. (A1) one sees Z0 = ∫

D[ψ,ψ̄]eiS0−iSv . Note that this does
not mean Z0 is dependent of the impurity potential: in fact
the Sv part makes no contribution because its integral on the
backward branch of the contour exactly cancels the one on the
forward branch [9,37]. As such, one can further write down
Z0 = ∫

D[ψ,ψ̄]eiS0−iSd upon taking disorder-average. Thus
the disorder-averaged n-particle Green’s function defined on
the closed time contour can be expressed as

G(n)(1, . . . ,n; 1′, . . . ,n′)

= 1

in

∫
D[ψ,ψ̄]ei(S0−Sd)ψ(1) . . . ψ(n)ψ̄(n′) . . . ψ̄(1′)∫

D[ψ,ψ̄]ei(S0−Sd)
.

(A3)

In practice one also defines real-time (single-particle)
Green’s functions as follows: G<

ij (t,t ′) ≡ −i〈ψ+
i (t)ψ̄−

j (t ′)〉,
G>

ij (t,t ′) ≡ −i〈ψ−
i (t)ψ̄+

j (t ′)〉, GT
ij (t,t ′) ≡ −i〈ψ+

i (t)ψ̄+
j (t ′)〉,

and GT̃
ij (t,t ′) ≡ −i〈ψ−

i (t)ψ̄−
j (t ′)〉. The contour-ordered

single-particle Green’s function can then be expressed in a

matrix form: G = (G
T G<

G> GT̃) [9,28].

For the diagrammatic construction of the disorder-
averaging problem, it is often more favorable to use another
set of Grassmann variables: ψcl(t) = [ψ+(t) + ψ−(t)]/

√
2,

ψq(t) = [ψ+(t) − ψ−(t)]/
√

2, ψ̄cl(t) = [ψ̄+(t) −
ψ̄−(t)]/

√
2, and ψ̄q(t) = [ψ̄+(t) + ψ̄−(t)]/

√
2, where

the superscripts “cl” stands for classical and “q” for quantum
[9]. This linear transformation is termed as the Keldysh
rotation in the literature [9]. A new set of real-time Green’s
functions are hence introduced [9]:

G
cl,cl(R)
ij (t,t ′) = −i

〈
ψcl

i (t)ψ̄cl
j (t ′)

〉
,

G
q,q(A)
ij (t,t ′) = −i

〈
ψ

q
i (t)ψ̄q

j (t ′)
〉
, (A4)

G
cl,q(K)
ij (t,t ′) = −i

〈
ψcl

i (t)ψ̄q
j (t ′)

〉
.

After Keldysh rotation, the matrix single-particle Green’s

function is transformed into a triangular form: G = (G
R GK

0 GA)
[9,28]. The expression of the n-particle Green’s function
remains formally unchanged as of Eq. (A3). However, now
each collective index acquires a field component that takes
either cl or q, and the complex-time variable is replaced

with the real-time variable. Besides, S0 should be transformed
into [9]

S0 =
∫ +∞

−∞
dt ′1dt ′2

∑
k1,k2

∑
ij

ψ̄
k1
i (t ′1)

(
G−1

0

)k1k2

ij
(t ′1,t

′
2)ψk2

j (t ′2),

(A5)

where k1 and k2 denote cl or q, and ñi is re-expressed as

ñi =
∫ +∞

−∞
dt ′

[
ψ̄cl

i (t ′)ψcl
i (t ′) + ψ̄

q
i (t ′)ψq

i (t ′)
]

(A6)

in terms of the cl/q-field components.

APPENDIX B: EXPRESSIONS OF L(2), L(3), AND L(4)

Equations in this Appendix are formulated in accordance
with the diagrams presented in Fig. 3. In what follows, repeated
indices (denoted by overlines) are assumed to be integrated
over:

L(2)(11′22′) = G(11′)G(22′)

+ G(13̄)G(4̄2′)K (2)(3̄6̄5̄4̄)L(2)(6̄1′25̄), (B1)

A(2)(11′22′) = δ(11′)δ(22′) + K (2)(11̄2̄2′)L(2)(1̄1′22̄),

A(3)(11′,22′,33′) = A(2)(3̄′3′11′)G(3̄3̄′)A(2)(22′33̄)

+L(2)(3̄′3′11̄)K (3)(1̄1′,22̄′,3̄3̄′)

×L(2)(2̄′2′33̄), (B2)

L(3)(11′,22′,33′) = A(3)(11̄,2̄2′,33′)L(2)(1̄1′22̄), (B3)

L(4)(11′,22′,33′,44′)

= A(3)(22̄,4̄′4′,11′)L(2)(2̄2̄′4̄4̄′)A(3)(44̄,2̄′2′,33′)

+ A(3)(33̄,1̄′1′,22′)L(2)(1̄1̄′3̄3̄′)A(3)(11̄,3̄′3′,44′)

− G(4̄4̄′)A(2)(4̄′4′11̄)G(1̄1̄′)A(2)(1̄′1′22̄)G(2̄2̄′)

× A(2)(2̄′2′33̄)G(3̄3̄′)A(2)(3̄′3′44̄)

+ K (4)(1̄1̄′,2̄2̄′,3̄3̄′,4̄4̄′)L(2)(4̄′4′11̄)L(2)(1̄′1′22̄)

× L(2)(2̄′2′33̄)L(2)(3̄′3′44̄). (B4)

APPENDIX C: PROOF OF WARD-TYPE IDENTITIES

We start with the Ward-identity of lowest order:

Gil(z1) − Gil(z2) = 〈Gij (z1)Cjk(z1,z2)Gkl(z2)〉[ ≡ L
(2)
ijkl(z1,z2)Cjk(z1,z2)

]
, (C1)

where C(z1,z2) ≡ [G0(z2)]−1 − [G0(z1)]−1. To prove
Eq. (C1), we first notice from Eq. (7) that the right-hand side
of Eq. (C1) can be rewritten as [11]

L
(2)
ijkl(z1,z2)Cjk(z1,z2)

= Gij (z1)[Cjk(z1,z2) + �jk(z1,z2)]Gkl(z2), (C2)
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where the vertex correction � satisfies the following recursive
relation [37]:

�jk(z1,z2) = K
(2)
j lmk(z1,z2)Glu(z1)[Cuv(z1,z2)

+ �uv(z1,z2)]Gvm(z2). (C3)

To solve for � we shall utilize Vollhardt-Wölfle’s theorem
[43]:

�jk(z1) − �jk(z2) = K
(2)
j lmk(z1,z2)[Glm(z1) − Glm(z2)],

(C4)

which has proven valid for any �-derivable kernel K (2). The
right-hand side of Eq. (C4) can be rewritten as

K
(2)
j lmk(z1,z2)Glu(z1)

[
G−1

uv (z2) − G−1
uv (z1)

]
Gvm(z2).

Next, the quantity [G−1
uv (z2) − G−1

uv (z1)] is replaced with

G−1
uv (z2) − G−1

uv (z1) = Cuv(z1,z2) + �uv(z1) − �uv(z2),

(C5)

where we have used the Dyson equation (15). We then arrive
at

�jk(z1) − �jk(z2) = K
(2)
j lmk(z1,z2)Glu(z1)[Cuv(z1,z2)

+ �uv(z1) − �uv(z2)]Gvm(z2). (C6)

It can be immediately seen that Eq. (C6) is of the same form
as the recursive relation Eq. (C3) with �(z1,z2) replaced
with [�(z1) − �(z2)]. Since Eq. (C3) is an inhomogeneous
linear equation for �, its solution is uniquely determined
[5,29]:

�jk(z1,z2) = �jk(z1) − �jk(z2). (C7)

Inserting Eq. (C7) into Eq. (C2) and utilizing Eq. (C5) again,
we arrive at Eq. (C1).

Moving forward, the Ward-type identity which associates
L(2) with L(3) reads

〈Gil(z1)Gmn(z3)〉 − 〈Gil(z2)Gmn(z3)〉
= 〈Gij (z1)Cjk(z1,z2)Gkl(z2)Gmn(z3)〉[ ≡ L

(3)
ij,kl,mn(z1,z2,z3)Cjk(z1,z2)

]
. (C8)

To prove Eq. (C8) we start with its left-hand side. Using Eq. (8)
we obtain

〈Gil(z1)Gmn(z3)〉 − 〈Gil(z2)Gmn(z3)〉 = L
(2)
ilmn(z1,z3) − L

(2)
ilmn(z2,z3)

=
⎡
⎣

⎛
⎝−→

G (z1)•←−
G (z3)

⎞
⎠ +

⎛
⎝−→

G (z1)•←−
G (z3)

⎞
⎠ � K (2)(z1,z3) �

⎛
⎝−→

G (z1)•←−
G (z3)

⎞
⎠ + · · ·

⎤
⎦

−
⎡
⎣

⎛
⎝−→

G (z2)•←−
G (z3)

⎞
⎠ +

⎛
⎝−→

G (z2)•←−
G (z3)

⎞
⎠ � K (2)(z2,z3) �

⎛
⎝−→

G (z2)•←−
G (z3)

⎞
⎠ + · · ·

⎤
⎦

=
⎛
⎝ �

−→
G•←−

G (z3)

⎞
⎠ +

⎛
⎝ �

−→
G•←−

G (z3)

⎞
⎠ � K (2)(z2,z3) �

⎛
⎝−→

G (z2)•←−
G (z3)

⎞
⎠

+
⎛
⎝−→

G (z1)•←−
G (z3)

⎞
⎠ � [K (2)(z1,z3) − K (2)(z2,z3)] �

⎛
⎝−→

G (z2)•←−
G (z3)

⎞
⎠

+
⎛
⎝−→

G (z1)•←−
G (z3)

⎞
⎠ � K (2)(z1,z3) �

⎛
⎝ �

−→
G•←−

G (z3)

⎞
⎠ + · · · , (C9)

where �
−→
G ≡ −→

G (z1) − −→
G (z2) and we have employed the

mathematical identity

X1X2 · · ·Xn − Y1Y2 · · · Yn

= X1X2 · · · Xn−1�Xn + X1X2 · · ·�Xn−1Yn + · · ·
+ �X1Y2 · · · Yn, (C10)

where �Xi ≡ Xi − Yi . To proceed we shall look into the
quantity [K (2)(z1,z3) − K (2)(z2,z3)]. Suppose K(2) is one of
the K (2) diagrams that contain m right-going Green’s function
lines (carrying energy z1) and n left-going Green’s function
lines (carrying energy z3). Then, without loss of generality,

K(2) can be formally expressed as

K(2)
iluv(z1,z3) = −→

G ip′
1
(z1)

−→
G p2p

′
2
(z1) · · · −→G pml(z1)

× ←−
G uq ′

1
(z3)

←−
G q2q

′
2
(z3) · · · ←−G qnv(z3)V K,

where V K is the contribution from the vertices in the diagram
and is independent of the energy arguments [39,43]. By
utilizing Eq. (C10) again we get

K(2)
iluv(z1,z3) − K(2)

iluv(z2,z3)

= [−→
G ip′

1
(z1)

−→
G p2p

′
2
(z1) · · · �−→

G pml + · · ·
+ −→

G ip′
1
(z1)�

−→
G p2p

′
2
· · · −→G pml(z2)
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+ �
−→
G ip′

1

−→
G p2p

′
2
(z2) · · · −→G pml(z2)

]
× ←−

G uq ′
1
(z3)

←−
G q2q

′
2
(z3) · · ·←−G qnv(z3)V K

=K(3)
ij,kl,uv(z1,z2,z3)�

−→
G jk, (C11)

where K(3) is the collection of those K (3) diagrams that can be
generated by removing one

−→
G line from K(2), namely K(3) =

δK(2)/δ
−→
G . We thus obtain the following identity with close

resemblance to Eq. (C4):

K
(2)
iluv(z1,z3) − K

(2)
iluv(z2,z3)

= K
(3)
ij,kl,uv(z1,z2,z3)[Gjk(z1) − Gjk(z2)], (C12)

which should be regarded as a direct consequence of the �

drivability imposed on K (2) and K (3). By means of Eq. (C12),
Eq. (C9) reduces to

〈Gil(z1)Gmn(z3)〉 − 〈Gil(z2)Gmn(z3)〉

= A(2)(z1,z3) �
⎛
⎝ �

−→
G•←−

G (z3)

⎞
⎠ � A(2)(z2,z3)

+ L(2)(z1,z3) �
⎛
⎝ �

−→
G�

K (3)(z1,z2,z3)

⎞
⎠ � L(2)(z2,z3).

(C13)

Putting Eqs. (10), (C1), and (C13) together, we get Eq. (C8).
The proof of Eq. (C8) is quite suggestive and it can be

deduced that any of the Ward-type identities defined in Eq. (14)
can be proved in a very similar way.

APPENDIX D: DERIVATION OF CPA-NVC FROM
THE �-DERIVABLE CPA THEORY

The central quantity to study in CPA-NVC [13,20] is the
correlator (repeated indices are to be integrated out)

〈G(11′)C(1′2)G(22′)〉 ≡ L(2)(11′22′)C(1′2), (D1)

where C can be any disorder-independent quantity. Note that
we are using the collective index which consists of a space-time
variable plus a Keldysh component. Following the same logic
leading to Eqs. (C2) and (C3), we rewrite the quantity (D1) as

L(2)(11′22′)C(1′2) = G(11′)[C(1′2) + �(1′2)]G(22′), (D2)

where the vertex correction � satisfies

�(1′2) = K (2)(1′1̄2̄2)G(1̄3̄)[C(3̄4̄) + �(3̄4̄)]G(4̄2̄)

= K (2) �
(−→

G•←−
G

)
� C + K (2) �

(−→
G•←−
G

)
� �

= K (2) � L(2) � C, (D3)

where in the last equality Eq. (D2) has been used. As the CPA
kernels are purely local in space, the vertex correction � can
be decomposed as

� =
∑

i
�i =

∑
i
K

(2)
i � �i, (D4)

where �i denotes the spatially diagonal part of the quantity
(D1), i.e.,

�i ≡ 〈G(11′)C(1′2)G(22′)〉i . (D5)

Inserting a unit matrix 1 • 1 in between K
(2)
i and �i , we get

from Eq. (D4)

�i = K
(2)
i �

⎛
⎝−→

G ii•←−
G ii

⎞
⎠ �

⎛
⎝−→

G −1
ii•←−

G −1
ii

⎞
⎠ � �i, (D6)

where Gii is the local part of the medium Green’s function.
Multiplying both sides of Eq. (D6) by L

(2)
i [defined in Eq. (20)]

from left and then adding �i , we arrive at

�i + L
(2)
i � �i =

⎡
⎣L

(2)
i � K

(2)
i �

⎛
⎝−→

G ii•←−
G ii

⎞
⎠ +

⎛
⎝−→

G ii•←−
G ii

⎞
⎠

⎤
⎦

�
⎛
⎝−→

G −1
ii•←−

G −1
ii

⎞
⎠ � �i. (D7)

As K
(2)
i is the exact kernel for L

(2)
i within the local SIAM

problem (see Sec. II C), the quantity in the above square
brackets can be replaced with L

(2)
i by means of Bethe-Salpeter

equation [46]. Then, by rearrangement Eq. (D7) becomes

�i = L
(2)
i �

⎡
⎣

⎛
⎝−→

G −1
ii•←−

G −1
ii

⎞
⎠ � �i − �i

⎤
⎦.

Using the explicit expression of L
(2)
i [see Eq. (20)], we get

�i =
∫

dvip(vi) gvi
[(Gii)

−1�i(Gii)
−1 − �i]gvi

, (D8)

where all the quantities should be understood as 2 × 2 matrices
in the Keldysh space [8,20]. To make connection with the
CPA-NVC theory we shall utilize the multiple-scattering t

matrix, which is related to Gii and gvi
via [20,27,28]

gvi
= Gii(1 + tiGii). (D9)

Note that ti is also a 2 × 2 Keldysh matrix and that it depends
on the random potential vi . An important result from CPA is
that the average t matrix vanishes [20,24,27,28], namely

〈ti〉vi
≡

∫
dvip(vi)ti = 0. (D10)

Substituting Eq. (D9) into Eq. (D8) and employing Eq. (D10),
we get

�i = 〈ti�iti〉vi
− 〈tiGii�iGii ti〉vi

.

Finally, using Eqs. (D1), (D2), and (D5), we derive the NVC
formula [13,20]

�i = 〈ti(GCG)ii ti〉vi
+

∑
j �=i

〈tiGij�jGji ti〉vi
. (D11)

At this point, it is worth stressing again that all the quantities in
the above formula should be understood as Keldysh matrices.
Therefore, Eq. (D11) serves as a unified recursive relation for
vertex corrections of all types of L(2) correlators [20].
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